Đề thi HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT thành phố Ninh Bình

Đề thi HK1 Toán 7 năm học 2017 – 2018 phòng GD và ĐT thành phố Ninh Bình gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết.

Trích dẫn đề thi HK1 Toán 7:

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
THÀNH PHỐ NINH BÌNH
______________________
ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC KÌ I
NĂM HỌC 2017-2018. MÔN TOÁN 7
Thời gian: 90 phút (không k thi gian giao đề)
(
Đề
g
m 13 câu, 02 tran
g)
Phần I – Trắc nghiệm (2,0 đim)
Hãy viết ch cái in hoa đứng trước phương án đúng trong mi câu sau vào bài làm.
Câu 1: Cho biết x và y là hai đại lượng tỉ lệ thuận, biết khi x = 5 thì y = 15. Hệ số tỉ lệ của y
đối với x là:
A.
1
3
. B. 3. C. 75. D. 10.
Câu 2: Kết quả phép tính (-2017)
0
+ 121 - 2 9 là:
A. 6. B. – 2012. C. -6. D. -2024.
Câu 3: Kết quả của phép tính
34
93
:
42



bằng:
A.
3
.
2
B.
4
.
9
C.
2
.
3
D.
9
.
4
Câu 4: Cho a, b, c, d là các số thực khác không (a ≠ b; c ≠ d), từ tỉ lệ thức
ac
b
d
có thể suy
ra kết quả nào sau đây:
A.
ab d
.
b
cd
B.
ab cd
.
ac

C. ac = bd D. ab = cd
Câu 5: Nếu tam giác ABC vuông tại A thì:
A.
0
ˆ
ˆ
B+C 90
B.
0
ˆ
ˆ
B+C 90
C.
0
ˆ
ˆ
B+C 90
D.
0
ˆ
ˆ
B+C 180
Câu 6: Một mảnh đất hình chữ nhật độ dài hai cạnh tỉ lệ với các số 1và 4, biết chu vi
mảnh đất là 50m thì diện tích của mảnh đất đó là:
A. 100. B. 25. C. 20. D. 5.
Câu 7: Trên hình vẽ, tính số đo x ta được:
A.61
0
B.129
0
C. 119
0
D.29
0
Câu 8: Nếu c
a và b // a thì:
A. a// b. B. b//c. C. a
b. D. c
b.
Phần II – Tự luận (8,0 đim)
Câu 9 (2,5 đim) Thực hiện phép tính:
a)
42
35
b)
2
115
:
10 3 9



c)
515
7,5: 2 :
424

 
 
 
d)

24
2
73
8.9
0,2 .5
3.4

Câu 10 (1,0 đim) Tìm x biết:
a)
21
x
312
 b)

2
2x 1 9
61
0
x
A
C
B
D
Câu 11 (1,0 đim) Trong đợt thi đua hái hoa điểm tốt lập thành tích chào mừng kỉ nim 35
năm ngày Nhà giáo Việt Nam (20/11/1982 - 20/11/2017), tỉ số số bông hoa điểm tốt của lớp
7A lớp 7B
5
6
, đng thi s bông hoa đim tt ca lp 7A ít hơn lp 7B là 10 bông.
Tính số bông hoa điểm tốt mỗi lớp đã hái được?
Câu 12 (3,0 đim)
Cho tam giác ABC có AB = AC, E là trung điểm BC, trên tia đối của tia EA lấy điểm
D sao cho AE = ED.
a) Chứng minh: ABE = DCE.
b) Chứng minh: AB // DC.
c) Chứng minh: AE BC.
d) Tìm điều kiện của ABC đ
ADC = 45
0
Câu 13 (0,5 đim). Cho a, b, c là các số thực khác không (
b
c
) và
1111
=+
c2ab



