



















Preview text:
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS BÀI 2 TÍCH PHÂN
1. Khái niệm tích phân
a. Diện tích hình thang cong
Nếu hàm số f (x) liên tục và không âm trên đoạn [a;b] thì diện tích S của hình thang cong giới hạn
bởi đồ thị y = f (x) , trục hoành và hai đường thẳng x = a, x = b được tính bởi:
S = F (b) − F (a)
trong đó F (x) là một nguyên hàm của f (x) trên đoạn [ ; a b].
b. Khái niệm tích phân
Cho hàm số f (x) liên tục trên đoạn [ ;
a b]. Nếu F (x) là nguyên hàm của hàm số f (x) trên đoạn b
[ ;ab] thì hiệu số F (b)− F (a) được gọi là tích phân từ a đến b của hàm số f (x), kí hiệu f (x)dx ∫ a Chú ý:
• Hiệu số F (b) − F (a) còn được kí hiệu là F (x) b . a b Vậy f
∫ (x)dx = F (x)b = F (b)− F (a) a a b
• Ta gọi ∫ là dấu tích phân, a là cận dưới, b là cận trên, f (x)dx là biểu thức dưới dấu tích phân và a
f (x) là hàm số dưới dấu tích phân. a b a • Quy ước: f ∫ (x) ; dx f
∫ (x)dx = − f ∫ (x)dx a a b
• Tích phân của hàm số f từ a đến b chỉ phụ thuộc vào f và các cận a,b mà không phụ thuộc vào b b
biến x hay t , nghĩa là f
∫ (x)dx = f ∫ (t)dt . a a
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS
• Ý nghĩa hình học của tích phân b
Nếu hàm số f (x) liên tục và không âm trên đoạn [ ;
a b] thì f (x)dx ∫
là diện tích S của hình thang a
cong giới hạn bởi đồ thị y = f (x) , trục hoành và hai đường thẳng x = a, x = b . b S = f ∫ (x)dx a Nhận xét:
• Nếu hàm số f (x) có đạo hàm f '(x) và f '(x) liên tục trên đoạn [ ; a b] thì b
f (b) − f (a) = f ' ∫ (x)dx. a
• Cho hàm số f (x) liên tục trên đoạn [ ;
a b]. Khi đó 1 b f
∫ (x)dx được gọi là giá trị trung bình của b − a a
hàm số f (x) trên đoạn [ ; a b].
• Đạo hàm của quãng đường di chuyển của vật theo thời gian bằng tốc độ của chuyển động tại mọi
thời điểm: v(t) = s '(t) . Do đó, nếu biết tốc độ v(t) tại mọi thời điểm t ∈[a;b] thì tính được quãng đường b
di chuyển trong khoảng thời gian từ a đến b theo công thức: s = s(b) − s(a) = v(t)dt ∫ a
2. Tính chất của tích phân
Cho hai hàm số f (x), g (x) liên tục trên đoạn [ ; a b]. Khi đó: b b
• Tính chất 1: kf
∫ (x)dx = k f
∫ (x)dx, với k là hằng số. a a b b b
• Tính chất 2: f
∫ (x)+ g(x)dx = f
(x)dx + g(x)dx ∫ ∫ a a a b b b f
∫ (x)− g(x)dx = f
(x)dx − g(x)dx ∫ ∫ a a a b c b
• Tính chất 3: f (x)dx = f (x)dx + f (x)dx ∫ ∫ ∫ với c∈( ; a b). a a c CHỦ ĐỀ 1
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS
TÍNH TÍCH PHÂN CỦA MỘT SỐ HÀM SỐ DẠNG 1
TÍNH TÍCH PHÂN SỬ DỤNG BẢNG NGUYÊN HÀM SƠ CẤP
Nguyên hàm của một hàm số sơ cấp 0dx = C ∫
Nguyên hàm của hàm số lũy thừa
