Ôn tập bài tập giữa kỳ - Cơ học và tính năng tàu bay | Học viện Hàng Không Việt Nam

Ôn tập bài tập giữa kỳ - Cơ học và tính năng tàu bay | Học viện Hàng Không Việt Nam được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

Ôn tập bài tập giữa kỳ cơ học và tính năng tàu bay
Bài tập Turning
Bài tập bay bằng
T =
W
CL CD/
V
stall
=
2 mg
ρ x S x CLmax
V
TAS
=
2 mg
ρ x S x CL
=
2mg
ρ
0 x S x CL
x
1
σ
= V
EAS
x
1
σ
L =
1
2
x ρ x V
2
x S x
C
L
=
1
2
x
ρ
0
x V
2
EAS
x S x
C
L
D =
C
D
=
1
2
x
ρ
0
x V
2
EAS
x S x
C
D
(T
min
) khi (D ) khi
min
(
CD
CL
)
min
C
D
= C + kC C
d L
2
Dmd
= 2C
d
C
Lmd
=
Cd
k
V
EASmd
=
2mg
ρ
0 x S
x
(
k
Cd
)
1
4
(P
min
) khi
(
CD
C L
3
2
)
min
C
D
= C + kC C
d L
2
Dmp
= 4C
d
C
Lmp
=
3 Cd
k
=
3
C
Lmd
V
EASmp
=
2mg
ρ
0 x S
x
(
k
3 Cd
)
1
4
=
VEASmd
3
1
4
Exercise 1: An airplane weighing 150000 N has a wing area of 210 m , and thrust of engine is 65.4 kN.
2
At the altitude of 9 km (σ =0.38), its cruise speed is 170 m/s.
(a) What are the values of C and C of the airplane?
L D
(b) If the maximum lift coefficient that the airplane can achieve when fluing at the altitude of 9 km is
1.85, determine the "stall" speed of the airplane.
W = 150000 N
S = 210 m
2
T = 65400 N
σ =0.38
V
eas
= 170 m/s
a/ C ? C ?
L D
L = W = mg = 150000
ρ = ρ x σ = 1.225 x 0.38 = 0,4655
0
L =
1
2
x ρ x V
2
x S x
C
L
C
L =
2 L
ρ x V
2
x S
=
2 x 150000
0.4655
x 170 210
2
x
= 0.106
T = D = 65400 N
D =
C
D
C
D
=
2 D
ρ x V
2
x S
=
2 x 65400
0.4655
x 170 210
2
x
= 0.046
b/ C = 1.85; V
Lmax stalll
?
V
stall
=
2 mg
ρ x S x CLmax
=
2 x 150000
0.4655 x 210 x 1.85
= 40,72 m/s
Exercise 2: The Messerschmidt 109 was produced in huge quantities during World War 2 and was a
very able and dependable aircraft. Over 35,000 were produced between 1936 and 1945. The M109
has a wing area of 16m and a mass of 3000 kg.
2
(a) At a height of 6000 m, where ρ = 0.55ρ0 the M109 has a cruise speed of V =160m/s. Calculate the
corresponding lift coefficient, CL.
(b) If CLmax = 2.9, calculate the airspeed at stall at sea level.
S = 16m
2
m = 3000 kg
a/ ρ = 0.55 ρ = 0.55 x 1.225 = 0.67375; V =160m/s; C ?
0 eas L
L = W = mg = 3000 x 9,8 = 29400
L =
1
2
x ρ x V
2
x S x
C
L
C
L =
2 L
ρ x V
2
x S
=
2 x 29400
0.67375
x 160 16
2
x
= 0.213
b/ C = 2.9; V
Lmax stall
at sea level?
V
stall at sea level
=
2 mg
ρ0 x S x CLmax
=
2 x 29400
1.225 x 16 2.9x
= 32.16 m/s
Exercise 3: A Spitfire aircraft has wing area of 22.48 m , a mass of 3000 kg and a cruise speed of V =
2
139 m/s at an altitude of 4570 m, where the air density ρ ≈ 0.7 kg/m .
3
(a) Calculate the lift coefficient at the cruising speed.
(b) The stall speed is 32.6 m/s at sea level. Calculate CL,max at stall and also calculate the stall speed
at 4570m
S = 22.48 m
2
M = 3000 kg
V
eas
= 139 m/s
ρ ≈ 0.7 kg/m
3
a/ C ?