. Chứng
minh rằng:
aa-c
=
b
c-b
.
Hết./.
Họ và tên thí sinh: .....................................................Số báo danh..............................
Giám thị số 1:.......................................................... Giám thị số 2: ..........................
HƯỚNG DẪN CHẤM
ĐỀ KSCL
HỌC KÌ I TOÁN 7 – Năm học 2017-2018
I. Hướng dẫn chung:
- Dưới đây chỉ là hướng dẫn tóm tắt của một cách giải.
- Bài làm của học sinh phải chi tiết, lập luận chặt chẽ, tính toán chính xác mới
được điểm tối đa.
- Bài làm của học sinh đúng đến đâu cho điểm tới đó.
- Nếu học sinh cách giải khác hoặc vấn đề phát sinh thì tchấm trao đổi
thống nhất cho điểm nhưng không vượt qua số điểm dành cho câu hoặc phần đó.
II. Hướng dẫn chấm và biểu điểm:
Câu Đáp án
Điểm
Phần I – Trắc nghiệm (2,0 điểm). Mỗi câu trả lời đúng được 0,25 điểm.
Câu
1
2
3
4 5 6 7 8
Đáp án B A D B C A C D
Phần II – Tự luận (8,0 điểm)
9
(2,5
điểm)
a)
42
35
=
20 6 14
15 15
0,5
b)
2
115
:
10 3 9



=
11911
.
10 9 5 10 5

=
12 1
10 10

0,5
0,25
c)
515
7,5: 2 :
424

 
 
 
=
15 5 5
:
22 4



=
20 5 4
:10. 8
24 5


0,25
0,5
d)

24
2
73
8.9
0, 2 .5
3.4
 =
2
68
76
12.3
.5
53.2



=
5
14
3
5
1
0,5
10
(1,0
điểm)
a)
21
x
312

12
x
12 3
18
x
12 12
93
x
12 4



KL:
0,25
0,25
b)

2
2x 1 9
TH1:
2x 1 3 2x 2 x 1+=Û = Û =
TH2:
2x 1 3 2x 4 x 2+=-Û =-Û =-
KL: Vậy x = 1; x = -2
0,25
0,25
11
(1,5
Gọi số hoa điểm tốt của lớp 7A và lớp 7B lần lượt là x và y (bông; x,
y
N
*
)
0,25
điểm)
Theo bài ra ta có:
x5 xy
=
y6 56

0,25
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
xyy-x10
== 10
566-5 1

x = 50; y = 60.
0,25
Vậy số hoa điểm tốt lớp 7A và lớp 7B hái được lần lượt là 50 bông và
60 bông.
0,25
12
(3,0
điểm)
Vẽ hình, ghi GT, KL
a) Xét ABE và DCE có:
AE = DE (gt)
BE = CE (gt)
1
E
=
2
E
(hai góc đối đỉnh)
ABE = DCE (c.g.c)
0,25
0,25
0,25
0,25
b)Ta có: ABE = DCE (chứng minh trên)
BAE EDC
(hai góc tương ứng)
BAE và
EDC là hai góc so le trong
AB// DC (theo dấu hiệu nhận
b
iết).
0,25
0,25
0,5
c)Ta có: ABE = ACE (c.c.c)
Vì AB = AC (gt)
cạnh AE chung;
BE = EC (gt)
AEB AEC (hai góc tương ứng)
AEB AEC = 180
0
(do 2 góc kề bù)
AEB =
2
180
0
= 90
0
AE BC
0,25
0,25
d)
ADC = 45
0
khi
DAB
= 45
0
(vì
ADC =
DAB
theo kết quả trên)
DAB = 45
0
khi
BAC
= 90
0
(vì
BAC
= 2.
DAB do
BAE EAC
)
Vạy
ADC = 45
0
khi ABC có AB = AC và
BAC = 90
0
0,25
0,25
13
(0,5
điểm)
Từ
1111
2
cab




