Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Quang Trung – TP HCM

Giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra học kỳ 2 môn Toán 12 năm học 2018 – 2019 .Mời bạn đọc đón xem.

Trang 1/4 - Mã đề thi 216 - https://toanmath.com/
TRƯỜNG THPT QUANG TRUNG
ĐỀ KIỂM TRA HỌC KỲ II
MÔN: TOÁN KHỐI: 12
THỜI GIAN: 90 PHÚT NGÀY 26/04/2019
NĂM HỌC: 2018 2019
PHẦN I: TRẮC NGHIỆM (30 câu 6 điểm)
Câu 1: Trong không gian với h tọa đ Oxyz, cho ba điểm A(4; 0; 0), B(0; 0; 9) C(0 ; 8; 0). Viết
phương trình mặt phẳng (ABC).
A.
1
498
xyz
++=
B.
1
489
xyz
++=
. C.
1
489
xyz
++=
. D.
0
489
xyz
++=
.
Câu 2: Diện tích hình phẳng giới hạn bởi đồ thị y = x
2
và đường thẳng y = 2x :
A.
15
4
B.
8
3
C.
D.
4
3
Câu 3: Phương trình đường thẳng đi qua 2 điểm M(1 ;2 ; -3) ,N(3 ; -1 ;1) :
A.
123
2 34
xy z++
= =
B.
3 11
12 3
xyz +−
= =
C.
123
2 34
xy z−−+
= =
D.
123
3 11
xy z−−+
= =
Câu 4: Cho hình phẳng được giới hạn bởi ( C ) y = x
2
, (d) : y = 4 .Tính thể tích của vật thể tròn xoay khi
quay hình phẳng đó quanh trục Ox.Thể tích
a
V
b
π
=
,(a,b là hai số nguyên tố cùng nhau),Khi đó S= a+b là
A. 67
B. 35
C. 211
D. 261
Câu 5: Trong không gian với hệ tọa độ
Oxyz
, cho
( )
α
mặt phẳng đi qua điểm
( )
1; 2; 3N
cắt ba tia
Ox
,
Oy
,
Oz
lần lượt tại
A
,
B
,
C
sao cho tam giác
ABC
đều. Phương trình mặt phẳng
( )
α
A.
3 2 10 0x yz
+ +− =
. B.
60xyz++−=
. C.
2 3 14 0xyz+ +−=
. D.
2 3 40xyz+ +=
.
Câu 6: Nếu
( )
5
2
0
=
dxxf
1
2
()f x dx
= 2 thì
1
0
()f x dx
bằng :
A. 2 B. 7 C. -3 D. 3
Câu 7: Biết
(
)
2
2
4
cos
dx 2 ,
sin
x
a b ab R
x
π
π
=+∈
. Tính
S ab= +
.
A.
2.S
=
B.
0.S
=
C.
2.S =
D.
1.S =
Câu 8: Cho số phức
( )
2
84
54
1
i
zi
i
+
= +−
+
.Điểm M biểu diễn số phức
z
có tọa độ là :
A.
( )
15; 42
. B.
( )
15;42
. C.
( )
3; 38
. D.
( )
15;38
.
Câu 9: Phát biểu nào sau đây là đúng?
MÃ ĐỀ
216
Trang 2/4 - Mã đề thi 216 - https://toanmath.com/
A.
1
sin 5 cos5
5
xdx x C= +
. B.
1
sin 5 cos5
5
xdx x C
=−+
.
C.
sin 5 cos5xdx x C
=−+
. D.
sin 5 5cos5xdx x C=−+
.
Câu 10: Tính H=
2
0
sinx xdx
π
.
A.
1H =
. B.
π
=H
. C.
2
H
π
=
. D.
1H
=
.
Câu 11: Thể tích khối tròn xoay tạo nên khi quay xung quanh trục Ox hình phẳng giới hạn bởi
các đường y = (x 1)
2
, y = 0 , x = 0 , x = 2 bằng :
A.
3
5
B.
3
5
π
C.
2
5
π
D.
