























Preview text:
2x − 5y = 10 x + y + z = 1 x 1 − x2 = 2 x − y = 4 x2 = 3 2y + z = 6 3z = 6 −x + y − z = 0 2y + z = 3 x1 + x2 + x3 + x4 = 10 10z = 0 x2 + 3x3 + 4x4 = 15 x + 2y = 7 3x − 2y + 4z = 1 2x + y = 8 x + y − 2z = 3 2x − 3y + 6z = 8 x + 2y = 0 5x − 3y + 2z = 3 x + y = 6 2x + 4y − z = 7 3x − 2y = 8 x − 11y + 4z = 3 x + y + z = 6 x + y + z + w = 6 2x − y + z = 3 2x + 3y − w = 0 −3x + 4y + z + 2w = 4 3x − z = 0 x + 2y − z + w = 0 x + y + z = 2 4x + 3y + 17z = 0 −x + 3y + 2z = 8 5x + 4y + 22z = 0 4x + y = 4 4x + 2y + 19z = 0 2 3 2 1 3 + = 0 + − = 4 x y x y z 3 4 25 4 2 = + = 10 − − x y 6 x z 2 3 13 − + − = −8 x y z k 4x + ky = 6 x + y + kz = 3 kx + y = −3 x + ky + z = 2 kx + y + z = 1 x + 2y + kz = 6 3x + 6y + 8z = 4 −1 3 1 2 3 1 2 3 4 5 0 −2 0 1 6 0 1 9 1 0 0 0 0 0 1 0 0 0 1 2 3 4 5 0 0 1 0 1 1 2 3 0 4 3 2 1 0 0 0 9 9 0 1 1 0 0 1 1 1 0 0 0 0 0 0 9 9 1 0 0 1 2 1 0 2 1 1 0 0 1 2 0 0 1 −1 1 −2 1 −2 0 0 0 0 1 0 1 0 1 2 0 1 4 1 −1 0 3 2 1 −1 3 0 −1 −2 −1 −3 0 1 −2 1 1 −1 1 0 0 0 1 2 1 0 0 1 −1 0 1 2 1 0 0 0 −1 −4 −3x + 5y = −22 2x − y + 3z = 24 3x + 4y = 4 2y − z = 14 4x − 8y = 32 7x − 5y = 6 x − 3z = −2 x + 2y + z = 8 3x + y − 2z = 5 −3x − 6y − 3z = −21 2x + 2y + z = 4 2x + y − z + 2w = −6 x + y − 5z = 3 3x + 4y + w = 1 x − 2z = 1 x + 5y + 2z + 6w = −3 2x − y − z = 0 5x + 2y − z − w = 3 1 k 2 A := . −3 4 1 −3 6 −6 A k A k 2 −1 3 B := . −4 2 k 4 −2 6 B k B k 1 0 1 1 −1 2 1 −1 1 2 1 2 3 1 10 0 1 2 1 0 1 0 2 3 1 −2 2 −3 −3 22 0 0 0 1 0 0 1 5 4 2 4 4 −2 3 −2 2x + 3z = 3
4x + 12y − 7z − 20w = 22 4x − 3y + 7z = 5 3x + 9y − 5z − 28w = 30 8x − 9y + 15z = 10 x + 2y + 6z = 1 2x + 3y + 3z = 3 2x + 5y + 15z = 4 6x + 6y + 12z = 13 3x + y + 3z = −6 12x + 9y − z = 2 2x + y + 2z = 4 2x + 2y = 5 2x + 6z = −9 2x − y + 6z = 2 3x − 2y + 11z = −16 3x − y + 7z = −11 2x + y + z + 2w = −1 5x − 2y + z − 3w = 0 2x + 5y − 19z = 34 −x + 3y + 2z + 2w = 1 3x + 8y − 31z = 54 3x + 2y + 3z − 5w = 12 k x − y + 2z = 0 −x + y − z = 0 x + ky + z = 0 a, b, c x + 2y = 3 x + y = 0 ax + by = −9 y + z = 0 x + z = 0 ax + by + cz = 0 x + y = 2 y + z = 2 2x − y + z = a x + z = 2 x + y + 2z = b ax + by + cz = 0 3y + 3z = c A + B, A − B, 2A, B + 1 A A, B 2 6 −1 1 4 3 2 −1 0 2 1 A = 2 4 A = 2 4 5 5 4 2 , B = , B = −1 5 −3 5 1 10 0 1 2 2 1 0 2 3 4 0 6 2 2 1 1 2 −3 4 A = 0 1 −1 , B = 4 1 0 A = , B = −1 −1 4 −3 1 −2 2 0 1 −1 2 4 ABt, BAt, AtB A, B −4 0 1 2 X A = 1 −5 , B = −2 1 −3 2 4 4 AC = BC A = B 0 1 1 0 2 3 A = , B = , C = 0 1 1 0 2 3 1 