









Preview text:
KÌ THI THỬ THPT QUỐC GIA NĂM 2023-ĐỀ 3 Bài thi: TOÁN
Thời gian làm bài : 90 Phút; (Đề có 50 câu)
Câu 1: Tính thể tích V của khối lăng trụ có diện tích đáy là B và chiều cao là h . 1 A. 2 V = B h .
B. V = Bh . C. 2 V = Bh . D. V = Bh . 3
Câu 2: Cho a, b là các số thực dương tùy ý. Khẳng định nào sau đây đúng?
A. ln (ab) = ln . a ln b .
B. ln (a + b) = ln a + ln b . C. ln (a + b) = ln .
a ln b . D. ln (ab) = ln a + ln b .
Câu 3: Cho hàm số y = f ( x) có bảng biến thiên như sau
Giá trị cực tiểu của hàm số đã cho bằng A. −2 . B. 4 . C. 3 − . D. 3 .
Câu 4: Trên khoảng (0; +) , đạo hàm của hàm số y = log x là 2 1 ln 2 x
A. y = x ln 2 . B. y = . C. y = . D. y = . x ln 2 x ln 2 2x + 3
Câu 5: Tiệm cận đứng của đồ thị hàm số y = là đường thẳng x − 3 A. x = 2 . B. x = 3 . C. x = − 3 . D. x = −1 .
Câu 6: Cho hàm số y = f ( x) liên tục trên
và có bảng biến thiên dưới đây
Số nghiệm của phương trình 3 f ( x) = 1 là A. 4 . B. 3 . C. 1 . D. 2 . x − 3
Câu 7: Giá trị lớn nhất của hàm số y = x+ trên đoạn [0;1] bằng 1 A. 3 . B. 1. C. 3 − . D. −1 .
Câu 8: Số mặt phẳng đối xứng của hình tứ diện đều là A. 4 . B. 9 . C. 3 . D. 6 .
Câu 9: Tập nghiệm của bất phương trình 3x 27 là A. ( ;3 − ) . B. (3; +) . C. (9; +) . D. (0;3) .
Câu 10: Cho hàm số y = f ( x) có bảng biến thiên như hình vẽ bên dưới. Trang 1
Hàm số y = f ( x) đồng biến trên khoảng nào dưới đây? A. (0 ) ;1 . B. ( ;0 − ). C. ( 1 − ;0) . D. (0;+ ) .
Câu 11: Đạo hàm của hàm số 3 2 x y = là A. 3 2 x.ln 2 . B. 3 3.2 x.ln 3 . C. 3 3.2 x.ln 2 . D. 3 3.2 x .
Câu 12: Đồ thị của hàm số nào dưới đây có dạng như đường cong ở hình bên? x +1 A. 3
y = −x + 3x +1. B. 4 2
y = x − 2x +1. C. 3
y = x − 3x +1. D. y = . x −1
Câu 13: Cho log b = với a, b là các số thực dương tùy ý và a 1. Khẳng định nào sau đây đúng? a A. a = b .
B. b = a . C. b = . . a D. a = . b .
Câu 14: Khối trụ tròn xoay có đường sinh l , bán kính đáy r thì có diện tích xung quanh S là xq rl A. S = rl . B. S = 2 rl . C. S = 4 rl . D. S = . xq xq xq xq 2
Câu 15: Hàm số F (x) là một nguyên hàm của hàm số f (x) trên khoảng K nếu A. F (
x) = − f (x), x K. B. F (
x) = f (x), x K. C. f (
x) = F(x), x K. D. f (
x) = −F(x), x K.
Câu 16: Tập xác định của hàm số y = ( x − )75 2023 là A. (2023;+) . B. ( 2 − 023;+) . C. \ 202 3 . D. ( ; − 202 ) 3 .
