Đề thi học kì 2 Toán 7 năm 2019 – 2020 trường THCS Nguyễn Huệ – TP HCM

Nhằm giúp các em học sinh lớp 7 có sự chuẩn bị tốt nhất cho đợt kiểm tra định kỳ cuối học kì 2 môn Toán lớp 7, giới thiệu đến các em PDF đề thi + đáp án + lời giải chi tiết đề thi học kì 2 Toán 7 năm học 2019 – 2020 

Chủ đề:

Đề HK2 Toán 7 221 tài liệu

Môn:

Toán 7 2.1 K tài liệu

Thông tin:
8 trang 10 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Đề thi học kì 2 Toán 7 năm 2019 – 2020 trường THCS Nguyễn Huệ – TP HCM

Nhằm giúp các em học sinh lớp 7 có sự chuẩn bị tốt nhất cho đợt kiểm tra định kỳ cuối học kì 2 môn Toán lớp 7, giới thiệu đến các em PDF đề thi + đáp án + lời giải chi tiết đề thi học kì 2 Toán 7 năm học 2019 – 2020 

48 24 lượt tải Tải xuống
Đề A
Bài 1 (2 điểm). Điểm kiểm tra môn Toán của một nhóm học sinh được chọn ngẫu nhiên
từ các học sinh lớp 7A được ghi lại ở bảng sau:
8 9 10 9 9 10 8 7 9 8
10 7 10 9 8 10 8 8 8 8
8 9 8 10 10 9 9 9 8 7
a) Dấu hiệu ở đây là gì? Lập bảng tần số.
b) Tính số trung bình cộng, tìm mốt của dấu hiệu và nêu nhận xét.
Bài 2 (1 điểm). Cho đơn thức A =
2
2 2 3
1 3
3 2
x y x y
Thu gọn đơn thức A rồi xác định hệ số, phần biến và bậc của đơn thức.
Bài 3 (2 điểm). Cho hai đa thức sau:
3 2
3 2
5 2 6 14
3 2 25
C x x x x x
D x x x x x
a) Thu gọn và sắp xếp các đa thức C(x) và D(x) theo lũy thừa giảm dần của biến.
b) Tính N(x) = C(x)+D(x) và tìm nghiệm của đa thức N(x).
Bài 4 (1 điểm). Bác Minh tiết kiệm để mua một chiếc tivi. Nhưng khi bác Minh đdành
đủ số tiền thì cửa hàng báo tivi tăng giá 25% so với lúc đầu và hiện nay tivi có giá 35 000
000 đồng. Hỏi giá ban đầu của tivi và tivi đã tăng giá bao nhiêu?
Bài 5 (3 điểm). Cho tam giác ABC cân tại A (góc A nhọn) có AH BC tại H.
a) Chứng minh: ABH = ACH và suy ra HB = HC.
b) Vẽ trung tuyến BD của tam giác ABC, cắt AH tại G. Chứng minh: G là trọng tâm của
tam giác ABC.
c) Qua H vẽ đường thẳng song song AC cắt AB tại E. Chứng minh: C, G, E thẳng hàng.
Bài 6 (1 điểm). Cho hình v bên ới. Biết nhà bạn An cách AEON 4 km, từ trường bạn
An tới AEON là 3 km.
a) Tính quãng đường từ nhà tới trường của bạn An.
b) Bạn An đi xe đạp điện tới trường với vận tốc 25 km/giờ. Hỏi bạn An phải xuất phát
ở nhà lúc mấy giờ để đến trường kịp giờ học lúc 6 giờ 45 phút.
----- HẾT -----
(Giám thị không giải thích gì thêm)
