















Preview text:
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng N g N u g yªn u yªn h µ h m µ m - - t Ý t c Ý h c p h p © h n © n v µ v µ c ¸ c c ¸ c ø n ø g n g d ôn ô g n g
a.tÝnh tÝch ph©n b»ng ®Þnh nghÜa
Ph−¬ng ph¸p:
1. §Ó x¸c ®Þnh nguyªn hµm cña hµm sè f(x), Chóng ta cÇn chØ ra ®−îc hµm sè F(x)
sao cho: F’(x) = f(x).
• ¸p dông b¶ng c¸c nguyªn hµm c¬ b¶n, c¸c hµm sè s¬ cÊp . n
• Neáu gaëp daïng caên thöùc ñöa veà daïng soá muõ phaân theo coâng thöùc: m n m
x = x , (m ≠ 0) • P(x) Neáu gaëp daïng
thöïc hieän pheùp chia theo coâng thöùc: n x m m x x m− n 1 = x , (m > ) n ; = , (m < ) n . n n n −m x x x
• Coâng thöùc ñoåi bieán soá (loaïi 2):
Tích phaân daïng: f ( g(x)).g '(x)dx ∫
Ñaët g(x) = u => g’(x)dx = du
f (g( x))g '( x)dx = f (u)du ∫ ∫ . 2.
Mét sè d¹ng c¬ b¶n:
1. Sö dông c«ng thøc c¬ b¶n:
1. Daïng : (ax + b)α dx(α ≠ 1, a ≠ 0) ñaët u = ax + b ⇒ du = adx dx= ∫ ⇒ 1 du a α + uα + + α α (ax b) 1 ! 1
(ax + b) dx = u du = + = + ∫ ∫ ( α + ) C C a a 1 (α + 1)a α
2. Daïng : ∫ ( n −
ax +b ) n 1 x
dx, (a ≠ 0,α ≠ 1) ñaët n n− n− 1 1 1
u=ax + b ⇒ du = . a . n x dx ⇒ x dx = du an α 1 + n α 1 + α − 1 α u (ax + b n n 1
(ax + b) x dx = u du = + C = C ∫ ∫ ) + an na (α +1) na (α +1) 3. Daïng: α
a). cos sin xdx(α ≠ 1 − ) ∫ ( Ñaët α α 1 − α+1
u = cos x ⇒ du = − sin xdx) ⇒ cos x sin xdx = − u du = cos x + C ∫ ∫ (α + 1) α )
b . sin x cos xd ( x α ≠ −1) ∫ (Ñaët α α 1 α 1 +
u = sin x ⇒ du=cos xdx ⇒ sin x cos xdx = u du = sin x + ∫ ∫ C α +1 dx 1 4. Daïng: = ln ax +b + ( C a ≠ 0) ∫ ax + b a P(x) Neáu gaëp :
vôùi baäc P(x) ≥ 1 : laøm baøi toaùn chia. ax + b
GV: NguyÔn Thanh S¬n 1
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 5. Daïng: dx ∫ Ñaët 2
cos x(a + btgx) bdx dx 1 dx 1 du 1
u = a + btgx ⇒ du = ⇒ = du; =
= l a + btgx + C ∫ ∫ n 2 2 2 cos x cos x b
co s x (a +btgx) b u b 2. Coâng thöùc: u a u( x) a u '( ) u x dx = a du = + C ∫ ∫ ln a
3. Coâng thöùc ñoåi bieán soá (loaïi 1):
Tích phaân daïng: f ( g(x)).g '(x)dx ∫
Ñaët g(x) = u => g’(x)dx = du
f (g (x ))g '(x)dx = f (u )du ∫ ∫ 4. Coâng thöùc : du 1 u − a a). = ln + C.(a ≠ 0) ∫ α 2 u − a 2a u + a du 2 b).