Câu 17: Tìm tập nghiệm S của bất phương trình log x −1 1. 1 ( ) 2 3 3 3 3 A. S = 1; . B. S = −; . C. S = ; + . D. S = 1; . 2 2 2 2
Câu 18: Hàm số nào dưới đây nghịch biến trên tập số thực ? x +1 A. 3
y = x − 3x . B. y = . C. 4
y = −x − 3x . D. 3
y = −x − 2x . x − 2
Câu 19: Với C là hằng số, mệnh đề nào sau đây đúng? 1 A. 1 x dx x + = + C ( − ) 1 − = − + . B. x x ( ) 1 d 1 .x C . +1 C. 1
x dx .x − = + C . D. x x ( ) 1 d 1 x + = + + C . Câu 20: Hàm số 4 2
y = −x + 2x +1 có bao nhiêu điểm cực trị? A. 3 . B. 1. C. 0 . D. 2 .
Câu 21: Cho hình lập phương có độ dài mỗi cạnh là 2 2 . Tính thể tích khối lập phương đó. Trang 2 16 2 A. . B. 16 . C. 16 2 . D. 64 . 3
Câu 22: Nghiệm của phương trình 10x = 5 là 1 A. x = . B. x = 2 . C. x = log 5 . D. x = log 10 . 5 2
Câu 23: Cho biểu thức n m P =
x với m , n , n 2 và x 0 . Mệnh đề nào dưới đây đúng? m n A. n P = x . B. m P = x . C. mn P = x . D. m n P x + = .
Câu 24: Biết đồ thị hàm số bậc ba 3 2
y = x + ax + bx + c ( , a ,
b c ) có một điểm cực trị là A(3; 3 − ) và đi
qua điểm B(2;2) , tính a + b + c .
A. a + b + c = 30 .
B. a + b + c = 36 .
C. a + b + c = 18 .
D. a + b + c = 12 .
Câu 25: Cho hàm số y = f ( x) có f ( x) 3
= 4x − m +1, f (2) =1 và đồ thị của hàm số y = f (x) cắt trục
tung tại điểm có tung độ bằng 3 . Tìm được ( ) 4
f x = ax + bx + c với a, b, c
, tính a + b + c . A. −11. B. 5 − . C. 13 − . D. 7 − . mx + 3
Câu 26: Với giá trị nào của tham số m thì đường tiệm cận ngang của đồ thị hàm số y = đi qua 2x − 2023 điểm M (1;3) ? A. m = 2 − . B. m = 6 − . C. m = 2 . D. m = 6 .
Câu 27: Một khối chóp có diện tích đáy 2
B = 9a và thể tích 3
V = 3a . Chiều cao của khối chóp đó bằng A. 6a . B. 3a . C. a . D. 2a .
Câu 28: Biết phương trình 9x 3.3x −
− 4 = 0 có nghiệm x = log b (a,b là các số nguyên dương nhỏ hơn 10 a
), giá trị của a − b bằng A. 1. B. −2 . C. 2 . D. −1 .
Câu 29: Cho hàm số ( ) x
f x = e + 9 , với C là hằng số . Khẳng định nào dưới đây đúng? A. ( )d x
f x x = e + 9x + C . B. ( )d x
f x x = e − 9x + C . C. ( ) −9 d x f x x = e + C . D. ( )d x
f x x = e + C .
Câu 30: Cho hàm số f ( x) xác định trên R \
1 thỏa mãn f ( x) 1 =
, f (0) = 2022 , f (2) = 2023. Tính x −1
S = f (3) − f (− ) 1 .
A. S = ln 4035 . B. S = ln 2 . C. S = 4 . D. S = 1 . 1
Câu 31: Rút gọn biểu thức 3 6
P = x . x với x 0 , ta được 1 1 A. P = x . B. 9 P = x . C. 3 P = x . D. 2 P = x . log2 (ab)
Câu 32: Cho a, b là các số thực dương thỏa mãn 4
= 3a . Giá trị của 2 a b bằng A. 12 . B. 2 . C. 6 . D. 3 .
Câu 33: Phương trình tiếp tuyến của đồ thị hàm số 3
y = −x + 2x −1 tại điểm M (1;0) là
A. y = x −1.
B. y = x +1.
C. y = − x + 1.
D. y = − x −1.
Câu 34: Cho mặt cầu có bán kính bằng 3a . Thể tích khối cầu bằng A. 3 36 a . B. 3 12 a . C. 3 9 a . D. 3 18 a .