L
L = W = mg = 3000 x 9,8 = 29400 N
L =
1
2
x ρ x V
2
x S x
C
L
C
L =
2 L
ρ x V
2
x S
=
2 x 29400
0.7
x 139 22.48
2
x
= 0.1933
b/ V
stall at sea level Lmax at stall stall, 4570m
= 32.6 m/s; C ? V ?
V
stall at sea level
=
2 mg
ρ0 x S x CLmax
C
Lmax at stall
=
2 mg
ρ
0 x S x V
2
=
2 x 29400
1.225 22.48
x x 32.6
2
= 2.009
V
stall, 4570m
=
2 mg
ρ x S x CLmax
=
2 x 29400
0.7 x 22.48 x 2.009
= 43.12 m/s
Exercise 4: An airplane weighing 50000 kg has a wing area of 210 m , and thrust of engine is 23.4 kN.
2
At the altitude of 5.5 km (σ =0.75), its cruise speed is 100 m/s.
(a) What are the values of C and C of the airplane?
L D
(b) Determine the stall speed of the airplane at this height if CLmax = 1.42
m = 50000 kg
S = 210 m
2
T = 23400 N
σ =0.75
V
eas
=100 m/s
a/ C ? C ?
L D
L = W = mg = 50000 x 9.8 = 490000 N
ρ = ρ x σ = 1.225 x 0.75 = 0.91875
0
L =
1
2
x ρ x V
2
x S x
C
L
C
L =
2 L
ρ x V
2
x S
=
2 x 490000
0.91875
x 100 210
2
x
= 0.5079
T = D = 23400 N
D =
C
D
C
D
=
2 D
ρ x V
2
x S
=
2 x 23400
0.91875
x 100 210
2
x
= 0.02425
b/ C = 1.42; V
Lmax stalll
?
V
stall
=
2 mg
ρ x S x CLmax
=
2 x 490000
0.91875 x 210 x 1.42
= 59.8 m/s (cái này sai đáp số so với slide)
Exercise 6: An aircraft weighs 56,000 lbs and has a 900 ft wing area. Its drag polar is given by: C =
2
D
0.01575 + 0.03334 CL
2
.
(a)Find the minimum thrust required for cruising flight and the corresponding airspeeds at sea-level
(true air speed) and at 30,000 ft (0.000889 slugs/ft³)
(b) Find the minimum power required and the corresponding true airspeeds for cruising flight at sea-
level and at 30,000 ft
W = 56000 lbs
S = 900 ft
2
C
D
= 0.01575 + 0.03334 CL
2
C = 0.01575; k = 0.03334
d
a/ T ? V
min EAS at sea level md, 30000ft
? V ?
(T
min
) khi (D ) khi
min
(
CD
CL
)
min
C
Dmd
= 2C
d
= 2 x 0.01575 = 0.0315
C
Lmd
=
Cd
k
=
0.01575
0.03334
= 0.687
C
Lmd
/C =
Dmd
0.687
0.0315
= 21.80
Tmin =
W
CLmd /CDmd
=
56000
21.8
= 2568.80 N
ρ
0= 1.225 kg/m = 1.225 x 0.002377 slugs/ft .
3
0.00194 =
3
V
EAS at sea level
=
2 mg
ρ0 x S x CL
=
2 x 56000
0.002377 x 900 x 0.687
= 276.054 ft/s
ρ30,000= 0.458 kg/m³ = 0.000889 slugs/ft³
σ = ρ
0
x ρ
30,000
=
0.000889
0.002377
= 0.374
V
md, 30000ft =
V
TAS EAS
= V
x
1
σ
= 276.054 x
1
0.374
= 451.39 ft/s
b/ P ? V
min EASmp
? V
mp, 30000ft
?