2
5
Câu 12: Trong không gian với h tọa đ Oxyz, cho điểm
( )
8;9; 2M
.Điểm đối xứng của M qua mặt
phẳng Oxz có tọa độ là
A. (8;0;-2) B. (-8;0;2) C. (8;-9;-2) D. (-8;9;-2)
Câu 13: Trong không gian với h tọa đ Oxyz, cho hai điểm
( ) ( )
1; 2;3 , 3; 4; 7MN
. Mặt phẳng nào sau
đây là mặt phẳng trung trực của đoạn thẳng MN?
A.
( )
: 2 2 10 15 0Pxy z+ −=
. B.
( )
: 2 2 10 15 0Pxy z+ +=
.
C.
( )
: 5 15 0Pxy z+−+=
. D.
( )
: 5 15 0Pxy z+− =
.
u 14: Gọi
,
2
z
,
3
z
lần lượt là ba nghiệm phức của phương trình
32
3 4 12 0zz z +−=
. Tính
321
zzzT ++=
.
A.
17.T =
B.
11.T =
C.
7.T =
D.
3.T =
Câu 15: Trong không gian với h tọa đ Oxyz, tam giác ABC với
( ) ( ) ( )
1;1; 4 , 3; 5; 0 , 8; 3; 8AB C−−
trọng tâm là:
A. G(2;3;- 4) B. G(-2;3;- 4) C. G(2;-3;- 4) D. G(2;3;4)
Câu 16: Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD với A(1; 1; 0), B(0; 2; 1), C(1; 0; 2),
D(1; 1; 1)
A. (S): x² + y² + z² + 6x + 2y 2z + 24 = 0 B. (S): x² + y² + z² + 3x + y z 6 = 0
C. (S): x² + y² + z² + 3x + y z + 6 = 0 D. (S): x² + y² + z² + 6x + 2y 2z 24 = 0
Câu 17: Cho số phức
34zi= +
.Khẳng định nào sau đây sai ?
A.
2
7 24zi=−+
B.
134
25 25
i
z
=
C.
.5zz=
. D.
5z =
Câu 18: Tìm nguyên hàm của hàm số
( )
2
21
2019
x
fx
xx
+
=
++
.
Trang 3/4 - Mã đề thi 216 - https://toanmath.com/
A.
2
2
21 1
2019
2
2019
x
dx x x C
xx
+
= ++ +
++
. B.
2
2
21
2 2019
2019
x
dx x x C
xx
+
= ++ +
++
.
C.
2
2
21
2019
2019
x
dx x x C
xx
+
= ++ +
++
. D.
2
2
21
2 2019
2019
x
dx x x C
xx
+
= ++ +
++
.
Câu 19: Phương trình mặt cầu tâm I(3 ; -2 ;1) và tiếp xúc với mp 2x – 2y – z + 9 = 0
A. (x 3)
2
+ (y + 2)
2
+ (z 1)
2
= 8 B. (x 3)
2
+ (y + 2)
2
+ (z 1)
2
= 6
C. (x 3)
2
+ (y + 2)
2
+ (z 1)
2
= 18 D. (x 3)
2
+ (y + 2)
2
+ (z 1)
2
= 36
Câu 20: Tính
1
2
0
21
2
x
I dx
xx
+
=
++
.
A.
ln 2I =
B.
ln 3I =
C.
ln 5 3ln 2
I
=
D.
3ln 5 2ln 2I = +
Câu 21: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2; 1; 1) và mặt phẳng
(P): 2x + y + 2z + 2 = 0. Mt phng (P) ct mặt cầu (S) theo giao tuyến một đường tròn đường
kính bằng 8 . Phương trình của mặt cầu (S) là
A. (S): (x 2)² + (y 1)² + (z 1)² = 25
B. (S): (x + 2)² + (y + 1)² + (z + 1)² = 49
C. (S): (x 2)² + (y 1)² + (z 1)² = 1
D. (S): (x + 2)² + (y + 1)² + (z + 1)² = 7
Câu 22: Phương trình mặt phẳng đi qua 2 điểm M(4; -1;1) , N(3; -4; 4) và chứa trục Ox là :
A. x + z = 0 B. y + z + 1 = 0 C. y - z = 0 D. y + z = 0
Câu 23: Trong không gian với h tọa đ Oxyz, cho điểm
( )
0;2;3 A
, mặt phẳng
( )
:3 5 7 45 0Pxyz+−+=
Phương trình chính tắc của đường thẳng đi qua A và vuông góc với
( )
P
là:
A.