UBND QUẬN TÂN PHÚ
TRƯỜNG THCS NGUYỄN HUỆ
ĐỀ KIỂM TRA HỌC KỲ 2
Năm học: 2019-2020
Môn Toán – Lớp 7
Thời gian làm bài: 90 phút
(Không k
th
i gian giao đ
)
ĐỀ B
Bài 1 (2 điểm) Điểm kiểm tra môn Toán của một nhóm học sinh được chọn ngẫu nhiên từ
các học sinh lớp 7A được ghi lại ở bảng sau:
8 9 10 9 9 10 8 7 7 8
10 7 10 9 7 9 9 9 8 8
8 9 8 10 10 10 9 7 8 7
c) Dấu hiệu ở đây là gì? Lập bảng tần số.
d) Tính số trung bình cộng, tìm mốt của dấu hiệu và nêu nhận xét.
Bài 2 (1 điểm) Cho đơn thức A =
2
2 2 3
1 1
2 2
x y x y
Thu gọn đơn thức A rồi xác định hệ số, phần biến và bậc của đơn thức.
Bài 3 (2 điểm) Cho hai đa thức sau:
3 2
3 2
4 2 2 14
3 2 20
C x x x x x
D x x x x x
a) Thu gọn và sắp xếp các đa thức C(x) và D(x) theo lũy thừa giảm dần của biến.
b) Tính N(x) = C(x)+D(x) và tìm nghiệm của đa thức N(x).
Bài 4 (1 điểm) Bác Minh tiết kiệm để mua một chiếc tivi. Nhưng khi bác Minh đ dành
đủ số tiền thì cửa hàng báo tivi tăng giá 20% so với lúc đầu và hiện nay tivi có giá 36 000
000 đồng. Hỏi giá ban đầu của tivi và tivi đã tăng giá bao nhiêu?
Bài 5 (3 điểm) Cho tam giác ABC cân tại B (góc B nhọn) có BH AC tại H.
a) Chứng minh: ABH = CBH và suy ra HA = HC.
b) Vẽ trung tuyến AD của tam giác ABC, AD cắt BH tại G. Chứng minh: G trọng m
của tam giác ABC.
c) Qua H vẽ đường thẳng song song BC cắt AB tại E. Chứng minh: C, G, E thẳng hàng.
Bài 6 (1 điểm). Cho hình v bên ới. Biết nhà bạn An cách AEON 4 km, từ trường bạn
An tới AEON là 3 km.
a) Tính quãng đường từ nhà tới trường của bạn An.
b) Bạn An đi xe đạp điện tới trường với vận tốc 20km/giờ. Hỏi bạn An phải xuất phát
ở nhà lúc mấy giờ để đến trường kịp giờ học lúc 6 giờ 45 phút.
----- HẾT -----
(Giám thị không giải thích gì thêm)
UBND QUẬN TÂN PHÚ
TRƯỜNG THCS NGUYỄN HUỆ
ĐỀ KIỂM TRA HỌC KỲ 2
Năm học: 2019-2020
Môn Toán – Lớp 7
Thời gian làm bài: 90 phút
(Không k
th
i gian giao đ
)
ĐÁP ÁN – ĐỀ A
NỘI DUNG ĐIỂM
Câu 1: (2 điểm)
a) Dấu hiệu: Điểm kiểm tra môn Toán của một nhóm học sinh
được chọn ngẫu nhiên từ các học sinh lớp 7A.
Lập bảng tần số
x n x.n
7 3 21
8 11 88
9 9 81
0
7
0
N=30 Tổng: 260
0,25
0,5
b) Số trung bình cộng
X 8,(6)
M
0
= 8
Nhận xét
0,25
0,25
0,25
Câu 2: (1 điểm)
2
2 2 3
2 4 6
6 7
1 3
3 2
1 9
3 4
3
4
A x y x y
A x y x y
A x y
Hệ số
3
4
, phần biến
6 7
x y
, bậc 13
0,25
0,25
0,5
Câu 3: (2 điểm)
a)
Thu gọn và sắp xếp :
