Luyên tập Nguyên hàm và Tích phân xác định - Giải tích 2 | Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội

Luyên tập Nguyên hàm và Tích phân xác định - Giải tích 2 | Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

Môn:
Thông tin:
16 trang 8 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Luyên tập Nguyên hàm và Tích phân xác định - Giải tích 2 | Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội

Luyên tập Nguyên hàm và Tích phân xác định - Giải tích 2 | Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

58 29 lượt tải Tải xuống
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
Nguyªn hµm - tÝch
Nguyªn hµm - tÝch
Nguyªn hµm - tÝch
Nguyªn hµm - tÝch Nguyªn hµm - tÝch
ph©n vµ c¸c øng d
ph©n vµ c¸c øng d
ph©n vµ c¸c øng d
ph©n vµ c¸c øng d ph©n vµ c¸c øng d
ông
ông
ông
ông ông
a.tÝnh tÝch ph©n b»ng ®Þnh nghÜa
Ph¬ng ph¸p:
1. §Ó x¸c ®Þnh nguyªn hµm cña hµm sè f(x), Chóng ta cÇn chØ ra ® îc hµm sè F(x)
sao cho: F’(x) = f(x).
¸p dông b¶ng c¸c nguyªn hµm c¬ b¶n, c¸c hµm sè s¬ cÊp .
Neáu gaëp daïng caên thöùc ñöa veà daïng soá muõ phaân theo coâng thöùc: ,( 0)
n
m n
m
x x m=
Neáu gaëp daïng
( )
n
P x
x
thöïc hieän pheùp chia theo coâng thöùc:
1
,( ); ,( )
m m
m n
n n n m
x x
x
m n m n
x x x
= > = < .
Coâng thöùc ñoåi bieán soá (loaïi 2):
Tích phaân daïng:
( )
( ) . '( )
f
g x g x dx
Ñaët g(x) = u => g’(x)dx = du
( ( )) '( ) ( )
f
g x g x dx f u du=
.
2. Mét sè d¹ng c¬ b¶n:
1. Sö dông c«ng thøc c¬ b¶n:
1. Daïng : ñaët u = ax + b du = adx dx=
( ) ( 1, 0)ax b dx a
α
α
+
1
du
a
( )
( )
1
!
1
( )
1 ( 1)
ax b
u
ax b dx u du C C
a a a
α
α
α α
α α
+
+
+
+ = = + = +
+ +
2. Daïng : ñaët
( )
1
,( 0, 1)
n n
ax b x dx a
α
α
+
1 1
1 1
1
1
. .
1 (
( )
( 1) ( 1)
n
u=ax
n n
n
n n
b du a n x dx x dx du
an
u ax b
ax b x dx u du C C
an na na
α α
α α
α α
+ +
+ = =
+
+ = = + =
+ +
)
+
3. Daïng: ). cos sin ( 1) a xdx
α
α
( Ñaët
1
1
cos sin ) cos sin cos
( 1)
u x du xdx x xdx u du x C
α α α
α
+
= = = = +
+
). cos ( 1)
sin x
b xdx
α
α
(Ñaët
1
1
sin cos sin
1
du=cos xdx sin xu x xdx u du x
α α α
α
+
= = = +
+
C
4.
Daïng:
1
ln ( 0)
dx
ax b C a
ax b a
= + +
+
Neáu gaëp :
( )P x
ax b
+
vôùi baäc : laøm baøi toaùn chia.
( ) 1P x
GV: NguyÔn Thanh S¬n
1
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
5. Daïng:
2
cos ( )
dx
x
a btgx+
Ñaët
2 2
1 1 1
; l
cos cos ( )
2
dx
co s
bdx dx du
u a btgx du du a btgx C
x x b x a btgx b u b
= + = = = = + +
+
n
2. Coâng thöùc:
( )
'( )
ln
u
u x u
a
a u x dx a du C
a
= = +
3. Coâng thöùc ñoåi bieán soá (loaïi 1):
Tích phaân daïng:
( )
( ) . '( )
f
g x g x dx
Ñaët g(x) = u => g’(x)dx = du
( ( )) '( ) ( )
f
g x g x dx f u du=
4. Coâng thöùc :
2
2
2
1
). ln .( 0)
2
). ln
du u a
a C a
u a a u a
du
b u u k C
u k
α
= +
+
= + + +
+
5. Coâng thöùc :
2
2 2
ln
2 2
x x k k
x
kdx x x k C
+
+ = + + + +
3. Mét sè d¹ng thêng gÆp:
1. Tích phaân daïng:
2 2
2 2
1).
(mx+n)dx dx (mx+n)dx
2). 3). 4).
dx
ax bx c ax bx c
ax bx c ax bx c
+ + + +
+ + +
+
Tuyø vaøo moãi daïng aùp duïng caùc coâng thöùc tính tích phaân chæ trong baûng sau:
Töû soá baäc nhaát Töû soá haèng soá
Maãu soá khoâng caên
ln
du
u C
u
= +
2 2
1
ln
2
= +
+
du u a
C
u a a u a
Maãu soá coù caên
2
du
u C
u
= +
2
2
ln= + + +
+
du
u u k C
u k
Söû duïng haèng ñaúng thöùc:
2 2 2
2 2
2
( ) ( )
2 2
2 2
a a
x ax x
b b
ax bx a x
a a
+ = +
+ = +
GV: NguyÔn Thanh S¬n
2
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
4. TÝch ph©n cña c¸c ph©n thøc h÷u tØ:
3 2
ax b A B C
cx dx ex x x m x n
+
= + +
+ +
Giaûi daïng naøy ta coù hai caùch:
Caùch 1: Ñoàng nhaát hai veá: Cho taát caû caùc heä soá chöùa x cuøng baäc baèng nhau.
Caùch 2: Gaùn cho x nhöõng giaù trò baát kyø. Thöôøng thì ta choïn giaù trò ñoù laø
nghieäm cuûa maãu soá
5. TÝch ph©n cña c¸c hµm sè lîng gi¸c:
1. Daïng:
cos , , 1). sin , cos
n n
1 1
sin cosaxdx= sinaxdx=- , 2). co s
a a
n
x
dx xdx ax C ax C xdx+ +
Phöông phaùp:
n = chaün : haï baëc
2
2
1 cos 2
cos
2
1 cos 2
sin
2
1
sin cos sin 2
2
x
x
x
x
x x
+
=
=
=
n leõ:
Vieát:
2 1 2 2
cos cos cos (1 sin ) cos
p p p
x
dx x xdx x dx
+
= =
Ñaët
sin cosu x du x= = dx
2. Daïng:
sin cos
m n
u ud
u
u
a. m,n cung chaün: haï baäc.
b. m,n leû (moät trong hai soá leû hay caû hai cuøng leû).
Neáu m leû: Ta vieát: thay
1
sin sin sin
m m
u u
=
1
2 2 2
2
sin 1 cos (1 cos ) sin
m
va sin
m
u u u u
= = u
Neáu m, n leû: laøm nhö treân cho soá muõ naøo beù
3. Daïng: hay
n
tg xdx
cot
n
g xdx
Chuù yù:
2 2
2
( ) (1 ) (1 )
cos
2
dx
co s
dx
d tgx tg x dx tg x dx tgx C
x
x
= = + = + = +
Töông töï:
2 2
2
(cot ) (1 ) (1 )
sin
2
dx
sin
dx
d gx cotg x dx cotg x dx cotgx C
x
x
= = + = + = +
Ngoaïi tröø:
sin
ln cos
cos
(u=cosx)
xdx
tgxdx x C
x
= = +
Ñeå tính:
n
tg xdx
Phöông phaùp:
Laøm löôïng
2
( 1)tg x + xuaát hieän baèng caùch vieát:
GV: NguyÔn Thanh S¬n
3
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
2 2 2 2 2 4 2 1 2
* ( 1) ( 1) ... ... ( 1) ( 1) ( 1) 1
n n n n
tg x tg x tg x tg tg x tg x
= + + + + + + +
n
2 1 2 3 2 2 5 2 2 2 1
* ( 1) ( 1) ... ... ( 1) ( 1) ( 1)
n n n n n
tg x tg x tg x tg tg x tgx tg x tgx
= + + + + + + +
4. Daïng: hay
2
( 1)tg x dx+
2
cos
n
dx
x
Ta vieát:
2 2 1 2
( 1) ( 1) ( 1)
n
tg x dx tg x tg x dx
+ = + +
Ñaët u = tgx
2 2
( 1) ( 1)
2 n
(tg x+1) dx
n
du tg x dx u du
= + = +
1
Chuù yù:
2 2
2
1
1 (1
cos
2n
dx
,
co s
n
tg x tg x dx)
x
x
= + = +
5. Daïng:
cos
m
n
cotg x
, or
sin x
m
n
tg x
dx dx
x
Phöông phaùp :
Neáu n chaün : Thay
2
2
2 2 2
1
(1 ) ; (1 ) (1 ) ( 1)
cos cos
m
tg
n n n
m m
n n
xdx
tg x tg x tgx dx tg x tgx tgx dx
x x
= + = + = + +
Ñaët:
2
2
2
(1 )
m
2
n
tg x
du=(1+tg x)dx
cos x
n
m
u tgx dx u u du
= = +
Neáu m leû vaø n leû :
1
1
.