dx = x + C ∫ α 1 + α x x dx = + C ∫ (α ≠ − ) 1 α +1
Nguyên hàm của hàm số 1 y =
dx = ln x + C ( ≠ 0) ∫ x x x cos xdx = x + C ∫ sin sin xdx = − x + C ∫ cos
Nguyên hàm của hàm số lượng giác
1 dx = x + C ∫ tan cos2 x 1 dx = − x + C ∫ cot sin2 x
exdx = ex + C ∫
Nguyên hàm của hàm số mũ x a x = a dx + C (0 < ≠ ) 1 ∫ a ln a
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS 2
Câu 1. Tính tích phân I = (2x +1)dx ∫ 0 A. I = 5 . B. I = 6. C. I = 2 . D. I = 4 . 1
Câu 2. Tích phân ∫(3x + )1(x +3)dx bằng 0 A. 12. B. 9 . C. 5 . D. 6 . e
Câu 3. Tính tích phân 1 1 I dx = − ∫ 2 x x 1 A. 1 I = B. 1 I = +1 C. I =1
D. I = e e e 3 + Câu 4. x 2 Biết
dx = a + bln c, ∫
với a,b,c ∈,c < 9. Tính tổng S = a + b + .c x 1 A. S = 7 . B. S = 5. C. S = 8. D. S = 6 . 1
Câu 5. Tích phân 3x 1 e + dx ∫ bằng 0 A. 1 ( 4 e + e) B. 3 e − e C. 1 ( 4
e − e) D. 4 e − e 3 3 1 x Câu 6. Biết e e dx = + b ∫
(a,b∈) . Khi đó giá trị của P = a + b là 2x a 0 A. P = 3 − B. P =1 C. P = 1 − D. P = 3 1 2x
Câu 7. Giá trị của e − 4 I = dx ∫ bằng x e + 2 0
A. I = 2(e + 3)0. B. 1 I = (e + 3).
C. I = e − 3 .
D. I = 2(e −3) . 2 2 − x Câu 8. Biết x e 2 + e ∫ a b 1− dx = e + .
a e + bln 2 (a,b∈) . Khi đó giá trị của P = là x . a b 1 A. P = 3 − B. P =1 C. P = 1 − D. P = 2 − 1 2x 1 − 3 − x Câu 9. Biết e − e +1 1 + I = dx = + b ∫ (a,b∈ a b
) . Khi đó giá trị của P = là x e a . a b 0 4 4 4 A. 4 P − − − = e −1 B. e 1 P = C. e 1 P = D. 1 e P = 2 e 4 e 4 e π 2
Câu 10. Giá trị của sin xdx ∫ bằng 0 π A. 0. B. 1. C. -1. D. . 2
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS π 2 2 Câu 11. + π Biết ( x + x + x) a b 3 2sin 3cos dx = + ∫
(a,b,c∈) . Khi đó giá trị của P = a + 2b + 3c là π 2 c 3 A. P = 45 B. P = 60 C. P = 65 D. P = 70 π 3 Câu 12. Biết 2 π
3tan xdx = a 3 + b + ∫
(a,b,c∈) . Khi đó giá trị của P = a + b + c là π c 4 A. P = 6 B. P = 4 − C. P = 4 D. P = 6 − π 4 Câu 13. π Biết ∫( 2
2cot x + 5)dx = + b 3 + c (a,b,c∈) . Khi đó giá trị của P = a + b + c là π a 6 A. P = 6 B. P = 4 − C. P = 4 D. P = 6 − π 2 Câu 14. π Biết 2 x 2 sin cos x a dx = + ∫
với a,b∈ và a 4 4 c b
b là phân số tối giản. Khi đó giá trị của 0
P = a + b + c là A. P =17 B. P =16 C. P = 32 D. P = 49
PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý A), B), C), D) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Câu 15. Cho hàm số y f xliên tục trên a;b
. Các mệnh đề sau đây đúng hay sai? b a b a A. f
xdx f xdx B. f
xdx f xdx a b a b b b a C. f
xdx 2 f
xd2x D. f
2024 xdx .0 a a a
Câu 16. Cho hàm số y f x,y gxliên tục trên a;b