C
D
= C + kC C
d L
2
Dmp
= 4C
d
= 4 x
0.01575
= 0.063
C
Lmp
=
3 Cd
k
=
3 x 0.01575
0.03334
= 1.188
(P
min
) khi
(
CD
C L
3
2
)
min =
0.063
1.188
3
2
= 0.048
V
EASmp
=
2mg
ρ
0 x S
x
(
k
3 Cd
)
1
4
=
2 x 56000
0.002377
x 900
x
(
0.03334
3 x 0.01575
)
1
4
= 209.7 ft/s
V
EASmp, 30000ft = TAS, 30000ft
V = V
EAS
x
1
σ
= 209.7 x
1
0.374
= 342.9 ft/s
P
min
= T x V
min EASmp
= 2568.80 x 209.7 = 538677.36 ft-lb/s
P
min, 30000ft EASmp, 30000ft
= T
min
x V = 2568.80 x 342.9 = 880841.52 ft-lb/s
Exercise 7: An aircraft has a mass of 14000 kg and a wing area of 18 m2, sải cánh =13.41 m, its drag
polar is given by: C =0.015+ 1.2*CL2/(πAR). Find;
D
(a) Equivalent airspeeds if the thrust of the engine at mean sea level is 11000 N..
(b) CD,CL at minimum drag flight condition
(c) CD,CL at minimum power flight condition
m = 14000 kg
S
= 18 m
2
Wingspan, =13.41 𝑏
T = 11,000 N
C
D
=0.015+ 1.2*C
L
2
/(πAR)
AR =
b
2
S
=
13.41
2
18
=9.99
Cd = 0.015; k = 0.038
a/ V ?
eas
L = W = mg = 14000 x 9.8 = 137200 N
T = D = 11000 N
D =
1
2
x ρ 0 x Veas
2
x S x
C
D
C
D
=
2 D
ρ
0 x V
2
x S
=
2 x 11000
1.225
x Veas
2
x 18
(1)
C
L =
2 L
ρ
0 x V
2
x S
=
2 x 137200
1.225
x Veas
2
x 18
Ta có:
C
D
=
0.015
+1.2 x
C L
2
πAR
=
0.015 0.038+
x C = 0.015 + 0.038 x
L
2
(
2 x 137200
1.225
x Veas
2
x 18
)
2
(2)
Từ (1) và (2) ta có:
2 x 11000
1.225
x Veas
2
x 18
=0.015 +0.038 x
(
2 x 137200
1.225
x Veas
2
x 18
)
2
Veas = 80.988 m/s
b/ C
Dmd
,C
Lmd
?
C
D
= C + kC C
d L
2
Dmd
= 2C
d
= 2 x 0.015 = 0.03
C
Lmd
=
Cd
k
=
0.015
0.038
= 0.628
c/ C ?
Dmp
,C
Lmp
C
D
= C + kC C
d L
2
Dmp
= 4C
d
= 4 x
0.01 5
= 0.06
C
Lmp
=
3 Cd
k
=
3 x 0.015
0.038
= 1.08
| 1/12

Preview text:

Ôn tập bài tập giữa kỳ cơ học và tính năng tàu bay Bài tập Turning Bài tập bay bằng W T = CL/CD Vstall = √ 2mg ρ x S x CLmax 1 1
VTAS = √ 2mg =√ 2mg x = VEAS x ρ x S x CL ρ0 x S x CLσσ 1 1 L = 2
x ρ x V x S xCL = x ρ 2 2 0 x V2EASx S x CL 1 1 D = 2
x ρ x V x S xCD = x ρ0 x V2EASx S x CD 2 2 (T ( CD ) min) khi (Dmin) khi min CL C 2 D = Cd + kCL C  Dmd = 2Cd CLmd = √Cd k
VEASmd = √ 2mg x( k )14 ρ0 x S Cd ( CD ) (Pmin) khi 3 min C L2 C 2 D = Cd + kCL C  Dmp = 4Cd
CLmp = √3Cd = √3CLmd k VEASmd
VEASmp = √ 2mg x( k )14 = 1 ρ0 x S 3 Cd 3 4
Exercise 1: An airplane weighing 150000 N has a wing area of 210 m2, and thrust of engine is 65.4 kN.
At the altitude of 9 km (σ =0.38), its cruise speed is 170 m/s.