cos cos cos
m
n
tgx tg x tgx
x
x x
=
Ñaët
1
cos
tgx
du=
cosx
u dx
x
=
Thay:
1 1
2 1
2 2
2 2 1
1 1 1
1 ( 1) . . ( 1)
cos cos cos cos
n
tgmx
cos x
m m
n
n
tgx
tgx dx dx u u du
x x x x
= = =
6. Daïng:
sin cos ; sinmxsinnxdx ; cosmxcosnxdxmx nxdx
Aùp duïng caùc coâng thöùc bieán ñoåi:
[ ]
[ ]
[ ]
sin( ) sin( )
cos( ) s( )
cos( ) cos( )
1
sinmxcosnx=
2
1
sinmxsinnx=
2
1
cosmxcosnx=
2
m n x m n x
m n x co m n x
m n x m n x
+ +
+
+
+
GV: NguyÔn Thanh S¬n
4
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
I. TÝnh c¸c tÝch ph©n bÊt ®Þnh.
Bµi 1: Dïng c¸c c«ng thøc c¬ b¶n tÝnh c¸c tÝch ph©n sau:
1/
2
1
(3x 2x )dx
x
+
2/
2
x 3
dx
x
3/
4
3
2( x )dx
x
4/
3 4
1
(3 x 4 x )dx
x
+
5/
x
x
3 2
e
e (2 )dx
3 x
6/
x 2 x 3x
2 .3 4 dx
7/ cos (1 t )
x
gx dx+
8/
2
2
(4 sin x )dx
cos x
9/
2
x
2cos dx
2
10/
2 2
dx
cos x sin x
Bµi 2: TÝnh c¸c tÝch ph©n sau ®©y:
1/ 2/
10
x(x 1) dx
2
1 2
( )
x 1 (x 1)
+ +
dx
3/
2
x x 9dx+
4/
2 2
4
8x
dx
(x 1)+
5/
3. x
e
dx
x
6/
xx
dx
2
ln
7/ 8/
sin 7x.cos3x.dx
4
cos xdx
9/
3
sin x
dx
cos x
10/
2 2
cos 2x
dx
sin x.cos x
II: TÝnh c¸c tÝch ph©n x¸c ®Þnh sau:
Ph¬ng ph¸p:
( ) ( ) ( ) ( )
b
a
b
a
f
x dx F x F b F a= =
.
1. C¸c ph¬ng ph¸p tÝnh tÝch ph©n.
¸p dông b¶ng c¸c nguyªn hµm c¬ b¶n, c¸c hµm sè s¬ cÊp .
TÝnh tÝch ph©n b»ng ph ¬ng ph¸p ph©n tÝch.
TÝnh tÝch ph©n b»ng ph¬ng ph¸p ®æi biÕn d¹ng I.
TÝnh tÝch ph©n b»ng ph¬ng ph¸p ®æi biÕn d¹ng II.
TÝnh tÝch ph©n b»ng ph¬ng ph¸p ®æi biÕn d¹ng III.
TÝnh tÝch ph©n b»ng ph¬ng ph¸p tÝch ph©n tõng phÇn.
TÝnh tÝch ph©n b»ng ph¬ng ph¸p sö dông nguyªn hµm phô.
Mét sè thñ thuËt ®æi biÕn kh¸c, tÝch ph©n chøa biÓu thøc gi¸ trÞ tuyÖt ®èi...
2. Chøng minh bÊt ®¼ng thøc tÝch ph©n
GV: NguyÔn Thanh S¬n
5
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
§Ó chøng minh bÊt ®¼ng thøc tÝch ph©n , ta thêng sö dông chñ yÕu 4 tÝnh chÊt
sau: víi c¸c hµm sè f(x), g(x) liªn tôc trªn [a;b] ta cã:
1. NÕu
[
]
( ) 0, ;
f
x x a b th×
( ) 0
b
a
f x dx
2. NÕu
[
]
( ) ( ), ;
f
x g x x a b th× ( ) ( )
b b
a a
f
x dx g x dx
DÊu ®¼ng thøc chi x¶y ra khi f(x) = g(x),
[
]
;
x
a b
3. NÕu
[
]
( ) , ;m f x M x a b th×
( ) ( ) ( )
b
a
m b a f x dx M b a
4. ( ) ( ) .
b b
a a
f
x dx f x dx
Bµi 1: TÝnh c¸c tÝch ph©n x¸c ®Þnh sau:
1/ 2/
2
2 3 4
0
(3x 2x 4x )dx +
1
3 2
1
( x 3x) dx
+
3/
4
x
4
0
(3x e )dx
4/
2
2
3
1
x 2x
dx
x
5/
0
2
1
x x 5
dx
x 3
6/
5
2
dx
x 1 x 2
+
7/
1
2x
x
0
e 4
dx
e 2
+
8/
32
0
4sin x
dx
1 cos x
π
+
9/
3
0
sin x.cos 3xdx
π
10/
24
2
6
2tg x 5
dx
sin x
π
π
+
11/
2
0
cos2x
dx
sin x cos x
π
12/
4
2
0
sin ( x)dx
4
π
π
Bµi 2: TÝnh c¸c tÝch ph©n cã chøa trÞ tuyÖt ®èi sau:
1/
2
2
x 1 dx
2/
4
2
1
x 6x 9d
+
+
+
+ +
x
3/
4
2
1
x 3x 2 d
+
+
+
+ +
x 4/
1
x
1
e 1 d
x
GV: NguyÔn Thanh S¬n
6
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
5/
3
3
(3 x )dx
+
+
+
++
6/
0
2
2
x x 1 dx
+
7/
0
cos x dx
π
π
π
ππ
8/
3
4
4
cos 2x 1dx
π
π
π
ππ
π
π
π
ππ
+
+
+
++
9/
0
cos x sin xdx
π
π
π
ππ
10/
3
x
0
2 4 d
x
Bµi 3: Chøng minh c¸c B§T sau:
1/
3
0
3 x 1dx +
6
2/
1
2
0
4 5
1
2 2
x
dx
+
3/
2
2
0
dx
1 2
x 1
+
4/
2
2
4
5
3 sin xdx
2 4
π
π
π π
+
5/
3
4
2
4
dx
4 3 2sin x
π
π
π π
2
6/
2
2
0
3
tg x 3dx
4 2
π
π π
+
7/
2
2
sin x
2
0
e dx e
2
π
π
π
8/
2 2
x 1 2x
1 1
e dx e dx
+
9/
2 2
3 2
0 0
sin xdx sin xdx
π π
10/
2 2
0 0
sin 2xdx 2 sin xdx
π π
B: Ph¬ng ph¸p ®æi biÕn:
Ph¬ng ph¸p:
1. Daïng:
1 1
( , )
n m
R
x x dx
Ñaët
1
mn mn-1
x=t dx=mnt dt
mn
t x=
2. Daïng:
1 1
( ) , ( )
n m
R
ax b ax b dx
+ +
Ñaët
1
mn mn-1
mn
mn
t=(ax+b) ax+b=t dx= t dt
a
3.
Daïng :
dx
R(lnx)
x
ñaët ln
dx
du =
x
u x= ( )
dx
R(lnx)
x
R
u du =
GV: NguyÔn Thanh S¬n
7
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
4. Daïng: ñaët
x
R(e )dx
( )
du
R u
u
=
x x x
du
u=e du=e dx dx= R(e )dx
u
5. Daïng :
2
( , )
R
x ax bx c dx+ +
Ñöa tam thöùc
2
ax bx c+ + veà daïng: hay.
2 2 2
u +m ,u -m
2
2 2
m -u
Ñoåi tích phaân thaønh 1 trong caùc daïng sau:
.
2 2
2 2
2 2
1). R(u, m -u )du
2). R(u, m +u )du.
