S
Ở GD & ĐT BẮC NINH
TRƯỜNG THPT NGUYỄN ĐĂNG ĐẠO
ĐỀ THI THỬ TN THPT LẦN 2
NĂM HỌC 2020 - 2021
MÔN: TOÁN
( Đề thi gồm 05 trang) Thời gian: 90 phút (Không kể thời gian phát đề)
Họ và tên thí sinh:.............................................................................. SBD:.....................
Mã đề thi
171
Câu 1. Tìm số thực
x
để
3 ; ;2 1x x x
theo thứ tự lập thành cấp số cộng.
A.
1
. B.
4
. C.
2
D.
3
.
Câu 2. Số nghiệm của phương trình
5
log 4 3
x
là:
A.
3
. B.
1
. C.
2
. D.
0
.
Câu 3. Cho
2
log 3 a ,
2
log 5 b khi đó
5
log 675 được biểu diễn theo
,a b
là đáp án nào sau đây?
A.
3 2a b
b
. B.
2 3
ab b
a
. C.
3 2
a b
b
. D.
3 2
a ab
a
.
Câu 4. Đường cong sau là đồ thị của hàm số nào trong các hàm số cho dưới đây:
A.
3
3y x x . B.
3 2
3y x x . C.
3
3y x x . D.
3 2
3y x x .
Câu 5. Hàm số nào sau đây nghịch biến trên
?
A.
3
y x B. coty x C.
4
y x D.
2
logy x
Câu 6. Cho hàm số
( )y f x
có bảng biến thiên như sau:
Số tiệm cận ngang của đồ thị hàm số đã cho là
A.
4
B.
2
C.
1
D.
3
Câu 7. Tìm tập xác định
D
của hàm số
2
2
log 2 3y x x
.
A.
3;1D
. B.
3;1D
.
C.
; 3 1;D  
. D.
; 3 1;D  
.
Câu 8. Cho hàm số
3 2
3 2y x x . Đồ thị hàm số có điểm cực đại là
A.
2;2
. B.
2; 2
. C.
0; 2
. D.
0;2
.
Câu 9. Số nghiệm nguyên của bất phương trình
2
2 1
2 3
x x
là:
A. 2. B. 3. C. 1. D. 4.
Câu 10. Số tập hợp con gồm 3 phần t của một tập hợp có 7 phần tử là:
A.
3
7
C
. B.
7
. C.
7!
3!
. D.
3
7
A
.
x
y
-2
-1
4
3
2
-3 -2 -1 4
3
2
O 1
1
5
f(x)
f'(x)
x
2 +
1
5
Câu 11. Cho nh chóp S.ABC. Gọi M, N, P lần lượt là trung điểm AB, BC, CA. Gọi V thể tích khối chóp
S.ABC
V
là thể tích khối chóp S.NMP. Tính tỉ số
V
V
.
A.
1
2
. B.
1
6
. C.
1
4
. D.
1
3
.
Câu 12. Cho tứ diện
ABCD
, ,AB AC AD
đôi một vuông góc với nhau
AB AC AD a
. Tính
khoảng cách từ
A
tới mặt phẳng
BCD
.
A. 3a . B.
2
2
a
. C.
2a
. D.
3
3
a
.
Câu 13. Cho lăng trụ đứng có đáy là tam giác đều cạnh 2a và cạnh bên bằng a. Thể tích của khối lăng trụ là:
A.
3
3
4
a
. B.
3
3
3
a
. C.
3
3
12
a
. D.
3
3a .
Câu 14. Thể tích V của khối chóp tam giác đều S.ABC có cạnh đáy bằng
a
,mặt bên (SAB) tạo với đáy góc
0
60
là:
A.
3
3
24
V a
. B.
3
3
12
V a
. C.
3
2
12
V a
. D.
3
3
16
V a
.
Câu 15. Thể tích V của khối bát diện đều cạnh
a
là:
A.
3
2
2
V a
. B.
3
3
2
V a
. C.
3
2
3
V a
. D.
3
3
3
V a
.
Câu 16. Cho hàm số
y f x
liên tục trên
và có bảng biến thiên như hình vẽ sau:
Hỏi có bao nhiêu giá trị nguyên dương của
m
để phương trình
2 2 0
f x m
có đúng 3 nghiệm phân
biệt?