2 3 4 −6 3 0 0 0 A = 0 5 4 , B = 5 4 4 , C = 0 0 0 3 −2 1 −1 0 1 4 −2 3 x y y z 4 x w x −4 3 y w 4 = 2 + 2 = + 2 z −1 −x 1 5 −x y x 2 −1 z x 1 2 1 0 1 2 6 3 A = A = 3 5 0 1 3 4 19 2 2 −1 1 0 2 1 3 17 A = A = 3 −2 0 1 3 1 4 −1 x y 1 1 AB = BA A = , B = z w −1 1 b A A, b 1 −1 2 −1 1 1 −5 3 A = , b = 3 −3 1 7 A = 1 0 −1 1 , b = 2 −1 −1 0 1 2 4 1 −3 5 −22 A = −1 0 2 , b = , b = 3 A = 3 4 4 0 1 3 2 4 −8 32 1 1 2 1 0 X = 0 , Y = , Z = , W = , O = 1 −1 1 0 1 0 3 1 0 a b Z = aX + bY a b W = aX + bY aX + bY + cW = O a = b = c = 0 a, b c aX + bY + cZ = O 1 0 0 A5 A10 A = . 0 −1 0 0 0 2 B A A, B 1 2 −2 1 1 −1 3 1 A = , B = A = , B = 1 3 4 3 −1 2 3 5 −2 1 2 2 −2 2 3 −4 −5 3 2 −17 11 1 1 2 A = 1 4 8 3 1 11 7 , B = 2 4 −3 −1 0 , B = 1 − − A = − − 3 0 1 4 1 2 0 0 3 −2 3 6 −5 1 2 1 2 2 10 5 −7 3 2 5 3 7 3 7 9 2 2 4 −5 1 4 1 4 3 2 −2 − − −7 −4 4 0 sin θ cos θ − cos θ sin θ 1 1 1 1 2 −1 1 1 2 0.1 0.2 0.3 3 5 4 3 7 3 1 0 . . −10 −0.3 0 2 0 2 3 6 5 7 16 −21 −2 0 3 0.5 0.5 0.5
(AB)−1, (At)−1, A−2, (2B)−1 2 5 7 −2 1 5 2 A −3 −1 = , B−1 = A−1 = 7 7 , B−1 = 11 11 −7 6 2 0 3 2 3 − 1 7 7 11 11 1 −1 3 2 4 5 1 −4 2 6 5 −3 2 4 2 A−1 = 3 1 2 1 A−1 = 0 1 3 −2 , B−1 = −3 , B−1 = −2 4 −1 2 2 4 4 1 1 1 1 1 2 4 2 1 1 3 4 4 2 4 2 x A = A−1 3 x 2 x A = A = −2 −3 −1 −2 x A A A 1 2 2 4 (2A)−1 = (4A)−1 = 3 4 −3 2 Ax = b A−1 5x + 4y = 2 3x + 2y = 1 −x + y = −22 x + 4y = −3 −x + y + 2z = 1 x + y + 2z = 0 2x + 3y + z = −2 x − y + z = −1 5x + 4y + 2z = 4 2x + y + z = 2 1 2 λ − 3 2 1 2 −3 2 4 −3 3 4 4 λ − 1 6 5 4 1 3 6 1 −3 2 −8 −7 4 1 0 2 x y 1 1 4 3 2 3 0 7 0 2 3 1 2 6 11 12 −1 1 4 −5 6 2 1 2 0 3 0 −1 1 0 0 0 0 4 1 −1 2 3 −2 1 5 1 5 2 10 x y 1 1 4 −2 −2 −2 1 3 2 0 1 5 1 −1 4 3 5 2 0 0 −2 2 6 6 2 5 3 0 6 0 1 4 3 2 2 −1 3 2 7 3 6 4 6 4 12 0 0 2 6 3 1 4 4 1 5 0 1 0 2 0 0 3 4 1 −3 4 1 0 2 3 7 0 7 0 1 −2 2 0 0 0 0 2 x x + 3 1 x − 2 −1 x 2 0 x 0 1 = 0 = 0 2 x + 2 −3 x 0 x + 1 2 = 0 0 x 3 = 0 0 1 x 2 2 x − 2 1 1 1 a + b a a a b c a a + b a
= (a − b)(b − c)(c − a) = b2(3a + b) a2 b2 c2 a a a + b a 1 1 1 1 + a 1 1 1 1 1 1 1 + b 1 = abc 1 + + + 1 a 1 1 = (a + 3)(a − 1)3 c 1 1 1 + c a b 1 1 a 1 1 1 1 a (a, b, c 6= 0) 1 7 −3 3 −1 −3 4 −7 9 1 0 −3 8 2 1 3 1 4 2 6 2 7 0 8 1 −1 − − −1 6 4 8 1 3 −1 −1 3 6 −3 3 −4 6 0 9 0 7 4 −1 −7 0 0 14 9 −4 2 5 1 1 1 4 5 −2 2 7 6 −5 2 3 4 3 4 1 −1 −2 −2 0 1 −2 −1 −2 1 4 7 3 4 10 |A|, |B|, AB, |AB| |A||B| = |AB| −1 2 1 −1 1 0 2 0 1 1 1 0 −1 1 A = 1 0 1 , B = 0 2 0 1 2 1 0 2 A −1 0 1 = , B = 0 1 0 0 0 3 2 3 1 0 1 1 −1 0 1 2 3 0 3 2 1 0 3 2 4 0 4 2 −1 0 2 0 1 2 −1 4 1 −1 2 1 1 1 2 −1 A = , B = A = 1 0 1 3 0 0 3 1 0 0 2 1 −1 2 , B = 3 1 0 3 −2 1 −1 1 1 0 −1 0 0 0