Câu 35: Cho hàm số y = f ( x) có đồ thị như hình vẽ bên dưới. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn 1 − ; 3 bằng Trang 3 A. 1. B. 2 . C. −2 . D. 4 .
Câu 36: Với a là số thực dương tùy ý, 8 log a bằng 3 1 A. log a . B. 8log a .
C. 8 − log a . D. 8 + log a . 3 3 3 3 8 2x +1
Câu 37: Biết đường thẳng y = x − 2 cắt đồ thị hàm số y =
tại hai điểm phân biệt A và B có hoành x −1
độ lần lượt là x , x . Giá trị của biểu thức x + x bằng A B A B A. 3. B. 2. C. 1. D. 5. x − 2
Câu 38: Cho hàm số y =
. Mệnh đề nào sau đây đúng? x +1
A. Hàm số đồng biến trên các khoảng ( ) ;1 − và (1;+).
B. Hàm số nghịch biến trên các khoảng (− ; − ) 1 và ( 1 − ;+).
C. Hàm số nghịch biến trên các khoảng ( ) ;1 − và (1;+) .
D. Hàm số đồng biến trên các khoảng (− ; − ) 1 và ( 1 − ;+).
Câu 39: Cho hình chóp S.ABCD có đáy ABCD hình chữ nhật với AB = 4a , BC = a , cạnh bên SD = 2a
và SD vuông góc với mặt phẳng đáy. Thể tích khối chóp S.ABCD bằng 2 8 A. 3 a . B. 3 a . C. 3 3a . D. 3 6a . 3 3
Câu 40: Biết phương trình 2
log x − m log x − 7 = 0 ( m là tham số) có hai nghiệm x , x . Tính tích x .x . 5 5 1 2 1 2 A. . 5 . m x x − =
B. x .x = 7 − . C. 7 x .x 5− = . D. . 5 . m x x = 1 2 1 2 1 2 1 2
Câu 41: Cắt hình nón có chiều cao h bởi một mặt phẳng đi qua trục ta được thiết diện là một tam giác
vuông cân. Biết diện tích xung quanh của hình nón là 8 2 . Thể tích của khối nón bằng 16 2 64 A. . B. . C. 16 2 . D. 8 . 3 3
Câu 42: Cho hàm số f ( x) có đạo hàm f ( x) 2023 = x ( 2
. x + (m + 2) x −1− m) với m là tham số thực. Hỏi
có bao nhiêu giá trị nguyên của tham số m ( 2 − 023;202 )
3 để hàm số f ( x) nghịch biến trên khoảng ( ;0 − )? A. 2023. B. 2021. C. 2022 . D. 2024.
Câu 43: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a , SA = 9a và SA ⊥ ( ABC) . Gọi O là SP SQ 1
trọng tâm của tam giác ABC ; P , Q lần lượt là hai điểm thuộc cạnh SB và SC thỏa = = . Thể SB SC 3
tích khối tứ diện AOPQ bằng 3 a 3 3 a 3 3 a 3 3 a 3 A. . B. . C. . D. . 6 3 9 4
Câu 44: Cho hàm số 4
f x = mx + (m + ) 2 ( )
8 x +1 với m là tham số thực. Trên đoạn 0; 2 , nếu giá trị lớn
nhất của hàm số bằng f ( )
1 thì giá trị nhỏ nhất của hàm số đó bằng Trang 4 11 61 A. −21. B. . C. − . D. 4 . 3 3
Câu 45: Cho lăng trụ ABC . D A B C D
có đáy ABCD là hình thoi có cạnh a , BAD 60 =
và AA = a 5 .
Biết rằng mặt phẳng ( AA C C
) vuông góc với mặt đáy và hai mặt phẳng ( AA C C ) , ( AA B B ) tạo với nhau
góc 45 . Tính thể tích V của khối lăng trụ ABC . D A B C D . 3 a 5 3 a 5 3 a 5 3 a 5 A. V = . B. V = . C. V = . D. V = . 2 4 3 6
Câu 46: Gọi S là tập tất cả các giá trị nguyên của tham số m để phương trình log
(x+m)+log ( 2x − x+2m = 0 có đúng một nghiệm thực. Tính tổng các phần tử của S . 2023 1 ) 2023 A. 0 . B. 3 − . C. 3 − . D. −2 .