32
357
xy z−+
= =
. B.
32
357
xy z+−
= =
.
C.
23
35 7
xy z+−
= =
. D.
3 51
3 27
xyz
−+
= =
.
Câu 24: Cho số phức
9 12zi
=
. Khẳng định nào sau đây là đúng ?
A. Phần thực bằng -12 và phần ảo bằng 9 . B. Phần thực bằng 9 và phần ảo bằng -12.
C. Phần thực bằng 12 và phần ảo bằng 9. D. Phần thực bằng 9 và phần ảo bằng -12i.
Câu 25: Trong không gian với hệ tọa độ
Oxyz
cho hai điểm
( )
3,0,0M
,
( )
0,0, 4N
. Tính độ dài đoạn
thẳng
MN
A.
1MN =
. B.
5.MN =
C.
10.MN =
D.
7.MN =
Câu 26: phương trình (1 + 2i)x = 3x i có nghiệm phức là :
A. x = 1 + 2i B. x = 2 -
1
2
i
C. x =
1
2
i
D. x =
11
44
i
−+
Trang 4/4 - Mã đề thi 216 - https://toanmath.com/
Câu 27: Trong không gian với h tọa đ Oxyz, cho mặt cầu
( )
2 22
: 2 4 2 30Sx y z x y z+ + + −=
. Tìm
tọa độ tâm I và tính bán kính R của mặt cầu
( )
S
.
A.
( )
1; 2;1 ; 3IR−=
. B.
( )
2; 4; 2 ; 3 3IR−− =
.
C.
(
)
2; 4; 2 ; 21
IR−=
D.
( )
1; 2;1 ; 3
IR−=
.
Câu 28: Biết đường thẳng
d
giao tuyến của hai mặt phẳng
( ):3 2 1 0x yz
α
+ −=
( ): 4 3 2 0xyz
β
+ +=
. Khi đó, vectơ chỉ phương của đường thẳng
d
có tọa độ là:
A.
(1;4;5)−−
. B.
(0; 4;5)
. C.
(2; 4; 5)−−
. D.
( 1; 4; 5)−−
Câu 29: Phát biểu nào sau đây là đúng?
A.
xx
e dx e C
= +
.
B.
ln
x
x
e
a dx C
a
= +
. C.
xx
e dx e C= +
D.
ln
xx
a dx a a C= +
.
Câu 30: Tập hợp các điểm biểu diễn số phức
z
thoả mãn
−+ 32 2zi
trên mặt phẳng toạ độ là:
A. Hình tròn tâm
(
)
3; 2
, bán kính bằng 2. B. Hình tròn tâm
( )
3; 2
, bán kính bằng 2.
C. Đường tròn tâm
( )
3; 2
, bán kính bằng 2. D. Đường tròn tâm
( )
3; 2
, bán kính bằng 2.
PHẦN II: TỰ LUẬN (4 điểm)
Câu 1: (0.5 điểm) Trong không gian với h tọa đ Oxyz, viết phương trình tham số của đường thẳng đi
qua hai điểm
( )
5;3;2 A
( )
1;2;4 B
.
Câu 2: (0.5 điểm) Trong mặt phẳng Oxy, tìm tập hợp điểm biểu diễn số phức z thỏa mãn
932 =+ iz
.
Câu 3: (0.5 điểm) Trong không gian với h tọa đ Oxyz, viết phương trình mặt phẳng
( )
P
đi qua
( )
1;4
;3 H
và vuông góc với đường thẳng
7
2019
52
1
:
+
=
=
zyx
d
.
Câu 4: (0.5 điểm) Giải phương trình trên tập số phức:
0100
21
24
=
z
z
.
Câu 5: (0.5 điểm) Tính diện tích hình phẳng giới hạn bởi
( )
15:
2
+= xxyp
( )
23: += xyd
.
Câu 6: (0.5 điểm) Tính thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh
trục hoành:
xxy 3
2
=
,
0=y
.
Câu 7: (0.5 điểm) Trong không gian với h tọa đ Oxyz, viết phương trình mặt cầu
( )
S
tâm
( )
3;
2;5 I
và đi qua điểm
( )
4;0;7M
.