= ln u + u + k +C ∫ 2 u +k 5. Coâng thöùc : 2 x x + k k 2 2 x + k dx =
+ ln x + x + k + C ∫ 2 2
3. Mét sè d¹ng th−êng gÆp: dx (mx+n)dx dx (mx+n)dx 1. Tích phaân daïng: 1). 2). 3). 4). ∫ ∫ ∫ ∫ 2 2 2 2
ax + bx + c
ax + bx + c
ax + bx + c
ax + bx + c
Tuyø vaøo moãi daïng aùp duïng caùc coâng thöùc tính tích phaân chæ trong baûng sau: Töû soá baäc nhaát Töû soá haèng soá Maãu soá khoâng caên du − = 1 ln u + C ∫ = ln + ∫ du u a C u 2 2 u − a 2a u + a Maãu soá coù caên
du = 2 u + C ∫ 2 = ln + + + ∫ du u u k C u 2 u + k a a 2 2 2
x + ax = (x + ) − ( ) 2 2
Söû duïng haèng ñaúng thöùc: 2 2 ⎡ b b ⎤ ⎛ ⎞ ⎛ ⎞ 2
ax + bx = a ⎢ x + − ⎜ ⎟ ⎜ ⎟ ⎥ ⎝ 2a ⎢ ⎠ ⎝ 2a⎠ ⎣ ⎥⎦
GV: NguyÔn Thanh S¬n 2
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng
4. TÝch ph©n cña c¸c ph©n thøc h÷u tØ: ax + b A B C = + + 3 2
cx + dx + ex x x − m x − n
Giaûi daïng naøy ta coù hai caùch: −
Caùch 1: Ñoàng nhaát hai veá: Cho taát caû caùc heä soá chöùa x cuøng baäc baèng nhau. −
Caùch 2: Gaùn cho x nhöõng giaù trò baát kyø. Thöôøng thì ta choïn giaù trò ñoù laø nghieäm cuûa maãu soá
5. TÝch ph©n cña c¸c hµm sè l−îng gi¸c: 1. Daïng: 1 1 cosn xd , n
x sin xd ,
x 1). cosaxdx=
sin ax + C, sinaxdx=- cos n ax + ,
C 2). co s xdx ∫ ∫ ∫ ∫ ∫ a a Phöông phaùp: ⎧ 1+ cos 2x 2 cos x = ⎪ 2 ⎪ ⎪ 1− cos 2x n = chaün : haï baëc 2 sin x = ⎨ 2 ⎪ ⎪ 1 sin x cos x = sin 2x ⎪⎩ 2 n leõ: Vieát: 2 p+1 2 p 2 cos = cos cos = (1− sin )p xdx x xdx x cos dx
Ñaët u = sin x ⇒ du = cos xdx
2. Daïng: sinm cosn u ud ∫ u
a. m,n cung chaün: haï baäc.
b. m,n leû (moät trong hai soá leû hay caû hai cuøng leû).
Neáu m leû: Ta vieát: m m−1 sin u = sin usin u thay m 1 − 2 2 m 2 2 sin u =1 −cos
u va sin u = (1 −cos u) sin u
Neáu m, n leû: laøm nhö treân cho soá muõ naøo beù 3. Daïng: n tg xdx hay ∫ cot n g xdx ∫ dx dx Chuù yù: 2 2 d(tgx) =
= (1+ tg x)d x ⇒
= (1+ tg x)dx = tgx + C ∫ ∫ 2 cos 2 x co s x Töông töï: dx dx 2 2 d(cot gx) = − = (
− 1 + cotg x)dx ⇒
= (1 + cotg x)dx = −cotgx + C ∫ ∫ 2 sin 2 x sin x sin xdx
Ngoaïi tröø: tgxdx =
= ln cos x + C (u=cosx) ∫ ∫ cos x Ñeå tính: n tg xdx ∫ Phöông phaùp: Laøm löôïng 2
(tg x +1) xuaát hieän baèng caùch vieát:
GV: NguyÔn Thanh S¬n 3
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 2 2 2 − 2 2 n−4 2 n 1 − 2 * n n tg x = tg (
x tg x + 1) − tg
(tg x + 1) + ...+ ...+ (−1) (tg x + 1) + ( 1) 1 n − 2 1 − 2 3 − 2 2 n 5 − 2 n 2 − 2 n 1 * n n tg x tg
x(tg x 1) tg (tg x 1) ... ... ( 1)
tgx(tg x 1) ( 1) − = + − + + + + − + + − tgx 4. Daïng: dx 2