|At|, |A2|, |AAt|, |2A|, |A−1| 2 0 5 1 5 4 A = 4 −1 6 A = 0 −6 2 3 2 1 0 0 −3 1 2 1 0 0 −3 −5 −7 3 4 0 2 6 2 4 3 0 −4 −12 0 1 −1 1 2 3 0 1 1 −1 0 0 1 −1 1 2 3 0 4 2 2 2 −1 −1 −2 x + 2y = 5 3x + 3y + 5z = 1 −x + y = 1 3x + 5y + 9z = 2 5x + 9y + 17z = 4 4x − y − z = 1 2x + 3y + 5z = 4 2x + 2y + 3z = 10 3x + 5y + 9z = 7 5x − 2y − 2z = −1 5x + 9y + 17z = 13 4x − 2y + 3z = −2 2x + y + 2z = 6 2x + 2y + 5z = 16 −x + 2y − 3z = 0 8x − 5y − 2z = 4 3x + 2y − z = 6 k k kx + (1 − k)y = 1 (1 − k)x + ky = 3 (0, 0), (2, 0), (0, 3); (1, 1), (2, 4), (4, 2). (1, 2), (3, 4), (5, 6); (−1, 0), (1, 1), (3, 3). (−4, 7), (2, 4); (−2, 3), (−2, −4).
(1, 1, 1), (0, 0, 0), (2, 1, −1), (−1, 1, 2);
(3, −1, 1), (4, −4, 4), (1, 1, 1), (0, 0, 1).
(−4, 1, 0), (0, 1, 2), (4, 3, −1), (0, 0, 1);
(0, 0, −1), (0, −1, 0), (1, 1, 0), (2, 1, 2);
(1, 2, 3), (−1, 0, 1), (0, −2, −5), (2, 6, 11);
(1, 2, 7), (−3, 6, 6), (4, 4, 2), (3, 3, 4).
(1, −2, 1), (−1, −1, 7), (2, −1, 3);
(0, 0, 0), (1, −1, 0), (0, 1, −1);
(0, −1, 0), (1, 1, 0), (2, 1, 2);
(1, 2, 7), (4, 4, 2), (3, 3, 4). = 0 A = 1 B = 2 C = 3 D = 4 E = 5 F = 6 G = 7 H = 8 I = 9
J = 10 K = 11 L = 12 M = 13 N = 14 O = 15 P = 16 Q = 17 R = 18 S = 19 T = 20 U = 21 V = 22 W = 23 X = 24 Y = 25 Z = 26. 1 1 1 A = . 0 1 1 1 1 2 D T H U B A 20 8 21 D = . 20 8 21 0 2 1, 0 2 1 1 1 1 20 8 21 41 49 70 DA = 0 1 1 = 0 2 1 1 3 4 1 1 2 27 42 56 A B = 29 30 55 A 1 1 1 33 51 60 A = 1 2 2 . B = 30 31 56 1 1 2 A
u = (1, 2, 3), v = (2, 2, −1), w = (4, 0, −4).
v−u, u−v+2w, 2u+4v−w, 5u−3v− 1w. z 2u + v − w + 3z = 0. 2 z 2z − 3u = w. R4 M1,4 P3 P3 M2,3 M2,2 3. 1 f (x) = ax + b a b ; c 0 1 f (x) = ax a 6= 0 a b ; {(x, y) ∈ R2 : x > 0} c 1
{(x, y) ∈ R2 : x > 0, y > 0} 2 × 2 0 {(x, y) ∈ R2 : x = 2y} 2 × 2 0 R2
(x1, y1) ⊎ (x2, y2) = (x1 + x2, y1 + y2) c ∗ (x, y) = (cx, y) √ √
(x1, y1) ⊎ (x2, y2) = (x1 + x2, y1 + y2) c ∗ (x, y) = ( cx, cy)
(x1, y1) ⊎ (x2, y2) = (x1, 0) c ∗ (x, y) = (cx, cy)
(x1, y1) ⊎ (x2, y2) = (x1x2, y1y2) c ∗ (x, y) = (cx, cy) R3
(x1, y1, z1) ⊎ (x2, y2, z2) = (0, 0, 0) c ∗ (x, y, z) = (cx, cy, cz)
(x1, y1, z1) ⊎ (x2, y2, z2) = (x1 + x2 + 1, y1 + y2 + 1, z1 + z2 + 1) c ∗ (x, y, z) = (cx, cy, cz) W V
W = {(x, y, z, w) ∈ V = R4 : w = 0}
W = {(x, y, z) ∈ V = R3 : x, y, z ∈ Q}
W = {(x, y, z) ∈ V = R3 : z = 2x + 3y}
W = {(x, y) ∈ V = R2 : y = x2} 0 b W = ∈ V = M W = = 0 a
