










Preview text:
CHUYÊN ĐỀ 3. PHÂN SỐ
BÀI 2. PHÂN SỐ BẰNG NHAU Mục tiêu Kiến thức
+ Hiểu được khái niệm hai phân số bằng nhau. Kĩ năng
+ Nhận dạng được hai phân số bằng nhau, không bằng nhau.
+ Lập được các cặp phân số bằng nhau từ một đẳng thức tích. I. LÍ THUYẾT TRỌNG TÂM
Định nghĩa hai phân số bằng nhau 2 6
Ví dụ: vì 2.9 18 6.3. a c 3 9
Hai phân số và được gọi là bằng nhau nếu b d . a d . b c , b d 0. II. CÁC DẠNG BÀI TẬP
Dạng 1. Nhận biết các cặp phân số bằng nhau Phương pháp giải a c 2 6 Nếu . a d . b c thì .
Ví dụ: vì 2.9 3.6 18 b d 3 9 a c 1 2 Nếu . a d . b c thì . vì 1.6 2.4. b d 4 6 Ví dụ mẫu
Ví dụ 1. Các cặp phân số sau đây có bằng nhau không? 1 9 2 4 a) và ; b) và ; 2 1 8 3 6 3 24 8 c) và ; d) và 4. 7 8 2 Hướng dẫn giải a) Ta có 1 .18 18;2. 9 1 8. Suy ra 1 . 1 8 2.9. 1 9 Vậy và không bằng nhau. 2 1 8 2 4
b) Ta có: 2.6 12 3.4. Suy ra . 3 6 Trang 1
c) Ta có 3.8 24;7.24 168. 3 24
Suy ra 3.8 7.24. Vậy và không bằng nhau. 7 8 4
d) Ta có 4 . Xét 8.1 8 2.4. 1 8 Vậy 4. 2
Ví dụ 2. Có thể khẳng định ngay các cặp phân số sau đây không bằng nhau. Vì sao? 2 4 3 5 a) và ; b) và . 11 1 3 1 5 2 5 Hướng dẫn giải
Có thể khẳng định các cặp phân số trên không bằng nhau vì trong các tích . a d . b c luôn có một tích
dương và một tích âm (theo quy tắc nhân hai số nguyên). 2 4 Chẳng hạn, 2. 1
3 0 còn 4.11 0 nên hai phân số và không bằng nhau. 11 1 3 Ví dụ 3.
a) Cho hai số nguyên a và b b 0. Chứng tỏ rằng các cặp phân số sau luôn bằng nhau: a a a a và ; và . b b b b
b) Áp dụng, hãy viết mỗi phân số sau đây thành một phân số bằng nó và có mẫu dương: 3 2 4 1 7 ; ; ; . 4 5 9 1 9 Hướng dẫn giải
Nhận xét: Khi đổi dấu cả tử a a
và mẫu của một phân số ta a) Ta có .
a b a.b nên . b b
được một phân số mới bằng a a
a.b b.a nên . phân số đã cho. b b 3 3 2 2 4 4 1 7 17 b) ; ; ; . 4 4 5 5 9 9 1 9 19
Bài tập tự luyện dạng 1
Câu 1. Các cặp phân số sau đây có bằng nhau không? 3 27 4 8 15 1 0 15 20 a) và ; b) và ; c) và ; d) và . 4 3 6 5 9 21 14 6 8
Câu 2. Có thể khẳng định ngay các cặp phân số sau đây không bằng nhau. Tại sao? Trang 2 1 1 4 20 1 6 30 a) và ; b) và ; c) và . 7 7 13 1 8 24 32
Câu 3. Viết mỗi phân số sau đây thành một phân số bằng nó và có mẫu dương: 2 3 6 0 a) ; b) ; c) ; d) . 7 1 1 2 9 1 4
Dạng 2. Tìm số chưa biết trong đẳng thức của hai phân số Phương pháp giải a c x 4 Từ ta có . a d . b . c
Ví dụ: Tìm số nguyên x thỏa mãn: . b d 3 2 . b c . a d Ta có: x.2 3.4. Suy ra: a ;b ; d c 3.4 Suy ra x 6. . a d . b c 2 c ;d . b a Ví dụ mẫu
Ví dụ 1. Tìm các số nguyên x, y thỏa mãn: x 8 3 7 a) ; b) . 5 10 y 28 Hướng dẫn giải x 8 5.8 a) Vì nên x.10 5 .8, suy ra x 4. 5 10 10 3 7 3.28 b) Vì
nên 3.28 7.y suy ra y 12. y 28 7
Ví dụ 2. Điền số thích hợp vào ô trống: 1 3 32 a) ; ; . 3 9 24 4 6 4 2 14 5 7 36 6 b) ; ; . 3 35 11 Hướng dẫn giải Làm tương tự Ví dụ 1. 1 3 18 3 48 32 a) ; ; . 3 9 24 4 6 4 2 14 5 7 36 6 b) ; ; . 3 21 25 35 66 11 4 8 x 3 6 z
Ví dụ 3. Tìm các số nguyên x, y, z sao cho: . 12 7 y 30 Hướng dẫn giải Trang 3 4 8 x 4 8.7 Từ đẳng thức , suy ra x 28. 12 7 12 4 8 3 6 36.12 Từ đẳng thức , suy ra y 9. 12 y 4 8 4 8 z 48.30 Từ đẳng thức suy ra z 120. 12 30 12 Vậy x 2 8; y 9;z 1 20.