(tg x +1)dx hay ∫ ∫ 2 cos n x Ta vieát: 2 2 n 1 − 2 (tg x 1 + )dx = (tg x 1 + ) (tg x 1 + )dx ∫ ∫ Ñaët u = tgx 2 2 n 2 ( 1) (tg x+1) dx ( 1)n du tg x dx u − = + ⇒ = + 1 du ∫ ∫ dx Chuù yù: 1 2 2 = 1+ , = (1 n tg x + tg x) dx ∫ ∫ 2 cos 2n x co s x m m tg x cotg x 5. Daïng: d , x or dx ∫ ∫ cosn n x sin x Phöông p haùp: Neáu n chaün : Thay 1 n m tg n n −2 2 xdx 2 m 2 m 2 = (1+ tg ) x ; ⇒
= tg x(1+ tgx) dx = tg x(1+ tgx) (tgx+ 1)dx ∫ ∫ ∫ cosn x cos n x m tg x n −2 Ñaët: 2 m 2 2
u =tgx ⇒ du=(1+tg x)dx ⇒
dx = u (1+u ) du ∫ ∫ n cos x m 1 − tgx tg x tgx 1 tgx
Neáu m leû vaø n leû : = . Ñaët u = ⇒ du= dx n 1 cosx cos − x cos x cos x cosx Thay: m 1 − m 1 − 1 tgmx 1 1 tgx 2 n 1 − 2 2 tgx = − 1 ⇒ dx = ( − 1) . . dx = (u − 1) u du ∫ ∫ ∫ 2 n 2 n 1 cos x cos x cos x cos − x cos x
6. Daïng: sin mx cos nxdx; sinmxsinnxdx ; cosmxcosnxdx ∫ ∫ ∫
Aùp duïng caùc coâng thöùc bieán ñoåi: 1
• sinmxcosnx= [sin(m + n)x + sin(m − n)x] 2 1
• sinmxsinnx= [cos(m −n)x −co s(m + n)x] 2 1
• cosmxcosnx= [cos(m −n)x +cos(m +n)x] 2
GV: NguyÔn Thanh S¬n 4
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng I.
TÝnh c¸c tÝch ph©n bÊt ®Þnh.
Bµi 1: Dïng c¸c c«ng thøc c¬ b¶n tÝnh c¸c tÝch ph©n sau: 1 x − 3 1/ 2 (3x + 2x − )dx ∫ 2/ dx ∫ x 2 x 3 1 3/ 2( x − )dx ∫ 4/ 3 4 (3 x − 4 x + )dx ∫ 4 x x x e− 5/ x e (2 − )dx ∫ 6/ x 2 x 3x 2 .3 4 dx ∫ 3 2 3 x 2 7/
cos x(1+ t gx )dx ∫ 8/ (4 sin x − )dx ∫ 2 cos x x dx 9/ 2 2 cos dx ∫ 10/ ∫ 2 2 2 cos x sin x
Bµi 2: TÝnh c¸c tÝch ph©n sau ®©y: 1 2 1/ 10 x(x −1) dx 2/ ∫ ( − ) ∫ dx 2 x + 1 (x + 1) 8x 3/ 2 x x + 9dx ∫ 4/ dx ∫ 2 2 4 (x +1) 3. x e dx 5/ dx ∫ 6/ ∫ x x 2 ln x 7/ sin 7x.cos 3x.dx 8/ ∫ 4 cos xdx ∫ sin x cos 2x 9/ dx ∫ 10/ dx ∫ 3 cos x 2 2 sin x.cos x
II: TÝnh c¸c tÝch ph©n x¸c ®Þnh sau:
Ph−¬ng ph¸p: b a
f (x )dx = F (x) = F (b)− F (a ) ∫ . b a 1.
C¸c ph−¬ng ph¸p tÝnh tÝch ph©n.
• ¸p dông b¶ng c¸c nguyªn hµm c¬ b¶n, c¸c hµm sè s¬ cÊp .
• TÝnh tÝch ph©n b»ng ph ¬ − ng ph¸p ph©n tÝch.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p ®æi biÕn d¹ng I.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p ®æi biÕn d¹ng II.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p ®æi biÕn d¹ng III.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p tÝch ph©n tõng phÇn.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p sö dông nguyªn hµm phô.
• Mét sè thñ thuËt ®æi biÕn kh¸c, tÝch ph©n chøa biÓu thøc gi¸ trÞ tuyÖt ®èi... 2.
Chøng minh bÊt ®¼ng thøc tÝch ph©n
GV: NguyÔn Thanh S¬n 5
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng
§Ó chøng minh bÊt ®¼ng thøc tÝch ph©n , ta th−êng sö dông chñ yÕu 4 tÝnh chÊt
sau: víi c¸c hµm sè f(x), g(x) liªn tôc trªn [a;b] ta cã: b 1.
NÕu f (x) ≥ 0,∀x∈[ ;
a b] th× f (x )dx ≥ 0 ∫a b b 2.