. Các mệnh đề sau đây đúng hay sai? b b b b b b A. f
x gx dx f
xdx g xdx . B. f
x.gxdx f
xd .x g xdx . a a a a a a b f x x b d b b f x C. kf
xdx k f
xdx. D. a x . g x a d b a a g xdx a
Câu 17. Cho hàm số y f xliên tục trên và a,b,c thỏa mãn a b c . Các mệnh đề sau đây đúng hay sai? c b c c b c A. f
xdx f xdx f xdx B. f
xdx f
xdx f xdx a a b a a b
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS c b c c b b C. f
xdx f
xdx f xdx D. f
xdx f
xdx f xdx a a b a a c
Câu 18. Cho f (x) , g(x) là hai hàm số liên tục trên . Các mệnh đề sau đây đúng hay sai? b b b b b
A. f (x)dx = f (y)dy ∫ ∫
B. ∫( f (x)+ g(x))dx = f (x)dx + g(x)d .x ∫ ∫ a a a a a b b b b b
C. f (x)dx = f (t)dx ∫ ∫
D. ∫( f (x)g(x))dx = f (x)dx g(x)d .x ∫ ∫ a a a a a
Câu 19. Các mệnh đề sau đây đúng hay sai? 2024 A. dx 4048 . 2024 b b b
B. f x . f x dx f x d .x f x d 1 2 1 . 2 x a a a
C. Cho hàm số f (x) liên tục trên đoạn [ ;
a b]. Khi đó 1 b f
∫ (x)dx được gọi là giá trị trung bình b − a a
của hàm số f (x) trên đoạn [ ; a b].
D. Nếu hàm số f (x) có đạo hàm f '(x) và f '(x) liên tục trên đoạn [ ; a b] thì b
f (b) − f (a) = f ' ∫ (x)dx. a
Câu 20. Cho hàm f (x) là hàm liên tục trên đoạn [ ;
a b] với a < b và F (x) là một nguyên hàm của
hàm f (x) trên [a;b]. Các mệnh đề sau đây đúng hay sai? b A. kf
∫ (x)dx = k(F (b)− F (a)) a a B. f
∫ (x)dx = F (b)− F (a) b
C. Diện tích S của hình phẳng giới hạn bởi đường thẳng x = ;
a x = b ; đồ thị của hàm số y = f (x) và
trục hoành được tính theo công thức S = F (b) − F (a) b D. f
∫ (2x+3)dx = F (2x+3)ba a
Câu 21. Các mệnh đề sau đây đúng hay sai 1 2x
A. e − 4 dx = e − 3 ∫ x e + 2 0 1 x B. e e dx = +1 ∫ 2x 2 0
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS 2 − x C. x e 2 e
∫ 1− dx = e −e−ln2 x 1 1 2x 1 − 3 − x D. e − e +1 4 dx = e −1 ∫ x e 0
PHẦN III. Câu trắc nghiệm trả lời ngắn. Mỗi câu hỏi thí sinh chỉ trả lời đáp án. b
Câu 22. Với a,b là các tham số thực. Tính tích phân I = ( 2 3x − 2ax − ∫ )1dx. 0
Trả lời: ……………….. m Câu 23. Cho ∫( 2 3x − 2x + )
1 dx = 6. Tính giá trị của tham số m . 0 A. ( 1; − 2) . B. ( ;0 −∞ ). C. (0;4) . D. ( 3 − ; ) 1 .
Trả lời: ……………….. 2
Câu 24. Tính tích phân x −1 I = dx ∫ . x 1
Trả lời: ……………….. 2 2 4 3 Câu 25. Tính x − x I = dx ∫ . x 1
Trả lời: ……………….. 2
Câu 26. Tính I = ( x + )1( 3 x − ∫ )1dx. 1
Trả lời: ……………….. 2 2 3 Câu 27. Tính (x +1) I = dx ∫ . 2 x 1
Trả lời: ……………….. 1 Câu 28. Tính x 1 + 2x 1 I 5 .7 − = dx ∫ . 0
Trả lời: ……………….. 1
Câu 29. Tính I = ∫( − x−2 x + e )dx . 0
Trả lời: ……………….. π 3 Câu 30. Tính 2 sin 1 x I x = − ∫ dx . 2 π x 6
Trả lời: ………………..