(a) What are the values of CL and C of the airplane? D
(b) If the maximum lift coefficient that the airplane can achieve when fluing at the altitude of 9 km is
1.85, determine the "stall" speed of the airplane. W = 150000 N S = 210 m2 T = 65400 N σ =0.38 Veas = 170 m/s a/ CL ? CD ? L = W = mg = 150000
ρ = ρ0 x σ = 1.225 x 0.38 = 0,4655 1 2 L 2 x 150000 L = 2 x ρ x V x S xC = = 0.106 2 L  CL = 2 2 ρ x V x S 0.4655 x 170 210 x T = D = 65400 N 1 2 D 2 x 65400 D = 2
x ρ x V x S xCD  CD = = = 0.046 2 2 2 ρ x V x S 0.4655 x 170 210 x b/ CLmax = 1.85; Vstalll ?
Vstall = √ 2mg = √ 2x150000 = 40,72 m/s ρ x S x CLmax
0.4655 x 210 x 1.85
Exercise 2: The Messerschmidt 109 was produced in huge quantities during World War 2 and was a
very able and dependable aircraft. Over 35,000 were produced between 1936 and 1945. The M109
has a wing area of 16m2 and a mass of 3000 kg.
(a) At a height of 6000 m, where ρ = 0.55ρ0 the M109 has a cruise speed of V =160m/s. Calculate the
corresponding lift coefficient, CL.
(b) If CLmax = 2.9, calculate the airspeed at stall at sea level. S = 16m2 m = 3000 kg
a/ ρ = 0.55 ρ0 = 0.55 x 1.225 = 0.67375; Veas =160m/s; C ? L
L = W = mg = 3000 x 9,8 = 29400 1 2 L 2 x 29400 L = 2 x ρ x V x S xC = = 0.213 2 L  CL = 2 2 ρ x V x S 0.67375 x 160 16 x
b/ CLmax = 2.9; Vstall at sea level ? Vstall at sea level = √ 2 mg
= √ 2x29400 = 32.16 m/s ρ0 x S x CLmax 1.225 x 16 2.9 x
Exercise 3: A Spitfire aircraft has wing area of 22.48 m2, a mass of 3000 kg and a cruise speed of V =
139 m/s at an altitude of 4570 m, where the air density ρ ≈ 0.7 kg/m3.
(a) Calculate the lift coefficient at the cruising speed.
(b) The stall speed is 32.6 m/s at sea level. Calculate CL,max at stall and also calculate the stall speed at 4570m S = 22.48 m2 M = 3000 kg Veas = 139 m/s ρ ≈ 0.7 kg/m3 a/ C ? L
L = W = mg = 3000 x 9,8 = 29400 N 1 2 L 2 x 29400 L = 2 x ρ x V x S xC = = 0.1933 2 L  CL = 2 2 ρ x V x S 0.7 x 139 22.48 x
b/ Vstall at sea level = 32.6 m/s; CLmax at stall ? Vstall, 4570m ? 2 mg 2 x 29400 Vstall at sea level = √ 2 mg  CLmax at stall = = = 2.009 2 2 ρ0 x S x CLmax ρ 0 x S x V 1.225 22.48 x x 32.6
Vstall, 4570m = √ 2mg = √ 2x29400 = 43.12 m/s ρ x S x CLmax
0.7 x 22.48 x 2.009
Exercise 4: An airplane weighing 50000 kg has a wing area of 210 m2, and thrust of engine is 23.4 kN.
At the altitude of 5.5 km (σ =0.75), its cruise speed is 100 m/s.
(a) What are the values of CL and C of the airplane? D
(b) Determine the stall speed of the airplane at this height if CLmax = 1.42 m = 50000 kg S = 210 m2 T = 23400 N σ =0.75 Veas =100 m/s a/ CL ? CD ?
L = W = mg = 50000 x 9.8 = 490000 N
ρ = ρ0 x σ = 1.225 x 0.75 = 0.91875 1 2 L 2 x 490000 L = 2 x ρ x V x S xC = = 0.5079 2 L  CL = 2 2 ρ x V x S 0.91875 x 100 210 x T = D = 23400 N 1 2 D 2 x 23400 D = 2
x ρ x V x S xCD  CD = = = 0.02425 2 2 2 ρ x V x S 0.91875 x 100 210 x b/ CLmax = 1.42; Vstalll ?
Vstall = √ 2mg = √ 2x490000 = 59.8 m/s (cái này sai đáp số so với slide) ρ x S x CLmax
0.91875 x 210 x 1.42
Exercise 6: An aircraft weighs 56,000 lbs and has a 900 ft2 wing area. Its drag polar is given by: CD = 0.01575 + 0.03334 CL2.