NÕu f (x) ≥ g(x), x ∀ ∈[ ;
a b] th× f (x)dx ≥ g(x)dx ∫ ∫ a a
DÊu ®¼ng thøc chi x¶y ra khi f(x) = g(x), x ∀ [ ∈ ; a ] b 3.
NÕu m ≤ f (x) ≤ M , x ∀ ∈[ ; a ] b th× b
m (b − a ) ≤
f (x )dx ≤ M (b a ) ∫ − a b b 4. f ( ) x dx ≤ f ( ) x d . x ∫ ∫ a a
Bµi 1: TÝnh c¸c tÝch ph©n x¸c ®Þnh sau: 2 1 1/ 2 3 4 (3x − 2x + 4x )dx 2/ 3 2 (−x + 3x) dx ∫ ∫ 0 1 − 4 x 2 2 x − 2x 3/ 4 (3x − e )dx ∫ 4/ dx ∫ 3 x 0 1 0 2 x − x − 5 5 dx 5/ dx ∫ 6/ − ∫ − + − − x 3 x 1 x 2 1 2 π 1 2 x e − 4 2 3 4sin x 7/ dx ∫ 8/ dx ∫ x e + 2 1 + cos x 0 0 π π 3 4 2 2tg x +5 9/ sin x.cos 3xdx ∫ 10/ dx ∫ 2 π sin x 0 6 π π 2 cos 2x 4 π 11/ dx ∫ 12/ 2 sin ( − x)dx ∫ sin x − cos x 4 0 0
Bµi 2: TÝnh c¸c tÝch ph©n cã chøa trÞ tuyÖt ®èi sau: 2 4 1/ x − 1 dx ∫ 2/ 2
x − 6x + 9d ∫ x 2 − 1 4 1 3/ 2
x − 3x + 2 d ∫ x 4/ x e −1 d ∫ x 1 − −1
GV: NguyÔn Thanh S¬n 6
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 3 0 5/ (3 + x )dx ∫ 6/ 2 x x + 1 dx ∫ 3 − −2 3 π π 4 7/ cos x dx ∫ 8/ cos 2x + 1dx ∫ 0 π 4 π 3 9/ cos x sin xdx ∫ 10/ x 2 − 4 d ∫ x 0 0
Bµi 3: Chøng minh c¸c B§T sau: 3 1 2 x + 4 5 1/ 3 ≤ x + 1dx ≤ ∫ 6 2/ 1≤ dx ≤ ∫ 2 2 0 0 π 2 dx 2 π 5π 3/ 1 ≤ ≤ 2 ∫ 4/ 2 ≤ 3 + sin xdx ≤ ∫ 2 x +1 2 4 0 π 4 3π π 4 π dx π 2 3π π 5/ ≤ ≤ ∫ 6/ 2 ≤ tg x + 3dx ≤ ∫ 2 4 − π 3 2 sin x 2 4 2 0 4 π 2 π π 2 2 2 7/ sin x 2 ≤ + e dx ≤ e ∫ 8/ x 1 2x e dx ≤ e dx ∫ ∫ 2 0 1 1 π π π π 2 2 2 2 9/ 3 2 sin xdx ≤ sin xdx ∫ ∫ 10/ sin 2xdx ≤ 2 sin xdx ∫ ∫ 0 0 0 0
B: Ph−¬ng ph¸p ®æi biÕn:
Ph−¬ng ph¸p: 1 1 1 1. Daïng: ( n , m mn mn-1 R x x )dx ∫ Ñaët mn t = x
⇒ x=t ⇒ dx=mnt dt 1 1 ⎡ ⎤ 2. Daïng: ( + ) n, ( + ) m R ax b ax b dx ∫ ⎢ ⎥ ⎣ ⎦ 1 mn Ñaët mn mn-1 mn
t=(ax+b) ⇒ ax+b=t ⇒ dx= t dt a 3. Daïng : dx dx dx R(lnx) ∫
ñaët u = lnx ⇒ du = ⇒ R(lnx) = ( R ) u du ∫ ∫ x x x
GV: NguyÔn Thanh S¬n 7
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 4. Daïng: x R(e )dx ñaët ∫ du du x u=e ⇒ x
du=e dx ⇒ dx= ⇒ x R(e )dx = ( R ) u ∫ ∫ u u 5. Daïng : 2 ( R , x
ax + bx + c )dx ∫ Ñöa tam thöùc 2
ax + bx + c veà daïng: 2 2 2
u +m ,u -m2 hay. 2 2 m -u
Ñoåi tích phaân thaønh 1 trong caùc daïng sau: 2 2 1). R(u, m -u )du. ∫ 2 2 2). R(u, m +u )du. ∫ 2 2 3). R(u, m -u )du. ∫
Neáu döôùi daáu tích phaân coù chöùa 2 2 • m -u ñaët 2 2