Câu 47: Cho hình lăng trụ đứng ABC A B C
có đáy ABC là tam giác vuông cân tại B có BC = a 2 và
góc giữa đường thẳng AB và mặt phẳng ( BCC B
) bằng 30 . Thể tích khối lăng trụ ABC.A B C là 3 a 3 a 6 3 a A. . B. 3 a 6 . C. . D. . 6 3 4
Câu 48: Cho hàm số y = f ( x) là hàm đa thức có f ( 3
− ) 0 và đồ thị f (x) như hình vẽ bên dưới. Tìm
số điểm cực đại của hàm số g ( x) = f ( x − ) 1982 1 A. 3 . B. 2 . C. 1 . D. 4 .
Câu 49: Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn 0;1 0 để bất phương trình 2
x + 2x + m +1 2 log
2x + 4x + 7 − 2m 2 2 x + 2x +
có nghiệm. Số phần tử của tập hợp S bằng 2 A. 9 . B. 7 . C. 10 . D. 8 . 2
Câu 50: Có bao nhiêu giá trị nguyên của tham số m để phương trình x −( 2 125.5 12 −12 + 37)5m x m = 0 có hai nghiệm phân biệt? A. 2 . B. 4 . C. 1 . D. 3 .
------ HẾT ------ Trang 5 ĐÁP ÁN 1 B 6 C 11 C 16 A 21 C 26 D 31 A 36 B 41 A 46 D 2 D 7 D 12 A 17 D 22 C 27 C 32 D 37 D 42 B 47 B 3 C 8 D 13 B 18 D 23 A 28 D 33 C 38 D 43 C 48 C 4 B 9 B 14 B 19 A 24 D 29 A 34 A 39 B 44 C 49 A 5 B 10 A 15 B 20 A 25 B 30 D 35 C 40 D 45 A 50 C
HƯỚNG DẪN GIẢI MỘT SỐ CÂU VẬN DỤNG
Câu 1: Cho hàm số f ( x) có đạo hàm f ( x) 2023 = x ( 2
. x + (m + 2) x −1− m) với m là tham số thực. Hỏi có
bao nhiêu giá trị nguyên của tham số m ( 2 − 023;202 )
3 để hàm số f ( x) nghịch biến trên khoảng ( ;0 − ) ? A. 2023. B. 2021. C. 2022 . D. 2024. Lời giải
▪ Hàm số f (x) nghịch biến trên khoảng ( ;0 − ) 2023 x ( 2
. x + (m + 2) x −1− m) 0, x (− ; 0) ( 2
x + (m + 2) x −1− m) 0, x (− ; 0) 2 −x − 2x +1 m , x (− ; 0) . x −1
m min g (x) m 1 − ,158... (−;0)
▪ Do m và m( 2 − 023;202 ) 3 nên m 2 − 022; 1 − 8;....;− 2 .
Vậy có 2021 giá trị m thỏa yêu cầu bài toán.
Câu 2 : Gọi S là tập tất cả các giá trị nguyên của tham số m để phương trình log
(x+m)+log ( 2x − x+2m = 0 có đúng một nghiệm thực. Tính tổng các phần tử của S . 2023 1 ) 2023 A. 0 . B. 3 − . C. 3 − . D. −2 . Lời giải
▪ Phương trình đã cho tương đương: log (x + m)= log ( 2
x - x + 2m 2023 2023 ) 2 2
ìï x + m > 0
ìï x + m > 0
ìï x - x + 2x > 0
ìï - x + 3x > 0 ìï 0 < x < 3 ï ï ï ï ï Û í Û í Û í Û í Û í 2 2 2 2 2
ï x + m = x - x + 2m
ï m = - x + 2x
ï m = - x + 2x
ï m = - x + 2x ï ïî ïî ïî ïî
ï m = - x + 2x î
▪ Lập bảng biến thiên của hàm số f (x) 2
= - x + 2x trên (0; ) 3 . m é = 1
▪ Dựa vào BBT, ta thấy YCBT Û ê . ê- 3 < m £ 0 ë
▪ Vì m Î ¢ nên m Î {- 2;- 1;0;1 . }
Vậy tổng các phần tử của S là - 2 . Câu 3: Cho hàm số 4
f x = mx + (m + ) 2 ( )
8 x +1 với m là tham số thực. Trên đoạn 0; 2 , nếu giá trị lớn nhất
của hàm số bằng f ( )
1 thì giá trị nhỏ nhất của hàm số đó bằng 11 61 A. −21. B. . C. − . D. 4 . 3 3 Lời giải
▪ Ta có: f (x) 3
= 4mx + 2(m+8) x .