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS π 2 Câu 31. Tính 1
I = ∫sin x − dx . 3 2 π x 6
Trả lời: ……………….. ( −x e + 2)2 1 Câu 32. Biết c 1
dx = ae + b + + ∫
(a,b,c∈) . Tính giá trị của P = a + b + c . x 1 − 2 e e e 0
Trả lời: ……………….. π 3 Câu 33. − π
Biết 1 cos 2x dx = a 3 + ∫
(a,b∈) . Tính a + b . 1+ cos 2x b 0
Trả lời: ……………….. (2024x + )2 1 1
Câu 34. Tính I = dx ∫ . 3x e− 0
Trả lời: ……………….. ( −x e + 2)2 1
Câu 35. Tính I = dx ∫ . x 1 e − 0
Trả lời: ……………….. 2 2 − x Câu 36. Tính 2x 2024 = ∫ 2023 e I e + dx . 3 x 1
Trả lời: ……………….. 2 Câu 37. Tính 3 1 + 1 4 2.3x I x dx = − + ∫ . 2 x 1
Trả lời: ……………….. DẠNG 2
TÍCH PHÂN HÀM TRỊ TUYỆT ĐỐI
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS b
Tính tích phân: I = f ∫ (x) .dx ? a Phương pháp
Bước 1. Xét dấu f (x) trên đoạn [ ; a b] .
Bước 2. Dựa vào bảng xét dấu trên đoạn [ ;
a b] để khử f (x) . Sau đó sử dụng các phương pháp tính tích b
phân đã học đê tính I = f ∫ (x) .dx a
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi thí sinh chỉ chọn một phương án. 2π
Câu 38. Giá trị của I = 1− cos 2xdx ∫ bằng 0 π A. 3 . B. 4 2 . C. 2 3 . D. . 2 2
Câu 39. Tính tích phân I = x − 2 dx ∫ . 0 A. I = 2 − . B. I = 4 . C. I = 2 . D. I = 0. 2
Câu 40. Tính tích phân 3
I = x − x dx ∫ . 0 A. 1 I = − . B. I = 5 . C. 1 I = . D. 5 I = . 2 2 2 2
Câu 41. Tính tích phân 2
I = x + 2x − 3dx ∫ . 0 A. I = 2 − . B. I = 4 . C. I = 5 . D. I = 4 − .
Câu 42. Cho tích phân I = ( + ) 3 2 20 4 16 3 2 x −1 dx = + + = a 3 + b 2 ∫
với a,b∈ . Tính − 3 3 3 3
P = a + b . A. 40 P = B. 80 P = C. 17 P = D. 98 P = 3 3 3 3 5
Câu 43. Tính tích phân I = ∫ ( x + 2 − x −2 )dx . 2 − A. I = 38 . B. I = 44 . C. I = 48. D. I = 40 . 3
Câu 44. Cho tích phân = 2x − 4 b I dx = a + ∫
với a,b,c ∈ và b là phân số tối giản. Tính c ln 2 c 0 2 2 2
P = a + b + c . A. P =15 B. P =10 C. P = 5 D. P =18
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS 1
Câu 45. Tính tích phân = 2x − 2−x I dx ∫ . 1 − A. 1 . B. ln 2 . C. 2ln 2. D. 2 . ln 2 ln 2 2
Câu 46. Tính tích phân I = ∫ ( x − x −1)dx. 1 − A. I = 0. B. I = 2 . C. I = 2 − . D. I = 3 − . a
Câu 47. Cho a là số thực dương, tính tích phân I = x dx ∫ theo a . 1 − 2 2 2 2 3a −1 A. a 1 I + = a 2 2a 1 . B. I + = . C. I − + = . D. I = . 2 2 2 2 m
Câu 48. Cho số thực m >1 thỏa mãn 2mx −1 dx =1 ∫
. Khẳng định nào sau đây đúng? 1 A. m∈(4;6). B. m∈(2;4). C. m∈(3;5) . D. m∈(1;3).