3 2
3 2
C(x) x 2x 11x 14
D(x) x 2x 2x 25
b)
N(x) 13x 39
và nghiệm của N(x) là x=3
0,75
0,75
0,5
Câu 4: (1 điểm)
Gọi x ( đồng) là giá tiền của chiếc ti vi (x>0)
Ta có: 1,25x=35.000.000 Vậy x=28.800.000 đồng
Số tiền ban đầu 28.800.000 đồng số tiền tăng giá
28.800.000*0,25=7.200.000 đồng
0,5
0,5
Câu 5 ( 3 điểm)
a) Xét ABH và ACH ta có:
AH là cạnh chung
= = 90
0
(AHBC tại H)
AB = AC(ABC cân tại A)
ABH = ACH (ch-cgv)
b) Ta có HB=HC (ABH = ACH)
AH là đường trung tuyến của ABC
Mà BD là đường trung tuyến của ABC(gt)
0,75
0,25
G
D
B
C
H
A
E
BD cắt AH tại G
G là trọng tâm của ABC
c) Ta cm: ABD = ACE (g-c-g)
AD=AE
Mà AC=AB ; AD= AC
AE= AB
CE trung đường trung tuyến của ABC
Mà G là trọng tâm của ABC
C,G, E thẳng hàng
Câu 6:
a)
Quãng đường từ nhà tới trường của bạn An là 500 m
b)
Thời gian An cần đi từ nhà đến trường 500:25=20 (phút)
Bạn An phải xuất phát nhà lúc 6 giờ 25 phút để đến trường kịp
giờ học lúc 6 giờ 45 phút
ĐÁP ÁN – ĐỀ B
NỘI DUNG ĐIỂM
Câu 1: (2 điểm)
c) Dấu hiệu: Điểm kiểm tra môn Toán của một nhóm học sinh
được chọn ngẫu nhiên từ các học sinh lớp 7A.
Lập bảng tần số
x n x.n
7 6 42
8 8 56
9 9 81
10 7
0
N=30 Tổng: 249
0,25
0,5
d) Số trung bình cộng
X 8,3
M
0
= 9
Nhận xét
0,25
0,25
0,25
Câu 2: (1 điểm)
2
2 2 3
4 2 2 3
6 5
1 1
2 2
1 1
4 2
1
8
A x y x y
A x y x y
A x y
Hệ số
1
8
, phần biến
6 5
x y
, bậc 11
0,25
0,25
0,5
Câu 3: (2 điểm)
c)
Thu gọn và sắp xếp :
3 2
3 2
C(x) x 2x 6x 14
D(x) x 2x 2x 20
d)
N(x) 8x 6
Nghiệm của N(x) là
3
x
4
0,75
0,75
0,5
Câu 4: (1 điểm)
Gọi x ( đồng) là giá tiền của chiếc ti vi (x>0)
Ta có: 1,2x=36.000.000 Vậy x=30.000.000 đồng
Số tiền ban đầu 30.000.000 đồng số tiền tăng giá
30.000.000*0,2=6.000.000 đồng
0,5
0,5
Câu 5 ( 3 điểm)
d) Xét ABH và CBH ta có:
AH là cạnh chung
= = 90
0
(AHBC tại H)
AB = AC(ABC cân tại A)
ABH = CBH (ch-cgv). Suy ra HA=HC
e) Ta có HA=HC (ABH = ACH)
BH là đường trung tuyến của ABC
Mà BD là đường trung tuyến của ABC(gt)
0,75
0,25
0,25
G
D
C
H
A
E
B
BD cắt AH tại G
G là trọng tâm của ABC
f) Ta Chứng minh được: CE trung đường trung tuyến của
ABC
Mà G là trọng tâm của ABC
C,G, E thẳng hàng
0,75
0,25
Câu 6:
c)
Quãng đường từ nhà tới trường của bạn An là 500 m
d)
Thời gian An cần đi từ nhà đến trường 500:20=25 (phút)
Bạn An phải xuất phát nhà lúc 6 giờ 20 phút để đến trường kịp
giờ học lúc 6 giờ 45 phút
| 1/8