Câu 8: (0.5 điểm) Tính tích phân
( )
dxexI
x
+=
1
0
43
.---------------------------------------------
----------- HẾT -----------
| 1/4

Preview text:

TRƯỜNG THPT QUANG TRUNG
ĐỀ KIỂM TRA HỌC KỲ II
MÔN: TOÁN – KHỐI: 12 MÃ ĐỀ
THỜI GIAN: 90 PHÚT – NGÀY 26/04/2019 216
NĂM HỌC: 2018 – 2019
PHẦN I: TRẮC NGHIỆM (30 câu – 6 điểm)
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(4; 0; 0), B(0; 0; 9) và C(0 ; 8; 0). Viết
phương trình mặt phẳng (ABC). A. x y z + + = 1 B. x y z + + = 1 − . C. x y z + + = 1. D. x y z + + = 0. 4 9 8 4 8 9 4 8 9 4 8 9
Câu 2: Diện tích hình phẳng giới hạn bởi đồ thị y = x2 và đường thẳng y = 2x là : 15 8 9 4 A. B. C. D. 4 3 4 3
Câu 3: Phương trình đường thẳng đi qua 2 điểm M(1 ;2 ; -3) ,N(3 ; -1 ;1) là :
x +1 y + 2 z − 3
x − 3 y +1 z −1 A. = = B. = = 2 3 − 4 1 2 3 −
x −1 y − 2 z + 3
x −1 y − 2 z + 3 C. = = D. = = 2 3 − 4 3 1 − 1
Câu 4: Cho hình phẳng được giới hạn bởi ( C ) y = x2 , (d) : y = 4 .Tính thể tích của vật thể tròn xoay khi π a
quay hình phẳng đó quanh trục Ox.Thể tích V = b ,(a,b là hai số nguyên tố cùng nhau),Khi đó S= a+b là A. 67 B. 35 C. 211 D. 261
Câu 5: Trong không gian với hệ tọa độ Oxyz , cho (α ) là mặt phẳng đi qua điểm N (1;2;3) và cắt ba tia Ox ,
Oy , Oz lần lượt tại A , B , C sao cho tam giác ABC đều. Phương trình mặt phẳng (α ) là
A. 3x + 2y + z −10 = 0 . B. x + y + z − 6 = 0 .
C. x + 2y + 3z −14 = 0 . D. x + 2y − 3z + 4 = 0 . 2 1 1
Câu 6: Nếu f (x) = 5 ∫ dx
f (x)dx
= 2 thì f (x)dx ∫ bằng : 0 2 0 A. 2 B. 7 C. -3 D. 3 π 2
Câu 7: Biết cos x dx = a 2 + b a,bR
. Tính S = a + b . 2 ( ) π sin x 4 A. S = 2. B. S = 0. C. S = 2. − D. S =1.
Câu 8: Cho số phức 8 + 4i z =
+ (5 − 4i)2 .Điểm M biểu diễn số phức z có tọa độ là : 1+ i A. (15; 42 − ). B. (15;42) . C. ( 3 − ;38) . D. (15;38) .
Câu 9: Phát biểu nào sau đây là đúng?
Trang 1/4 - Mã đề thi 216 - https://toanmath.com/ A. 1
sin 5xdx = cos5x + C ∫ . B. 1
sin 5xdx = − cos5x + C ∫ . 5 5
C. sin 5xdx = −cos5x + C ∫ . D. sin 5xdx = 5 − cos5x + C ∫ . π
Câu 10: Tính H= 2 xsin xdx ∫ . 0 A. π H = 1 − .
B. H = π . C. H = . D. H =1. 2
Câu 11: Thể tích khối tròn xoay tạo nên khi quay xung quanh trục Ox hình phẳng giới hạn bởi
các đường y = (x – 1)2 , y = 0 , x = 0 , x = 2 bằng : 3 3π 2π 2 A. B. C. D. 5 5 5 5
Câu 12: Trong không gian với hệ tọa độ Oxyz, cho điểm M (8;9; 2
− ) .Điểm đối xứng của M qua mặt
phẳng Oxz có tọa độ là A. (8;0;-2) B. (-8;0;2) C. (8;-9;-2) D. (-8;9;-2)
Câu 13: Trong không gian với hệ tọa độ Oxyz, cho hai điểm M (1;2;3), N (3;4; 7
− ) . Mặt phẳng nào sau
đây là mặt phẳng trung trực của đoạn thẳng MN?