A.
1
. B.
3
. C.
2
. D.
0
.
Câu 17. Tính diện tích toàn phần của hình trụ có bán kính đáy
2a
và đường cao
3a
.
A.
2
4 3a
. B.
2
4 1 3a
. C.
2
2 1 3a
. D.
2
4 3 2a
.
Câu 18. Một khối lăng trụ có chiều cao
2a
, diện tích đáy
2
3a
thì có thể tích bằng
A.
3
a
. B.
3
4a
. C.
3
2a
. D.
3
6a
.
Câu 19. Tích các nghiệm của phương trình
4
17
log 4 log
4
x
x
là:
A.
256 2
. B.
16
. C.
4
4 4
. D.
1
.
Câu 20. Tiếp tuyến của đồ thị hàm số
2 3
2
x
y
x
tại điểm có hoành độ
1x
có hệ số góc là:
A.
7
9
. B.
1
. C.
7
. D.
1
9
.
Câu 21. Tập nghiệm của bất phương trình
1
1
4
2
x
là:
A.
3;
. B.
; 1
. C.
1; 
. D.
;3
.
Câu 22. Hàm số nào dưới đây đồng biến trên tập xác định của nó?
A.
3
x
y . B.
0,6
x
y
. C.
5
x
e
y
. D.
3
4
x
y
.
Câu 23. Phương trình 10 0,00001
x
có nghiệm là:
A.
log5x
. B.
4x
. C.
log 4x
. D.
5x
.
Câu 24. Cho hình chóp
.S ABCD
đáy hình vuông cạnh bằng
a
,
SA ABCD
2SB a
. Góc giữa
SB
và mặt phẳng
ABCD
bằng:
A.
0
60
. B.
0
45
. C.
0
90
. D.
0
30
.
Câu 25. Tổng tất c các giá trị nguyên của tham số
m
để hàm số
4 3mx m
y
x m
nghịch biến trên từng
khoảng xác định là
A.
3
. B.
6
. C.
1
. D.
2
.
Câu 26. Nghiệm của phương trình
1
7 2.7 9 0
x x
thuộc tập hợp nào trong các tập hợp sau?
A.
0;1
. B.
1
0;
2
. C.
0;1
. D.
1
0;
2
.
Câu 27. Cho một vật chuyển động theo phương trình
2
40 10
s t t t
trong đó
s
quãng đường vật đi
được (đơn vị
m
), t
thời gian chuyển động (đơn vị
s
). Tại thời điểm vật dừng lại thì vật đi được quãng
đường là:
A.
10 m
. B.
385 m
. C.
310 m
. D.
410 m
.
Câu 28. Tìm giá trị lớn nhất của hàm số
2
e 2e
x x
y
trên đoạn
2;0
.
A.
4 2
2;0
max 2e 2ey
. B.
2;0
max 3y
.
C.
4 2
2;0
max e 2ey
. D.
2
2;0
1 2
max
e e
y
.
Câu 29. Một khối nón có chiều cao
3a
, diện tích đáy
2
a
thì có thể tích bằng
A.
3
a
. B.
3
4a
. C.
3
2a
. D.
3
6a
.
Câu 30. Cho bất phương trình
2
2 2
log 2 4log 4 0x x
. Khi đặt
2
logt x thì bất phương trình đã cho trở
thành bất phương trình nào sau đây?
A.
2
4 3 0t t
. B.
2
2 3 0t t
. C.
2
0t
. D.
2
4 4 0t t
.
Câu 31. Cho khối nón có bán kính đáy
3r
và chiều cao
2h
. Tính thể tích
V
của khối nón đã cho.
A.
12V
. B.
16V
. C.
18V
. D.
6V
.
Câu 32. Cho hình lăng trụ đứng
.ABC A B C
đáy
ABC
cân tại
,A AB BC
. Hỏi hình ng trụ đã cho
bao nhiêu mặt đối xứng?
A.
4
. B. 1. C.
3
. D.
2
.
Câu 33. Một chiếc máy có hai động cơ I và II chạy độc lập nhau. Xác suất để động cơ I và II chạy tốt lần lượt
0,8
0,7
. Xác suất để ít nhất một động cơ chạy tốt là:
A.