u=msint ⇒ m -u =mcost 2 2 • m m +u ñaët 2 2
u=mtgt ⇒ m +u = cost 2 2 m • u -m ñaët 2 2 u=
⇒ u -m =mtgt cost
6. Daïng : dx ∫
Gaëp tích phaân naøy ñaët: 1 t= 2 (mx + ) n
ax + bx + c mx+n
Bµi 1: TÝnh c¸c tÝch ph©n sau b»ng ph−¬ng ph¸p ®æi biÕn lo¹i I 1 2x 4 1/ dx ∫ 2/ 2 x x + 9dx ∫ 2 1+ x 0 0 10 dx 1 3/ ∫ 4/ x 1− xdx ∫ 5x −1 2 0 5 7 x 5/ x. x + 4dx ∫ 6/ dx ∫ 3 x +1 0 0 5 2 2 3x 7/ 3 2 x . x + 4dx ∫ 8/ dx ∫ 3 3 0 + 0 1 x 2 4 dx dx 9/ ∫ 10/ ∫ x 1 e− − x 1 1 x.e π 4 tgx+ 2 e e 1+ 3ln x 11/ dx ∫ 12/ dx ∫ 2 cos x x 0 1
GV: NguyÔn Thanh S¬n 8
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng π e 2 1+ ln x 6 13/ dx ∫ 14/ 1+ 4 sin x .cos xdx ∫ x 1 0 π π 4 1 2 15/ cot gx(1 + )dx ∫ 16/ 2 cos x.sin 2xdx ∫ 2 sin x π 0 6 π / 6 π sin 2x / 2 3 cos x.sin x 17/ dx ∫ 18/ dx ∫ 2 2 2sin x + cos x 2 1 + sin x 0 0 8 π 1 / 3 19/ dx ∫ 20/ 3 cos x.sin x.dx ∫ 2 + 3 x x 1 0
Bµi 2 : TÝnh tÝch ph©n b»ng ph−¬ng ph¸p ®æi biÕn lo¹i II: 3 0 2 1 1/ 2 1− x dx ∫ 2/ dx ∫ 2 3 1 − 0 (1 − x ) 2 1 dx 3/ 2 2 x 4 − x dx ∫ 4/ ∫ 2 x + 4x + 7 1 5 − 2 4 / 3 2 x − 4 5/ dx ∫ 6/ dx ∫ 2 3 x 0 x + 4 2 1 − dx 6 dx 7/ ∫ 8/ ∫ 2 − 2 − 2 − x x 1 2 3 x x 9 6 3 dx 2 9 + 3x 9/ ∫ 10/ dx ∫ 2 + + 2 x 1 − x x 1 1 1/ 2 1 + x 2 x + 2 11/ dx ∫ 12/ dx ∫ 1 − x 2 x −1 1 − 1 dx 3 dx 13/ ∫ 14/ ∫ 2 2 (x +1)(x + 2) 2 x + 3 0 0
Bµi 3 : TÝnh tÝch ph©n c¸c hµm sè höu tØ: 2 2 dx dx 1/ ∫ 2/ ∫ x(2x +1) 2 x − 6x + 9 1 1 2 6x + 7 1 x 3/ dx ∫ 4/ dx ∫ x 4 2 x + x + 1 1 0
GV: NguyÔn Thanh S¬n 9
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 4 x + 1 1 xdx 5/ dx ∫ 6/ ∫ 2 x −3x + 2 2 (x + 1) 3 0 π π 6 sin 2xdx 3 cos x 7/ ∫ 8/ dx ∫ 2 2 2sin x + cos x 2 − + π sin x 5sin x 6 0 6 2 dx 3 2 9 + 3x 9/ ∫ 10/ dx ∫ (x + 1)(x + 2) 2 x 0 1 1/ 2 dx 4 3 2 (x + x − x + 1)dx 11/ ∫ 12/ ∫ 2 4x − 4x − 3 4 x −1 0 2 2 dx 2001 x dx 13/ ∫ 14/ ∫ (x + 1)(x + 2) 2 2001 (x + 1) 0 1/ 2 dx 1 3dx 15/ ∫ 16/ ∫ 4 2 x − 2x +1 3 1 + x 0 0
c: Ph−¬ng ph¸p tÝch ph©n tõng phÇn: b b
Coâng thöùc: b
u.dv = u.v − v.du ∫ ∫ a a a
• Coâng thöùc cho pheùp thay moät tích phaân udv ∫ phöùc taïp baèng 1
tích phaân vdu ñôn giaûn hôn. ∫
• Coâng thöùc duøng khi haøm soá döôùi daáu tích phaân coù daïng: − Daïng tích soá: − Haøm soá logaric.