3). R(u, m -u )du.
Neáu döôùi daáu tích phaân coù chöùa
2 2
m -u ñaët
2 2
u=msint m -u =mcost
2 2
m +u
ñaët
2 2
m
u=mtgt m +u =
cost
2 2
u -m ñaët
2 2
m
u= u -m =mtgt
cost
6. Daïng :
2
( )
dx
mx n ax bx c+ +
+
Gaëp tích phaân naøy ñaët:
1
t=
mx+n
Bµi 1: TÝnh c¸c tÝch ph©n sau b»ng ph¬ng ph¸p ®æi biÕn lo¹i I
1/
1
2
0
2x
dx
1 x+
2/
4
2
0
x x 9dx+
3/
10
2
dx
5x 1
4/
1
0
x 1 xdx
5/
5
0
x. x 4dx+
6/
7
3
0
x
dx
x 1+
7/
5
3 2
0
x . x 4dx+
8/
2
2
3 3
0
3x
dx
1 x+
9/
2
x
1
dx
1 e
10/
4
x
1
dx
x.e
11/
tgx 24
2
0
e
dx
cos x
π
+
12/
e
1
1 3ln x
dx
x
+
GV: NguyÔn Thanh S¬n
8
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
13/
e
2
1
1 ln x
dx
x
+
14/
6
0
1 4sin x.cos xdx
π
+
15/
4
2
6
1
cot gx(1 )dx
sin x
π
π
+
16/
2
2
0
cos x.sin 2xdx
π
17/
/ 6
2 2
0
sin 2x
dx
2sin x cos x
π
+
18/
/ 2
3
2
0
cos x.sin x
dx
1 sin x
π
+
19/
8
2
3
1
dx
x x 1+
20/
/ 3
3
0
cos x.sin x.dx
π
Bµi 2 : TÝnh tÝch ph©n b»ng ph¬ng ph¸p ®æi biÕn lo¹i II:
1/
0
2
1
1
x
dx
2/
3
2
2 3
0
1
dx
(1 x )
3/
2
2 2
1
x 4 x dx
4/
1
2
5
dx
x 4x
7
+ +
5/
2
2
0
4
dx
x +
6/
4 / 3
2
3
2
x 4
dx
x
7/
1
2
2
dx
x x 1
8/
6
2
2 3
dx
x x 9
9/
6
2
1
dx
x x 1
+ +
10/
3
2
2
1
9 3x
dx
x
+
11/
1/ 2
1
1 x
dx
1 x
+
12/
2
2
x 2
dx
x 1
+
13/
1
2 2
0
dx
(x 1)(x 2)+ +
14/
3
2
0
dx
x 3+
Bµi 3 : TÝnh tÝch ph©n c¸c hµm sè höu tØ:
1/
2
1
dx
x(2x 1)+
2/
2
2
1
dx
x 6x 9 +
3/
2
1
6x 7
dx
x
+
4/
1
4 2
0
x
dx
x x 1+ +
GV: NguyÔn Thanh S¬n
9
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
5/
4
2
3
x 1
dx
x 3x 2
+
+
6/
1
2
0
xdx
(x 1)+
7/
6
2 2
0
sin 2xdx
2sin x cos x
π
+
8/
3
2
6
cos x
dx
sin x 5sin x 6
π
π
+
9/
2
0
dx
(x 1)(x 2)+ +
10/
3
2
2
1
9 3x
dx
x
+
11/
1/ 2
2
0
dx
4x 4x 3
12/
4
3 2
4
2
(x x x 1)dx
x 1
+ +
13/
2
0
dx
(x 1)(x 2)+ +
14/
2001
2 2001
x dx
(x 1)+
15/
1/ 2
4 2
0
dx
x 2x +
1
16/
1
3
0
3dx
1 x+
c: Ph¬ng ph¸p tÝch ph©n tõng phÇn:
Coâng thöùc:
. . .
b b
b
a
a a
u dv u v v du=
Coâng thöùc cho pheùp thay moät tích phaân udv
phöùc taïp baèng 1
tích phaân ñôn giaûn hôn.
vdu
Coâng thöùc duøng khi haøm soá döôùi daáu tích phaân coù daïng:
Daïng tích soá:
Haøm soá logaric.
Haøm soá löôïng giaùc.
* Daïng vôùi f(x) laø haøm
n
x f(x) ,ln ,sin , cos .
x
e x x x
Khi tính choïn:
Haøm soá phöùc taïp ñaët baèng u.
Haøm soá cos tích phaân ñöôïc cho trong baûng tích phaân thöôøng
duøng laøm
dv
Bµi 1: Dïng ph¬ng ph¸p tÝch ph©n tõng phÇn h·y tÝnh:
GV: NguyÔn Thanh S¬n
10
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
1/ 2/
0
x sin xdx
π
1
2 2x
0
(x 1) e dx+
3/
4
2
6
x sin 2xdx
π
π
4/
e
2
1
(x ln x) dx
5/
4
2
0
x(2 cos x 1)dx
π
6/
3
2
4
xdx
sin x
π
π
7/
e
2
1/ e
ln x
dx
(x 1)+
8/
4
x
1
e dx
9/
2
4
0
x cos xdx
π
10/
3
2
0
ln(x x 1)dx+ +
11/ 12/
1
2 2 x
0
(x 1) .e dx+
2
2
0
(x 1).sin x.dx
π
+
13/
2
2
1
ln(1 x)
dx
x
+
14/
4
0
x.sin x.cos x.dx
π
Bµi 2: TÝnh c¸c tÝch ph©n sau:
1/
e
2
1
ln x
dx
x
2/
2
e
1
x ln xdx
3/
2
e
1
ln x
dx
x
4/
e
2
1
ln xdx
5/ 6/
e
2
1
(x ln x) dx
2
x
0
e (x sin x)dx
π
+
7/ 8/
x 2
0
e sin ( x)dx
π
π
x
0
x
e sin dx
2
π
9/
x
(1 sin x)e
dx
1 cos x
+
+
10/
2 2
2
2
3
1 x
dx
x
+
D: øng dông h×nh häc cña tÝch ph©n
GV: NguyÔn Thanh S¬n
11
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
Bµi 1:
TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®êng (P): y = x
2
- 2x + 2 ;tiÕp tuyÕn (d)
cña nã t¹i ®iÓm M(3;5) vµ Oy.
Bµi 2:
TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®êng (P): y = x
2
+ 2x vµ ®êng th¼ng (d):
y = x + 2.
Bµi 3: Cho hµm y =
2
3x 5x 5
x 1
+
+
+
++
(C) . TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi (C) ; tiÖm
cËn cña nã vµ x = 2 ; x= 3.
Bµi 4: Cho hµm y =
( )
( )
( )
( )( )
(
(
(
((
)
)
)
))
2
x 1 x 2
+
+
+
+ +
(C) . TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi (C)
®êng th¼ng : x - y + 1 = 0.
Bµi 5: Cho hµm y =
4
2
x 3
x
2 2
(C) . TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi (C) trôc
hoµnh.
Bµi 6:
TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®êng (P): y
2
= 4x vµ ®êng th¼ng d : 4x
- 3y - 4 = 0 .
Bµi 7:
TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®êng (P): y
2
+ x - 5 = 0 vµ ®êng th¼ng d
: x + y - 3 = 0 .
Bµi 8: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®êng y = 0 ; y = tgx ; y = cotgx
.
(0 x )
π
π
π
ππ
Bµi 9:
TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®êng (C): x
2
+ y
2
= 8 vµ ®êng (P): y
2
=
2x .
Bµi 10: TÝnh thÓ tÝch h×nh trßn xoay do h×nh ph¼ng giíi h¹n bëi c¸c ®êng : y =
4
x
vµ y = -x + 5 quay quanh Ox.
Bµi 11: Cho hµm y =
2
x 3x
x 2
3
+
+
+
++
+
+
+
++
+
+
+
++
(C) . Gäi (H) phÇn h×nh ph¼ng giíi h¹n bëi (C)
trôc Ox hai ®êng th¼ng x = -1 , x = 0. TÝnh thÓ tÝch khèi trßn xoay t¹o thµnh khi (H)
quay mét vßng xung quanh Ox.
Bµi 12: Cho hµm sè y =
2
x x
x 1
1
+
+
+
++
+
+
+
++
+
+
+
++
(C) . Gäi (H) lµ phÇn h×nh ph¼ng giíi h¹n bëi (C) trôc
Ox hai ®êng th¼ng x = 0, x = 1. TÝnh thÓ tÝch khèi trßn xoay t¹o thµnh khi (H) quay
mét vßng xung quanh Ox.
