MATHEMATICS 1
6.10.2023
? - denotes harder problems for interested students; we won’t solve them
during tutorials, interested students can present their solutions by themselves
RL - problem due to Rafa l Lochowski
1. Compute limits of the following sequences:
(a) a
n
=
1 +
2
100·n
n
; (b) b
n
=
1
1
n
n
; (c?) c
n
=
1 +
1
n
2
n
; (d)
d
n
=
1
3
n
2
(
n
2
)
; (e) e
n
=
n
n+2
3n
; (f?) f
n
=
1
3
n
(
n
2
)
.
2. Compute limits of the following sequences:
(a) a
n
=
1
1
n
n
; (b) j
n
=
1 +
2
n
n
; (c) h
n
=
1 +
4
n
n
; (d) d
n
=
n+5
n
n
; (e) e
n
=
3n+1
3n+4
n
; (f) f
n
=
n
n+1
n
; (g) g
n
=
n1
n+3
2n+1
;
(h) h
n
=
1
3
n
n
; (i) i
n
1
4
n
n+3
; (j) j
n
=
1 +
1
n+2
3n
; (k) k
n
=
n
2
+6
n
2
n
2
. (l?) l
n
=
1 +
1
2
n
2
n+1
; (m?) m
n
=
1
1
n
2
n
; (o?) o
n
=
1
1
n
2
2n+1
; (p?) p
n
=
n
2
+2
2n
2
+1
n
2
; (r?) r
n
=
n
2
+3n+1
n
2
+5n1
3n
2
+4n7
.
3. (RL) Evaluate the limit if it exists:
(a) lim
x3
x
2
9
x 3
; (b) lim
x→−3
x
2
9
x + 3
; (c) lim
x2
x
2
+ x 6
x 2
; (d) lim
x3
p
x + 6 3
x 3
;
(e) lim
t1
1 t
4
1 t
3
; (f) lim
t→−1
1
t
+ 1
t + 1
; (g) lim
h0
p
100 + h 10
h
.
4. (RL) Determine the infinite limit:
(a) lim
x3
+
2 x
x 3
; (b) lim
x3
2 x
(x 3)
2
; (c) lim
x5
e
x
x 5
; (d) lim
x3
p
x + 6
|x 3|
.
5. (RL) Find the limit if it exists. If the limit does not exists, explain why.
(a) lim
x3
(2x + |x 3|); (b) lim
x→−6
2x + 12
|x + 6|
; (c) lim
x0.5
2x 1
|2x
3
x
2
|
; (d) lim
x→−2
2 |x|
2 + x
;
(e) lim
t0
1
t
1
|t|
; (f) lim
t0
+
1
t
1
|t|
.
6. (RL) Find the limit (finite or infinite) if it exists. If the limit does not
exists, explain why.
(a) lim
x+
(x + |x 3|); (a’) lim
x→−∞
(x + |x 3|); (b) lim
x+
2x 1
|2x
3
x
2
|
; (b’)
lim
x→−∞
2x 1
|2x
3
x
2
|
; (c) lim
x→−∞
cos x; (c’) lim
x+
cos x; (d) lim
x→−∞
2x + 12
|x + 7|
;
(d’) lim
x+
2x + 12
|x + 7|
; (e) lim
x→−∞
sin x
x + 6
; (e’) lim
x+
sin x
x + 6
; (f) lim
x→−∞
2 |x|
2 + x
;
(f’) lim
x+
2 |x|
2 + x
.
1
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com)
lOMoARcPSD|35973522
7. Compute the following limits:
(a) lim
x4
(2x 7); (b) lim
x1
(3 + 2x
3
); (c) lim
x→−∞
(1 x
2
); (d) lim
x→∞
(5 x
7
);
(e) lim
x→∞
2x
x + 1
; (f) lim
x→∞
(3
x
+ 1); (g) lim
x0
+
1
p
x
; (h) lim
x2
+
1
x 2
; (i) lim
x→−3
p
x
2
9.
8. Compute the following limits:
(a) lim
x2
x
2
+ 4
x + 2
; (b) lim
x2
x
2
1
x 2
; (c) lim
x→−
1
2
4x
2
1
2x + 1
; (d) lim
x3
27 x
3
x 3
; (e)
lim
x→−2
3x
2
+ 5x 2
4x
2
+ 9x + 2
; (f) lim
x0
p
x
2
+ 1
p
x + 1
1
p
x + 1
; (g) lim
x→∞
x
2
5x + 4
x(x 5)
; (h)
lim
x→∞
(
p
x
2
+ 1 x); (i) lim
x→∞
2
x
+ 3
x
3
x
+ 1
; (j) lim
x→∞
p
1 + x
2
3
p
1 x
3
.