Preview text:

UBND QUẬN TÂN PHÚ ĐỀ KIỂM TRA HỌC KỲ 2 Năm học: 2019-2020 TRƯỜNG THCS NGUYỄN HUỆ Môn Toán – Lớp 7
Thời gian làm bài: 90 phút
(Không kể thời gian giao đề) Đề A
Bài 1 (2 điểm). Điểm kiểm tra môn Toán của một nhóm học sinh được chọn ngẫu nhiên
từ các học sinh lớp 7A được ghi lại ở bảng sau: 8 9 10 9 9 10 8 7 9 8 10 7 10 9 8 10 8 8 8 8 8 9 8 10 10 9 9 9 8 7
a) Dấu hiệu ở đây là gì? Lập bảng tần số.
b) Tính số trung bình cộng, tìm mốt của dấu hiệu và nêu nhận xét. 2  1  3
Bài 2 (1 điểm). Cho đơn thức A = 2 2 3   x y x y     3  2 
Thu gọn đơn thức A rồi xác định hệ số, phần biến và bậc của đơn thức.
Bài 3 (2 điểm). Cho hai đa thức sau: C  x 3 2
 x  5x  2x  6x 14 D  x 3 2
 x  3x  2x  x  25
a) Thu gọn và sắp xếp các đa thức C(x) và D(x) theo lũy thừa giảm dần của biến.
b) Tính N(x) = C(x)+D(x) và tìm nghiệm của đa thức N(x).
Bài 4 (1 điểm). Bác Minh tiết kiệm để mua một chiếc tivi. Nhưng khi bác Minh để dành
đủ số tiền thì cửa hàng báo tivi tăng giá 25% so với lúc đầu và hiện nay tivi có giá 35 000
000 đồng. Hỏi giá ban đầu của tivi và tivi đã tăng giá bao nhiêu?
Bài 5 (3 điểm). Cho tam giác ABC cân tại A (góc A nhọn) có AH  BC tại H.
a) Chứng minh: ABH = ACH và suy ra HB = HC.
b) Vẽ trung tuyến BD của tam giác ABC, cắt AH tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Qua H vẽ đường thẳng song song AC cắt AB tại E. Chứng minh: C, G, E thẳng hàng.
Bài 6 (1 điểm). Cho hình vẽ bên dưới. Biết nhà bạn An cách AEON 4 km, từ trường bạn An tới AEON là 3 km.
a) Tính quãng đường từ nhà tới trường của bạn An.
b) Bạn An đi xe đạp điện tới trường với vận tốc là 25 km/giờ. Hỏi bạn An phải xuất phát
ở nhà lúc mấy giờ để đến trường kịp giờ học lúc 6 giờ 45 phút. ----- HẾT -----
(Giám thị không giải thích gì thêm) UBND QUẬN TÂN PHÚ ĐỀ KIỂM TRA HỌC KỲ 2 Năm học: 2019-2020 TRƯỜNG THCS NGUYỄN HUỆ Môn Toán – Lớp 7
Thời gian làm bài: 90 phút
(Không kể thời gian giao đề) ĐỀ B
Bài 1 (2 điểm) Điểm kiểm tra môn Toán của một nhóm học sinh được chọn ngẫu nhiên từ
các học sinh lớp 7A được ghi lại ở bảng sau: 8 9 10 9 9 10 8 7 7 8 10 7 10 9 7 9 9 9 8 8 8 9 8 10 10 10 9 7 8 7
c) Dấu hiệu ở đây là gì? Lập bảng tần số.
d) Tính số trung bình cộng, tìm mốt của dấu hiệu và nêu nhận xét. 2  1    1
Bài 2 (1 điểm) Cho đơn thức A = 2 2 3   x y   x y   2   2 
Thu gọn đơn thức A rồi xác định hệ số, phần biến và bậc của đơn thức.
Bài 3 (2 điểm) Cho hai đa thức sau: C  x 3 2
 x  4x  2x  2x 14 D  x 3 2
 x  3x  2x  x  20
a) Thu gọn và sắp xếp các đa thức C(x) và D(x) theo lũy thừa giảm dần của biến.
b) Tính N(x) = C(x)+D(x) và tìm nghiệm của đa thức N(x).
Bài 4 (1 điểm) Bác Minh tiết kiệm để mua một chiếc tivi. Nhưng khi bác Minh để dành
đủ số tiền thì cửa hàng báo tivi tăng giá 20% so với lúc đầu và hiện nay tivi có giá 36 000
000 đồng. Hỏi giá ban đầu của tivi và tivi đã tăng giá bao nhiêu?
Bài 5 (3 điểm) Cho tam giác ABC cân tại B (góc B nhọn) có BH  AC tại H.
a) Chứng minh: ABH = CBH và suy ra HA = HC.
b) Vẽ trung tuyến AD của tam giác ABC, AD cắt BH tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Qua H vẽ đường thẳng song song BC cắt AB tại E. Chứng minh: C, G, E thẳng hàng.