ta có
1
2
ab
cab
hay 2ab = ac + bc suy ra ab + ab = ac + bc
ab – bc = ac – ab b(a – c) = a(c – b)
Hay
aac
bcb
0,25
0,25
A
B
C
D
E1
2
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
THÀNH PHỐ NINH BÌNH
______________________
ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC KÌ I
NĂM HỌC 2017-2018. MÔN TOÁN 9
Thời gian: 90 phút (không k thi gian giao đề)
(
Đề
g
m 12 câu, 02 tran
g)
Phần I – Trắc nghiệm (2,0 đim)
Hãy viết ch cái in hoa đứng trước phương án đúng trong mi câu sau vào bài làm.
Câu 1: Căn bậc hai số học của 16 là:
A. 4. B.-4. C . 4 và -4. D. 8.
Câu 2: Biểu thức
3x
có nghĩa khi:
A. x
- 3. B. x > -3. C. x
3. D. x <3.
Câu 3: Hệ số góc của đường thẳng y = 2 – 3x là:
A. 2. B . - 3. C. 3. D.
2
.
3
Câu 4: Đồ thị hàm số y = -2x + 5 đi qua điểm có tọa độ là:
A. (1; - 3). B. (1; 1). C.( 1; -1 ). D.(1; 3).
Câu 5: Hàm số y = (2017 m- 2018) x + 1 là hàm số bậc nhất khi :
A. m =
2017
.
2018
B. m = -
2017
.
2018
C . m
2017
.
2018
D. m
2018
.
2017
Câu 6: Cho hình vẽ sau. Khi đó độ dài đoạn thẳng AH là :
16
9
H
B
C
A
A. 12. B. 9. C. 25. D. 16.
Câu 7: Cho tam giác ABC vuông tại A, biết
3
tanC
4
và BC = 10. Khi đó cạnh AB bằng :
10
B
C
A
A.5. B.6. C. 7. D. 8.
Câu 8: Cho đưng tròn (O; R), dây AB = 12cm. Khong cách t tâm O đến dây AB bằng
3cm. Khi đó độ dài bán kính R bằng:
A.
234cm.
B.
33cm.
C.
35cm.
D.
53cm.
Phần II – Tự luận (8,0 đim)
Câu 9 (2,5 đim)
a) Thực hiện phép tính : A =

5203 45
b) Tìm x, biết:
x3 2
c)
Rút gọn biểu thức:
12x-3x+2
B=( - ).( +1)
x-2 x-2 x x-2
với x > 0, x 4.
Câu 10 (2,0 đim)
Cho hàm số y = (m – 1)x + 2 (d
1
)
a) Xác định m để hàm số đồng biến trên R.
b) Vẽ đồ thị hàm số khi m = 2.
c) Với m = 2, tìm giao điểm ca hai đưng thẳng (d
1
) và (d
2
): y = 2x 3.
Câu 11 (3,0 đim)
Cho (O; R), đường kính CD, dây BC khác đường kính. Hai tiếp tuyến của đường tròn
tại B và C cắt nhau tại điểm A.
a) Chứng minh AO
BC.
b) Giả sử R = 15cm, dây BC = 24cm. Tính OA.
c) Kẻ BH vuông góc với CD tại H, gọi I giao điểm của AD BH. Chứng minh I
là trung điểm của BH.
Câu 12 (0,5 đim)
Cho x, y, z
c số thực dương thỏa mãn
x+y+z+xy+yz+zx 6=
. Tìm giá tr lớn nht
của biểu thức
P = xyz.
Hết./.
Họ và tên thí sinh: .....................................................Số báo danh..............................
Giám thị số 1:.......................................................... Giám thị số 2: ..........................
HƯỚNG DẪN CHẤM
ĐỀ KSCL
HỌC KÌ I MÔN TOÁN 9 – Năm học 2017-2018
I. Hướng dẫn chung:
- Dưới đây chỉ là hướng dẫn tóm tắt của một cách giải.
- Bài làm của học sinh phải chi tiết, lập luận chặt chẽ, tính toán chính xác mới
được điểm tối đa.
- Bài làm của học sinh đúng đến đâu cho điểm tới đó.
- Nếu học sinh cách giải khác hoặc vấn đề phát sinh thì tchấm trao đổi
thống nhất cho điểm nhưng không vượt qua số điểm dành cho câu hoặc phần đó.
II. Hướng dẫn chấm và biểu điểm:
Câu Đáp án
Điểm
Phần I – Trắc nghiệm (2,0 điểm). Mỗi câu trả lời đúng được 0,25 điểm.
Câu
1
2
3
4 5 6 7 8
Đáp án A C B D D A B C
Phần II – Tự luận (8,0 điểm)
9
(2,5
điểm)
a) A =