Bµi 13: TÝnh thÓ tÝch vËt thÓ trßn xoay ®îc t¹o thµnh do h×nh ph¼ng (D) giíi h¹n bëi :
y = x , y = 2 - x vµ y = 0 khi ta quay quanh (D) quanh Oy.
Bµi 14: TÝnh thÓ tÝch vËt thÓ trßn xoay ®îc t¹o thµnh do h×nh ph¼ng (D) giíi h¹n bëi :
GV: NguyÔn Thanh S¬n
12
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
y = , x = 1 vµ y = 0 (
x
xe 0 x 1
) khi ta quay quanh (D) quanh Ox.
Bµi 15: TÝnh thÓ tÝch vËt thÓ trßn xoay ®îc t¹o thµnh do h×nh ph¼ng (D) giíi h¹n bëi : y =
sinx , y = cosx , x =
2
π
π
π
ππ
(0 x )
2
π
π
π
ππ
khi ta quay quanh (D) quanh Ox.
Bµi 16: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®êng sau:
1/ vµ x = -1; x = 2.
2
y 0; y x 2x= =
2/
2
y x 4x 3= +
y x 3= +
3/
2
x
y 4
4
=
2
x
y
4 2
=
4/
ln x
y ; y 0;x 1
2 x
= = =
x e
= .
5/
2
y x x 1;Ox= + x 1= .
E. D¹ng thêng gÆp trong c¸c k× thi §H-C§
Bµi 1: TÝnh c¸c tÝch ph©n sau:
1/
1
3
2
0
1
x
dx
x +
2/
ln 3
3
0
( 1)
x
x
e dx
e +
3/
0
2
3
1
(
x
1)
x
e x
+ +
dx 4/
2
6 3 5
0
1 cos .sin .cos .
x
x x d
π
x
5/
2 3
2
5
4
dx
x x +
6/
1
3 2
0
1
x
x dx
7/
2
4
0
1 2sin
1 2sin 2
x
dx
x
π
+
8/
ln 5
2
ln 2
1
x
x
e dx
e
9/
ln 5
ln 2
( 1).
1
x x
x
e e
dx
e
+
10/
+
2
2 2
0
(3x 1) x 3x 4 dx
Bµi 2: Cho hµm sè: f(x) =
3
.
( 1)
x
a
bx e
x
+
+
T×m a, b biÕt f’(0)=-22 vµ
1
0
( ) 5f x dx =
Bµi 3: TÝnh c¸c tÝch ph©n sau:
GV: NguyÔn Thanh S¬n
13
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
1/
2
2
0
x
x dx
2/
2
1
3
0
.
x
x
e dx
3/
2
1
1
ln .
e
x
x
dx
x
+
4/
3
1
(cos )
1
x
dx
x x
+
+
5/
1
2
0
( 1) 1
x
dx
x x+ +
6/
2
0
sin .sin 2 .sin 3 .
x
x x d
π
x
7/
2
4 4
0
cos 2 (sin cos )
x
x x
π
+
dx
8/
2
5
0
cos .
x
dx
π
9/
+
+
3
5 3
2
0
x 2x
dx
x 1
10/
1
2 3
0
(1 x ) dx
Bµi 3: TÝnh c¸c tÝch ph©n sau:
1/
2
3 3
0
( cos sin )
x
x dx
π
2/
3
7
8 4
2
1 2
x
dx
x x+
3/
2 2
1
ln
e
x
xdx
4/
3
1
ln
e
x
dx
x
5/
2
0
4cos 3sin 1
4sin 3cos 5
x x
dx
x x
π
+
+ +
6/
9
3
1
1
x
xdx
7/
2
3
0
1
3 2
x
dx
x
+
+
8/
1
2
0
( 2 )
x
x
x e dx
+
9/
π
+
4
6
0
1 tg x
dx
cos2x
10/
+ + +
3
1
x 3
dx
3 x 1 x 3
Bµi 4: TÝnh c¸c tÝch ph©n sau:
1/
2
0
2 2
xdx
x
x+ +
2/
2
1
2 1
dx
x
x +
3/
1
2
0
ln(1 )
1
x
dx
x
+
+
4/
2
0
sin
sin cos
x
dx
x
x
π
+
5
0
.sin
x
xdx
π
6/
2
2 3
0
sin .cos .
x
x dx
π
GV: NguyÔn Thanh S¬n
14
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
7/
1
1 3ln .ln
e
x
x
dx
x
+
8/
3
3 2
0
1
x
x dx+
9/
+
+
2
4
2
0
x x 1
dx
x 4
10/
+
3
7
8 4
2
x
dx
1 x 2x
Bµi 5: TÝnh c¸c tÝch ph©n sau:
1/
3
5 3
2
0
2
1
x x
dx
x
+
+
2/
3
3
0
1
ln .
x
dx
x
+
3/
1
2
0
( 1)
x
x
e dx+
4/
3
2
4
cos 1 cos
tgx
dx
x
x
π
π
+
5/
2
2
1
1
2
x
dx
x
+
6
2
0
sin
1 cos
x x
dx
x
π
+
7/
1
0
1
x
dx
e+
8/
4
2
0
.
x
tg xdx
π
9/
π
+
2
4 4
0
cos2x(sin x cos x)dx 10/
π
+
4
0
x
1 tgxtg sin xdx
2
Bµi 6: TÝnh c¸c tÝch ph©n sau:
1/
5
3
( 2 2 )
x
x d
+
x 2/
2
2
2
0
.
( 2)
x
x e
dx
x +
3/
4
1
2
5 4
dx
x
+ +
4/
1
2 2
0
(4 2 1).
x
x
x e d
x
5/
2
2 2
0
4
x
x dx
6/
1
2
0
2 5
dx
x x 2+ +
7/
2
0
sin 2
cos 1
x
dx
x
π
+
8/
1
2
0
( 1)
x
dx
x +
9/
π
+
4
sin x
0
(tgx e cosx)dx 10/
π
+
2
2 2
0
sinx
dx
x
sin x 2 cosx.cos
2
Bµi 7: TÝnh c¸c tÝch ph©n sau:
GV: NguyÔn Thanh S¬n
15
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n
LuyÖn Thi §¹i Häc vµ Cao §¼ng
1/
2004
2
2004 2004
0
sin
sin cos
x
dx
x
x
π
+
2/
3
2
0
4sin
1 cos
x
dx
x
π
+
3/
2
0
sin 2 .cos
1 cos
x
x
dx
x
π
+
4/
2
0
sin 2 sin
1 3cos
x
x
dx
x
π
+
+
5/
2
sin
0
( cos ) cos .
x
e x x
π
+ dx
6/
3
2
6
cos
sin 5sin 6
x
dx
x x
π
π
+
7/
2
2
1
x
dx
x x+
8/
2
0
co x
dx
s
7 cos 2
x
π
+
9/
(
+ +
)
0
2 x
3
1
e x 1 dx
x 10/
π
2
3
2
0
xsin x
dx
sin2x cos x
Bµi 8: TÝnh c¸c tÝch ph©n sau.
1/
1
2004
1
sin .
x
x dx
2/
2
0
.sin .cos .
x
x x
dx
π
3/
2
3
0
.cos .
x
x dx
π
4/
42
4 4
0
cos x
cos sin
x
x
π
+
5/
3
2
0
sin
cos
x
x
dx
x
π
+
6/
1
2
0
.
x
tg xdx
7/ CM:
0
2
0
2
sin sin
x
x
dx dx
x x
π
π
>
8/ CM:
4 4
0
2
sin cos
dx
x x
π
π π
+
< <
9/
π
e 10/
2
3x
0
sin5xdx
π
x c x
2
4
0
os dx
Chóc c¸c em lµm bµi tèt !
GV: NguyÔn Thanh S¬n
16
| 1/16

Preview text:

Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng N g N u g yªn u yªn h µ h m µ m - - t Ý t c Ý h c p h p © h n © n v µ v µ c ¸ c c ¸ c ø n ø g n g d ôn ô g n g
a.tÝnh tÝch ph©n b»ng ®Þnh nghÜa
Ph
¬ng ph¸p:
1. §Ó x¸c ®Þnh nguyªn hµm cña hµm sè f(x), Chóng ta cÇn chØ ra ®îc hµm sè F(x)
sao cho: F’(x) = f(x).