Bài 6 (1 điểm). Cho hình vẽ bên dưới. Biết nhà bạn An cách AEON 4 km, từ trường bạn An tới AEON là 3 km.
a) Tính quãng đường từ nhà tới trường của bạn An.
b) Bạn An đi xe đạp điện tới trường với vận tốc là 20km/giờ. Hỏi bạn An phải xuất phát
ở nhà lúc mấy giờ để đến trường kịp giờ học lúc 6 giờ 45 phút. ----- HẾT -----
(Giám thị không giải thích gì thêm) ĐÁP ÁN – ĐỀ A NỘI DUNG ĐIỂM Câu 1: (2 điểm)
a) Dấu hiệu: Điểm kiểm tra môn Toán của một nhóm học sinh 0,25
được chọn ngẫu nhiên từ các học sinh lớp 7A. Lập bảng tần số 0,5 x n x.n 7 3 21 8 11 88 9 9 81 7 0 0 N=30 Tổng: 260
b) Số trung bình cộng X  8,(6) 0,25 M0 = 8 0,25 Nhận xét 0,25 2  1  3  2 2 3  A    x y  x y   3  2   1  9 2 4 6  A    x y  x y  0,25  3  4  Câu 2: (1 điểm) 3 0,25 6 7 A  x y 4 3  6 7
Hệ số 4 , phần biến x y , bậc 13 0,5 Câu 3: (2 điểm) a) 3 2 C(x)  x  2x 11x 14 0,75 Thu gọn và sắp xếp : 3 2
D(x)  x  2x  2x  25 b)
N(x)  13x  39 và nghiệm của N(x) là x=3 0,75 0,5 Câu 4: (1 điểm)
Gọi x ( đồng) là giá tiền của chiếc ti vi (x>0)
Ta có: 1,25x=35.000.000 Vậy x=28.800.000 đồng 0,5 0,5
Số tiền ban đầu là 28.800.000 đồng và số tiền tăng giá
28.800.000*0,25=7.200.000 đồng Câu 5 ( 3 điểm) A E D G B C H
a) Xét ABH và ACH ta có: AH là cạnh chung = = 900(AHBC tại H) 0,75 AB = AC(ABC cân tại A)  ABH = ACH (ch-cgv)
b) Ta có HB=HC (ABH = ACH) 0,25
AH là đường trung tuyến của ABC
Mà BD là đường trung tuyến của ABC(gt) BD cắt AH tại G
 G là trọng tâm của ABC
c) Ta cm: ABD = ACE (g-c-g) AD=AE Mà AC=AB ; AD= AC AE= AB
CE trung đường trung tuyến của ABC
Mà G là trọng tâm của ABC C,G, E thẳng hàng Câu 6: a)
Quãng đường từ nhà tới trường của bạn An là 500 m b)
Thời gian An cần đi từ nhà đến trường 500:25=20 (phút)
Bạn An phải xuất phát ở nhà lúc 6 giờ 25 phút để đến trường kịp
giờ học lúc 6 giờ 45 phút ĐÁP ÁN – ĐỀ B NỘI DUNG ĐIỂM Câu 1: (2 điểm)
c) Dấu hiệu: Điểm kiểm tra môn Toán của một nhóm học sinh 0,25
được chọn ngẫu nhiên từ các học sinh lớp 7A. Lập bảng tần số 0,5 x n x.n 7 6 42 8 8 56 9 9 81 10 7 0 N=30 Tổng: 249
d) Số trung bình cộng X  8,3 0,25 M0 = 9 0,25 Nhận xét 0,25 2  1   1 2 2 3  A   x y   x y   2   2   1  1 4 2 2 3  A   x y  x y  0,25  4  2  Câu 2: (1 điểm) 1 0,25 6 5 A  x y 8 1 6 5
Hệ số 8 , phần biến x y , bậc 11 0,5 Câu 3: (2 điểm) c) 3 2 C(x)  x  2x  6x 14 0,75 Thu gọn và sắp xếp : 3 2
D(x)  x  2x  2x  20 d) N(x)  8x  6 0,75 3  0,5 Nghiệm của N(x) là x  4 Câu 4: (1 điểm)
Gọi x ( đồng) là giá tiền của chiếc ti vi (x>0) 0,5
Ta có: 1,2x=36.000.000 Vậy x=30.000.000 đồng 0,5
Số tiền ban đầu là 30.000.000 đồng và số tiền tăng giá
30.000.000*0,2=6.000.000 đồng Câu 5 ( 3 điểm) B E D G A C H
d) Xét ABH và CBH ta có: AH là cạnh chung = = 900(AHBC tại H) 0,75 AB = AC(ABC cân tại A)
 ABH = CBH (ch-cgv). Suy ra HA=HC 0,25
e) Ta có HA=HC (ABH = ACH)
BH là đường trung tuyến của ABC 0,25
Mà BD là đường trung tuyến của ABC(gt) BD cắt AH tại G
 G là trọng tâm của ABC 0,75
f) Ta Chứng minh được: CE trung đường trung tuyến của ABC 0,25
Mà G là trọng tâm của ABC C,G, E thẳng hàng Câu 6: c)
Quãng đường từ nhà tới trường của bạn An là 500 m d)
Thời gian An cần đi từ nhà đến trường 500:20=25 (phút)
Bạn An phải xuất phát ở nhà lúc 6 giờ 20 phút để đến trường kịp
giờ học lúc 6 giờ 45 phút