5203 45 100 35 35
0,5
100 10
0,25
b
) 32x  (ĐKXĐ:
3x 
)
0,25

2
2
32x
34x 1x
(thỏa ĐKXĐ)
0,5

x-1 x-2
x2
B= - +1
x( x-2) x-2
xx-2




0,25


x-2
B= x-1+1
xx-2
0,25
1
B= . x =1
x
0,25
Vậ
y
với x > 0, x 4 thì B=1 0,25
10
(2,0
điểm)
a) Hàm số
y
= (m – 1)x + 2 đồn
g
biến t
r
ên m – 1 > 0 0,25
m > 1 0,25
b
) Khi m = 2, ta có hàm số
y
= x + 2 0,25
Đồ thị hàm số y = x + 2 là đường thẳng đi qua hai điểm có tọa độ là
(0;2) và (-2;0)
0,25
Vẽ đồ thị
0,5
c) Hoành độ giao điểm của (d
1
) và (d
2
) là nghiệm của phương trình:
x + 2 = 2x 3
x = 5
0,25
x
2
-2
y
y
= x + 2
O
Thay x = 5 vào phương trình (d
2
): y = 2 . 5 – 3 = 7
Vậ
y
(
d
1
) cắt (d
2
) tại điểm M(5;7)
0,25
11
(3,0
điểm)
Vẽ hình đúng cho câu a)
F
I
H
D
K
O
A
C
B
0,25
a) Vì AB, AC là hai tiếp tuyến của (O) tại B và C (GT)
AB = AC (Tính chất hai tiếp tuyến cắt nhau)
A thuộc đường trung trực của BC(1)
Mặt khác ta có OB = OC = R
O thuộc đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC OA BC
0,25
0,25
0,25
b) Gọi giao điểm của BC và OA là K, ta có:
BK = BC : 2 = 12cm ( Vì OA là đường trung trực của BC)
Xét tam giác vuông OBK, tính được OK = 9cm
Xét tam giác AOB vuông tại B (vì AB tiếp tuyến), BK đường
cao nên: OB
2
= OK.OA
=> 15
2
= 9 . OA => OA = 25cm.
0,25
0,25
0,5
c) (O) ngoại tiếp
BCD có CD là đường kính của (O)
=> ∆BCD vuông tại B => BD
BC
Gọi F là giao điểm của CA và DB.
FCD O trung điểm của CD; OA // DF (cùng vuông góc với
BC) => A là trung điểm của FC => AC = AF
0,25
0,25
Xét ∆DAC có IH//AC (cùng vuông góc với CD)
=>
IH DI
A
CAD
(Hệ quả của định lí Ta - lét)
Xét
∆DAF có IB//AF (cùng vuông góc với CD)
=>
IB DI
A
FAD
(Hệ quả của định lí Ta - lét)
do đó
IB IH
A
FAC
mà AC = AF => IH = IB
Vậy I là trung điểm của HB
0,25
0,25
12
(0,5
điểm)
Vì:
x+yz 2 xyz
;
xyzy+zx 2
;
xyzz+xy 2
Suy ra:
6 xyz x+y+z+xy+yz+zx 6
xyz 1 xyz 1
Dấu bằng xảy ra khi x=y=zc =1.
Vậy P có giá trị lớn nhất là 1 khi x=y=z = 1
0,25
0,25
| 1/8