9. Compute the following limits:
(a) lim
x0
sin 3x
4x
; (b) lim
x0
tan 5x
7x
; (c) lim
x0
sin 6x
tan 5x
; (d*) lim
x
π
2
cos x
2x
; (e)
lim
x0
5
x
1
x
; (f) lim
x0
1 e
2x
tan x
.
10. (*) Justify that the following limits do not exist:
(a) lim
x0
1
x
3
; (b) lim
x0
+
sin
1
x
; (c) lim
x→∞
cos (x
2
); (d) lim
x0
1
1 + e
1
x
; (e) lim
x4
[
p
x];
(f) lim
x2
x
4 x
2
; (g) lim
x→∞
sin
p
x; (h) lim
xπ
1
sin x
; (i) lim
x0
cos
1
x
2
; (j) lim
x→∞
2
[x]
2
x
;
(k) lim
x→∞
e
x
(1 + sin x).
11. (*) Justify the following equalities (try to use the squeeze theorem for
functions):
(a) lim
x0
x sin
1
x
= 0; (b) lim
x→∞
x
2
+ sin x
x
2
cos x
= 1; (c) lim
x→∞
[x]
x + 1
= 1; (d)
lim
x→∞
ln (2
x
+ 1)
ln (3
x
+ 1)
= log
3
2; (e) lim
x2
(x 2)
2
[x] = 0; (f) lim
x→∞
(2 sin x x) =
1; (g) lim
x0
1
p
x
2
x
= 1; (h) lim
x0
p
x cos
1
x
2
= 0; (i) lim
x→∞
2 + sin x
x
2
=
0; (j) lim
x→−∞
e
x+sin
2
x
= 0; (k) lim
x→∞
[3e
x
] + 2
[2e
x
] + 1
=
3
2
; (l) lim
x0
x
3
1
x
= 0; (m)
lim
x→∞
(x
2
sin x) = 1; (n) lim
x0
+
1
2x sin x
= 1; (o) lim
x→∞
2
x
(2 + cos x) =
1.
12. (RL) Find all asymptotes and sketch the grapf of a function f .
(a) f (x) =
x
3
x
2
+1
; (b) f (x) =
x
2
+1
x
3
; (c) f (x) = (x + |x 3|); (d*) f (x) =
|
2x
2
1
|
|2x1|
; (e) f (x) =
p
x
2
+ 4x; (f) f (x) =
p
x
2
+ 4.
13. Determine asymptotes of the following functions:
(a) a(x) =
sin x
x
; (b) b(x) =
x
3
1
x1
; (c) c(x) =
1
1x
2
; (d) d(x) = e
x
sin x+x;
(e) e(x) =
1+x
2
x
; (f) f (x) =
x
3
(x+1)
2
; (g) g(x) =
1
e
x
1
; (h) h(x) =
1x
2
x+1
.
2
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com)
lOMoARcPSD|35973522
14. (RL) Explain why the function f is discontinuous at the given number a.
Sketch the graph of the function.
(a) f (x) =
1
x+2
, a = 2; (b) f (x) =
(
1
x+2
if x 6= 2,
1 if x = 2,
a = 2; (c)
f (x) =
(
e
x
if x < 0,
x
2
if x 0,
a = 0; (d) f (x) =
8
>
<
>
:
cos x if x < 0,
0 if x = 0,
1 x
2
if x > 0,
a = 0
15. (RL) How would you ”remove the discontinuity of f ”, in other words, how
would you define f (2) in order to make f continuous on R.
(a) f (x) =
x+22
x2
; (b) f (x) =
x
3
8
x
4
16
; (c) f (x) =
8
>
<
>
:
e
x2
if x < 2,
2 if x = 2
x 1 if x > 2
; (d)
f (x) =
8
>
<
>
:
cos (x 2) if x < 2,
0 if x = 2,
x
2
x 1 if x > 2.
.
16. (RL) For what values of x is f continuous?
(a) f (x) =
(
0 if x is rational,
2 if x is irrational,
(b) f (x) =
(
0 if x is rational,
x if x is irrational,
(c*)
f (x) =
(
p
2 if x is rational,
x if x is irrational.
17. Verify the continuity of the following functions:
(a) a(x) =
(
x
2
2, if x 0
2x + 1, if x > 0
; (b) b(x) =
8
>
<
>
:
e
1/x
, if x < 0
ln (x + 1), if x 2 (0, e
2
1)
x
2
1, if x e
2
1
;
(c) c(x) =
8
>
<
>
:
cos x + 1, if x 1
x + 2, if x 2 (1, 1)
2
x1
+ 2, if x 1
.