{(x, y, z) ∈ V = R3 : z = 1/x, x 6 } 0 2,2 : a, b ∈ R a b
W = {(x, y, z) ∈ V = R3 : x2 + y2 = z2} W = a + b 0 V = M R ∈ 3,2 : a, b, c ∈ W = {x ∈ V = Rn : Ax = 0} A 0 c m × n
W = {(x, y, z) ∈ V = R3 : z = 1}
W = {x ∈ V = Rn : Ax = b 6= 0} A
W = {(x, y, z) ∈ V = R3 : x, y, z ∈ Z} m × n u, v S
S = {(2, −1, 3), (5, 0, 4)}, u = (1, 1, −1), v = (−1, −2, 2), w = (1, −8, 12)
S = {(1, 2, −2), (2, −1, 1)}, u = (1, −5, −5), v = (−4, −3, 3), w = (−2, −6, 6) u = (1, 2), v = (1, −1). u v (2, 1) (3, 0) (0, 3) (1, −1) z u, v w z = (10, 1, 4)
u = (2, 3, 5), v = (1, 2, 4), w = (−2, 2, 3) z = (−1, 7, 2)
u = (1, 3, 5), v = (2, −1, 3), w = (−3, 2, −4) z = (0, 5, 3, 0)
u = (1, 1, 2, 2), v = (2, 3, 5, 6), w = (−3, 1, −4, 2) z = (2, 5, −4, 0)
u = (1, 3, 2, 1), v = (2, −2, −5, 4), w = (2, −1, 3, 6) {(0, 0), (1, 2)}
{(1, 1, 1), (2, 2, 2), (1, 2, 3)} {(1, 0), (1, 1), (2, −1)}
{(−4, −3, 4), (1, −2, 3), (6, 0, 0)} {(1, −4, 1), (6, 3, 2)}
{(1, 0, 0), (0, 4, 0), (0, 0, −6), (1, 5, −3)} {(6, 2, 1), (−1, 3, 2)}
{(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)} 0 {(3, 4), (−1, 1), (2, 0)}
{(1, 1, 1), (1, 1, 0), (0, 1, 1), (0, 0, 1)} {(2, 4), (−1, −2), (0, 6)}
{(1, 2, 3, 4), (1, 0, 1, 2), (1, 4, 5, 6)} t
{(t, 1, 1), (1, t, 1), (1, 1, t))}
{(t, 0, 0), (0, 1, 0), (0, 0, 1))}
{(t, 1, 1), (1, 0, 1), (1, 1, 3t))}
{(t, t, t), (t, 1, 0), (t, 0, 1))} 2 −3 0 5 A = , B = . 4 1 1 −2 A B 6 2 0 0 6 −19 −2 28 9 11 0 0 10 7 1 −11
1 −1 4 3 1 −8 , , 4 5 −2 3 22 23 P2
{2 − x, 2x − x2, 6 − 5x + x2}
{x2 + 3x + 1, 2x2 + x − 1, 4x} {x2 − 1, 2x + 5} {x2, x2 + 1} R2 {(2, 1), (−1, 2)} {(1, −2), (−3, 9)} {(−1, 4), (4, −1), (1, 1)} {(1, 1)} {(1, 3), (−2, −6), (3, 9)} {(1, −2), (−2, 1), (1, 1)} R3
{(4, 7, 3), (−1, 2, 6), (2, −3, 5)}
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}
{(6, 7, 6), (3, 2, −4), (1, −3, 2)}
{(1, −2, 0), (0, 0, 1), (−1, 2, 0)} {(−2, 5, 0), (4, 6, 3)}
{(1, 0, 3), (2, 0, −1), (4, 0, 5), (2, 0, 6)} {1, x2, x2 + 2} P2
{x2 − 2x, x3 + 8, x3 − x2, x2 − 4} P3 R4 M2,3 M4,1 M2,2 R2 {(1, 2), (1, 0), (0, 1)} {(−4, 5), (0, 0)} {(1, 2), (3, 4)} {(1, 1)} {(1, −2), (−1, 2), (2, 4)} R3
{(1, 3, 0), (4, 1, 2), (−2, 5, −2)} {(1, 1, 1), (1, 2, 3)}
{(1, 5, 3), (0, 1, 2), (0, 0, 6)} P2 {1, 2x, x2 − 4, 5x}
{6x − 3, 3x2, 1 − 2x − x2}
{1 − x, 1 − x2, 3x2 − 2x − 1}
{x − 1, x2 − 1, 1 − 2x − x2} R3 u = (8, 3, 8)
{(4, 3, 2), (0, 3, 2), (0, 0, 2)}
{(1, 1, 1), (1, 1, 0), (1, 0, 0)}
{(1, 4, 7), (3, 0, 1), (2, 1, 2)} M2,2
2 0 1 4 0 1 0 1 , , , 0 3 0 1 3 2 2 0