Preview text:

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC KÌ I
THÀNH PHỐ NINH BÌNH
NĂM HỌC 2017-2018. MÔN TOÁN 7 ______________________
Thời gian: 90 phút (không kể thời gian giao đề)
(Đề gồm 13 câu, 02 trang)
Phần I – Trắc nghiệm (2,0 điểm)
Hãy viết chữ cái in hoa đứng trước phương án đúng trong mỗi câu sau vào bài làm.
Câu 1: Cho biết x và y là hai đại lượng tỉ lệ thuận, biết khi x = 5 thì y = 15. Hệ số tỉ lệ của y đối với x là: 1 A. . B. 3. C. 75. D. 10. 3
Câu 2: Kết quả phép tính (-2017)0 + 121 - 2 9 là: A. 6.
B. – 2012. C. -6. D. -2024. 3 4
Câu 3: Kết quả của phép tính  9   3  :     bằng:  4   2  A. 3 . B. 4 . C. 2 . D. 9 . 2 9 3 4 a c
Câu 4: Cho a, b, c, d là các số thực khác không (a ≠ b; c ≠ d), từ tỉ lệ thức  có thể suy b d
ra kết quả nào sau đây: a  b d a  b c  d A.  . B.  . C. ac = bd D. ab = cd b c  d a c
Câu 5: Nếu tam giác ABC vuông tại A thì: A. 0 ˆ ˆ B+C  90 B. 0 ˆ ˆ B+C  90 C. 0 ˆ ˆ B+C  90 D. 0 ˆ ˆ B+C  180
Câu 6: Một mảnh đất hình chữ nhật có độ dài hai cạnh tỉ lệ với các số 1và 4, biết chu vi
mảnh đất là 50m thì diện tích của mảnh đất đó là: A. 100. B. 25. C. 20. D. 5.
Câu 7: Trên hình vẽ, tính số đo x ta được: A C 610 x B D A.610
B.1290 C. 1190 D.290
Câu 8: Nếu c  a và b // a thì:
A. a// b. B. b//c. C. a  b. D. c b.
Phần II – Tự luận (8,0 điểm)
Câu 9
(2,5 điểm) Thực hiện phép tính: 2 1   1  5 a) 4 2  b)  :   3 5 10  3  9      2 4 8 .9 c) 5 1 5  7,5 :  2 : 2     d)  0,  2 .5   4  2  4  7 3 3 .4
Câu 10 (1,0 điểm) Tìm x biết: 2 1 a) x    b)   2 2x 1  9 3 12
Câu 11
(1,0 điểm) Trong đợt thi đua hái hoa điểm tốt lập thành tích chào mừng kỉ niệm 35
năm ngày Nhà giáo Việt Nam (20/11/1982 - 20/11/2017), tỉ số số bông hoa điểm tốt của lớp
7A và lớp 7B là 5 , đồng thời số bông hoa điểm tốt của lớp 7A ít hơn lớp 7B là 10 bông. 6
Tính số bông hoa điểm tốt mỗi lớp đã hái được?
Câu 12 (3,0 điểm)
Cho tam giác ABC có AB = AC, E là trung điểm BC, trên tia đối của tia EA lấy điểm D sao cho AE = ED.
a) Chứng minh: ABE = DCE. b) Chứng minh: AB // DC. c) Chứng minh: AE  BC.
d) Tìm điều kiện của ABC để  ADC = 450 1 1  1 1
Câu 13 (0,5 điểm). Cho a, b, c là các số thực khác không (  b  c ) và = +   . Chứng c 2  a b  minh rằng: a a-c = . b c-b Hết./.
Họ và tên thí sinh: .....................................................Số báo danh..............................
Giám thị số 1:.......................................................... Giám thị số 2: .......................... HƯỚNG DẪN CHẤM
