Toán cao cấp 1

Bộ 17 câu hỏi ôn tập học phần "Toán cao cấp 1" bao gồm câu hỏi tự luận giúp sinh viên củng cố kiến thức và đạt điểm cao trong bài thi kết thúc học phần.

Môn:

Toán cao cấp 1 1 tài liệu

Trường:

Đại học Phạm Văn Đồng 15 tài liệu

Thông tin:
3 trang 11 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Toán cao cấp 1

Bộ 17 câu hỏi ôn tập học phần "Toán cao cấp 1" bao gồm câu hỏi tự luận giúp sinh viên củng cố kiến thức và đạt điểm cao trong bài thi kết thúc học phần.

138 69 lượt tải Tải xuống
MATHEMATICS 1
6.10.2023
? - denotes harder problems for interested students; we won’t solve them
during tutorials, interested students can present their solutions by themselves
RL - problem due to Rafa l Lochowski
1. Compute limits of the following sequences:
(a) a
n
=
1 +
2
100·n
n
; (b) b
n
=
1
1
n
n
; (c?) c
n
=
1 +
1
n
2
n
; (d)
d
n
=
1
3
n
2
(
n
2
)
; (e) e
n
=
n
n+2
3n
; (f?) f
n
=
1
3
n
(
n
2
)
.
2. Compute limits of the following sequences:
(a) a
n
=
1
1
n
n
; (b) j
n
=
1 +
2
n
n
; (c) h
n
=
1 +
4
n
n
; (d) d
n
=
n+5
n
n
; (e) e
n
=
3n+1
3n+4
n
; (f) f
n
=
n
n+1
n
; (g) g
n
=
n1
n+3
2n+1
;
(h) h
n
=
1
3
n
n
; (i) i
n
1
4
n
n+3
; (j) j
n
=
1 +
1
n+2
3n
; (k) k
n
=
n
2
+6
n
2
n
2
. (l?) l
n
=
1 +
1
2
n
2
n+1
; (m?) m
n
=
1
1
n
2
n
; (o?) o
n
=
1
1
n
2
2n+1
; (p?) p
n
=
n
2
+2
2n
2
+1
n
2
; (r?) r
n
=
n
2
+3n+1
n
2
+5n1
3n
2
+4n7
.
3. (RL) Evaluate the limit if it exists:
(a) lim
x3
x
2
9
x 3
; (b) lim
x→−3
x
2
9
x + 3
; (c) lim
x2
x
2
+ x 6
x 2
; (d) lim
x3
p
x + 6 3
x 3
;
(e) lim
t1
1 t
4
1 t
3
; (f) lim
t→−1
1
t
+ 1
t + 1
; (g) lim
h0
p
100 + h 10
h
.
4. (RL) Determine the infinite limit:
(a) lim
x3
+
2 x
x 3
; (b) lim
x3
2 x
(x 3)
2
; (c) lim
x5
e
x
x 5
; (d) lim
x3
p
x + 6
|x 3|
.
5. (RL) Find the limit if it exists. If the limit does not exists, explain why.
(a) lim
x3
(2x + |x 3|); (b) lim
x→−6
2x + 12
|x + 6|
; (c) lim
x0.5
2x 1
|2x
3
x
2
|
; (d) lim
x→−2
2 |x|
2 + x
;
(e) lim
t0
1
t
1
|t|
; (f) lim
t0
+
1
t
1
|t|
.
6. (RL) Find the limit (finite or infinite) if it exists. If the limit does not
exists, explain why.
(a) lim
x+
(x + |x 3|); (a’) lim
x→−∞
(x + |x 3|); (b) lim
x+
2x 1
|2x
3
x
2
|
; (b’)
lim
x→−∞
2x 1
|2x
3
x
2
|
; (c) lim
x→−∞
cos x; (c’) lim
x+
cos x; (d) lim
x→−∞
2x + 12
|x + 7|
;
(d’) lim
x+
2x + 12
|x + 7|
; (e) lim
x→−∞
sin x
x + 6
; (e’) lim
x+
sin x
x + 6
; (f) lim
x→−∞
2 |x|
2 + x
;
(f’) lim
x+
2 |x|
2 + x
.
1
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com)
lOMoARcPSD|35973522
7. Compute the following limits:
(a) lim
x4
(2x 7); (b) lim
x1
(3 + 2x
3
); (c) lim
x→−∞
(1 x
2
); (d) lim
x→∞
(5 x
7
);
(e) lim
x→∞
2x
x + 1
; (f) lim
x→∞
(3
x
+ 1); (g) lim
x0
+
1
p
x
; (h) lim
x2
+
1
x 2
; (i) lim
x→−3
p
x
2
9.
8. Compute the following limits:
(a) lim
x2
x
2
+ 4
x + 2
; (b) lim
x2
x
2
1
x 2
; (c) lim
x→−
1
2
4x
2
1
2x + 1
; (d) lim
x3
27 x
3
x 3
; (e)
lim
x→−2
3x
2
+ 5x 2
4x
2
+ 9x + 2
; (f) lim
x0
p
x
2
+ 1
p
x + 1
1