1 2 2 −7 4 −9 3 −7 , , , −5 4 6 2 10 12 1 2 2 3 R2 {(1, 0), (0, 1), (1, 2)} R3
{(1, 3, −2), (−4, 1, 1), (−2, 7, −3), (2, 1, 1)} R2 {(1, 1)} R3 {(1, 0, 2), (0, 1, 1)} R2 W = {(2t, t) : t ∈ R} W = {(0, t) : t ∈ R} R3 W = {(2t, t, −t) : t ∈ R}
W = {(2s − t, s, t) : t, s ∈ R} R4
W = {(2s − t, s, t, s) : t, s ∈ R}
W = {(t, 2s − 3t, w, t) : t, s, w ∈ R}
W = {(5t, −3t, t, t) : t ∈ R} 1 1 2 −3 1 1 2 3 2 4 −3 −6 5 10 6 7 14 −6 −3 8 −7 5 2 4 1 − − −2 −2 −4 4 5 2 4 −2 −2 1 2 3 3 6 −6 −4 1 −3 2 −2 −4 4 9 R3 S S
{(1, 2, 4), (−1, 3, 4), (2, 3, 1)}
{(1, 1, 2), (4, 4, 8), (1, 1, 1)}
{(4, 2, −1), (1, 2, −8), (0, 1, 2)}
{(1, 2, 2), (−1, 0, 0), (1, 1, 1)} R4 S S
{(2, 9, −2, 53), (−3, 2, 3, −2), (8, −3, −8, 17), (0, −3, 0, 15)}
{(2, 5, −3, −2), (−2, −3, 2, −5), (1, 3, −2, 2), (−1, −5, 3, 5)} Ax = 0 A 1 4 2 1 2 3 1 2 −3 1 3 −2 4 1 0 0 2 −1 4 0 1 −1 2 2 −1 4 3 −2 −2 −6 4 −8 1 3 −x + y + z = 0 x − 2y + 3z = 0 −3x − y = 0 −3x + 6y − 9z = 0 2x − 4y − 5z = 0 x + 2y − 4z = 0 −3x − 6y + 12z = 0 4x − y + 2z = 0 3x + 3y + 15z + 11t = 0 2x + 3y − z = 0 x − 3y + z + t = 0 3x + y + z = 0 2x + 3y + 11z + 8t = 0 Ax = b x = xh + xp xh Ax = 0 xp Ax = b x + 3y + 10z = 18 3x − 6y + z = 12 −2x + 7y + 32z = 29 −7x + 14y + 4z = −28 −x + 3y + 14z = 12 2x − 4y + 5z = 8 x + y + 2z = 8 b A b A −1 2 3 −1 2 2 1 3 0 1 A = , b = A = , b = 4 0 4 2 −4 4 A = 2 −1 1 0 , b = 0 1 1 −3 x x B
B = {(2, −1), (0, 1)}, [x]B = [4, 1]t
B = {(1, 0, 1), (1, 1, 0), (0, 1, 1)}, [x]B = [2, 3, 1]t
B = {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)}, [x]B = [1, −2, 3, −1]t x B
B = {(−6, 7), (4, −3)}, x = (−26, 32)
B = {(8, 11, 0), (7, 0, 10), (1, 4, 6)}, x = (3, 19, 2)
B = {(9, −3, 15, 4), (3, 0, 0, 1), (0, −5, 6, 8), (3, −4, 2, −3)}, x = (0, −20, 7, 15) B B′
B = {(1, 0), (0, 1)}, B′ = {(2, 4), (1, 3)}
B = {(1, 1), (1, 0)}, B′ = {(1, 0), (0, 1)}
B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, B′ = {(1, 0, 0), (0, 2, 8), (6, 0, 12)}
B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, B′ = {(1, 3, −1), (2, 7, −4), (2, 9, −7)} P B B′ Q B′ B P = Q−1 [x]B
B = {(1, 3), (−2, −2)}, B′ = {(−12, 0), (−4, 4)}, [x]B′ = [−1, 3]t
B = {(2, −2), (6, 3)}, B′ = {(1, 1), (32, 31)}, [x]B′ = [2, −1]t
B = {(1, 0, 2), (0, 1, 3), (1, 1, 1)}, B′ = {(2, 1, 1), (1, 0, 0), (0, 2, 1)}, [x]B′ = [1, 2, −1]t