0, 24
. B.
0,94
. C.
0,14
. D.
0,56
.
Câu 34. Cho m số
y f x
đạo m
3
2
2 3 2 8
x
f x x x x
. Số điểm cực trị của hàm số
y f x
A. . B. . C. . D. .
Câu 35. Thể tích V của khối chóp tứ giác đều có tất cả các cạnh bằng a là:
A.
3
2
4
V a
. B.
3
3
4
V a
. C.
3
2
6
a
V
. D.
3
6
2
V a
.
Câu 36. Kể từ ngày 1/1/2021, cứ vào ngày mùng 1 hàng tháng, ông A ra gửi ngân hàng số tiền là x (đồng) với
lãi suất
0,5%
/tháng. Biết tiền lãi cuả tháng trước được cộng o tiền gốc của tháng sau. Tìm giá trị nhỏ nhất
cuả x để đến ngày 1/1/2022 khi ông A rút cả gốclãi thì được stiền lãi n 10 triệu đồng? (Kết quả lấy
làm tròn đến nghìn đồng).
A.
25173000
. B.
21542000
. C.
21541000
. D.
25174000
.
Câu 37. Cho
,x y
các số thực thỏa mãn:
1 3x x y y
. Gọi
S
là tập hợp c giá trị của
m
để giá
trị nhỏ nhất của biểu thức
2
2P x y x y m
bằng 2. Tính tổng các phần tử của
S
.
A.
2
.
B.
4
.
C.
6
.
D.
3
.
4
2
1
3
Câu 38. Một thợ thủ công muốn vẽ trang trí một hình vuông kích thước
4 4m m
bằng cách vẽ một hình
vuông mới với các đỉnh là trung điểm c cạnh của hình vuông ban đầu, tô kín u n hai tam giác đối
diện (như hình vẽ). Quá trình vẽtô theo quy luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ
đó hoàn thành trang trí hình vuông như trên? Biết tiền nước sơn
2
1m
60.000
đ.
A.
575000
đ. B.
387500
đ. C.
465000
đ. D.
232500
đ.
Câu 39. Cho hàm số
y f x
hàm đa thức bậc 4 thỏa n
2 1 2 0
f f f
. Đthị của hàm số
y f x
như hình vẽ sau:
Tìm m để bất phương trình
3 2
1 3 1
1 0
3 2 6
f x x x x m
có nghiệm thuộc
1;2
.
A.
1
1
6
m f
. B.
1
1
6
m f
. C.
8
2
3
m f
. D.
8
2
3
m f
.
Câu 40. Cho hàm số
0
ax b
y a
cx d
có đồ thị như sau:
Mệnh đề nào sau đây là đúng?
A.
0, 0, 0ab bc cd
. B.
0, 0, 0ab bc cd
.
C.
0, 0, 0ab bc cd
. D.
0, 0, 0ab bc cd
.
Câu 41. bao nhiêu cặp số tự nhiên
;x y
thỏa n đồng thời hai điều kiện:
2 3
log 2 log 2 4 1x y x y
3
log 2x y y
.
A. 7. B. 6. C. 10. D. 8.
Câu 42. Cho nh trụ hai đáy c hình tròn tâm O
O
bán kính R, chiều cao bằng
3
2
R
. Gọi AB là
một đường kính của đường tròn
;O R
CD một dây cung của đường tròn
;O R
sao cho
2AB DC
.
Tính diện tích tứ giác ABCD theo R.
A.
2
3 6
4
R
. B.
2
3
2
R
. C.
2
3 3
2
R
. D.
2
6
4
R
.
x
y
y
=
f'
(
x
)
-6
-5
-4
-3
-2
-1
5
4
3
2
-3 -2 -1 4
3
2
O
1
1
x
y
O
Câu 43. Cho số nguyên dương
n
thỏa mãn:
0 1 2
3 4 5 ..... 3 720896
n
n n n n
C C C n C
. Tìm hệ số của
8
x
trong khai triển nhị thức Niutơn của biểu thức:
1
2
n
x
x
.
A.
465920
. B.
232960
. C.
7454720
. D.
29120
.
Câu 44. Cho hàm số
y f x
liên tục trên
và có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số
2021 2020
f x f x
y
A.
1
. B.