Câu 49. Khẳng định nào sau đây là đúng? A. 1 1 3 3 x dx = x dx ∫ ∫ . B. 2018 2018 4 2
x − x +1 dx = ( 4 2 x − x + ∫ ∫ )1dx . 1 − 1 − 1 − 1 − π π C. 3 x ( + ) 3 1 d x e x x = e (x + ∫ ∫ )1dx . D. 2 2 2 − =
∫ π 1 cos xdx ∫ π sin d x x . 2 − 2 − − − 2 2 4
Câu 50. Tính tích phân 2 I =
x − 6x + 9dx ∫ . 1 A. 5 I = . B. 1 I = − . C. I = 2 − . D. 1 I = . 2 2 2
PHẦN II. Câu trắc nghiệm trả lời ngắn. Mỗi câu hỏi thí sinh chỉ trả lời đáp án. 3
Câu 51. Tính tích phân 2
I = x −1 dx ∫ . 3 −
Trả lời: ……………….. 2
Câu 52. Tính tích phân 2
I = −x − 2x + 3 dx ∫ . 1 −
Trả lời: ……………….. 2
Câu 53. Tính tích phân x +1 I = dx ∫ . x 1
Trả lời: ……………….. 6
Câu 54. Tính tích phân 2 I =
x −8x +16dx ∫ . 2
Trả lời: ………………..
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS 1
Câu 55. Tính tích phân 2 I =
4x + 6x + 9dx ∫ . 2 −
Trả lời: ……………….. 1
Câu 56. Tính tích phân 2 I =
9x − 6x +1dx ∫ . 0
Trả lời: ……………….. 2π
Câu 57. Tính tích phân I = 1+ cos 2xdx ∫ . 0
Trả lời: ……………….. 2π
Câu 58. Tính tích phân I = 1− cos 2xdx ∫ . 0
Trả lời: ……………….. 2π
Câu 59. Tính tích phân I = 1− sin 2xdx ∫ . 0
Trả lời: ……………….. 2π
Câu 60. Tính tích phân I = 1+ sin 2xdx ∫ . 0
Trả lời: ………………..
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS BÀI 2 TÍCH PHÂN
1. Khái niệm tích phân
a. Diện tích hình thang cong
Nếu hàm số f (x) liên tục và không âm trên đoạn [a;b] thì diện tích S của hình thang cong giới hạn
bởi đồ thị y = f (x) , trục hoành và hai đường thẳng x = a, x = b được tính bởi:
S = F (b) − F (a)
trong đó F (x) là một nguyên hàm của f (x) trên đoạn [ ; a b].
b. Khái niệm tích phân
Cho hàm số f (x) liên tục trên đoạn [ ;
a b]. Nếu F (x) là nguyên hàm của hàm số f (x) trên đoạn b
[ ;ab] thì hiệu số F (b)− F (a) được gọi là tích phân từ a đến b của hàm số f (x), kí hiệu f (x)dx ∫ a Chú ý:
• Hiệu số F (b) − F (a) còn được kí hiệu là F (x) b . a b Vậy f
∫ (x)dx = F (x)b = F (b)− F (a) a a b
• Ta gọi ∫ là dấu tích phân, a là cận dưới, b là cận trên, f (x)dx là biểu thức dưới dấu tích phân và a
f (x) là hàm số dưới dấu tích phân. a b a • Quy ước: f ∫ (x) ; dx f
∫ (x)dx = − f ∫ (x)dx a a b
• Tích phân của hàm số f từ a đến b chỉ phụ thuộc vào f và các cận a,b mà không phụ thuộc vào b b
biến x hay t , nghĩa là f
∫ (x)dx = f ∫ (t)dt . a a
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS
• Ý nghĩa hình học của tích phân b
Nếu hàm số f (x) liên tục và không âm trên đoạn [ ;
a b] thì f (x)dx ∫
là diện tích S của hình thang a
cong giới hạn bởi đồ thị y = f (x) , trục hoành và hai đường thẳng x = a, x = b . b S = f ∫ (x)dx a Nhận xét:
• Nếu hàm số f (x) có đạo hàm f '(x) và f '(x) liên tục trên đoạn [ ; a b] thì b
f (b) − f (a) = f ' ∫ (x)dx. a
• Cho hàm số f (x) liên tục trên đoạn [ ;
a b]. Khi đó 1 b f
∫ (x)dx được gọi là giá trị trung bình của b − a a
hàm số f (x) trên đoạn [ ; a b].