− Haøm soá löôïng giaùc. * Daïng n
x f(x) vôùi f(x) laø haøm x e , ln x,sin , x cos . x • Khi tính choïn:
− Haøm soá phöùc taïp ñaët baèng u.
− Haøm soá cos tích phaân ñöôïc cho trong baûng tích phaân thöôøng duøng laøm dv
Bµi 1: Dïng ph−¬ng ph¸p tÝch ph©n tõng phÇn h·y tÝnh:
GV: NguyÔn Thanh S¬n 10
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng π 1 1/ x sin xdx 2/ 2 2x (x + 1) e dx ∫ ∫ 0 0 π 4 e 3/ 2 x sin 2xdx ∫ 4/ 2 (x ln x) dx ∫ π 1 6 π π 4 3 xdx 5/ 2 x(2 cos x − 1)dx ∫ 6/ ∫ 2 π sin x 0 4 e ln x 4 7/ dx ∫ 8/ x e dx ∫ 2 (x +1) 1/ e 1 2 π 4 3 9/ x cos xdx ∫ 10/ 2 ln(x + x + 1)dx ∫ 0 0 π 1 2 11/ 2 2 x (x +1) .e dx 12/ ∫ 2 (x 1 + ).sin x.dx ∫ 0 0 π 2 ln(1+ x) 4 13/ dx ∫ 14/ x.sin x.cos x.dx ∫ 2 x 1 0
Bµi 2: TÝnh c¸c tÝch ph©n sau: 2 e e ln x 1/ dx ∫ 2/ x ln xdx ∫ 2 x 1 1 e 2 ⎛ e ln x ⎞ 3/ dx ∫⎜ ⎟ 4/ 2 ln xdx ∫ ⎝ x ⎠ 1 1 π e 2 5/ 2 (x ln x) dx 6/ ∫ x e (x + sin x)dx ∫ 1 0 π π x 7/ x 2 e sin ( x π )dx 8/ ∫ x e sin dx ∫ 2 0 0 x + 2 2 2 + 9/ (1 sin x)e 1 x dx ∫ 10/ dx ∫ 1+ cos x 2 x 3
D: øng dông h×nh häc cña tÝch ph©n
GV: NguyÔn Thanh S¬n 11
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng
Bµi 1: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (P): y = x2 - 2x + 2 ;tiÕp tuyÕn (d)
cña nã t¹i ®iÓm M(3;5) vµ Oy.
Bµi 2: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (P): y = x2 + 2x vµ ®−êng th¼ng (d): y = x + 2. 2 3x 5 − x + 5
Bµi 3: Cho hµm sè y =
(C) . TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi (C) ; tiÖm x − 1
cËn cña nã vµ x = 2 ; x= 3.
Bµi 4: Cho hµm sè y = ( + )( ( − )2 x 1 x
2 (C) . TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi (C) vµ
®−êng th¼ng : x - y + 1 = 0. 4 x 3
Bµi 5: Cho hµm sè y = 2
− x − (C) . TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi (C) vµ trôc 2 2 hoµnh.
Bµi 6: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (P): y2 = 4x vµ ®−êng th¼ng d : 4x - 3y - 4 = 0 .
Bµi 7: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (P): y2 + x - 5 = 0 vµ ®−êng th¼ng d : x + y - 3 = 0 .
Bµi 8: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng y = 0 ; y = tgx ; y = cotgx
(0 ≤ x ≤ π) .
Bµi 9: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (C): x2 + y2 = 8 vµ ®−êng (P): y2 = 2x .