Ví dụ 4. Tìm các số nguyên x, y biết: x 4 3 y a) ; b) và x 0 . y 2 y x 2 Hướng dẫn giải x 4
a) Từ đẳng thức , suy ra x.y 2.4 8. 2 y
Mà 8 8.1 2.4 8 . 1 2 . 4 nên ta có bảng: x 8 1 4 2 -8 -1 -2 -4 y 1 8 2 4 -1 -8 -4 -2 3 y b) Từ đẳng thức , suy ra x.y 3 .2 6 . x 2
Ta có: 6 6.1
1 .6 2.3 3 .2.
Vì x 0 y nên ta có bảng: x -6 -1 -2 -3 y 1 6 3 2 x 3 3
Ví dụ 5. Tìm các số nguyên x, y biết: và x y 14. y 4 4 Hướng dẫn giải x 3 3 x 3 Từ đẳng thức
ta có 4.x 3 3 y 4 hay 4x 3 , y suy ra . y 4 4 y 4 Ta có sơ đồ: Suy ra: x 1 4 : 3 4.3 6. y 1 4 : 3 4.4 8. Vậy x 6 và y 8.
Bài tập tự luyện dạng 2 Trang 4
Câu 1. Điền số thích hợp vào ô trống: 5 1 2 8 a) ; ; . 3 12 4 32 7 14 7 28 4 20 121 11 33 b) ; ; . 6 9 5
Câu 2. Tìm các số nguyên x, y biết: x 5 y 3 18 4 3 a) ; b) 3; c) ; d) . 18 6 7 11 y x 1 15
Câu 3. Tìm các số nguyên x, y để các cặp phân số sau bằng nhau: x 12 4 8 a) và ; b) và . 3 6 13 y
Câu 4. Tìm các số nguyên x, y biết: x 5 3 y a) ;
b) , trong đó x y 0; 2 y x 4 3 x 2 1 c) y 1; d) . x 1 5 y 7 Câu 5. Cho A
và B x 1. Tìm các số nguyên x, y để A . B y 2
Câu 6. Tìm các số nguyên x, y, z, t biết: 4 x 20 z 2 x 12 z 30 a) ; b) . 3 18 y 45 7 21 y 42 t
Câu 7. Tìm các số nguyên x, y biết: x 2 2 x 3 3 a) và x y 21; b) và y x 12; y 5 5 y 7 7 x 3 3 c) và x y 4. y 2 2
Dạng 3. Viết các phân số bằng nhau từ đẳng thức đã cho Phương pháp giải a c b d
Ví dụ. Từ đẳng thức 3.4 2.6, ta lập được bốn . a d . b c và . b d a c cặp phân số bằng nhau: 3 6 2 4 3 2 6 4 ; ; ; . a b c d 2 4 3 6 6 4 3 2 . a d . b c và . c d a b Ví dụ mẫu
Ví dụ 1. Hãy lập các cặp phân số bằng nhau từ đẳng thức: a) 3.8 4.6;
b) 4.5 2.10. Hướng dẫn giải Trang 5
a) Từ đẳng thức: 3.8 4.6 ta lập được bốn cặp phân số bằng nhau là: 3 4 6 8 3 6 4 8 ; ; ; . 6 8 3 4 4 8 3 6
b) Từ đẳng thức 4.5 2.10 ta lập được bốn cặp phân số bằng nhau là: 4 10 2 5 4 2 10 5 ; ; ; . 2 5 4 10 10 5 4 2
Ví dụ 2. Lập các cặp phân số bằng nhau từ bốn trong năm số sau: 3; 9; 27; 81; 243. Hướng dẫn giải
Ta có các đẳng thức: 3.243 9.81; 3.81 9.27; 9.243 27.81.