3
. C.
2
. D.
4
.
Câu 45. Cho hình chóp
.S ABCD
đáy là hình bình hành,
0
3 , , 120 ,
AB a AD a BAD
SA
vuông góc với
đáy,
SA a
. Gọi
M
điểm trên cạnh
SB
sao cho
1
,
10
SM SB
N
trung điểm của
SD
. Tính cosin góc
giữa hai mặt phẳng
AMN
ABCD
.
A.
165
55
. B.
2 715
55
. C.
3
4
. D.
13
4
.
Câu 46. Cho hàm số
4
4 2
x
x
f x
. Tìm
m
để phương trình
2
1
sin cos 1
4
f m x f x
đúng 8
nghiệm phân biệt thuộc
;2
.
A.
1 3
64 4
m
. B.
1
0
64
m
. C.
1
0
64
m
. D.
1 3
64 4
m
.
Câu 47. Trong mặt phẳng
P
, cho hình chữ nhật ABCD
,AB a AD b
. Trên các nửa đường thẳng
,Ax Cy
vuông góc với
P
cùng một phía với mặt phẳng ấy, lần lượt lấy các điểm
,M N
sao cho
MBD
vuông góc với
NBD
. Tìm giá trị nhỏ nhất
min
V của thể tích khối tứ diện
MNBD
.
A.
2 2
2 2
6
a b
a b
. B.
2 2
2 2
3
a b
a b
. C.
2 2
2 2
12
a b
a b
. D.
2 2
2 2
9
a b
a b
.
Câu 48. Cho hình chóp
.S ABCD
đáy hình vuông cạnh
a
. Tam giác
SAB
là tam giác đều nằm trong
mặt phẳng vuông góc với đáy. Tính bán kính mặt cầu ngoại tiếp hình chóp.
A.
2
a
R
. B.
3
3
a
R
. C.
5
2
a
R
. D.
21
6
a
R
.
Câu 49. bao nhiêu giá trị nguyên của tham số
m
thuộc đoạn
10;10
để hàm số
3 2 ln3 ln9
2.
x x x
y e e e mx
đồng biến trên khoảng
ln 2;
?
A. 1. B. 4. C.
3
. D.
2
.
Câu 50. Đồ thị hàm số
2
2020
2018 2019
x
y
x x
có bao nhiêu đường tiệm cận?
A.
1
B.
3
C.
0
D.
2
------------- HẾT -------------

Preview text:

SỞ GD & ĐT BẮC NINH
ĐỀ THI THỬ TN THPT LẦN 2
TRƯỜNG THPT NGUYỄN ĐĂNG ĐẠO NĂM HỌC 2020 - 2021 MÔN: TOÁN ( Đề thi gồm 05 trang)
Thời gian: 90 phút (Không kể thời gian phát đề) Mã đề thi
Họ và tên thí sinh:.............................................................................. SBD:..................... 171
Câu 1. Tìm số thực x để x  3 ; x ; 2x 1 theo thứ tự lập thành cấp số cộng. A. 1. B. 4 . C. 2 D. 3 .
Câu 2. Số nghiệm của phương trình log x  4  3 là: 5   A. 3 . B. 1. C. 2 . D. 0 .
Câu 3. Cho log 3  a , log 5  b khi đó log 675 được biểu diễn theo a,b là đáp án nào sau đây? 2 2 5 3a  2b ab  b 3 2 a  b a  ab A. . B. . C. . D. . b 2  3a b 3  2a
Câu 4. Đường cong sau là đồ thị của hàm số nào trong các hàm số cho dưới đây: y 4 3 2 1 x -3 -2 -1 O 1 2 3 4 -1 -2 A. 3 y  x  3x . B. 3 2 y  x  3x . C. 3 y  x  3x . D. 3 2 y  x  3x .
Câu 5. Hàm số nào sau đây nghịch biến trên  ? A. 3 y  x B. y  cot x C. 4 y  x D. y   log x 2
Câu 6. Cho hàm số y  f (x) có bảng biến thiên như sau: x ∞ 2 +∞ f'(x) 5 1 f(x) ∞ 5
Số tiệm cận ngang của đồ thị hàm số đã cho là A. 4 B. 2 C. 1 D. 3
Câu 7. Tìm tập xác định D của hàm số y  log  2 x  2x  3 . 2  A. D  3;  1 . B. D   3  ;  1 . C. D   ;  3   1; . D. D   ;    3 1; . Câu 8. Cho hàm số 3 2
y  x  3x  2 . Đồ thị hàm số có điểm cực đại là A. 2;2 . B. 2; 2 . C. 0; 2 . D. 0;2 .