▪ Trên đoạn 0;2 , giá trị lớn nhất của hàm số bằng f ( ) 1 nên f ( ) 1 = 0 3 4 .
m 1 + 2(m + 8).1 = 0 Trang 6 8 m = − 3 8 8 8 16 Suy ra, f ( x) 4 2 4 2
= − x + − + 8 x +1= − x + x +1 . 3 3 3 3
▪ Dùng MT Casio, ta tìm được giá trị nhỏ nhất của hàm số đó trên đoạn 0;2 bằng 61 − . 3
Câu 4: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a , SA = 9a và SA ⊥ ( ABC) . Gọi O là SP SQ 1
trọng tâm của tam giác ABC ; P , Q lần lượt là hai điểm thuộc cạnh SB và SC thỏa = = . Thể SB SC 3
tích khối tứ diện AOPQ bằng 3 a 3 3 a 3 3 a 3 3 a 3 A. . B. . C. . D. . 6 3 9 4 Lời giải
▪ Gọi I là trung điểm của BC . ▪ 1 Ta có: V = S .d O APQ APQG A PQ ( ,( )) 3 1 2 = S . d I APQ APQ ( ,( )) 3 3 2 = V . 3 I APQ 4 = V . 3 S APQ 4 SA SP SQ = . . . V . 3 S ABC SA SB SC 2 4 1 1 = . . S . A S 3 3 3 ABC 2 4 a 3 = .9 . a 81 4 3 a 3 = . 9
Câu 5: Cho hàm số y = f ( x) là hàm đa thức có f ( 3
− ) 0 và đồ thị f (x) như hình vẽ bên dưới. Tìm số
điểm cực đại của hàm số g (x) = f (x − ) 1982 1 . Trang 7 A. 3 . B. 2 . C. 1 . D. 4 . Lời giải
▪ Từ đồ thị đã cho, ta suy ra bảng biến thiên của hàm số y = f ( x) như sau: ▪ 1981
g( x) =1982. f (x − ) 1 . f (x − ) 1 x −1 = 3 − x = 2 −
f (x − ) 1 = 0 x −1 = 1 x = 2
g( x) = 0 . f ( x − ) 1 = 0 x −1 = 0 x =1
x −1 = a 1
x = a +1 2 f (x − )
1 0 x a +1 ▪ Ta có: − f ( x − ) x 2 1 0 x 2
▪ Lập bảng biến thiên của hàm số g (x)
▪ Từ bảng biến thiên trên, ta nhận thấy hàm số g (x) có 1 điểm cực đại. Trang 8
Câu 6: Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn 0;1 0 để bất phương trình 2
x + 2x + m +1 2 log
2x + 4x + 7 − 2m có nghiệm. Số phần tử của tập hợp S bằng 2 2 x + 2x + 2 A. 9 . B. 7 . C. 10 . D. 8 . Lời giải
▪ Điều kiện xác định của phương trình: 2
x + 2x + m +1 0 2
x + 2x + m+1 0 (vì 2
x + 2x + 2 = ( x + )2
1 +1 0 với mọi x ). (*) 2 x + 2x + 2 Khi đó: 2
x + 2x + m +1 2 log
2x + 4x + 7 − 2m 2 2 x + 2x + 2 2
x + 2x + m +1 2 log
−1 2x + 4x + 6 − 2m 2 2 x + 2x + 2 2
x + 2x + m +1 log
x + x + −
x + x + m +
2 ( x + 2x + 2) 2. 2( 2 2 2) 2 ( 2 2 1 2 2 ) log ( 2
x + 2x + m +1 + ( 2
2 x + 2x + m + ) 1 log 2 ( 2
x + 2x + 2 + ( 2
2. 2 x + 2x + 2) 2 ) 2 ) . (1)
▪ Xét hàm số f (t) = log t + 2t với t 0. 2
Ta có: f (t ) 1 = + 2 0, t
0 . Suy ra hàm số f (t) đồng biến trên khoảng (0;+ ) . t.ln 2 Do đó ( ) f ( 2 1
x + 2x + m + ) 1 f ( ( 2 2 x + 2x + 2) 2
x + 2x + m+1 ( 2 2 x + 2x + 2) . 2
x + 2x +3 m. ▪ Yêu cầu bài toán 2
x + 2x +3 m có nghiệm trên m min g (x) với g (x) 2 = x + 2x + 3.