• ¸p dông b¶ng c¸c nguyªn hµm c¬ b¶n, c¸c hµm sè s¬ cÊp . n
• Neáu gaëp daïng caên thöùc ñöa veà daïng soá muõ phaân theo coâng thöùc: m n m
x = x , (m ≠ 0) • P(x) Neáu gaëp daïng
thöïc hieän pheùp chia theo coâng thöùc: n x m m x x mn 1 = x , (m > ) n ; = , (m < ) n . n n n m x x x
Coâng thöùc ñoåi bieán soá (loaïi 2):
Tích phaân daïng: f ( g(x)).g '(x)dx
Ñaët g(x) = u => g’(x)dx = du
f (g( x))g '( x)dx = f (u)du ∫ ∫ . 2.
Mét sè d¹ng c¬ b¶n:
1. Sö dông c«ng thøc c¬ b¶n:
1. Daïng : (ax + bdx(α ≠ 1, a ≠ 0) ñaët u = ax + b ⇒ du = adx dx= ∫ ⇒ 1 du a α + uα + + α α (ax b) 1 ! 1
(ax + b) dx = u du = + = + ∫ ∫ ( α + ) C C a a 1 (α + 1)a α
2. Daïng : ∫ ( n
ax +b ) n 1 x
dx, (a ≠ 0,α ≠ 1) ñaët n nn− 1 1 1
u=ax + b du = . a . n x dx x dx = du an α 1 + n α 1 + α − 1 α u (ax + b n n 1
(ax + b) x dx = u du = + C = C ∫ ∫ ) + an na (α +1) na (α +1) 3. Daïng: α
a). cos sin xdx(α ≠ 1 − ) ∫ ( Ñaët α α 1 − α+1
u = cos x du = − sin xdx) ⇒ cos x sin xdx = − u du = cos x + C ∫ ∫ (α + 1) α )
b . sin x cos xd ( x α ≠ −1) ∫ (Ñaët α α 1 α 1 +
u = sin x du=cos xdx sin x cos xdx = u du = sin x + ∫ ∫ C α +1 dx 1 4. Daïng: = ln ax +b + ( C a ≠ 0) ∫ ax + b a P(x) Neáu gaëp :
vôùi baäc P(x) ≥ 1 : laøm baøi toaùn chia. ax + b
GV: NguyÔn Thanh S¬n 1
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 5. Daïng: dx ∫ Ñaët 2
cos x(a + btgx) bdx dx 1 dx 1 du 1
u = a + btgx du = ⇒ = du; =
= l a + btgx + C ∫ ∫ n 2 2 2 cos x cos x b
co s x (a +btgx) b u b 2. Coâng thöùc: u a u( x) a u '( ) u x dx = a du = + C ∫ ∫ ln a
3. Coâng thöùc ñoåi bieán soá (loaïi 1):
Tích phaân daïng: f ( g(x)).g '(x)dx
Ñaët g(x) = u => g’(x)dx = du
f (g (x ))g '(x)dx = f (u )du ∫ ∫ 4. Coâng thöùc : du 1 u a a). = ln + C.(a ≠ 0) ∫ α 2 u a 2a u + a du 2 b).
= ln u + u + k +C ∫ 2 u +k 5. Coâng thöùc : 2 x x + k k 2 2 x + k dx =
+ ln x + x + k + C 2 2
3. Mét sè d¹ng thêng gÆp: dx (mx+n)dx dx (mx+n)dx 1. Tích phaân daïng: 1). 2). 3). 4). ∫ ∫ ∫ ∫ 2 2 2 2
ax + bx + c
ax + bx + c
ax + bx + c
ax + bx + c
Tuyø vaøo moãi daïng aùp duïng caùc coâng thöùc tính tích phaân chæ trong baûng sau: Töû soá baäc nhaát Töû soá haèng soá Maãu soá khoâng caên du − = 1 ln u + C ∫ = ln + ∫ du u a C u 2 2 u a 2a u + a Maãu soá coù caên
du = 2 u + C ∫ 2 = ln + + + ∫ du u u k C u 2 u + k a a 2 2 2
x + ax = (x + ) − ( ) 2 2
Söû duïng haèng ñaúng thöùc: 2 2 ⎡ b b ⎤ ⎛ ⎞ ⎛ ⎞ 2
ax + bx = a x + − ⎜ ⎟ ⎜ ⎟ ⎥ ⎝ 2a ⎢ ⎠ ⎝ 2a⎠ ⎣ ⎥⎦
GV: NguyÔn Thanh S¬n 2
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng
4. TÝch ph©n cña c¸c ph©n thøc h÷u tØ: ax + b A B C = + + 3 2
cx + dx + ex x x m x n
Giaûi daïng naøy ta coù hai caùch: −
Caùch 1: Ñoàng nhaát hai veá: Cho taát caû caùc heä soá chöùa x cuøng baäc baèng nhau. −
Caùch 2: Gaùn cho x nhöõng giaù trò baát kyø. Thöôøng thì ta choïn giaù trò ñoù laø nghieäm cuûa maãu soá
5. TÝch ph©n cña c¸c hµm sè lîng gi¸c: 1. Daïng: 1 1 cosn xd , n
x sin xd ,
x 1). cosaxdx=
sin ax + C, sinaxdx=- cos n ax + ,
C 2). co s xdx ∫ ∫ ∫ ∫ ∫ a a Phöông phaùp: ⎧ 1+ cos 2x 2 cos x = ⎪ 2 ⎪ ⎪ 1− cos 2x  n = chaün : haï baëc 2 sin x = ⎨ 2 ⎪ ⎪ 1 sin x cos x = sin 2x ⎪⎩ 2  n leõ: Vieát: 2 p+1 2 p 2 cos = cos cos = (1− sin )p xdx x xdx x cos dx
Ñaët u = sin x du = cos xdx
2. Daïng: sinm cosn u ud u
a. m,n cung chaün: haï baäc.
b. m,n leû (moät trong hai soá leû hay caû hai cuøng leû).
Neáu m leû: Ta vieát: m m−1 sin u = sin usin u thay m 1 − 2 2 m 2 2 sin u =1 −cos
u va sin u = (1 −cos u) sin u
Neáu m, n leû: laøm nhö treân cho soá muõ naøo beù 3. Daïng: n tg xdx hay ∫ cot n g xdxdx dx Chuù yù: 2 2 d(tgx) =
= (1+ tg x)d x
= (1+ tg x)dx = tgx + C ∫ ∫ 2 cos 2 x co s x  Töông töï: dx dx 2 2 d(cot gx) = − = (
− 1 + cotg x)dx
= (1 + cotg x)dx = −cotgx + C ∫ ∫ 2 sin 2 x sin x sin xdx
 Ngoaïi tröø: tgxdx =
= ln cos x + C (u=cosx) ∫ ∫ cos x Ñeå tính: n tg xdx Phöông phaùp: Laøm löôïng 2
(tg x +1) xuaát hieän baèng caùch vieát:
GV: NguyÔn Thanh S¬n 3
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 2 2 2 − 2 2 n−4 2 n 1 − 2 * n n tg x = tg (
x tg x + 1) − tg
(tg x + 1) + ...+ ...+ (−1) (tg x + 1) + ( 1) 1 n − 2 1 − 2 3 − 2 2 n 5 − 2 n 2 − 2 n 1 * n n tg x tg
x(tg x 1) tg (tg x 1) ... ... ( 1)
tgx(tg x 1) ( 1) − = + − + + + + − + + − tgx 4. Daïng: dx 2
(tg x +1)dx hay ∫ ∫ 2 cos n x Ta vieát: 2 2 n 1 − 2 (tg x 1 + )dx = (tg x 1 + ) (tg x 1 + )dx ∫ ∫ Ñaët u = tgx 2 2 n 2 ( 1) (tg x+1) dx ( 1)n du tg x dx u − = + ⇒ = + 1 du ∫ ∫ dx Chuù yù: 1 2 2 = 1+ , = (1 n tg x + tg x) dx ∫ ∫ 2 cos 2n x co s x m m tg x cotg x 5. Daïng: d , x or dx ∫ ∫ cosn n x sin x Phöông p haùp:  Neáu n chaün : Thay 1 n m tg n n −2 2 xdx 2 m 2 m 2 = (1+ tg ) x ;
= tg x(1+ tgx) dx = tg x(1+ tgx) (tgx+ 1)dx ∫ ∫ ∫ cosn x cos n x m tg x n −2 Ñaët: 2 m 2 2
u =tgx du=(1+tg x)dx
dx = u (1+u ) du ∫ ∫ n cos x m 1 − tgx tg x tgx 1 tgx
 Neáu m leû vaø n leû : = . Ñaët u = du= dx n 1 cosx cos − x cos x cos x cosx Thay: m 1 − m 1 − 1 tgmx 1 1 tgx 2 n 1 − 2 2 tgx = − 1 dx = ( − 1) . . dx = (u − 1) u du ∫ ∫ ∫ 2 n 2 n 1 cos x cos x cos x cos − x cos x
6. Daïng: sin mx cos nxdx; sinmxsinnxdx ; cosmxcosnxdx ∫ ∫ ∫
Aùp duïng caùc coâng thöùc bieán ñoåi: 1
sinmxcosnx= [sin(m + n)x + sin(m n)x] 2 1
sinmxsinnx= [cos(m n)x co s(m + n)x] 2 1
cosmxcosnx= [cos(m n)x +cos(m +n)x] 2
GV: NguyÔn Thanh S¬n 4
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng I.