Từ đẳng thức 3.243 9.81 ta có các cặp phân số bằng nhau là: 3 9 81 243 3 81 9 243 ; ; ; . 81 243 3 9 9 243 3 81
Từ đẳng thức 3.81 9.27 ta có các cặp phân số bằng nhau là: 3 9 27 81 3 27 9 81 ; ; ; . 27 81 3 9 9 81 3 27
Từ đẳng thức 9.243 27.81. ta có các cặp phân số bằng nhau: 9 27 81 243 9 81 27 243 ; ; ; . 81 243 9 27 27 243 9 81
Bài tập tự luyện dạng 3
Câu 1. Lập các cặp phân số bằng nhau từ đẳng thức: a) 4.9 2.18;
b) 5.6 3.10.
Câu 2. Lập các cặp phân số bằng nhau từ đẳng thức: a) 2.10 4.5;
b) 6.8 4.12.
Câu 3. Lập các cặp phân số bằng nhau từ bốn trong năm số sau: 2; 4; 8; 16; 32.
Câu 4. Lập các cặp phân số bằng nhau từ bốn trong năm số sau: 1; 4; 16; 64; 256.
Câu 5. Cho tập hợp M 2;4;8;1 6 .
a) Lập tất cả các phân số có tử và mẫu thuộc tập M, trong đó tử khác mẫu.
b) Từ bốn số thuộc tập M, hãy lập tất cả các cặp phân số bằng nhau. Trang 6
ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT
Dạng 1. Nhận biết các cặp phân số bằng nhau Câu 1. 3 27 4 8 a) (vì 3. 3 6 4.27 ); b) (vì 4.9 5.8 ); 4 3 6 5 9 15 10 15 20 c)
(vì 15.14 10.21); d) (vì 15.8 6.20 ); 21 14 6 8 Câu 2.
Các cặp phân số đã cho luôn không bằng nhau vì trong các tích . a d .
b c luôn có một tích dương và
một tích âm (theo quy tắc nhân hai số nguyên). Câu 3. 2 2 3 3 6 6 0 0 a) ; b) ; c) ; d) . 7 7 1 1 11 2 9 29 1 4 14
Dạng 2. Tìm số chưa biết trong đẳng thức của hai phân số Câu 1. 5 2 0 1 8 2 4 8 a) ; ; . 3 12 4 32 7 14 2 8 7 28 4 20 121 11 33 b) ; ; . 6 2 4 9 45 55 5 15 Câu 2. x 5.18 a) Từ đẳng thức 5 ta có . x 6 5.18, suy ra x 15. 18 6 6 y
b) Từ đẳng thức 3 ta có . y 1 3
.7, suy ra y 21. 7 1 3 18 11.18 c) Từ đẳng thức
ta có 3.y 11.18, suy ra y 6 6. 11 y 3 4 3 4.15 d) Từ đẳng thức ta có 3 x 1 4.15, suy ra x 1 20. x 1 15 3 Vậy x 21. Câu 3. x 12 3.12 a) Từ đẳng thức ta có . x 6 3 .12, suy ra x 6. 3 6 4 4 8 13.8 b) Từ đẳng thức
ta có 4.y 13.8, suy ra y 26. 13 y 4 Câu 4. x
a) Từ đẳng thức 5 ta có .
x y 2.5 10. 2 y Trang 7 Mà 10 1 0.1 1 .10 2 .5 2. 5 nên ta có bảng: x -10 1 -1 10 -2 5 -5 2 y 1 -10 10 -1 5 -2 2 -5 3 y
b) Từ đẳng thức ta có . x y 3.4 12. x 4
Mà 12 12.1 6.2 4.3 1 . 1 2 6 . 2 4 . 3 .