3
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com)
lOMoARcPSD|35973522

Preview text:

lOMoARcPSD|35973522 MATHEMATICS 1 6.10.2023
? - denotes harder problems for interested students; we won’t solve them
during tutorials, interested students can present their solutions by themselves
RL - problem due to Rafa l Lochowski
1. Compute limits of the following sequences: n n n (a) an = 1 + 2 ; (b) b ; (c?) c ; (d) 100·n n = 1 1 n n = 1 + 1 n2 (n2) ⇣ ⌘3n (n2) d n n = 1 3 ; (e) e ; (f?) f . n2 n = n+2 n = 1 3 n
2. Compute limits of the following sequences: n n n (a) an = 1 1 ; (b) j ; (c) h ; (d) d n n = 1 + 2n n = 1 + 4n n = ⇣ ⌘n ⇣ ⌘n ⇣ ⌘2n+1 n+5 n; (e) e 3n+1 ; (f) f n ; (g) g n−1 ; n n = 3n+4 n = n+1 n = n+3 n ⇣ ⌘3n (h) h −n+3 n = 1 3 ; (i) i ; (j) j 1 + 1 ; (k) k n n 1 4 n n = n+2 n = ⇣ ⌘n2 n2+6 2n+1 n . (l?) l ; (m?) m ; (o?) o n2 n = 1 + 1 2n n = 1 1 n2 n = 2n+1 ⇣ ⌘n2 ⇣ ⌘3n2 +4n−7 1 1 ; (p n2+2 n2+3n+1 ?) p ; (r?) r . n2 n = 2n2+1 n = n2+5n−1
3. (RL) Evaluate the limit if it exists: p x2 9 x2 9 x2 + x 6 x + 6 3 (a) lim ; (b) lim ; (c) lim ; (d) lim ; x→3 x 3 x→−3 x + 3 x→2 x 2 x→3 x 3 p 1 t4 1 + 1 100 + h 10 (e) lim ; (f) lim t ; (g) lim . t→1 1 t3 t→−1 t + 1 h→0 h
4. (RL) Determine the infinite limit: p 2 x 2 x ex x + 6 (a) lim ; (b) lim ; (c) lim ; (d) lim . x→3+ x 3 x→3 (x 3)2 x→5− x 5 x→3 |x 3|
5. (RL) Find the limit if it exists. If the limit does not exists, explain why. 2x + 12 2x 1 2 |x| (a) lim (2x + |x 3|); (b) lim ; (c) lim ; (d) lim ; x→3 x→−6 |x + 6| x→0.5− |2x3 x2| x→−2 2 + x ✓ 1 1 ◆ ✓ 1 1 ◆ (e) lim ; (f) lim . t→0− t |t| t→0+ t |t|
6. (RL) Find the limit (finite or infinite) if it exists. If the limit does not exists, explain why. 2x 1 (a) lim (x + |x 3|); (a’) lim (x + |x 3|); (b) lim ; (b’) x→+∞ x→−∞ x→+∞ |2x3 x2| 2x 1 2x + 12 lim ; (c) lim cos x; (c’) lim cos x; (d) lim ; x→−∞ |2x3 x2| x→−∞ x→+∞ x→−∞ |x + 7| 2x + 12 sin x sin x 2 |x| (d’) lim ; (e) lim ; (e’) lim ; (f) lim ; x→+∞ |x + 7| x→−∞ x + 6 x→+∞ x + 6 x→−∞ 2 + x 2 |x| (f’) lim . x→+∞ 2 + x 1
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com) lOMoARcPSD|35973522
7. Compute the following limits: (a) lim (2x
7); (b) lim (3 + 2x3); (c) lim (1 x2); (d) lim (5 x7); x→4 x→1 x→−∞ x→∞ 2x 1 1 p (e) lim
; (f) lim (3−x + 1); (g) lim p ; (h) lim ; (i) lim x2 9. x→∞ x + 1 x→∞ x→0+ x x→2+ x 2 x→−3−
8. Compute the following limits: x2 + 4 x2 1 4x2 1 27 x3 (a) lim ; (b) lim ; (c) lim ; (d) lim ; (e) x→2 x + 2 x→2 x 2 x 1 →− 2x + 1 x→3 x 3 2 p p 3x2 + 5x 2 x2 + 1 x + 1 x2 5x + 4 lim ; (f) lim p ; (g) lim ; (h) x→−2 4x2 + 9x + 2 x→0 1 x + 1 x→∞ x(x 5) p p 2x + 3x 1 + x2 lim ( x2 + 1 x); (i) lim ; (j) lim p . x 3 →∞ x→∞ 3x + 1 x→∞ 1 x3