B = {(1, 1, 1), (1, −1, 1), (0, 0, 1)}, B′ = {(2, 2, 0), (0, 1, 1), (1, 0, 1)}, [x]B′ = [2, 3, 1]t P2 : p = x2 + 11x + 4 p = 3x2 + 114x + 13 p = −2x2 + 5x + 1 p = 4x2 − 3x − 2 X M3,1 0 1 X = 3 X = 2 2 −1 2 1 X = X = 0 −1 4 −4 Rn v = (2, 0, −4, 5) v = (1, −3, −5, 6, 2) v = (8, 8, 6) u u v u v u = (1, 2, −4, 3) v = (5, 1, 2, 3) u = (1, −3, −5, 4, 2) u = (2, −1, −2, 3, 1) u = (0, 1, 2, 3) v = (1, 0, 4, −1) kuk2 = 4, kvk2 = 10 hu, vi = −5 hu + v, 2u − vi kuk2 = 8, kvk2 = 6 hu, vi = 7 h3u − v, u − 3vi u = (1, 1, −2) v = (1, −3, −2) u = (1, 2, 3, 4) v = (4, 3, 2, 1) u = (1, 1, 1) v = (0, 1, −2) u = (−1, 1, −1, 1) v = (1, 2, 3, 4) u = (3, 1) v = (−2, 4) u = (1, 0, 1, 0) v = (3, 3, 3, 3) π π 3π 3π u = cos , sin v = cos , sin 6 6 4 4 π π π π u = cos , sin v = cos , sin 3 3 4 4 u = (2, 7) u = (2, −1, 1) u = (0, 0, −1, 1) u = (cos x, sin x, −1) v = (sin x, − cos x, 0) u = (− sin x, cos x, 1) v = (sin x, − cos x, 0) hu, vi, kuk, kvk, d(u, v) u = (4, 3) v = (0, 5) hu, vi = 3u1v1 + u2v2 u = (1, 1, 1) v = (2, 5, 2) hu, vi = u1v1 + 2u2v2 + 3u3v3 hA, Bi, kAk, kBk, d(A, B)
hA, Bi = 2a11b11+a12b12+a21b21+2a22b22 −1 3 0 A = −2 , B = ; 4 −2 1 1 1 −1 0 1 A = , B = . 2 4 −2 0 hu, vi R2 hu, vi = u1v1 hu, vi = u1v1 − u2v2 hu, vi = u2v2 + u2v2 1 1 2 2 hu, vi = u1u2 + v1v2 0 3 A = −3 1 , B = a 2 1 4 3
hA, Bi = 2a11b11 + a12b12 + a21b21 + 2 22b22; 0 1 1 1 A = , B = hA, Bi = a a a22b22. 2 −1 2 −2 11 b11 + 2 12b12 + a21b21 + 2 u = (−4, 3) v = (0, 5) hu, vi = 3u1v1 + u2v2 u = (1, 1, 1) v = (2, −2, 2) hu, vi = u1v1 + 2u2v2 + u3v3 proj v proj u u v u = (1, 2) v = (2, 1) proj v proj u R2 u v u = (−1, 3) v = (4, 4) proj v proj u R2 u v u = (1, 3, −2) v = (0, −1, 1) u = (0, 1, 3, −6) v = (−1, 1, 2, 2) u = (5, 1, 4) v = (2, 1, −1) u v hu, vi = u1v1 + 2u2v2 + 3u3v3 u v w = (2, 7) hu, vi = u1v1 + 3u2v2 w = (2, −1, 1) hu, vi = 2u1v1 + 3u2v2 + u3v3 w = (−1, 1, −1, 1)
hu, vi = u1v1 + 3u2v2 + 3u3v3 + u4v4
S = {(4, −1, 1), (−1, 0, 4), (−4, −17, −1)} √ √ √ √ √ √ √ √ n 2 2 6 6 6 3 3 3 o S = , 0, , − , , , , , − 2 2 6 3 6 3 3 3 √ √ √ √ n 2 2 2 2 1 1 1 1o S = , 0, 0, , 0, , , 0 , − , , − , 2 2 2 2 2 2 2 2 x √ √ √ √ n 5 2 5 2 5 5 o S = , , − , x = (−3, 4) 5 5 5 5 n 3 4 4 3 o S = , , 0 , − , , 0 , (0, 0, 1) x = (5, 10, 15) 5 5 5 5
S = {(1, −2, 2), (2, 2, 1), (2, −1, −2)}
S = {(4, −3, 0), (1, 2, 0), (0, 0, 4)}
S = {(1, 0, 0), (1, 1, 1), (1, 1, −1)}
S = {(0, 1, 2), (2, 0, 0), (1, 1, 1)}
S = {(0, 1, 1), (1, 1, 0), (1, 0, 1)} x 1 + x2 − 3x3 − 2x4 = 0 x1 + x2 − x3 − x4 = 0 2x1 − x2 − 2x4 = 0 2x1 + x2 − 2x3 − 2x4 = 0; 3x1 + x2 − 5x3 − 4x4 = 0; x1 − x2 + x3 + x4 = 0 x1 + x2 − 3x3 + 2x4 = 0 x1 − 2x2 + x3 + x 4 = 0; x1 + 2x2 − 3x3 + 4x4 = 0 2x1 + x2 − 6x3 + 2x4 = 0; x1 − 2x2 + x3 = 0.