Lại do x y 0 nên ta có bảng: x 12 6 4 y 1 2 3 3 y 1 c) Từ đẳng thức ta có x 1 . y 1 3.1 3. x 1 1 Mà 3 3.1 3 . 1 nên ta có bảng: x 1 3 1 -3 -1 y 1 1 3 -1 -3 x 4 2 -2 0 y 0 2 -2 -4 x 2 1 d) Từ đẳng thức ta có .
y x 2 5.1 5. 5 y
Mà 5 5.1 5. 1 nên ta có bảng: x 2 5 1 -5 -1 y 1 5 -1 -5 x 3 -1 -7 -3 Câu 5. 7 7 x 1 Để A B thì x 1 hay , suy ra x
1 . y 2 7.1 7. y 2 y 2 1 Mà 7 7.1 7 . 1 nên ta có bảng: x 1 7 1 -7 -1 y 2 1 7 -1 -7 x 6 0 -8 -2 y 3 9 1 -5 Câu 6. 4 x 4.18 a) Từ đẳng thức ta tính được x 24. 3 18 3 Trang 8 4 20 3.20 Từ đẳng thức ta tính được y 15. 3 y 4 4 z 4.45 Từ đẳng thức ta tính được z 60. 3 45 3
Vậy x 24; y 15; z 60. 2 x 2.21 b) Từ đẳng thức suy ra x 6. 7 21 7
Tương tự y 42, z 12,t 105. Câu 7. x 2 2 x 2 a) Từ đẳng thức
ta có 5. x 2 2. y 5 suy ra 5x 2y hay . y 5 5 y 5 Ta có sơ đồ:
Suy ra x 21: 2 5.2 6.
y 21: 2 5.5 15. Vậy x 6; y 15. x 3 3 x 3 b) Từ đẳng thức
ta có 7.x 3 3 y 7 suy ra 7x 3y hay . y 7 7 y 7 Ta có sơ đồ:
Suy ra x 12 : 7 3.3 9.
y 12 : 7 3.7 21. Vậy x 9; y 21. x 3 3 x 3 c) Từ đẳng thức
ta có 2. x 3 3. y 2 suy ra 2x 3y hay . y 2 2 y 2 Ta có sơ đồ:
Suy ra: x 4 : 3 2.3 12.
y 4 : 3 2.2 8. Vậy x 12; y 8. Trang 9
Dạng 3. Viết các phân số bằng nhau từ đẳng thức đã cho Câu 1.
a) Từ đẳng thức 4.9 2.18 ta lập được bốn cặp phân số bằng nhau là: 4 18 2 9 4 2 18 9 ; ; ; . 2 9 4 18 18 9 4 2
b) Từ đẳng thức 5.6 3.10 ta lập được bốn cặp phân số bằng nhau là: 5 10 3 6 5 3 10 6 ; ; ; . 3 6 5 10 10 6 5 3 Câu 2.
a) Từ đẳng thức 2.10 4.5 ta lập được bốn cặp phân số bằng nhau là: 2 5 4 10 2 4 5 10 ; ; ; . 4 10 2 5 5 10 2 4
b) Từ đẳng thức 6.8 4.12 ta lập được bốn cặp phân số bằng nhau là: 6 12 4 8 6 4 12 8 ; ; ; . 4 8 6 12 12 8 6 4 Câu 3.
Ta có các đẳng thức: 2.32 4.16; 2.16 4.8; 4.32 8.16.
Vậy lập được các cặp phân số bằng nhau là: 2 16 4 32 2 4 16 32 ; ; ; . 4 32 2 16 16 32 2 4 2 8 4 16 2 4 8 16 ; ; ; . 4 16 2 8 8 16 2 4 4 16 8 32 4 8 16 32 ; ; ; . 8 32 4 16 16 32 4 8 Câu 4.
Ta có các đẳng thức: 1.256 4.64; 1.64 4.16; 4.256 16.64.
Vậy lập được các cặp phân số bằng nhau là: 1 64 4 256 1 4 64 256 ; ; ; . 4 256 1 64 64 256 1 4 1 16 4 64 1 4 16 64 ; ; ; . 4 64 1 16 16 64 1 4 4 64 16 256 4 16 64 256 ; ; ; . 16 256 4 64 64 256 4 16 Câu 5. 2 4
a) Từ hai chữ số 2 và 4 lập được hai phân số: ; . 4 2
Tương tự, từ hai chữ số 2 và 8; 2 và 16; 4 và 8; 4 và 16; 8 và 16 lập được các phân số: Trang 10 2 8 2 16 4 8 4 16 8 16 ; ; ; ; ; ; ; ; ; . 8 2 16 2 8 4 16 4 16 8 2 4 2 8 2 16 4 8 4 16 8 16
Vậy lập được 12 phân số là: ; ; ; ; ; ; ; ; ; ; ; . 4 2 8 2 16 2 8 4 16 4 16 8
b) Ta có đẳng thức: 2.16 4.8, suy ra bốn cặp phân số bằng nhau là: 2 8 4 16 2 4 8 16 ; ; ; . 4 16 2 8 8 16 2 4 Trang 11