Câu 9. Số nghiệm nguyên của bất phương trình 2x2x 1 2   3 là: A. 2. B. 3. C. 1. D. 4.
Câu 10. Số tập hợp con gồm 3 phần tử của một tập hợp có 7 phần tử là: 7! A. 3 C . B. 7 . C. . D. 3 A . 7 3! 7
Câu 11. Cho hình chóp S.ABC. Gọi M, N, P lần lượt là trung điểm AB, BC, CA. Gọi V là thể tích khối chóp V 
S.ABC và V  là thể tích khối chóp S.NMP. Tính tỉ số . V 1 1 1 1 A. . B. . C. . D. . 2 6 4 3
Câu 12. Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và AB  AC  AD  a . Tính
khoảng cách từ A tới mặt phẳng BCD . a 2 a 3 A. a 3 . B. . C. a 2 . D. . 2 3
Câu 13. Cho lăng trụ đứng có đáy là tam giác đều cạnh 2a và cạnh bên bằng a. Thể tích của khối lăng trụ là: 3 a 3 3 a 3 3 a 3 A. . B. . C. . D. 3 a 3 . 4 3 12
Câu 14. Thể tích V của khối chóp tam giác đều S.ABC có cạnh đáy bằng a ,mặt bên (SAB) tạo với đáy góc 0 60 là: 3 3 2 3 A. 3 V  a . B. 3 V  a . C. 3 V  a . D. 3 V  a . 24 12 12 16
Câu 15. Thể tích V của khối bát diện đều cạnh a là: 2 3 2 3 A. 3 V  a . B. 3 V  a . C. 3 V  a . D. 3 V  a . 2 2 3 3
Câu 16. Cho hàm số y  f  x liên tục trên  và có bảng biến thiên như hình vẽ sau:
Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình 2 f  x  m  2  0 có đúng 3 nghiệm phân biệt? A. 1. B. 3 . C. 2 . D. 0 .
Câu 17. Tính diện tích toàn phần của hình trụ có bán kính đáy 2a và đường cao a 3 . A. 2 4 a 3 . B. 2 4 a 1 3. C. 2 2 a 1 3. D. 2 4 a  3  2 .
Câu 18. Một khối lăng trụ có chiều cao 2a , diện tích đáy 2
3a thì có thể tích bằng A. 3 a . B. 3 4a . C. 3 2a . D. 3 6a . 17
Câu 19. Tích các nghiệm của phương trình log 4  log x  là: x 4 4 A. 256 2 . B. 16 . C. 4 4 4 . D. 1. 2x  3
Câu 20. Tiếp tuyến của đồ thị hàm số y 
tại điểm có hoành độ x  1  có hệ số góc là: 2  x 7 1 A. . B. 1. C. 7 . D. . 9 9 x 1 1   
Câu 21. Tập nghiệm của bất phương trình  4   là:  2  A. 3; . B.  ;    1 . C.  1  ; . D.  ;  3 .
Câu 22. Hàm số nào dưới đây đồng biến trên tập xác định của nó? x x x  e   3  A. y   3 . B. 0,6x y  . C. y    . D. y    .  5   4 
Câu 23. Phương trình 10x  0,00001 có nghiệm là: A. x   log 5 . B. x  4  . C. x   log 4 . D. x  5  .
Câu 24. Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a , SA   ABCD và SB  2a . Góc giữa
SB và mặt phẳng  ABCD bằng: A. 0 60 . B. 0 45 . C. 0 90 . D. 0 30 . mx  4m  3
Câu 25. Tổng tất cả các giá trị nguyên của tham số m để hàm số y  nghịch biến trên từng x  m khoảng xác định là A. 3 . B. 6 . C. 1. D. 2 .