TÝnh c¸c tÝch ph©n bÊt ®Þnh.
Bµi 1: Dïng c¸c c«ng thøc c¬ b¶n tÝnh c¸c tÝch ph©n sau:
1 x − 3 1/ 2 (3x + 2x − )dx ∫ 2/ dx ∫ x 2 x 3 1 3/ 2( x − )dx ∫ 4/ 3 4 (3 x − 4 x + )dx ∫ 4 x x x e− 5/ x e (2 − )dx ∫ 6/ x 2 x 3x 2 .3 4 dx ∫ 3 2 3 x 2 7/
cos x(1+ t gx )dx ∫ 8/ (4 sin x − )dx ∫ 2 cos x x dx 9/ 2 2 cos dx ∫ 10/ ∫ 2 2 2 cos x sin x
Bµi 2: TÝnh c¸c tÝch ph©n sau ®©y: 1 2 1/ 10 x(x −1) dx 2/ ∫ ( − ) ∫ dx 2 x + 1 (x + 1) 8x 3/ 2 x x + 9dx ∫ 4/ dx ∫ 2 2 4 (x +1) 3. x e dx 5/ dx ∫ 6/ ∫ x x 2 ln x 7/ sin 7x.cos 3x.dx 8/ ∫ 4 cos xdx ∫ sin x cos 2x 9/ dx ∫ 10/ dx ∫ 3 cos x 2 2 sin x.cos x
II: TÝnh c¸c tÝch ph©n x¸c ®Þnh sau:
Ph¬ng ph¸p: b a
f (x )dx = F (x) = F (b)− F (a ) ∫ . b a 1.
C¸c ph¬ng ph¸p tÝnh tÝch ph©n.
• ¸p dông b¶ng c¸c nguyªn hµm c¬ b¶n, c¸c hµm sè s¬ cÊp .
• TÝnh tÝch ph©n b»ng ph ¬ − ng ph¸p ph©n tÝch.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p ®æi biÕn d¹ng I.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p ®æi biÕn d¹ng II.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p ®æi biÕn d¹ng III.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p tÝch ph©n tõng phÇn.
• TÝnh tÝch ph©n b»ng ph−¬ng ph¸p sö dông nguyªn hµm phô.
• Mét sè thñ thuËt ®æi biÕn kh¸c, tÝch ph©n chøa biÓu thøc gi¸ trÞ tuyÖt ®èi... 2.
Chøng minh bÊt ®¼ng thøc tÝch ph©n
GV: NguyÔn Thanh S¬n 5
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng
§Ó chøng minh bÊt ®¼ng thøc tÝch ph©n , ta thêng sö dông chñ yÕu 4 tÝnh chÊt
sau: víi c¸c hµm sè f(x), g(x) liªn tôc trªn [a;b] ta cã:
b 1.
NÕu f (x) ≥ 0,∀x∈[ ;
a b] th× f (x )dx ≥ 0 ∫a b b 2.
NÕu f (x) ≥ g(x), x ∀ ∈[ ;
a b] th× f (x)dx g(x)dx ∫ ∫ a a
DÊu ®¼ng thøc chi x¶y ra khi f(x) = g(x), x ∀ [ ∈ ; a ] b 3.
NÕu m f (x) ≤ M , x ∀ ∈[ ; a ] b th× b
m (b a ) ≤
f (x )dx M (b a ) ∫ − a b b 4. f ( ) x dx f ( ) x d . x ∫ ∫ a a
Bµi 1: TÝnh c¸c tÝch ph©n x¸c ®Þnh sau: 2 1 1/ 2 3 4 (3x − 2x + 4x )dx 2/ 3 2 (−x + 3x) dx ∫ ∫ 0 1 − 4 x 2 2 x − 2x 3/ 4 (3x − e )dx ∫ 4/ dx ∫ 3 x 0 1 0 2 x − x − 5 5 dx 5/ dx ∫ 6/ − ∫ − + − − x 3 x 1 x 2 1 2 π 1 2 x e − 4 2 3 4sin x 7/ dx ∫ 8/ dx ∫ x e + 2 1 + cos x 0 0 π π 3 4 2 2tg x +5 9/ sin x.cos 3xdx ∫ 10/ dx ∫ 2 π sin x 0 6 π π 2 cos 2x 4 π 11/ dx ∫ 12/ 2 sin ( − x)dx ∫ sin x − cos x 4 0 0
Bµi 2: TÝnh c¸c tÝch ph©n cã chøa trÞ tuyÖt ®èi sau: 2 4 1/ x − 1 dx ∫ 2/ 2
x 6x + 9dx 2 − 1 4 1 3/ 2
x 3x + 2 dx 4/ x e −1 d ∫ x 1 − −1
GV: NguyÔn Thanh S¬n 6
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 3 0 5/ (3 + x )dx ∫ 6/ 2 x x + 1 dx ∫ 3 − −2 3 π π 4 7/ cos x dx ∫ 8/ cos 2x + 1dx0 π 4 π 3 9/ cos x sin xdx ∫ 10/ x 2 4 dx 0 0
Bµi 3: Chøng minh c¸c B§T sau: 3 1 2 x + 4 5 1/ 3 ≤ x + 1dx ≤ ∫ 6 2/ 1≤ dx ≤ ∫ 2 2 0 0 π 2 dx 2 π 5π 3/ 1 ≤ ≤ 2 ∫ 4/ 2 ≤ 3 + sin xdx ≤ ∫ 2 x +1 2 4 0 π 4 3π π 4 π dx π 2 3π π 5/ ≤ ≤ ∫ 6/ 2 ≤ tg x + 3dx ≤ ∫ 2 4 − π 3 2 sin x 2 4 2 0 4 π 2 π π 2 2 2 7/ sin x 2 ≤ + e dx ≤ e ∫ 8/ x 1 2x e dx ≤ e dx ∫ ∫ 2 0 1 1 π π π π 2 2 2 2 9/ 3 2 sin xdx ≤ sin xdx ∫ ∫ 10/ sin 2xdx ≤ 2 sin xdx ∫ ∫ 0 0 0 0
B: Ph¬ng ph¸p ®æi biÕn:
Ph¬ng ph¸p: 1 1 1 1. Daïng: ( n , m mn mn-1 R x x )dx ∫ Ñaët mn t = x
x=t dx=mnt dt 1 1 ⎡ ⎤ 2. Daïng: ( + ) n, ( + ) m R ax b ax b dx ∫ ⎢ ⎥ ⎣ ⎦ 1 mn Ñaët mn mn-1 mn
t=(ax+b) ax+b=t dx= t dt a 3. Daïng : dx dx dx R(lnx)
ñaët u = lnx du = R(lnx) = ( R ) u du ∫ ∫ x x x
GV: NguyÔn Thanh S¬n 7
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 4. Daïng: x R(e )dx ñaët ∫ du du x u=e x
du=e dx dx= x R(e )dx = ( R ) u ∫ ∫ u u 5. Daïng : 2 ( R , x
ax + bx + c )dx ∫ Ñöa tam thöùc 2
ax + bx + c veà daïng: 2 2 2
u +m ,u -m2 hay. 2 2 m -u
Ñoåi tích phaân thaønh 1 trong caùc daïng sau: 2 2 1). R(u, m -u )du. ∫ 2 2 2). R(u, m +u )du.2 2 3). R(u, m -u )du.