p
x + 1
; (g) lim
x→∞
x
2
5x + 4
x(x 5)
; (h)
lim
x→∞
(
p
x
2
+ 1 x); (i) lim
x→∞
2
x
+ 3
x
3
x
+ 1
; (j) lim
x→∞
p
1 + x
2
3
p
1 x
3
.
9. Compute the following limits:
(a) lim
x0
sin 3x
4x
; (b) lim
x0
tan 5x
7x
; (c) lim
x0
sin 6x
tan 5x
; (d*) lim
x
π
2
cos x
2x
; (e)
lim
x0
5
x
1
x
; (f) lim
x0
1 e
2x
tan x
.
10. (*) Justify that the following limits do not exist:
(a) lim
x0
1
x
3
; (b) lim
x0
+
sin
1
x
; (c) lim
x→∞
cos (x
2
); (d) lim
x0
1
1 + e
1
x
; (e) lim
x4
[
p
x];
(f) lim
x2
x
4 x
2
; (g) lim
x→∞
sin
p
x; (h) lim
xπ
1
sin x
; (i) lim
x0
cos
1
x
2
; (j) lim
x→∞
2
[x]
2
x
;
(k) lim
x→∞
e
x
(1 + sin x).
11. (*) Justify the following equalities (try to use the squeeze theorem for
functions):
(a) lim
x0
x sin
1
x
= 0; (b) lim
x→∞
x
2
+ sin x
x
2
cos x
= 1; (c) lim
x→∞
[x]
x + 1
= 1; (d)
lim
x→∞
ln (2
x
+ 1)
ln (3
x
+ 1)
= log
3
2; (e) lim
x2
(x 2)
2
[x] = 0; (f) lim
x→∞
(2 sin x x) =
1; (g) lim
x0
1
p
x
2
x
= 1; (h) lim
x0
p
x cos
1
x
2
= 0; (i) lim
x→∞
2 + sin x
x
2
=
0; (j) lim
x→−∞
e
x+sin
2
x
= 0; (k) lim
x→∞
[3e
x
] + 2
[2e
x
] + 1
=
3
2
; (l) lim
x0
x
3
1
x
= 0; (m)
lim
x→∞
(x
2
sin x) = 1; (n) lim
x0
+
1
2x sin x
= 1; (o) lim
x→∞
2
x
(2 + cos x) =
1.
12. (RL) Find all asymptotes and sketch the grapf of a function f .
(a) f (x) =
x
3
x
2
+1
; (b) f (x) =
x
2
+1
x
3
; (c) f (x) = (x + |x 3|); (d*) f (x) =
|
2x
2
1
|
|2x1|
; (e) f (x) =
p
x
2
+ 4x; (f) f (x) =
p
x
2
+ 4.
13. Determine asymptotes of the following functions:
(a) a(x) =
sin x
x
; (b) b(x) =
x
3
1
x1
; (c) c(x) =
1
1x
2
; (d) d(x) = e
x
sin x+x;
(e) e(x) =
1+x
2
x
; (f) f (x) =
x
3
(x+1)
2
; (g) g(x) =
1
e
x
1
; (h) h(x) =
1x
2
x+1
.
2
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com)
lOMoARcPSD|35973522
14. (RL) Explain why the function f is discontinuous at the given number a.
Sketch the graph of the function.
(a) f (x) =
1
x+2
, a = 2; (b) f (x) =
(
1
x+2
if x 6= 2,
1 if x = 2,
a = 2; (c)
f (x) =
(
e
x
if x < 0,
x
2
if x 0,
a = 0; (d) f (x) =
8
>
<
>
:
cos x if x < 0,
0 if x = 0,
1 x
2
if x > 0,
a = 0
15. (RL) How would you ”remove the discontinuity of f ”, in other words, how
would you define f (2) in order to make f continuous on R.
(a) f (x) =
x+22
x2
; (b) f (x) =
x
3
8
x
4
16
; (c) f (x) =
8
>
<
>
:
e
x2
if x < 2,
2 if x = 2
x 1 if x > 2
; (d)
f (x) =
8
>
<
>
:
cos (x 2) if x < 2,
0 if x = 2,
x
2
x 1 if x > 2.
.
16. (RL) For what values of x is f continuous?
(a) f (x) =
(
0 if x is rational,
2 if x is irrational,
(b) f (x) =
(
0 if x is rational,
x if x is irrational,
(c*)
f (x) =
(
p
2 if x is rational,
x if x is irrational.
17. Verify the continuity of the following functions:
(a) a(x) =
(
x
2
2, if x 0
2x + 1, if x > 0
; (b) b(x) =
8
>
<
>
:
e
1/x
, if x < 0
ln (x + 1), if x 2 (0, e
2
1)
x
2
1, if x e
2
1
;
(c) c(x) =
8
>
<
>
:
cos x + 1, if x 1
x + 2, if x 2 (1, 1)
2
x1
+ 2, if x 1
.
3
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com)
lOMoARcPSD|35973522
| 1/3