ĐỀ KSCL HỌC KÌ I TOÁN 7 – Năm học 2017-2018 I. Hướng dẫn chung:
- Dưới đây chỉ là hướng dẫn tóm tắt của một cách giải.
- Bài làm của học sinh phải chi tiết, lập luận chặt chẽ, tính toán chính xác mới được điểm tối đa.
- Bài làm của học sinh đúng đến đâu cho điểm tới đó.
- Nếu học sinh có cách giải khác hoặc có vấn đề phát sinh thì tổ chấm trao đổi và
thống nhất cho điểm nhưng không vượt qua số điểm dành cho câu hoặc phần đó.
II. Hướng dẫn chấm và biểu điểm: Câu Đáp án Điểm
Phần I – Trắc nghiệm (2,0 điểm). Mỗi câu trả lời đúng được 0,25 điểm. Câu 1 2 3 4 5 6 7 8 Đáp án B A D B C A C D
Phần II – Tự luận (8,0 điểm) a) 4 2   = 20 6 14  0,5 3 5 15 15 2 0,5 b) 1   1  5  :   = 1 1 9 1 1  .   10  3  9 10 9 5 10 5  0,25 9 = 1 2 1   10 10 (2,5          điểm) c) 5 1 5 7,5 :  2 :     = 15 5 5  :    4  2  4   2 2  4 0,25 = 20 5  4  : 10.  8  2 4 5 0,5 2 4 2 6 8 d)     2 8 .9 1 2 .3 1 14 0, 2 .5  = .5  =  3  0,5 7 3   3 .4 7 6  5  3 .2 5 5 2 1 a) x    3 12 1 2  x    12 3 1 8  x    10 12 12 0,25 (1,0 9 3  x     điểm) 12 4 0,25 KL: b)   2 2x 1  9
TH1: 2x +1 = 3Û 2x = 2Û x = 1 0,25
TH2: 2x +1 = -3Û 2x = -4Û x = -2 KL: Vậy x = 1; x = -2 0,25 11
Gọi số hoa điểm tốt của lớp 7A và lớp 7B lần lượt là x và y (bông; x, 0,25 (1,5 yN*)
điểm) Theo bài ra ta có: x 5 x y   = 0,25 y 6 5 6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: x y y-x 10 = =   10  x = 50; y = 60. 0,25 5 6 6-5 1
Vậy số hoa điểm tốt lớp 7A và lớp 7B hái được lần lượt là 50 bông và 0,25 60 bông. Vẽ hình, ghi GT, KL A 0,25
a) Xét  ABE và  DCE có: AE = DE (gt) 0,25 BE = CE (gt) 1 E B C  2 0,25 E =  E (hai góc đối đỉnh) 1 2   ABE =  DCE (c.g.c) 0,25 D
b)Ta có: ABE =  DCE (chứng minh trên)   
BAE  EDC (hai góc tương ứng) 0,25 mà  BAE và  EDC là hai góc so le trong 0,25 12
 AB// DC (theo dấu hiệu nhận biết). 0,5 (3,0
điểm) c)Ta có:  ABE =  ACE (c.c.c) Vì AB = AC (gt) cạnh AE chung; BE = EC (gt)   
AEB  AEC (hai góc tương ứng) 0,25 mà   AEB
 AEC = 1800 (do 2 góc kề bù)   1800 AEB = = 900 2  AE  BC 0,25 d)  ADC = 450 khi  DAB = 450(vì  ADC =  DAB theo kết quả trên) mà  DAB = 450 khi  BAC = 900(vì  BAC = 2.  DAB do   BAE 0,25  EAC ) Vạy 
ADC = 450 khi  ABC có AB = AC và  BAC = 900 0,25 1 1  1 1  Từ    a b   ta có 1 
hay 2ab = ac + bc suy ra ab + ab = ac + bc 13 c 2  a b c 2ab 0,25 (0,5
 ab – bc = ac – ab b(a – c) = a(c – b) điểm) a a c Hay  b c b 0,25
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ KHẢO SÁT CHẤT LƯỢNG HỌC KÌ I