(a)Find the minimum thrust required for cruising flight and the corresponding airspeeds at sea-level
(true air speed) and at 30,000 ft (0.000889 slugs/ft³)
(b) Find the minimum power required and the corresponding true airspeeds for cruising flight at sea- level and at 30,000 ft W = 56000 lbs S = 900 ft2
CD = 0.01575 + 0.03334 CL2  Cd = 0.01575; k = 0.03334
a/ Tmin ? VEAS at sea level ? Vmd, 30000ft ? (T )
min) khi (Dmin) khi ( CD min CL
CDmd = 2Cd = 2 x 0.01575 = 0.0315
CLmd = √Cd = √0.01575 = 0.687 k 0.03334 0.687 CLmd /CDmd = = 21.80 0.0315 W 56000 Tmin = = = 2568.80 N CLmd /CDmd 21.8
ρ0= 1.225 kg/m3 = 1.225 x 0.00194 = 0.002377 slugs/ft3.
VEAS at sea level = √ 2mg = √ 2 x 56000 = 276.054 ft/s ρ0 x S x CL
0.002377 x 900 x 0.687
ρ30,000= 0.458 kg/m³ = 0.000889 slugs/ft³ 0.000889
σ = ρ0 x ρ30,000 = = 0.374 0.002377 1 1
Vmd, 30000ft = VTAS = VEAS x = 276.054 x = 451.39 ft/s √ σ √0.374
b/ Pmin ? VEASmp ? Vmp, 30000ft ? C 2 D = Cd + kCL C
 Dmp = 4Cd = 4 x 0.01575 = 0.063
CLmp = √3Cd =√3x0.01575 = 1.188 k 0.03334 0.063 (P ) min) khi ( CD3 min = 3 = 0.048 C L2 1.1882
VEASmp = √ 2mg x( k )14 = √ 2x56000 x( 0.03334 )14 = 209.7 ft/s ρ0 x S 3 Cd 0.002377 x 900 3 x 0.01575 1 1
VEASmp, 30000ft = VTAS, 30000ft = VEAS x = 209.7 x = 342.9 ft/s √ σ √0.374
Pmin = Tmin x VEASmp = 2568.80 x 209.7 = 538677.36 ft-lb/s
Pmin, 30000ft = Tmin x VEASmp, 30000ft = 2568.80 x 342.9 = 880841.52 ft-lb/s
Exercise 7: An aircraft has a mass of 14000 kg and a wing area of 18 m2, sải cánh =13.41 m, its drag
polar is given by: C =0.015+ 1.2*CL2/(πAR). Find; D
(a) Equivalent airspeeds if the thrust of the engine at mean sea level is 11000 N..
(b) CD,CL at minimum drag flight condition
(c) CD,CL at minimum power flight condition m = 14000 kg S = 18 m2 Wingspan, =13.41 𝑏 T = 11,000 N C 2 D=0.015+ 1.2*CL /(πAR) 2 2 13.41 AR = b = =9.99 S 18  Cd = 0.015; k = 0.038 a/ Veas ?
L = W = mg = 14000 x 9.8 = 137200 N T = D = 11000 N 1 2 D 2 x 11000 D = 2
x ρ 0 x Veas x S x C = (1) 2 D  CD = 2 2 ρ 0 x V x S 1.225 x Veas x 18 2 L 2 x 137200 CL = = 2 2 ρ 0 x V x S 1.225 x Veas x 18 Ta có: 2 C C L 2 D = 0.015 +1.2 x = 0.015 0.038 +
x CL = 0.015 + 0.038 x ( 2 x137200 )2(2) πAR 2 1.225 x Veas x 18 Từ (1) và (2) ta có: 2 x 11000
=0.015+0.038 x ( 2x137200 )2 2 2 1.225 x Veas x 18 1.225 x Veas x 18  Veas = 80.988 m/s b/ CDmd,CLmd ? C 2 D = Cd + kCL C
 Dmd = 2Cd = 2 x 0.015 = 0.03
CLmd = √Cd = √0.015 = 0.628 k 0.038 c/ CDmp,CLmp ? C 2 D = Cd + kCL C
 Dmp = 4Cd = 4 x 0.01 5 = 0.06
CLmp = √3Cd =√3x0.015 = 1.08 k 0.038