Neáu döôùi daáu tích phaân coù chöùa 2 2 m -u ñaët 2 2
u=msint m -u =mcost 2 2m m +u ñaët 2 2
u=mtgt m +u = cost 2 2 m u -m ñaët 2 2 u=
u -m =mtgt cost
6. Daïng : dx
Gaëp tích phaân naøy ñaët: 1 t= 2 (mx + ) n
ax + bx + c mx+n
Bµi 1: TÝnh c¸c tÝch ph©n sau b»ng ph¬ng ph¸p ®æi biÕn lo¹i I 1 2x 4 1/ dx ∫ 2/ 2 x x + 9dx ∫ 2 1+ x 0 0 10 dx 1 3/ ∫ 4/ x 1− xdx ∫ 5x −1 2 0 5 7 x 5/ x. x + 4dx ∫ 6/ dx ∫ 3 x +1 0 0 5 2 2 3x 7/ 3 2 x . x + 4dx ∫ 8/ dx ∫ 3 3 0 + 0 1 x 2 4 dx dx 9/ ∫ 10/ ∫ x 1 e− − x 1 1 x.e π 4 tgx+ 2 e e 1+ 3ln x 11/ dx ∫ 12/ dx ∫ 2 cos x x 0 1
GV: NguyÔn Thanh S¬n 8
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng π e 2 1+ ln x 6 13/ dx ∫ 14/ 1+ 4 sin x .cos xdx ∫ x 1 0 π π 4 1 2 15/ cot gx(1 + )dx ∫ 16/ 2 cos x.sin 2xdx ∫ 2 sin x π 0 6 π / 6 π sin 2x / 2 3 cos x.sin x 17/ dx ∫ 18/ dx ∫ 2 2 2sin x + cos x 2 1 + sin x 0 0 8 π 1 / 3 19/ dx ∫ 20/ 3 cos x.sin x.dx ∫ 2 + 3 x x 1 0
Bµi 2 : TÝnh tÝch ph©n b»ng ph¬ng ph¸p ®æi biÕn lo¹i II: 3 0 2 1 1/ 2 1− x dx ∫ 2/ dx ∫ 2 3 1 − 0 (1 − x ) 2 1 dx 3/ 2 2 x 4 − x dx ∫ 4/ ∫ 2 x + 4x + 7 1 5 − 2 4 / 3 2 x − 4 5/ dx ∫ 6/ dx ∫ 2 3 x 0 x + 4 2 1 − dx 6 dx 7/ ∫ 8/ ∫ 2 − 2 − 2 − x x 1 2 3 x x 9 6 3 dx 2 9 + 3x 9/ ∫ 10/ dx ∫ 2 + + 2 x 1 − x x 1 1 1/ 2 1 + x 2 x + 2 11/ dx ∫ 12/ dx ∫ 1 − x 2 x −1 1 − 1 dx 3 dx 13/ ∫ 14/ ∫ 2 2 (x +1)(x + 2) 2 x + 3 0 0
Bµi 3 : TÝnh tÝch ph©n c¸c hµm sè höu tØ: 2 2 dx dx 1/ ∫ 2/ ∫ x(2x +1) 2 x − 6x + 9 1 1 2 6x + 7 1 x 3/ dx ∫ 4/ dx ∫ x 4 2 x + x + 1 1 0
GV: NguyÔn Thanh S¬n 9
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 4 x + 1 1 xdx 5/ dx ∫ 6/ ∫ 2 x −3x + 2 2 (x + 1) 3 0 π π 6 sin 2xdx 3 cos x 7/ ∫ 8/ dx ∫ 2 2 2sin x + cos x 2 − + π sin x 5sin x 6 0 6 2 dx 3 2 9 + 3x 9/ ∫ 10/ dx ∫ (x + 1)(x + 2) 2 x 0 1 1/ 2 dx 4 3 2 (x + x − x + 1)dx 11/ ∫ 12/ ∫ 2 4x − 4x − 3 4 x −1 0 2 2 dx 2001 x dx 13/ ∫ 14/ ∫ (x + 1)(x + 2) 2 2001 (x + 1) 0 1/ 2 dx 1 3dx 15/ ∫ 16/ ∫ 4 2 x − 2x +1 3 1 + x 0 0
c: Ph
¬ng ph¸p tÝch ph©n tõng phÇn: b b
Coâng thöùc: b
u.dv = u.v v.du ∫ ∫ a a a
• Coâng thöùc cho pheùp thay moät tích phaân udv ∫ phöùc taïp baèng 1
tích phaân vdu ñôn giaûn hôn. ∫
• Coâng thöùc duøng khi haøm soá döôùi daáu tích phaân coù daïng: − Daïng tích soá: − Haøm soá logaric.
− Haøm soá löôïng giaùc. * Daïng n
x f(x) vôùi f(x) laø haøm x e , ln x,sin , x cos . x • Khi tính choïn:
− Haøm soá phöùc taïp ñaët baèng u.
− Haøm soá cos tích phaân ñöôïc cho trong baûng tích phaân thöôøng duøng laøm dv
Bµi 1: Dïng ph¬ng ph¸p tÝch ph©n tõng phÇn h·y tÝnh:
GV: NguyÔn Thanh S¬n 10
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng π 1 1/ x sin xdx 2/ 2 2x (x + 1) e dx ∫ ∫ 0 0 π 4 e 3/ 2 x sin 2xdx ∫ 4/ 2 (x ln x) dx ∫ π 1 6 π π 4 3 xdx 5/ 2 x(2 cos x − 1)dx ∫ 6/ ∫ 2 π sin x 0 4 e ln x 4 7/ dx ∫ 8/ x e dx ∫ 2 (x +1) 1/ e 1 2 π 4 3 9/ x cos xdx ∫ 10/ 2 ln(x + x + 1)dx ∫ 0 0 π 1 2 11/ 2 2 x (x +1) .e dx 12/ ∫ 2 (x 1 + ).sin x.dx ∫ 0 0 π 2 ln(1+ x) 4 13/ dx ∫ 14/ x.sin x.cos x.dx ∫ 2 x 1 0
Bµi 2: TÝnh c¸c tÝch ph©n sau:
2 e e ln x 1/ dx ∫ 2/ x ln xdx ∫ 2 x 1 1 e 2 ⎛ e ln x ⎞ 3/ dx ∫⎜ ⎟ 4/ 2 ln xdx ∫ ⎝ x ⎠ 1 1 π e 2 5/ 2 (x ln x) dx 6/ ∫ x e (x + sin x)dx ∫ 1 0 π π x 7/ x 2 e sin ( x π )dx 8/ ∫ x e sin dx ∫ 2 0 0 x + 2 2 2 + 9/ (1 sin x)e 1 x dx ∫ 10/ dx ∫ 1+ cos x 2 x 3
D: øng dông h×nh häc cña tÝch ph©n
GV: NguyÔn Thanh S¬n 11
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng
Bµi 1: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (P): y = x2 - 2x + 2 ;tiÕp tuyÕn (d)
cña nã t¹i ®iÓm M(3;5) vµ Oy.
Bµi 2: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (P): y = x2 + 2x vµ ®−êng th¼ng (d): y = x + 2. 2 3x 5x + 5
Bµi 3: Cho hµm sè y =
(C) . TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi (C) ; tiÖm x 1
cËn cña nã vµ x = 2 ; x= 3.
Bµi 4: Cho hµm sè y = ( + )( ( − )2 x 1 x
2 (C) . TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi (C) vµ
®−êng th¼ng : x - y + 1 = 0. 4 x 3
Bµi 5: Cho hµm sè y = 2
x − (C) . TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi (C) vµ trôc 2 2 hoµnh.
Bµi 6: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (P): y2 = 4x vµ ®−êng th¼ng d : 4x - 3y - 4 = 0 .
Bµi 7: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (P): y2 + x - 5 = 0 vµ ®−êng th¼ng d : x + y - 3 = 0 .
Bµi 8: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng y = 0 ; y = tgx ; y = cotgx
(0 x ≤ π) .
Bµi 9: TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng (C): x2 + y2 = 8 vµ ®−êng (P): y2 = 2x .
Bµi 10: TÝnh thÓ tÝch h×nh trßn xoay do h×nh ph¼ng giíi h¹n bëi c¸c ®−êng : y =
4 vµ y = -x + 5 quay quanh Ox. x 2 x 3 + x + 3
Bµi 11: Cho hµm sè y =
(C) . Gäi (H) lµ phÇn h×nh ph¼ng giíi h¹n bëi (C) x + 2
trôc Ox vµ hai ®−êng th¼ng x = -1 , x = 0. TÝnh thÓ tÝch khèi trßn xoay t¹o thµnh khi (H)
quay mét vßng xung quanh Ox. 2 x x + + 1
Bµi 12: Cho hµm sè y =
(C) . Gäi (H) lµ phÇn h×nh ph¼ng giíi h¹n bëi (C) trôc x + 1
Ox vµ hai ®−êng th¼ng x = 0, x = 1. TÝnh thÓ tÝch khèi trßn xoay t¹o thµnh khi (H) quay mét vßng xung quanh Ox.