THÀNH PHỐ NINH BÌNH
NĂM HỌC 2017-2018. MÔN TOÁN 9 ______________________
Thời gian: 90 phút (không kể thời gian giao đề)
(Đề gồm 12 câu, 02 trang)
Phần I – Trắc nghiệm (2,0 điểm)
Hãy viết chữ cái in hoa đứng trước phương án đúng trong mỗi câu sau vào bài làm.
Câu 1: Căn bậc hai số học của 16 là: A. 4. B.-4. C . 4 và -4. D. 8.
Câu 2: Biểu thức 3  x có nghĩa khi: A. x  - 3. B. x > -3. C. x  3. D. x <3.
Câu 3: Hệ số góc của đường thẳng y = 2 – 3x là: A. 2. B . - 3. C. 3. D. 2 . 3
Câu 4: Đồ thị hàm số y = -2x + 5 đi qua điểm có tọa độ là:
A. (1; - 3). B. (1; 1). C.( 1; -1 ). D.(1; 3).
Câu 5: Hàm số y = (2017 m- 2018) x + 1 là hàm số bậc nhất khi :
A. m = 2017 . B. m = - 2017 . C . m 2017  . D. m 2018  . 2018 2018 2018 2017
Câu 6: Cho hình vẽ sau. Khi đó độ dài đoạn thẳng AH là : A B 9 H 16 C A. 12. B. 9. C. 25. D. 16.
Câu 7: Cho tam giác ABC vuông tại A, biết 3
tanC  và BC = 10. Khi đó cạnh AB bằng : 4 B 10 A C A.5. B.6. C. 7. D. 8.
Câu 8: Cho đường tròn (O; R), dây AB = 12cm. Khoảng cách từ tâm O đến dây AB bằng
3cm. Khi đó độ dài bán kính R bằng: A. 2 34cm. B. 3 3cm. C. 3 5cm. D. 5 3cm.
Phần II – Tự luận (8,0 điểm)
Câu 9 (2,5 điểm)
a) Thực hiện phép tính : A = 5  20 3  45
b) Tìm x, biết: x  3  2 1 2 x -3 x + 2
c) Rút gọn biểu thức: B= ( - ).( +1) với x > 0, x  4. x -2 x-2 x x -2
Câu 10
(2,0 điểm)
Cho hàm số y = (m – 1)x + 2 (d1)
a) Xác định m để hàm số đồng biến trên R.
b) Vẽ đồ thị hàm số khi m = 2.
c) Với m = 2, tìm giao điểm của hai đường thẳng (d1) và (d2): y = 2x – 3.
Câu 11 (3,0 điểm)
Cho (O; R), đường kính CD, dây BC khác đường kính. Hai tiếp tuyến của đường tròn
tại B và C cắt nhau tại điểm A. a) Chứng minh AO  BC.
b) Giả sử R = 15cm, dây BC = 24cm. Tính OA.
c) Kẻ BH vuông góc với CD tại H, gọi I là giao điểm của AD và BH. Chứng minh I là trung điểm của BH.
Câu 12 (0,5 điểm)
Cho x, y, z là các số thực dương thỏa mãn x+y+z+xy+yz+zx = 6 . Tìm giá trị lớn nhất của biểu thức P = xyz. Hết./.
Họ và tên thí sinh: .....................................................Số báo danh..............................
Giám thị số 1:.......................................................... Giám thị số 2: .......................... HƯỚNG DẪN CHẤM
ĐỀ KSCL HỌC KÌ I MÔN TOÁN 9 – Năm học 2017-2018 I. Hướng dẫn chung:
- Dưới đây chỉ là hướng dẫn tóm tắt của một cách giải.
- Bài làm của học sinh phải chi tiết, lập luận chặt chẽ, tính toán chính xác mới được điểm tối đa.