Preview text:

lOMoARcPSD|35973522 MATHEMATICS 1 6.10.2023
? - denotes harder problems for interested students; we won’t solve them
during tutorials, interested students can present their solutions by themselves
RL - problem due to Rafa l Lochowski
1. Compute limits of the following sequences: n n n (a) an = 1 + 2 ; (b) b ; (c?) c ; (d) 100·n n = 1 1 n n = 1 + 1 n2 (n2) ⇣ ⌘3n (n2) d n n = 1 3 ; (e) e ; (f?) f . n2 n = n+2 n = 1 3 n
2. Compute limits of the following sequences: n n n (a) an = 1 1 ; (b) j ; (c) h ; (d) d n n = 1 + 2n n = 1 + 4n n = ⇣ ⌘n ⇣ ⌘n ⇣ ⌘2n+1 n+5 n; (e) e 3n+1 ; (f) f n ; (g) g n−1 ; n n = 3n+4 n = n+1 n = n+3 n ⇣ ⌘3n (h) h −n+3 n = 1 3 ; (i) i ; (j) j 1 + 1 ; (k) k n n 1 4 n n = n+2 n = ⇣ ⌘n2 n2+6 2n+1 n . (l?) l ; (m?) m ; (o?) o n2 n = 1 + 1 2n n = 1 1 n2 n = 2n+1 ⇣ ⌘n2 ⇣ ⌘3n2 +4n−7 1 1 ; (p n2+2 n2+3n+1 ?) p ; (r?) r . n2 n = 2n2+1 n = n2+5n−1
3. (RL) Evaluate the limit if it exists: p x2 9 x2 9 x2 + x 6 x + 6 3 (a) lim ; (b) lim ; (c) lim ; (d) lim ; x→3 x 3 x→−3 x + 3 x→2 x 2 x→3 x 3 p 1 t4 1 + 1 100 + h 10 (e) lim ; (f) lim t ; (g) lim . t→1 1 t3 t→−1 t + 1 h→0 h
4. (RL) Determine the infinite limit: p 2 x 2 x ex x + 6 (a) lim ; (b) lim ; (c) lim ; (d) lim . x→3+ x 3 x→3 (x 3)2 x→5− x 5 x→3 |x 3|
5. (RL) Find the limit if it exists. If the limit does not exists, explain why. 2x + 12 2x 1 2 |x| (a) lim (2x + |x 3|); (b) lim ; (c) lim ; (d) lim ; x→3 x→−6 |x + 6| x→0.5− |2x3 x2| x→−2 2 + x ✓ 1 1 ◆ ✓ 1 1 ◆ (e) lim ; (f) lim . t→0− t |t| t→0+ t |t|
6. (RL) Find the limit (finite or infinite) if it exists. If the limit does not exists, explain why. 2x 1 (a) lim (x + |x 3|); (a’) lim (x + |x 3|); (b) lim ; (b’) x→+∞ x→−∞ x→+∞ |2x3 x2| 2x 1 2x + 12 lim ; (c) lim cos x; (c’) lim cos x; (d) lim ; x→−∞ |2x3 x2| x→−∞ x→+∞ x→−∞ |x + 7| 2x + 12 sin x sin x 2 |x| (d’) lim ; (e) lim ; (e’) lim ; (f) lim ; x→+∞ |x + 7| x→−∞ x + 6 x→+∞ x + 6 x→−∞ 2 + x 2 |x| (f’) lim . x→+∞ 2 + x 1
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com) lOMoARcPSD|35973522
7. Compute the following limits: (a) lim (2x
7); (b) lim (3 + 2x3); (c) lim (1 x2); (d) lim (5 x7); x→4 x→1 x→−∞ x→∞ 2x 1 1 p (e) lim
; (f) lim (3−x + 1); (g) lim p ; (h) lim ; (i) lim x2 9. x→∞ x + 1 x→∞ x→0+ x x→2+ x 2 x→−3−
8. Compute the following limits: x2 + 4 x2 1 4x2 1 27 x3 (a) lim ; (b) lim ; (c) lim ; (d) lim ; (e) x→2 x + 2 x→2 x 2 x 1 →− 2x + 1 x→3 x 3 2 p p 3x2 + 5x 2 x2 + 1 x + 1 x2 5x + 4 lim ; (f) lim p ; (g) lim ; (h) x→−2 4x2 + 9x + 2 x→0 1 x + 1 x→∞ x(x 5) p p 2x + 3x 1 + x2 lim ( x2 + 1 x); (i) lim ; (j) lim p . x 3 →∞ x→∞ 3x + 1 x→∞ 1 x3