9. Compute the following limits: sin 3x tan 5x sin 6x cos x (a) lim ; (b) lim ; (c) lim ; (d*) lim ; (e) x→0 4x x→0 7x x→0 tan 5x x π → ⇡ 2x 2 5x 1 1 e2x lim ; (f) lim . x→0 x x→0 tan x
10. (*) Justify that the following limits do not exist: 1 1 1 p (a) lim
; (b) lim sin ; (c) lim cos (x2); (d) lim ; (e) lim [ x]; 1 x→0 x3 x→0+ x x→∞ x→0 1 + e x x →4 x p 1 1 2[x] (f) lim ; (g) lim sin x; (h) lim ; (i) lim cos ; (j) lim ; x→2 4 x2 x→∞ x→π sin x x→0− x2 x→∞ 2x (k) lim ex(1 + sin x). x→∞
11. (*) Justify the following equalities (try to use the squeeze theorem for functions): ✓ 1 ◆ x2 + sin x [x] (a) lim x sin = 0; (b) lim = 1; (c) lim = 1; (d) x→0 x x→∞ x2 cos x x→∞ x + 1 ln (2x + 1) lim = log3 2; (e) lim (x 2)2[x] = 0; (f) lim (2 sin x x) = x→∞ ln (3x + 1) x→2 x→∞ 1 p 1 2 + sin x 1; (g) lim p = 1; (h) lim x cos = 0; (i) lim = x→0− x2 x x→0 x2 x→∞ x2 [3ex] + 2 3  1
0; (j) lim ex+sin2 x = 0; (k) lim = ; (l) lim x3 = 0; (m) x→−∞ x→∞ [2ex] + 1 2 x→0 x 1 lim (x2 sin x) = 1; (n) lim = 1; (o) lim 2x(2 + cos x) = x→∞ x→0+ 2x sin x x→∞ 1.
12. (RL) Find all asymptotes and sketch the grapf of a function f .
(a) f (x) = x3 ; (b) f (x) = x2+1 ; (c) f (x) = (x + |x 3|); (d*) f (x) = x2+1 x3 |2x2−1| p p ; (e) f (x) = x2 + 4x; (f) f (x) = x2 + 4. |2x−1|
13. Determine asymptotes of the following functions:
(a) a(x) = sin x ; (b) b(x) = x3−1 ; (c) c(x) = 1 ; (d) d(x) = e−x sin x+x; x x−1 1−x2 √ (e) e(x) = 1+x2 ; (f) f(x) = x3 ; (g) g(x) = 1 ; (h) h(x) = 1−x2 . x (x+1)2 ex−1 x+1 2
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com) lOMoARcPSD|35973522
14. (RL) Explain why the function f is discontinuous at the given number a.
Sketch the graph of the function. ( 1 if x 6= 2, (a) f (x) = 1 , a = 2; (b) f (x) = x+2 a = 2; (c) x+2 1 if x = 2, 8 ( cos x if x < 0, ex if x < 0, > < f (x) = a = 0; (d) f (x) = 0 if x = 0, a = 0 x2 if x 0, > :1 x2 if x > 0,
15. (RL) How would you ”remove the discontinuity of f ”, in other words, how
would you define f (2) in order to make f continuous on R. 8ex−2 if x < 2, √ > < (a) f (x) =
x+2−2 ; (b) f (x) = x3−8 ; (c) f (x) = 2 if x = 2 ; (d) x−2 x4−16 > :x 1 if x > 2 8cos (x 2) if x < 2, > < f (x) = 0 if x = 2, . > :x2 x 1 if x > 2.
16. (RL) For what values of x is f continuous? ( ( 0 if x is rational, 0 if x is rational, (a) f (x) = (b) f (x) = (c*) 2 if x is irrational, x if x is irrational, (p2 if x is rational, f (x) = x if x is irrational.
17. Verify the continuity of the following functions: 8 ( e1/x, if x < 0 x2 2, if x  0 > < (a) a(x) = ; (b) b(x) = ln (x + 1), if x 2 (0, e2 1) ; 2x + 1, if x > 0 > :x2 1, if x e2 1 8cos x + 1, if x  1 > < (c) c(x) = x + 2, if x 2 ( 1, 1) . > :2x−1 + 2, if x 1 3
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com)