• Đạo hàm của quãng đường di chuyển của vật theo thời gian bằng tốc độ của chuyển động tại mọi
thời điểm: v(t) = s '(t) . Do đó, nếu biết tốc độ v(t) tại mọi thời điểm t ∈[a;b] thì tính được quãng đường b
di chuyển trong khoảng thời gian từ a đến b theo công thức: s = s(b) − s(a) = v(t)dt ∫ a
2. Tính chất của tích phân
Cho hai hàm số f (x), g (x) liên tục trên đoạn [ ; a b]. Khi đó: b b
• Tính chất 1: kf
∫ (x)dx = k f
∫ (x)dx, với k là hằng số. a a b b b
• Tính chất 2: f
∫ (x)+ g(x)dx = f
(x)dx + g(x)dx ∫ ∫ a a a b b b f
∫ (x)− g(x)dx = f
(x)dx − g(x)dx ∫ ∫ a a a b c b
• Tính chất 3: f (x)dx = f (x)dx + f (x)dx ∫ ∫ ∫ với c∈( ; a b). a a c CHỦ ĐỀ 1
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS
TÍNH TÍCH PHÂN CỦA MỘT SỐ HÀM SỐ DẠNG 1
TÍNH TÍCH PHÂN SỬ DỤNG BẢNG NGUYÊN HÀM SƠ CẤP
Nguyên hàm của một hàm số sơ cấp 0dx = C ∫
Nguyên hàm của hàm số lũy thừa
dx = x + C ∫ α 1 + α x x dx = + C ∫ (α ≠ − ) 1 α +1
Nguyên hàm của hàm số 1 y =
dx = ln x + C ( ≠ 0) ∫ x x x cos xdx = x + C ∫ sin sin xdx = − x + C ∫ cos
Nguyên hàm của hàm số lượng giác
1 dx = x + C ∫ tan cos2 x 1 dx = − x + C ∫ cot sin2 x
exdx = ex + C ∫
Nguyên hàm của hàm số mũ x a x = a dx + C (0 < ≠ ) 1 ∫ a ln a
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS 2
Câu 1. Tính tích phân I = (2x +1)dx ∫ 0 A. I = 5 . B. I = 6. C. I = 2 . D. I = 4 . Lời giải Chọn B. 2 2
Ta có I = (2x +1)dx = ∫
( 2x + x) = 4+ 2 = 6. 0 0 1
Câu 2. Tích phân ∫(3x + )1(x +3)dx bằng 0 A. 12. B. 9 . C. 5 . D. 6 . Lời giải Chọn B. 1 1
Ta có: ∫(3x + )1(x +3)dx = ∫(3x +10x +3)dx = (x +5x +3x)1 2 3 2 = 9 . 0 0 0 1
Vậy : ∫(3x + )1(x +3)dx = 9. 0 e
Câu 3. Tính tích phân 1 1 I dx = − ∫ 2 x x 1 A. 1 I = B. 1 I = +1 C. I =1
D. I = e e e Lời giải Chọn A. 1 1 1 e e 1 I = − dx = ∫ ln x + = . 2 x x x e 1 1 3 + Câu 4. x 2 Biết
dx = a + bln c, ∫
với a,b,c ∈,c < 9. Tính tổng S = a + b + .c x 1 A. S = 7 . B. S = 5. C. S = 8. D. S = 6 . Lời giải Chọn A. 3 3 3 3 x + 2 2 2 Ta có 3 dx = 1+ dx = dx +
dx = 2 + 2ln x = 2 + ∫ ∫ 2ln 3. ∫ ∫ 1 x x x 1 1 1 1
Do đó a = 2,b = 2,c = 3 ⇒ S = 7. 1
Câu 5. Tích phân 3x 1 e + dx ∫ bằng 0 A. 1 ( 4 e + e) B. 3 e − e C. 1 ( 4
e − e) D. 4 e − e 3 3
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS Lời giải Chọn C. 1 1 1 3x 1 e + dx ∫ 1 3x 1 e + = d(3x + ) 1 1 3x 1 e + = 1 = ( 4 e − e) . 3 ∫ 3 3 0 0 0 1 x Câu 6. Biết e e dx = + b ∫
(a,b∈) . Khi đó giá trị của P = a + b là 2x a 0 A. P = 3 − B. P =1 C. P = 1 − D. P = 3 Lời giải Chọn B. 1 1 x 1 x x e e e e I = dx = ∫