9. Compute the following limits: sin 3x tan 5x sin 6x cos x (a) lim ; (b) lim ; (c) lim ; (d*) lim ; (e) x→0 4x x→0 7x x→0 tan 5x x π → ⇡ 2x 2 5x 1 1 e2x lim ; (f) lim . x→0 x x→0 tan x
10. (*) Justify that the following limits do not exist: 1 1 1 p (a) lim
; (b) lim sin ; (c) lim cos (x2); (d) lim ; (e) lim [ x]; 1 x→0 x3 x→0+ x x→∞ x→0 1 + e x x →4 x p 1 1 2[x] (f) lim ; (g) lim sin x; (h) lim ; (i) lim cos ; (j) lim ; x→2 4 x2 x→∞ x→π sin x x→0− x2 x→∞ 2x (k) lim ex(1 + sin x). x→∞
11. (*) Justify the following equalities (try to use the squeeze theorem for functions): ✓ 1 ◆ x2 + sin x [x] (a) lim x sin = 0; (b) lim = 1; (c) lim = 1; (d) x→0 x x→∞ x2 cos x x→∞ x + 1 ln (2x + 1) lim = log3 2; (e) lim (x 2)2[x] = 0; (f) lim (2 sin x x) = x→∞ ln (3x + 1) x→2 x→∞ 1 p 1 2 + sin x 1; (g) lim p = 1; (h) lim x cos = 0; (i) lim = x→0− x2 x x→0 x2 x→∞ x2 [3ex] + 2 3  1
0; (j) lim ex+sin2 x = 0; (k) lim = ; (l) lim x3 = 0; (m) x→−∞ x→∞ [2ex] + 1 2 x→0 x 1 lim (x2 sin x) = 1; (n) lim = 1; (o) lim 2x(2 + cos x) = x→∞ x→0+ 2x sin x x→∞ 1.
12. (RL) Find all asymptotes and sketch the grapf of a function f .
(a) f (x) = x3 ; (b) f (x) = x2+1 ; (c) f (x) = (x + |x 3|); (d*) f (x) = x2+1 x3 |2x2−1| p p ; (e) f (x) = x2 + 4x; (f) f (x) = x2 + 4. |2x−1|
13. Determine asymptotes of the following functions:
(a) a(x) = sin x ; (b) b(x) = x3−1 ; (c) c(x) = 1 ; (d) d(x) = e−x sin x+x; x x−1 1−x2 √ (e) e(x) = 1+x2 ; (f) f(x) = x3 ; (g) g(x) = 1 ; (h) h(x) = 1−x2 . x (x+1)2 ex−1 x+1 2
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com) lOMoARcPSD|35973522
14. (RL) Explain why the function f is discontinuous at the given number a.
Sketch the graph of the function. ( 1 if x 6= 2, (a) f (x) = 1 , a = 2; (b) f (x) = x+2 a = 2; (c) x+2 1 if x = 2, 8 ( cos x if x < 0, ex if x < 0, > < f (x) = a = 0; (d) f (x) = 0 if x = 0, a = 0 x2 if x 0, > :1 x2 if x > 0,
15. (RL) How would you ”remove the discontinuity of f ”, in other words, how
would you define f (2) in order to make f continuous on R. 8ex−2 if x < 2, √ > < (a) f (x) =
x+2−2 ; (b) f (x) = x3−8 ; (c) f (x) = 2 if x = 2 ; (d) x−2 x4−16 > :x 1 if x > 2 8cos (x 2) if x < 2, > < f (x) = 0 if x = 2, . > :x2 x 1 if x > 2.
16. (RL) For what values of x is f continuous? ( ( 0 if x is rational, 0 if x is rational, (a) f (x) = (b) f (x) = (c*) 2 if x is irrational, x if x is irrational, (p2 if x is rational, f (x) = x if x is irrational.
17. Verify the continuity of the following functions: 8 ( e1/x, if x < 0 x2 2, if x  0 > < (a) a(x) = ; (b) b(x) = ln (x + 1), if x 2 (0, e2 1) ; 2x + 1, if x > 0 > :x2 1, if x e2 1 8cos x + 1, if x  1 > < (c) c(x) = x + 2, if x 2 ( 1, 1) . > :2x−1 + 2, if x 1 3
Downloaded by Di?p ??ng Ng?c (tanphatthpt@gmail.com)