Câu 26. Nghiệm của phương trình x 1
7  2.7 x  9  0 thuộc tập hợp nào trong các tập hợp sau?  1   1  A. 0;  1 . B. 0;  . C. 0;  1 . D. 0;   . 2     2 
Câu 27. Cho một vật chuyển động theo phương trình s t 2  t
  40t 10 trong đó s là quãng đường vật đi
được (đơn vị m ), t là thời gian chuyển động (đơn vị s ). Tại thời điểm vật dừng lại thì vật đi được quãng đường là: A. 10m . B. 385m . C. 310m . D. 410m .
Câu 28. Tìm giá trị lớn nhất của hàm số 2 e x 2ex y   trên đoạn  2  ;0. A. 4 2 max y  2e  2e . B. max y  3.  2  ;0 2;0 1 2 C. 4 2 max y  e  2e . D. max y   .  2  ;0   2 2;0 e e
Câu 29. Một khối nón có chiều cao 3a , diện tích đáy 2 a thì có thể tích bằng A. 3 a . B. 3 4a . C. 3 2a . D. 3 6a .
Câu 30. Cho bất phương trình 2
log 2x  4log x  4  0 . Khi đặt t  log x thì bất phương trình đã cho trở 2   2 2
thành bất phương trình nào sau đây? A. 2 t  4t  3  0 . B. 2 t  2t  3  0 . C. 2 t  0 . D. 2 t  4t  4  0 .
Câu 31. Cho khối nón có bán kính đáy r  3 và chiều cao h  2 . Tính thể tích V của khối nón đã cho. A. V  12 . B. V  16 . C. V  18 . D. V  6 .
Câu 32. Cho hình lăng trụ đứng ABC.A B  C
  có đáy ABC cân tại ,
A AB  BC . Hỏi hình lăng trụ đã cho có
bao nhiêu mặt đối xứng? A. 4 . B. 1. C. 3 . D. 2 .
Câu 33. Một chiếc máy có hai động cơ I và II chạy độc lập nhau. Xác suất để động cơ I và II chạy tốt lần lượt
là 0,8 và 0, 7 . Xác suất để ít nhất một động cơ chạy tốt là: A. 0, 24 . B. 0,94 . C. 0,14 . D. 0,56 .
Câu 34. Cho hàm số y  f  x có đạo hàm         3 2 2 3 2x f x x x x
8. Số điểm cực trị của hàm số y  f  x là A. 4 . B. 2 . C. 1. D. 3 .
Câu 35. Thể tích V của khối chóp tứ giác đều có tất cả các cạnh bằng a là: 2 3 3 a 2 6 A. 3 V  a . B. 3 V  a . C. V  . D. 3 V  a . 4 4 6 2
Câu 36. Kể từ ngày 1/1/2021, cứ vào ngày mùng 1 hàng tháng, ông A ra gửi ngân hàng số tiền là x (đồng) với
lãi suất 0,5% /tháng. Biết tiền lãi cuả tháng trước được cộng vào tiền gốc của tháng sau. Tìm giá trị nhỏ nhất
cuả x để đến ngày 1/1/2022 khi ông A rút cả gốc và lãi thì được số tiền lãi là hơn 10 triệu đồng? (Kết quả lấy
làm tròn đến nghìn đồng). A. 25173000 . B. 21542000 . C. 21541000 . D. 25174000 .
Câu 37. Cho x, y là các số thực thỏa mãn: x  x 1  y  3  y . Gọi S là tập hợp các giá trị của m để giá
trị nhỏ nhất của biểu thức P   x  y2  2 x  y  m bằng 2. Tính tổng các phần tử của S . A. 2 . B. 4 . C. 6  . D. 3  .
Câu 38. Một thợ thủ công muốn vẽ trang trí một hình vuông kích thước 4m 4m bằng cách vẽ một hình
vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu, và tô kín màu lên hai tam giác đối
diện (như hình vẽ). Quá trình vẽ và tô theo quy luật đó được lặp lại 5 lần. Tính số tiền nước sơn để người thợ
đó hoàn thành trang trí hình vuông như trên? Biết tiền nước sơn 2 1m là 60.000 đ. A. 575000 đ. B. 387500 đ. C. 465000 đ. D. 232500 đ.