A. (P) : 2x + 2y −10z −15 = 0 .
B. (P) : 2x + 2y −10z +15 = 0.
C. (P) : x + y − 5z +15 = 0 .
D. (P) : x + y −5z −15 = 0.
Câu 14: Gọi z , z , z lần lượt là ba nghiệm phức của phương trình 3 2
z z + z − = . Tính 1 2 3 4 12 0 3
T = z + z + z . 1 2 3 A. T =17. B. T =11. C. T = 7. D. T = 3.
Câu 15: Trong không gian với hệ tọa độ Oxyz, tam giác ABC với A(1;1; 4 − ), B( 3 − ;5;0),C (8;3; 8 − ) có trọng tâm là: A. G(2;3;- 4) B. G(-2;3;- 4) C. G(2;-3;- 4) D. G(2;3;4)
Câu 16: Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD với A(1; 1; 0), B(0; 2; 1), C(1; 0; 2), D(1; 1; 1)
A. (S): x² + y² + z² + 6x + 2y – 2z + 24 = 0
B. (S): x² + y² + z² + 3x + y – z – 6 = 0
C. (S): x² + y² + z² + 3x + y – z + 6 = 0
D. (S): x² + y² + z² + 6x + 2y – 2z – 24 = 0
Câu 17: Cho số phức z = 3+ 4i .Khẳng định nào sau đây sai ? A. 2 z = 7 − + 24i B. 1 3 4i = −
C. z.z = 5 . D. z = 5 z 25 25
Câu 18: Tìm nguyên hàm của hàm số f (x) 2x +1 = . 2 x + x + 2019
Trang 2/4 - Mã đề thi 216 - https://toanmath.com/ A. 2x +1 1 2 dx + =
x + x + 2019 + C ∫ . B. 2x 1 2
dx = 2 x + x + 2019 + C ∫ . 2 x + x + 2019 2 2 x + x + 2019 C. 2x +1 2 dx +
= x + x + 2019 + C ∫ . D. 2x 1 2 dx = 2 −
x + x + 2019 + C ∫ . 2 x + x + 2019 2 x + x + 2019
Câu 19: Phương trình mặt cầu tâm I(3 ; -2 ;1) và tiếp xúc với mp 2x – 2y – z + 9 = 0
A. (x – 3)2 + (y + 2)2 + (z – 1)2 = 8
B. (x – 3)2 + (y + 2)2 + (z – 1)2 = 6
C. (x – 3)2 + (y + 2)2 + (z – 1)2 = 18
D. (x – 3)2 + (y + 2)2 + (z – 1)2 = 36 1 Câu 20: Tính 2x +1 I = dx ∫ . 2 x + x + 2 0 A. I = ln 2 B. I = ln 3
C. I = ln 5 − 3ln 2
D. I = 3ln 5 + 2ln 2
Câu 21: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2; 1; 1) và mặt phẳng
(P): 2x + y + 2z + 2 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có đường
kính bằng 8 . Phương trình của mặt cầu (S) là
A. (S): (x – 2)² + (y – 1)² + (z – 1)² = 25
B. (S): (x + 2)² + (y + 1)² + (z + 1)² = 49
C. (S): (x – 2)² + (y – 1)² + (z – 1)² = 1
D. (S): (x + 2)² + (y + 1)² + (z + 1)² = 7
Câu 22: Phương trình mặt phẳng đi qua 2 điểm M(4; -1;1) , N(3; -4; 4) và chứa trục Ox là : A. x + z = 0 B. y + z + 1 = 0 C. y - z = 0 D. y + z = 0
Câu 23: Trong không gian với hệ tọa độ Oxyz, cho điểm ( A ; 3 − 0 ; 2 ), mặt phẳng
(P):3x +5y −7z + 45 = 0 Phương trình chính tắc của đường thẳng đi qua A và vuông góc với (P) là: x − 3 y + 2 z x + y z A. = = . B. 3 2 = = . 3 5 7 − 3 5 7 −
C. x y + 2 z − 3 − − + = = .
D. x 3 y 5 z 1 = = . 3 5 7 − 3 2 − 7
Câu 24: Cho số phức z = 9 −12i . Khẳng định nào sau đây là đúng ?