- Bài làm của học sinh đúng đến đâu cho điểm tới đó.
- Nếu học sinh có cách giải khác hoặc có vấn đề phát sinh thì tổ chấm trao đổi và
thống nhất cho điểm nhưng không vượt qua số điểm dành cho câu hoặc phần đó.
II. Hướng dẫn chấm và biểu điểm: Câu Đáp án Điểm
Phần I – Trắc nghiệm (2,0 điểm). Mỗi câu trả lời đúng được 0,25 điểm. Câu 1 2 3 4 5 6 7 8 Đáp án A C B D D A B C
Phần II – Tự luận (8,0 điểm)
a) A = 5  20 3  45  100 3 5 3 5 0,5  100  10 0,25
b) x  3  2 (ĐKXĐ: x  3) 0,25   x  2 2 3
 2  x  3  4  x  1 (thỏa ĐKXĐ) 0,5 9    x- 1 x-2  x 2     (2,5 B=  0,25 x   x-2- +1 x ( x -2)  x -2  điểm)   x -2 B=   x-1+ 1 0,25 x x -2 1 B= . x =1 0,25 x
Vậy với x > 0, x  4 thì B=1 0,25
a) Hàm số y = (m – 1)x + 2 đồng biến trên   m – 1 > 0 0,25  m > 1 0,25
b) Khi m = 2, ta có hàm số y = x + 2 0,25
Đồ thị hàm số y = x + 2 là đường thẳng đi qua hai điểm có tọa độ là 0,25 (0;2) và (-2;0) 10 Vẽ đồ thị y (2,0 y = x + 2 điểm) 2 0,5 x -2 O
c) Hoành độ giao điểm của (d
1) và (d2) là nghiệm của phương trình: 0,25 x + 2 = 2x – 3  x = 5
Thay x = 5 vào phương trình (d2): y = 2 . 5 – 3 = 7 0,25
Vậy (d1) cắt (d2) tại điểm M(5;7) Vẽ hình đúng cho câu a) D B F I H A 0,25 O K C
a) Vì AB, AC là hai tiếp tuyến của (O) tại B và C (GT)
 AB = AC (Tính chất hai tiếp tuyến cắt nhau)
 A thuộc đường trung trực của BC(1) 0,25
Mặt khác ta có OB = OC = R
 O thuộc đường trung trực của BC(2) 0,25 11
Từ (1) và (2) suy ra AO là đường trung trực của BC OA  BC 0,25 (3,0
b) Gọi giao điểm của BC và OA là K, ta có:
điểm) BK = BC : 2 = 12cm ( Vì OA là đường trung trực của BC) 0,25
Xét tam giác vuông OBK, tính được OK = 9cm 0,25
Xét tam giác AOB vuông tại B (vì AB là tiếp tuyến), có BK là đường cao nên: OB2 = OK.OA
=> 152 = 9 . OA => OA = 25cm. 0,5
c) (O) ngoại tiếp BCD có CD là đường kính của (O)
=> ∆BCD vuông tại B => BD  BC 0,25
Gọi F là giao điểm của CA và DB.
FCD có O là trung điểm của CD; OA // DF (cùng vuông góc với
BC) => A là trung điểm của FC => AC = AF 0,25
Xét ∆DAC có IH//AC (cùng vuông góc với CD) => IH DI
(Hệ quả của định lí Ta - lét) AC AD 0,25
Xét ∆DAF có IB//AF (cùng vuông góc với CD) IB DI => 
(Hệ quả của định lí Ta - lét) AF AD do đó IB IH  mà AC = AF => IH = IB AF AC
Vậy I là trung điểm của HB 0,25
Vì: x+yz  2 xyz ; y+zx  2 xyz ; z+xy  2 xyz 12
Suy ra: 6 xyz  x+y+z+xy+yz+zx  6  xyz 1 xyz 1 (0,5 0,25
Dấu bằng xảy ra khi x=y=zc =1. điểm)
Vậy P có giá trị lớn nhất là 1 khi x=y=z = 1 0,25