Bµi 10: TÝnh thÓ tÝch h×nh trßn xoay do h×nh ph¼ng giíi h¹n bëi c¸c ®−êng : y =
4 vµ y = -x + 5 quay quanh Ox. x 2 x 3 + x + 3
Bµi 11: Cho hµm sè y =
(C) . Gäi (H) lµ phÇn h×nh ph¼ng giíi h¹n bëi (C) x + 2
trôc Ox vµ hai ®−êng th¼ng x = -1 , x = 0. TÝnh thÓ tÝch khèi trßn xoay t¹o thµnh khi (H)
quay mét vßng xung quanh Ox. 2 x x + + 1
Bµi 12: Cho hµm sè y =
(C) . Gäi (H) lµ phÇn h×nh ph¼ng giíi h¹n bëi (C) trôc x + 1
Ox vµ hai ®−êng th¼ng x = 0, x = 1. TÝnh thÓ tÝch khèi trßn xoay t¹o thµnh khi (H) quay mét vßng xung quanh Ox.
Bµi 13: TÝnh thÓ tÝch vËt thÓ trßn xoay ®−îc t¹o thµnh do h×nh ph¼ng (D) giíi h¹n bëi :
y = x , y = 2 - x vµ y = 0 khi ta quay quanh (D) quanh Oy.
Bµi 14: TÝnh thÓ tÝch vËt thÓ trßn xoay ®−îc t¹o thµnh do h×nh ph¼ng (D) giíi h¹n bëi :
GV: NguyÔn Thanh S¬n 12
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng y = x
xe , x = 1 vµ y = 0 ( 0 ≤ x ≤ 1
) khi ta quay quanh (D) quanh Ox.
Bµi 15: TÝnh thÓ tÝch vËt thÓ trßn xoay ®−îc t¹o thµnh do h×nh ph¼ng (D) giíi h¹n bëi : y = π π sinx , y = cosx , x = vµ (0 ≤ x ≤
≤ ) khi ta quay quanh (D) quanh Ox. 2 2 Bµi 16:
TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng sau: 1/ 2
y = 0; y = x − 2x vµ x = -1; x = 2. 2/ 2
y = x − 4x + 3 vµ y = x + 3 2 x 2 x 3/ y = 4 − vµ y = 4 4 2 ln x 4/ y = ; y = 0; x =1 vµ x = e . 2 x 5/ 2 y = x x +1; Ox vµ x = 1.
E. D¹ng th−êng gÆp trong c¸c k× thi §H-C§
Bµi 1: TÝnh c¸c tÝch ph©n sau: 1 3 ln 3 x 1/ x dx ∫ 2/ e dx ∫ 2 x +1 x 3 0 0 (e +1) π 0 2 3/ 2 3 x( x e + x +1) ∫ dx 4/ 6 3 5 1− cos x.sin . x cos x.d ∫ x 1 − 0 2 3 1 5/ dx ∫ 6/ 3 2 x 1− x dx ∫ 2 5 x x + 4 0 π 4 2 − ln 5 2x 7/ 1 2sin x e dx dx ∫ 8/ ∫ 1+ 2 sin 2x x − 0 ln 2 e 1 ln 5 2 x x + 9/ (e 1).e 2 2 dx ∫ 10/ (3x −1) x +3x − ∫ 4 dx x − ln 2 e 1 0
Bµi 2: Cho hµm sè: f(x) = a +b . x x e 3 ( x+ 1) 1
T×m a, b biÕt f’(0)=-22 vµ f (x)dx = 5 ∫ 0
Bµi 3: TÝnh c¸c tÝch ph©n sau:
GV: NguyÔn Thanh S¬n 13
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 2 1 1/ 2 x − x dx ∫ 2/ 2 3. x x e dx ∫ 0 0 e 2 + 3/ x 1 1 ln x .dx ∫ 4/ 3 (cos x + )dx ∫ x x + 1 − x 1 π 1 2 2 5/ x dx ∫ 6/ sin . x sin 2 . x sin 3 . x d ∫ x ( x +1) x +1 0 0 π π 2 2 7/ 4 4
cos 2x (sin x+ cos ) x ∫ dx 8/ 5 cos . x dx ∫ 0 0 3 5 x + 3 2x 1 9/ ∫ dx 10/ 2 3 (1 − x ) dx ∫ 2 0 x + 1 0