∫ dx = = −1 2x 2 2 2 0 0 0 1 2x
Câu 7. Giá trị của e − 4 I = dx ∫ bằng x e + 2 0
A. I = 2(e + 3)0. B. 1 I = (e + 3).
C. I = e − 3 .
D. I = 2(e −3) . 2 Lời giải Chọn C. 1 2 1 e − 4 ( xe −2)( x x e + 2) 1 I = dx =
dx = e − dx = e − x = e − ∫ x ∫ x ∫( x 2) ( x 2 )1 3 0 e + 2 e + 2 0 0 0 2 − x Câu 8. Biết x e 2 + e ∫ a b 1− dx = e + .
a e + bln 2 (a,b∈) . Khi đó giá trị của P = là x . a b 1 A. P = 3 − B. P =1 C. P = 1 − D. P = 2 − Lời giải Chọn D. 2 − x 2 x e x 1 I e ∫ 1 dx ∫e = − = − dx = ( x e − ln x )2 2
= e − e − ln 2 1 x x 1 1 1 2x 1 − 3 − x Câu 9. Biết e − e +1 1 + I = dx = + b ∫ (a,b∈ a b
) . Khi đó giá trị của P = là x e a . a b 0 4 4 4 A. 4 P − − − = e −1 B. e 1 P = C. e 1 P = D. 1 e P = 2 e 4 e 4 e Lời giải Chọn D. 1 1 2x 1 − 3 − x 1 e − e +1 e− e− − − − − − e I =
dx = e − e + e dx = ∫ ∫ e − + = = − x ( x x x ) 4x x 4 1 4 x 1 1 1 1 4 4 e 4 − 1 − e e 0 0 0
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS 4
a + b 1− e ⇒ P = = 4 . a b e π 2
Câu 10. Giá trị của sin xdx ∫ bằng 0 π A. 0. B. 1. C. -1. D. . 2 Lời giải Chọn B. π π 2
+ Tính được sin xdx = −cos x ∫ 2 =1. 0 0 π 2 2 Câu 11. + π Biết ( x + x + x) a b 3 2sin 3cos dx = + ∫
(a,b,c∈) . Khi đó giá trị của P = a + 2b + 3c là π 2 c 3 A. P = 45 B. P = 60 C. P = 65 D. P = 70 Lời giải Chọn B. π π 2 2 ∫( − π x + x + x) 2 1 2 12 3 3 2sin 3cos dx = 2
− cos x + 3sin x + x = + 2 π π 2 18 3 3
⇒ P = a + 2b + 3c = 60 π 3 Câu 12. π Biết 2
3tan xdx = a 3 + b + ∫
(a,b,c∈) . Khi đó giá trị của P = a + b + c là π c 4 A. P = 6 B. P = 4 − C. P = 4 D. P = 6 − Lời giải Chọn B. π π 3 3 π 2 1 π 3tan xdx = 3 −1 dx = 3 ∫ ∫
(tan x − x) 3 = − − π 3 3 3 2 π π cos x 4 4 4 4
⇒ P = a + b + c = 3− 3− 4 = 4 − π 4 Câu 13. π Biết ∫( 2
2cot x + 5)dx = + b 3 + c (a,b,c∈) . Khi đó giá trị của P = a + b + c là π a 6 A. P = 6 B. P = 4 − C. P = 4 D. P = 6 − Lời giải Chọn C.