A. Phần thực bằng -12 và phần ảo bằng 9 .
B. Phần thực bằng 9 và phần ảo bằng -12.
C. Phần thực bằng 12 và phần ảo bằng 9.
D. Phần thực bằng 9 và phần ảo bằng -12i.
Câu 25: Trong không gian với hệ tọa độ Oxyz cho hai điểm M (3,0,0) , N (0,0,4) . Tính độ dài đoạn thẳng MN A. MN =1. B. MN = 5. C. MN =10. D. MN = 7.
Câu 26: phương trình (1 + 2i)x = 3x – i có nghiệm phức là : 1 1 1 1 A. x = 1 + 2i B. x = 2 - i C. x = i D. x = − + i 2 2 4 4
Trang 3/4 - Mã đề thi 216 - https://toanmath.com/
Câu 27: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S ) 2 2 2
: x + y + z + 2x − 4y − 2z − 3 = 0 . Tìm
tọa độ tâm I và tính bán kính R của mặt cầu (S). A. I ( 1; − 2; ) 1 ; R = 3. B. I (2; 4; − 2 − ); R = 3 3 . C. I ( 2; − 4;2); R = 21 D. I ( 1; − 2; ) 1 ; R = 3 .
Câu 28: Biết đường thẳng d là giao tuyến của hai mặt phẳng (α) :3x + 2y z −1 = 0 và
(β ) : x + 4y − 3z + 2 = 0 . Khi đó, vectơ chỉ phương của đường thẳng d có tọa độ là: A. (1; 4 − ; 5 − ) . B. (0;4;5) . C. (2; 4; − 5 − ) . D. ( 1; − 4 − ;5)
Câu 29: Phát biểu nào sau đây là đúng? x A. x x
e dx = e + C. B. x e a dx = + C ∫ . C. x x
e dx = e + C x x a dx = a a + C ln aD. ln ∫ .
Câu 30: Tập hợp các điểm biểu diễn số phức z thoả mãn z − 3 + 2i ≤ 2 trên mặt phẳng toạ độ là:
A. Hình tròn tâm (3; −2), bán kính bằng 2.
B. Hình tròn tâm (−3; 2), bán kính bằng 2.
C. Đường tròn tâm (3; −2), bán kính bằng 2.
D. Đường tròn tâm (−3; 2), bán kính bằng 2.
PHẦN II: TỰ LUẬN (4 điểm)
Câu 1:
(0.5 điểm) Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng đi qua hai điểm ( A ; 3 ; 2 5 − )và B( ; 4 − ) 1 ; 2 .
Câu 2: (0.5 điểm) Trong mặt phẳng Oxy, tìm tập hợp điểm biểu diễn số phức z thỏa mãn z + 2 − 3i = 9 .
Câu 3: (0.5 điểm) Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua H( ; 3 − ) 1 ;
4 và vuông góc với đường thẳng x −1 y z + 2019 d : = = . 2 − 5 7
Câu 4: (0.5 điểm) Giải phương trình trên tập số phức: 4 z − 21 2 z −100 = 0.
Câu 5: (0.5 điểm) Tính diện tích hình phẳng giới hạn bởi (p): 2
y = x + 5x −1 và (d): y = 3x + 2.
Câu 6: (0.5 điểm) Tính thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh
trục hoành: y = x2 − 3x , y = 0 .
Câu 7: (0.5 điểm) Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S)có tâm I( ; 5 − 3 ; 2 )
và đi qua điểm M ( ; 0 ; 7 4). 1
Câu 8: (0.5 điểm) Tính tích phân I = (3x 4)exdx ∫ +
.--------------------------------------------- 0
----------- HẾT -----------
Trang 4/4 - Mã đề thi 216 - https://toanmath.com/
Document Outline

  • DE THI HKII 2018-2019_DE THI TOAN K12 HKII 2018-2019_216 - Uyen Le