▪ Ta có: g ( x) = x + x + = ( x + )2 2 2 3 1 + 2 2, x .
Khi đó, min g ( x) = 2 m 2 .
▪ Vì m0;10 và nên tập S = 2;3;...;1 0 .
Vậy S có 9 phần tử.
Câu 7: Cho lăng trụ ABC . D A B C D
có đáy ABCD là hình thoi có cạnh a , BAD = 60 và AA = a 5 .
Biết rằng mặt phẳng ( AA C C
) vuông góc với mặt đáy và hai mặt phẳng ( AA C C ) , ( AA B B ) tạo với nhau
góc 45 . Tính thể tích V của khối lăng trụ ABC . D A B C D . 3 a 5 3 a 5 3 a 5 3 a 5 A. V = . B. V = . C. V = . D. V = . 2 4 3 6 Lời giải Trang 9
▪ Vì ABCD là hình thoi có cạnh a , BAD 60 = nên ABD
là tam giác đều có cạnh là a . 2 2 Do đó, a 3 a 3 S = 2S = 2. = . ABCD A BD 4 2
▪ Gọi H là chân đường cao của khối lăng trụ hạ từ đỉnh A. Vì ( AA C C
) ⊥ (ABCD) và ( AA C C
)(ABCD) = AC nên A H ⊥ AC . BO ⊥ AC ▪ Ta có:
BO ⊥ AA ( ) 1 BO ⊥ A H Trong ( AA C C
) , kẻ OK ⊥ AA (2) Từ ( )
1 ,(2) AA ⊥ KB ( ) 3 Suy ra (( AA C C ),( AA B B )) = OKB = 45. Lúc đó, a B
OK là tam giác vuông cân tại O nên OK = OB = . 2 a .a 5 ▪ OK.AA a 15 Xét A A O có: 2 A H
.AO = OK.AA A H = = = . AC a 3 3 2 2 3 Vậy a 15 a 3 a 5
thể tích khối lăng trụ cần tìm là: V = A H .S = . = . ABCD 3 2 2 2
Câu 8: Có bao nhiêu giá trị nguyên của tham số m để phương trình x −( 2 125.5 12 −12 + 37)5m x m = 0 có hai nghiệm phân biệt? A. 2 . B. 4 . C. 1 . D. 3 . Lời giải ▪ 2 2 Xét phương trình: x −( 2 125.5 12 −12 + 37)5m x m = 0 x +3−m − ( 2 5
12 x + 3 − m) −1= 0 ▪ Đặt 2
t = x + 3− m. Khi đó phương trình trở thành: 5t −12t −1= 0( ) * .
▪ Xét hàm số ( ) = 5t f t
−12t −1 có ( ) = 5t f t ln 5 −12 t 12 12
Ta có: f (t) = 0 5 = t = log
= t . Suy ra: f (t 1,248 0 . 1 ) 5 1 ln 5 ln5
▪ BBT của hàm số ( ) = 5t f t −12t −1 : t = 2 2
x + 3− m = 0 x = m − 3
▪ Dựa vào BBT suy ra: 5t −12t −1= 0 0 . t = 2 2 2
x + 3− m = 2 x = m −1 m − 3 0
▪ Yêu cầu của bài toán tương đương: 1 m 3 . m −1 0
Vậy m = 2 thỏa yêu cầu bài toán. Trang 10