Bµi 13: TÝnh thÓ tÝch vËt thÓ trßn xoay ®−îc t¹o thµnh do h×nh ph¼ng (D) giíi h¹n bëi :
y = x , y = 2 - x vµ y = 0 khi ta quay quanh (D) quanh Oy.
Bµi 14: TÝnh thÓ tÝch vËt thÓ trßn xoay ®−îc t¹o thµnh do h×nh ph¼ng (D) giíi h¹n bëi :
GV: NguyÔn Thanh S¬n 12
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng y = x
xe , x = 1 vµ y = 0 ( 0 x1
) khi ta quay quanh (D) quanh Ox.
Bµi 15: TÝnh thÓ tÝch vËt thÓ trßn xoay ®−îc t¹o thµnh do h×nh ph¼ng (D) giíi h¹n bëi : y = π π sinx , y = cosx , x = vµ (0 x
) khi ta quay quanh (D) quanh Ox. 2 2 Bµi 16:
TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng sau: 1/ 2
y = 0; y = x − 2x vµ x = -1; x = 2. 2/ 2
y = x − 4x + 3 vµ y = x + 3 2 x 2 x 3/ y = 4 − vµ y = 4 4 2 ln x 4/ y = ; y = 0; x =1 vµ x = e . 2 x 5/ 2 y = x x +1; Ox vµ x = 1.
E. D¹ng thêng gÆp trong c¸c k× thi §H-C§
Bµi 1: TÝnh c¸c tÝch ph©n sau: 1 3 ln 3 x 1/ x dx ∫ 2/ e dx ∫ 2 x +1 x 3 0 0 (e +1) π 0 2 3/ 2 3 x( x e + x +1) ∫ dx 4/ 6 3 5 1− cos x.sin . x cos x.dx 1 − 0 2 3 1 5/ dx ∫ 6/ 3 2 x 1− x dx ∫ 2 5 x x + 4 0 π 4 2 − ln 5 2x 7/ 1 2sin x e dx dx ∫ 8/ ∫ 1+ 2 sin 2x x − 0 ln 2 e 1 ln 5 2 x x + 9/ (e 1).e 2 2 dx ∫ 10/ (3x −1) x +3x − ∫ 4 dx x − ln 2 e 1 0
Bµi 2: Cho hµm sè: f(x) = a +b . x x e 3 ( x+ 1) 1
T×m a, b biÕt f’(0)=-22 vµ f (x)dx = 5 ∫ 0
Bµi 3: TÝnh c¸c tÝch ph©n sau:
GV: NguyÔn Thanh S¬n 13
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng 2 1 1/ 2 x x dx ∫ 2/ 2 3. x x e dx ∫ 0 0 e 2 + 3/ x 1 1 ln x .dx ∫ 4/ 3 (cos x + )dxx x + 1 − x 1 π 1 2 2 5/ x dx ∫ 6/ sin . x sin 2 . x sin 3 . x dx ( x +1) x +1 0 0 π π 2 2 7/ 4 4
cos 2x (sin x+ cos ) xdx 8/ 5 cos . x dx ∫ 0 0 3 5 x + 3 2x 1 9/ ∫ dx 10/ 2 3 (1 − x ) dx ∫ 2 0 x + 1 0
Bµi 3: TÝnh c¸c tÝch ph©n sau: π 2 3 7 1/ x 3 3 ( cos x − sin x )dx ∫ 2/ dx ∫ 8 4 1 + x −2 x 0 2 e e 3/ x 2 2 ln x ln xdx ∫ 4/ dx ∫ 3 x 1 1 π 2 9 5/
4 cos x − 3sin x + 1 dx ∫ 6/ 3 x 1− xdx
4 sinx + 3cosx + 5 0 1 2 + 1 7/ x 1 dx ∫ 8/ 2 ( + 2 ) −x x x e dx ∫ 3 3x + 2 0 0 π 6 1+ 4 tg x 3 x − 3 9/ ∫ dx 10/ ∫ dx cos2x 3 x 1 x 3 1 + + + 0 −
Bµi 4: TÝnh c¸c tÝch ph©n sau: 2 2 1/ xdx ∫ 2/ dx ∫ 2 + x + 2 − x x 2x + 1 0 1 π 1 + 2 3/ ln(1 x) sin x dx ∫ 4/ dx ∫ 2 1 + x sin x + cos x 0 0 π π 2 5 . x sin xdx ∫ 6/ 2 3 sin . x cos . x dx ∫ 0 0
GV: NguyÔn Thanh S¬n 14
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng e 3 7/ 1+ 3ln . x ln x dx ∫ 8/ 3 2 x 1+ x dxx 1 0 2 4 x − x + 1 3 7 x 9/ ∫ dx 10/ ∫ dx 2 x + 4 1+ 8 x − 4 2x 0 2
Bµi 5: TÝnh c¸c tÝch ph©n sau: 3 5 3 3 3 + 1/ x + 2x x 1 dx ∫ 2/ ln x.dx ∫ 2 + x 0 x 1 0 π 1 3 3/ tgx 2 ( +1) x x e dx ∫ 4/ dx ∫ 2 + 0 π cos x 1 cos x 4 2 2 ⎛ − ⎞ π 5/ x 1 x sin x dx ∫ ⎜ ⎟ 6 dx ∫ ⎝ x+ 2 2 1+ cos − ⎠ x 1 0 π 1 4 7/ dx ∫ 8/ 2 x.tg xdx ∫ 1 x + e 0 0 π π 2 4 ⎛ x ⎞ 9/ 4 cos2x(sin x + ∫ 4 cos x)dx 10/ 1+ ∫⎜ tgxtg ⎟sinxdx 2 0 ⎝ ⎠ 0
Bµi 6: TÝnh c¸c tÝch ph©n sau: 5 2 2 x 1/ x .e
( x + 2 − x − 2 )dx 2/ dx ∫ 2 − (x + 2) 3 0 4 1 3/ 2 dx ∫ 4/ 2 2 (4 −2 1 − ). x x x e dx + + − x 5 4 1 0 2 1 5/ dx 2 2 x 4− x dx ∫ 6/ ∫ 2 2x + 5x + 2 0 0 π 2 1 7/ sin 2x x dx ∫ 8/ dx ∫ cos x + 1 2 ( x +1) 0 0 π π 4 2 sin x 9/ (tgx + ∫ sin x e cosx)dx 10/ ∫ dx x 0 2 sin x + 2 0 2 cosx.cos 2
Bµi 7: TÝnh c¸c tÝch ph©n sau:
GV: NguyÔn Thanh S¬n 15
Chuyªn ®Ò: Nguyªn hµm-TÝch ph©n LuyÖn Thi §¹i Häc vµ Cao §¼ng π π 2 2004 2 3 1/ sin x 4sin x dx ∫ 2/ dx ∫ 2004 2004 sin x + cos x 1+ cos x 0 0 π π 2 2 + 3/ sin 2x.cos x sin 2x sin x dx ∫ 4/ dx ∫ 1 +cos x 1+ 3cos x 0 0 π π 2 3 5/ cos x sin ( x e + cos ) x cos . x dx ∫ 6/ dx ∫ 2
sin x − 5 sin x + 6 0 π 6 π 2 7/ 2xdx ∫ 8/ cos x dx ∫ 2 x + x −1 7 + cos 2x 0 π 0 3 2 xsin x 9/ ( 2x e + 3 x +1)dx ∫x 10/ ∫ dx 2 sin 2x cos x −1 0
Bµi 8: TÝnh c¸c tÝch ph©n sau. 1 π 1/ 2004 x sin x.dx ∫ 2/ 2 x.sin . x cos x. ∫ dx −1 0 π 2π 2 4 3/ cos x 3 x.cos . x dx ∫ 4/ ∫ 4 4 cos x + sin x 0 0 π 3 1 5/ x +sin xdx ∫ 6/ 2 x.tg xdx ∫ 2 cos x 0 0 π 2 0 π 7/ CM: sin x sin x dx dx > dx ∫ 8/ CM: ∫ π < < 2π ∫ x 4 4 π x sin x + cos x 0 0 2 π π2 2 4 9/ ∫e3x sin5xdx 10/ ∫ x cos xdx 0 0
Chóc c¸c em lµm bµi tèt !
GV: NguyÔn Thanh S¬n 16