V1 = span{(2, 1, −1), (0, 1, 1)} V2 = span{(−1, 2, 0)}
V1 = span{(0, 0, 2, 1), (0, 0, 1, −2)}
V2 = span{(3, 2, 0, 0), (0, 1, −2, 0)} V = span{(1, 2, 3), (1, 1, 1)}
V = span{(1, 2, 0, 0), (0, 1, 0, 1)} v V
V = span{(0, 0, −1, 1), (0, 1, 1, 1)} v = (1, 0, 1, 1) V = span{(1, 0, 1), (0, 1, 1)} v = (2, 3, 4)
T : R2 → R2, T (x, y) = (x, 1)
T : R3 → R3, T (x, y, z) = (x + y, x − y, z)
T : R3 → R3, T (x, y, z) = (x + 1, y + 1, z + 1)
T : M2,2 → R, T (A) = |A| = det A; 0 0 1 T : M3,3 → M3,3, T (A) = 0 1 0 A; 1 0 0 T : M T 2,2 → M2,2, T (A) = A T : R3 → R3
T (1, 0, 0) = (2, 4, −1), T (0, 1, 0) = (1, 3, −2) T (0, 0, 1) = (0, −2, 2) T (0, 3, −1) T (2, −1, 0) T : R3 → R3
T (1, 1, 1) = (2, 0, −1), T (0, −1, 2) = (−3, 2, −1) T (1, 0, 1) = (1, 1, 0) T (2, 1, 0) T (2, −1, 1) 1 2 T : R2 → R3 A = , T (2, 4) −2 4 −2 2 T −1(−1, 2, 2).
T : R3 → R3, T (x, y, z) = (x, 0, z)
T : R3 → R3, T (x, y, z) = (z, y, x) ker T imT T T (v) = Av 1 −1 2 4 1 A = ; 0 1 2 A = 0 0 ; 2 −3 1 2 A = 1 2 1 1 0 0 − − ; A = . 1 1 0 0 1 1 ker T T T
T : R2 → R2, T (x, y) = (x + 2y, x − 2y)
T : R3 → R3, T (x, y, z) = (2x − 3y, x − y, z)
T : R3 → R3, T (x, y, z) = (0, 0, 0)
T : R4 → R2, T (x1, x2, x3, x4) = (x1 + x2, x3 + x4) T = T2 ◦ T1
T1 : R2 → R2, T1(x, y) = (x − 2y, 2x + 3y),
T2 : R2 → R2, T2(x, y) = (2x, x − y);
T1 : R2 → R3, T1(x, y) = (x − 2y, x + y, x − y),
T2 : R3 → R2, T2(x, y, z) = (x − 3y, 3x + z);
T1 : R3 → R2, T1(x, y, z) = (x − 3y, 3x + z),
T2 : R2 → R3, T2(x, y) = (x − 2y, x + y, x − y).
T : R3 → R3, T (x, y, z) = (x, x + y, x + y + z)
T : R3 → R3, T (x, y, z) = (x + y, y + z, x + z)
T : R4 → R4, T (x1, x2, x3, x4) = (x1 − 2x2, x2, x3 + x4, x3)
T : R4 → R4, T (x1, x2, x3, x4) = (x4, x3, x2, x1) A T B, B′ [v]B [T (v)]B′ T (v) B′ [T (v)]B′ = A[v]B
T : R2 → R2, T (x, y) = (2x − 12y, x − 5y), v = (10, 5), B = B′ = {(4, 1), (3, 1)};
T : R2 → R3, T (x, y) = (x + y, x, y), v = (5, 4),
B = {(1, −1), (0, 1)}, B′ = {(1, 1, 0), (0, 1, 1), (1, 0, 1)};
T : R3 → R2, T (x, y, z) = (x − y, y − z), v = (1, 2, −3),
B = {(1, 1, 1), (1, 1, 0), (0, 1, 1)}, B′ = {(1, 2), (1, 1)};
T : R3 → R3, T (x, y, z) = (x + y + z, −x + 2z, 2y − z), v = (4, −5, 10),
B = {(2, 0, 1), (0, 2, 1), (1, 2, 1)}, B′ = {(1, 1, 1), (1, 1, 0), (0, 1, 1)}. T : R3 → R3
T (x, y, z) = (x + y + z, −x + 2y + 3z, 2x − y + z). T R3 T
{(1, 2, −1), (1, 0, 0), (0, 1, 0)} R3 A′ T B′ A′ A T B P B′ B P −1 A′ = P −1AP
T : R2 → R2, T (x, y) = (2x − y, −x + y), B′ = {(1, −2), (0, 3)};
T : R3 → R3, T (x, y, z) = (x, y, z),
B′ = {(1, 1, 0), (1, 0, 1), (0, 1, 1)};
T : R3 → R3, T (x, y, z) = (x, x + 2y, x + y + 3z),
B′ = {(1, −1, 0), (0, 0, 1), (0, 1, −1)}. 3 2 B = {(1, 3), (−2, −2)} B′ = {(−12, 0), (−4, 4)} R2 A = 0 4 T : R2 → R2 B P B′ B A P [v] −1 B [T (v)]B [v] . B′ = 2