Câu 39. Cho hàm số y  f  x là hàm đa thức bậc 4 thỏa mãn f  2    f  
1  2 f 0 . Đồ thị của hàm số
y  f  x như hình vẽ sau: y 5 y=f'(x) 4 3 2 1 -3 -2 -1 O 1 2 3 4 x -1 -2 -3 -4 -5 -6 1 3 1
Tìm m để bất phương trình f  x   3 2
1  x  x  x   m  0 có nghiệm thuộc  1  ;2 . 3 2 6 A. m  f   1 1  . B. m  f   1 1  . C. m  f   8 2  . D. m  f   8 2  . 6 6 3 3 ax  b Câu 40. Cho hàm số y 
a  0 có đồ thị như sau: cx  d y x O
Mệnh đề nào sau đây là đúng?
A. ab  0,bc  0, cd  0 .
B. ab  0,bc  0, cd  0 .
C. ab  0,bc  0,cd  0 .
D. ab  0,bc  0, cd  0 .
Câu 41. Có bao nhiêu cặp số tự nhiên  ;
x y thỏa mãn đồng thời hai điều kiện:
log x  2y  log 2x  4y 1 và log x  y  y  2 . 3   2   3   A. 7. B. 6. C. 10. D. 8. R 3
Câu 42. Cho hình trụ có hai đáy là các hình tròn tâm O và O bán kính R, chiều cao bằng . Gọi AB là 2  
một đường kính của đường tròn  ;
O R và CD là một dây cung của đường tròn O ; R sao cho AB  2DC .
Tính diện tích tứ giác ABCD theo R. 2 3R 6 2 R 3 2 3R 3 2 R 6 A. . B. . C. . D. . 4 2 2 4
Câu 43. Cho số nguyên dương n thỏa mãn: 0 1 2
3C  4C  5C ..... n  C  . Tìm hệ số của n n n  3 n 720896 n n 8  1 
x trong khai triển nhị thức Niutơn của biểu thức: 2x    .  x  A. 465920 . B. 232960 . C. 7454720 . D. 29120 .
Câu 44. Cho hàm số y  f  x liên tục trên  và có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số f  x f x y  2021  2020 là A. 1. B. 3 . C. 2 . D. 4 .
Câu 45. Cho hình chóp S.ABCD có đáy là hình bình hành, AB  a AD  a  0 3 ,
, BAD 120 , SA vuông góc với 1
đáy, SA  a . Gọi M là điểm trên cạnh SB sao cho SM 
SB, N là trung điểm của SD . Tính cosin góc 10
giữa hai mặt phẳng  AMN  và  ABCD . 165 2 715 3 13 A. . B. . C. . D. . 55 55 4 4 x  1 
Câu 46. Cho hàm số f  x 4 
. Tìm m để phương trình f m  sin x  f    2 cos x 1 có đúng 8 4x  2  4 
nghiệm phân biệt thuộc    ;2 . 1 3 1 1 1 3 A.   m  . B.   m  0 . C.   m  0 . D.   m  . 64 4 64 64 64 4
Câu 47. Trong mặt phẳng P , cho hình chữ nhật ABCD có AB  a, AD  b . Trên các nửa đường thẳng
Ax,Cy vuông góc với P và ở cùng một phía với mặt phẳng ấy, lần lượt lấy các điểm M , N sao cho
MBD vuông góc với NBD . Tìm giá trị nhỏ nhất V của thể tích khối tứ diện MNBD. min 2 2 a b 2 2 a b 2 2 a b 2 2 a b A. . B. . C. . D. . 2 2 6 a  b 2 2 3 a  b 2 2 12 a  b 2 2 9 a  b
Câu 48. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a . Tam giác SAB là tam giác đều và nằm trong
mặt phẳng vuông góc với đáy. Tính bán kính mặt cầu ngoại tiếp hình chóp. a a 3 a 5 a 21 A. R  . B. R  . C. R  . D. R  . 2 3 2 6
Câu 49. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn  1  0;10 để hàm số 3x 2xln 3 xln 9 y  e  2.e  e
 mx đồng biến trên khoảng ln 2;  ? A. 1. B. 4. C. 3 . D. 2 . x  2020
Câu 50. Đồ thị hàm số y 
có bao nhiêu đường tiệm cận? 2 x  2018x  2019 A. 1 B. 3 C. 0 D. 2
------------- HẾT -------------