Bµi 3: TÝnh c¸c tÝch ph©n sau: π 2 3 7 1/ x 3 3 ( cos x − sin x )dx ∫ 2/ dx ∫ 8 4 1 + x −2 x 0 2 e e 3/ x 2 2 ln x ln xdx ∫ 4/ dx ∫ 3 x 1 1 π 2 9 5/
4 cos x − 3sin x + 1 dx ∫ 6/ 3 x 1− xdx ∫
4 sinx + 3cosx + 5 0 1 2 + 1 7/ x 1 dx ∫ 8/ 2 ( + 2 ) −x x x e dx ∫ 3 3x + 2 0 0 π 6 1+ 4 tg x 3 x − 3 9/ ∫ dx 10/ ∫ dx cos2x 3 x 1 x 3 1 + + + 0 −
Bµi 4: TÝnh c¸c tÝch ph©n sau: 2 2 1/ xdx ∫ 2/ dx ∫ 2 + x + 2 − x x 2x + 1 0 1 π 1 + 2 3/ ln(1 x) sin x dx ∫ 4/ dx ∫ 2 1 + x sin x + cos x 0 0 π π 2 5 . x sin xdx ∫ 6/ 2 3 sin . x cos . x dx ∫ 0 0
GV: NguyÔn Thanh S¬n 14
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng e 3 7/ 1+ 3ln . x ln x dx ∫ 8/ 3 2 x 1+ x dx ∫ x 1 0 2 4 x − x + 1 3 7 x 9/ ∫ dx 10/ ∫ dx 2 x + 4 1+ 8 x − 4 2x 0 2
Bµi 5: TÝnh c¸c tÝch ph©n sau: 3 5 3 3 3 + 1/ x + 2x x 1 dx ∫ 2/ ln x.dx ∫ 2 + x 0 x 1 0 π 1 3 3/ tgx 2 ( +1) x x e dx ∫ 4/ dx ∫ 2 + 0 π cos x 1 cos x 4 2 2 ⎛ − ⎞ π 5/ x 1 x sin x dx ∫ ⎜ ⎟ 6 dx ∫ ⎝ x+ 2 2 1+ cos − ⎠ x 1 0 π 1 4 7/ dx ∫ 8/ 2 x.tg xdx ∫ 1 x + e 0 0 π π 2 4 ⎛ x ⎞ 9/ 4 cos2x(sin x + ∫ 4 cos x)dx 10/ 1+ ∫⎜ tgxtg ⎟sinxdx 2 0 ⎝ ⎠ 0
Bµi 6: TÝnh c¸c tÝch ph©n sau: 5 2 2 x 1/ x .e
( x + 2 − x − 2 )d ∫ x 2/ dx ∫ 2 − (x + 2) 3 0 4 1 3/ 2 dx ∫ 4/ 2 2 (4 −2 1 − ). x x x e d ∫ x + + − x 5 4 1 0 2 1 5/ dx 2 2 x 4− x dx ∫ 6/ ∫ 2 2x + 5x + 2 0 0 π 2 1 7/ sin 2x x dx ∫ 8/ dx ∫ cos x + 1 2 ( x +1) 0 0 π π 4 2 sin x 9/ (tgx + ∫ sin x e cosx)dx 10/ ∫ dx x 0 2 sin x + 2 0 2 cosx.cos 2
Bµi 7: TÝnh c¸c tÝch ph©n sau:
GV: NguyÔn Thanh S¬n 15
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng π π 2 2004 2 3 1/ sin x 4sin x dx ∫ 2/ dx ∫ 2004 2004 sin x + cos x 1+ cos x 0 0 π π 2 2 + 3/ sin 2x.cos x sin 2x sin x dx ∫ 4/ dx ∫ 1 +cos x 1+ 3cos x 0 0 π π 2 3 5/ cos x sin ( x e + cos ) x cos . x dx ∫ 6/ dx ∫ 2
sin x − 5 sin x + 6 0 π 6 π 2 7/ 2xdx ∫ 8/ cos x dx ∫ 2 x + x −1 7 + cos 2x 0 π 0 3 2 xsin x 9/ ( 2x e + 3 x +1)dx ∫x 10/ ∫ dx 2 sin 2x cos x −1 0
Bµi 8: TÝnh c¸c tÝch ph©n sau. 1 π 1/ 2004 x sin x.dx ∫ 2/ 2 x.sin . x cos x. ∫ dx −1 0 π 2π 2 4 3/ cos x 3 x.cos . x dx ∫ 4/ ∫ 4 4 cos x + sin x 0 0 π 3 1 5/ x +sin xdx ∫ 6/ 2 x.tg xdx ∫ 2 cos x 0 0 π 2 0 π 7/ CM: sin x sin x dx dx > dx ∫ 8/ CM: ∫ π < < 2π ∫ x 4 4 π x sin x + cos x 0 0 2 π π2 2 4 9/ ∫e3x sin5xdx 10/ ∫ x cos xdx 0 0
Chóc c¸c em lµm bµi tèt !
GV: NguyÔn Thanh S¬n 16