[v]B = P [v]B′, [T (v)]B = A[v]B = AP [v]B′ A′ T : R2 → R2 B′ P −1 [T (v)]B′ [T (v)]B′ = A′[v]B′ [T (v)]B′ = P −1[T (v)]B 2
B = {(1, 1), (−2, 3)}, B′ = {(1, −1), (0, 1)} 3 2 1 A = , [v] . 0 4 B′ = −3 2
B = {(1, 2), (−1, −1)}, B′ = {(−4, 1), (0, 2)} 2 1 −1 A = , [v] . 0 −1 B′ = 4 2
B = {(1, −1), (−2, 1)}, B′ = {(−1, 1), (1, 2)} 2 1 1 A = , [v] . 0 −1 B′ = −4 2
B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, B′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} 3 −1 −1 1 2 2 A = , . − 1 2 1 [v] 0 2 2 B′ = 1 1 5 −1 2 2 2
B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, B′ = {(1, 1, −1), (1, −1, 1), (−1, 1, 1)} 3 −1 −1 2 2 2 A = , . − 1 2 1 [v] 1 2 2 B′ = 1 1 5 1 2 2 λi xi 1 0 λ A = , 1 = 1, x1 = (1, 0), 0 −1 λ2 = −1, x2 = (0, 1); 2 3 1 λ1 = 2, x1 = (1, 0, 0), A = 0 , λ −1 2 2 = −1, x2 = (1, −1, 0), 0 0 3 λ3 = 3, x3 = (5, 1, 2). xi A 7 2 A = , x , x , x , x 2 4 1 = (1, 2) 2 = (2, 1) 3 = (1, −2) 4 = (−1, 0); −1 −1 1 A = −2 0 −2 , x , −4, 6), x , 0, 6), x , 2, 0), x , , 1). 1 = (2 2 = (2 3 = (2 4 = (−1 0 3 −3 1 6 −3 1 2 −2 A = −5 0 0 −2 1 A = 3 7 0 A = −2 5 −2 4 −2 3 −6 6 −3 7 2 A = 2 −2 3 3 2 −3 2 4 A = 0 3 −2 A = −3 −4 9 0 −1 2 −1 −2 5 2 0 1 3 2 1 A = 0 3 4 A = 0 0 2 0 0 1 0 2 0 A P −1AP 1 3 3 1 A = , P = −1 5 1 1 −1 1 0 0 1 −3 A = 0 3 0 , P = 0 4 0 4 −2 5 1 2 2 0 0 1 A = −2 1 2 0 A = 0 1 4 0 0 2 2 1 −1 1 1 A = 2 A = 0 −2 −1 −1 2 0 0 −1 A P A P −1AP P −1AP 6 −3 1 2 −2 A = −5 0 0 −2 1 A = 3 7 0 2 5 2 A = − − 4 −2 3 −6 6 −3 7 2 A = 2 −2 3 3 2 −3 2 4 A = 0 3 −2 A = −3 −4 9 0 −1 2 −1 −2 5 2 0 1 3 2 1 A = 0 3 4 A = 0 0 2 0 0 1 0 2 0 B T B
T : R2 → R2, T (x, y) = (x + y, x + y)
T : R3 → R3, T (x, y, z) = (−2x + 2y − 3z, 2x + y − 6z, −x − 2y) 1 0 0 3 0 0 A = 0 2 0 0 2 0 . , B = A B 0 0 3 0 0 1 P B = P −1AP. −1 a −1 A = −3 5 −1 a −3 3 1 a 2 A a = 3 P P −1AP 6 −2 1 3 A = ; A = ; −2 1 2 4 2 −2 1 −5 3 4 A = 3 7 −2 . −2 3 4 ; A = 0 4 1 4 −2 3 1 3 0 2 2 2 −1 −1 A = 3 1 A = 2 0 2 A = −1 2 −1 2 2 0 −1 −1 2 0 2 0 4 4 A = 3 0 0 2 0 A = 4 2 0 A = 0 1 0 4 0 −2 0 0 1 2 1 1 0 1 1 A = 1 2 1 A = 1 0 1 1 1 2 1 1 0 √ √ 2 2 −4 0 3 A = A = 0 1 0 2 2 √ √ 2 2 3 0 4 − 2 2 / 2/3 −2/3 −4/5 0 3 5 A = A = 0 1 0 2/3 1/3 3/5 0 4/5 P P T AP P T AP 1 1 0 3 0 1 1 0 0 A = 1 1 A = 3 0 4 1 1 0 0 A = 0 4 0 0 0 1 1 0 0 1 1 1 4 2 −1 2 A = A = 2 4 −1 1 2 2 2 2 1 a 0 A = a 1 0 a 0 0 −3 A a A 3 a = 2 P P tAP x2 + y2 9x2 + 10y2 − 5xy
x2 + 2y2 + 3z2 − 2xy − 4xz − 5yz
x2 + 2x2 + 3z2 + 4t2 + xy − 2xz + 6xt − 4yz − 8yt A P P T AP A 2x2 − 2y2 − 3xy 5x2 + 5y2 − 2xy 16x2 + 9y2 + 24xy xy, xz, yz x2 + y2 + 4xy − 9 = 0 2x2 + 5y2 − 4xy − 36 = 0 xy + x − 2y + 3 = 0 √ 5x2 + 5y2 − 2xy + 10 2x = 0
3x2 + 3y2 + 8z2 − 2xy − 16 = 0
2x2 + 2y2 + 2z2 + 2xy + 2xz + 2yz − 1 = 0
x2 + y2 + z2 + 2xy − z − 8 = 0