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS π π π 4∫( π − π x + ) 4 4 2 1 2 2cot 5 dx = ∫2 −1 + 5dx = 3− dx = ∫
(3x −cot x) 4 = + − π 3 1 2 2 π π sin x π sin x 4 6 6 6 6 π 2 Câu 14. π Biết 2 x 2 sin cos x a dx = + ∫
với a,b∈ và a 4 4 c b
b là phân số tối giản. Khi đó giá trị của 0
P = a + b + c là A. P =17 B. P =16 C. P = 32 D. P = 49 Lời giải Chọn D. π π π π 2 2 2 2 2 x 2 x 1 2 x 1 1− cos x 1 1 π 1 sin cos dx = sin dx = ∫ ∫ ∫
dx = x − sin x = + 4 4 4 2 4 2 8 4 16 32 0 0 0 0
⇒ P = a + b + c =1+ 32 +16 = 49
PHẦN II. Câu trắc nghiệm đúng sai. Trong mỗi ý A), B), C), D) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Câu 15. Cho hàm số y f xliên tục trên a;b
. Các mệnh đề sau đây đúng hay sai? b a b a A. f
xdx f xdx B. f
xdx f xdx a b a b b b a C. f
xdx 2 f
xd2x D. f
2024 xdx .0 a a a Lời giải A. B. C. D. SAI SAI ĐÚNG ĐÚNG Lý thuyết b a f
xdx f xdx a b a f
2024 xdx .0 a
Câu 16. Cho hàm số y f x,y gxliên tục trên a;b
. Các mệnh đề sau đây đúng hay sai? b b b b b b A. f
x gx dx f
xdx g xdx . B. f
x.gxdx f
xd .x g xdx . a a a a a a
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS b f x x b d b b f x C. kf
xdx k f
xdx. D. a x . g x a d b a a g xdx a Lời giải A. B. C. D. ĐÚNG SAI ĐÚNG SAI Lý thuyết b b b f
x gx dx f
xdx g xdx a a a b b kf
xdx k f xdx a a
Câu 17. Cho hàm số y f xliên tục trên và a,b,c thỏa mãn a b c . Các mệnh đề sau đây đúng hay sai? c b c c b c A. f
xdx f xdx f xdx B. f
xdx f
xdx f xdx a a b a a b c b c c b b C. f
xdx f
xdx f xdx D. f
xdx f
xdx f xdx a a b a a c Lời giải A. B. C. D. SAI ĐÚNG SAI SAI Lý thuyết c b c f
xdx f
xdx f
xdx a a b
Câu 18. Cho f (x) , g(x) là hai hàm số liên tục trên . Các mệnh đề sau đây đúng hay sai? b b b b b
A. f (x)dx = f (y)dy ∫ ∫
B. ∫( f (x)+ g(x))dx = f (x)dx + g(x)d .x ∫ ∫ a a a a a b b b b b
C. f (x)dx = f (t)dx ∫ ∫
D. ∫( f (x)g(x))dx = f (x)dx g(x)d .x ∫ ∫ a a a a a Lời giải A. B. C. D. ĐÚNG ĐÚNG SAI SAI Lý thuyết b b
f (x)dx = f (y)dy ∫ ∫ a a
Đại số 12 - Chương 4 – Nguyên hàm và tích phân - Bài tập theo chương trình mới 2025 KNTTVCS b b b
∫( f (x)+ g(x))dx = f (x)dx+ g(x)d .x ∫ ∫ a a a
Câu 19. Các mệnh đề sau đây đúng hay sai? 2024 A. dx 4048 . 2024 b b b
B. f x . f x dx f x d .x f x d 1 2 1 . 2 x a a a
C. Cho hàm số f (x) liên tục trên đoạn [ ;
a b]. Khi đó 1 b f
∫ (x)dx được gọi là giá trị trung bình b − a a
của hàm số f (x) trên đoạn [ ; a b].
D. Nếu hàm số f (x) có đạo hàm f '(x) và f '(x) liên tục trên đoạn [ ; a b] thì b
f (b) − f (a) = f ' ∫ (x)dx. a Lời giải A. B. C. D. ĐÚNG SAI ĐÚNG ĐÚNG
Câu 20. Cho hàm f (x) là hàm liên tục trên đoạn [ ;
a b] với a < b và F (x) là một nguyên hàm của
hàm f (x) trên [ ;
a b]. Các mệnh đề sau đây đúng hay sai? b A. kf
∫ (x)dx = k(F (b)− F (a)) a a B. f
∫ (x)dx = F (b)− F (a) b
C. Diện tích S của hình phẳng giới hạn bởi đường thẳng x = ;
a x = b ; đồ thị của hàm số y = f (x) và
trục hoành được tính theo công thức S = F (b) − F (a) b D. f
∫ (2x+3)dx = F (2x+3)ba a Lời giải A. B. C. D. ĐÚNG SAI SAI SAI
Câu 21. Các mệnh đề sau đây đúng hay sai