Lý thuyết chương Sóng cơ và Sóng âm Vật lí 12

Lý thuyết chương Sóng cơ và Sóng âm Vật lí 12 rất hay .Chúc bạn ôn tập hiệu quả và đạt kết quả cao trong kì thi !

Thông tin:
17 trang 10 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Lý thuyết chương Sóng cơ và Sóng âm Vật lí 12

Lý thuyết chương Sóng cơ và Sóng âm Vật lí 12 rất hay .Chúc bạn ôn tập hiệu quả và đạt kết quả cao trong kì thi !

42 21 lượt tải Tải xuống
Trang 1
CHƯƠNG 2. LÍ THUYT SÓNG CƠ VÀ SÓNG ÂM
I. SÓNG CƠ HỌC VÀ CÁC ĐẶC TRƯNG
1. Định nghĩa
Sóng cơ là những dao động lan truyn trong một môi trường.
d: Sóng trên mặt nước sóng truyn t một điểm dao động trên mặt nước (bng cn rung to dao
động chng hạn) đến các phn t khác thông qua môi trường là nước.
Chú ý
Khi sóng truyền đi, các phần t vt cht không truyền đi theo sóng, dao động xung quanh mt v trí
cân bằng xác định.
2. Phân loi
- Sóng cơ chia làm 2 loại: sóng ngang và sóng dc.
+ Sóng ngang: sóng trong đó các phân t của môi trường dao động theo phương vuông góc với
phương truyền sóng.
Ví d: Sóng trên mặt nước là sóng ngang.
+ Sóng dc: sóng trong đó các phần t của môi trường dao động theo phương trùng với phương truyền
sóng.
Ví d: Sóng âm là sóng dc, phn t môi trường là khí.
STYDY TIP
- Tr trường hp sóng mặt nước, sóng ngang ch truyn trong cht rn.
- Sóng dc truyền được c trong cht khí, cht lng và cht rn.
- Sóng cơ không truyền được trong chân không.
3. Các đặc trưng của mt sóng hình sin
3.1. Biên độ ca sóng
- Biên độ A của sóng là biên độ dao động ca mt phn t của môi trường có sóng truyn qua.
- Đơn vị: m, thông thường là cm.
3.2. Chu kì, tn s ca sóng
- Chu kì T của sóng là chu kì dao độngca mt phn t của môi trường có sóng truyền qua. Đơn vị: giây.
- Tn s f ca sónng s dao động ca mt phn t môi trường sóng truyn qua trong mt khong
thời gian. Đơn vị: Héc (Hz).
1 N
f
Tt
==
N: s dao động thc hiện được trong khong thi gian:
t
.
Chú ý
Khi sóng truyền đi, tần s sóng không thay đổi
Trang 2
3.3. Tốc độ truyn sóng
- Tốc độ truyn sóng v là tốc độ lan truyền dao động trong một môi trường.
- Đối vi mỗi môi trường, tốc độ truyn sóng v có mt giá tr không đổi.
Nhn xét: Tốc độ truyn sóng ph thuc vào:
+ Bn cht của môi trường (mật độ, tính đàn hồi của môi trường,…)
+ Nhiệt độ.
Lưu ý
Tốc độ truyn sóng gim theo th t: rn, lng, khí: v
r
> v
l
> v
k
3.4. Bước sóng
- c sóng
quãng đường sóng truyền được trong mt chu kì, hay khong cách ngn nht
giữa hai điểm trên cùng phương truyền sóng mà tại đó dao động cùng pha.
v
vT
f
==
STUDY TIP
- Khong cách gia hai ngọn (đỉnh) sóng liên tiếp là một bước sóng.
- Khong cách gia n ngọn (đỉnh) sóng liên tiếp là
( )
1n
c sóng.
3.5. Năng lượng sóng
- Năng lượng sóng là năng lượng dao động ca các phn t môi trường có sóng truyn qua.
II. PHƯƠNG TRÌNH SÓNG
1. Phương trình sóng
- Xét mt sóng hình sin lan truyn trong một môi trường, sóng này phát ra t mt nguồn điện O. Gi s
phương trình dao động ti O có dng
( )
0
cos
O
u a t

=+
Trong đó:
*
là li độ ti O ti thời điểm t (m)
* a là biên độ (m)
*
là tn s góc ca sóng (rad/s)
*
0
là pha ban đầu (rad)
- Xét một điểm M nằm trên phương truyn sóng, cách O mt khong
d OM=
. Nếu b qua mất mát năng
ợng, thì biên độ ca M bằng biên độ ca nguồn O, dao động ti M s tr pha hơn dao động ti ngun O
mt góc
2d
. Phương trình dao động ti M có dng
0
2
cos
M
d
u a t


= +


Trang 3
- Nếu sóng truyn theo chiều dương Ox
( )
0x
. Khi đó
d x x==
. Phương trình sóng tại M có dng
00
22
cos cos
M
dx
u a t a t


= + = +
- Nếu sóng truyn theo chiu âm Ox
( )
0x
. Khi đó
d x x= =
. Phương trình sóng tại M có dng
00
22
cos cos
M
dx
u a t a t


= + = + +
2. Mt s tính cht ca sóng suy ra t phương trình sóng
- Xét phương trình sóng tại một điểm M bt kì, cách ngun c định O phương trình
( )
00
cosu a t

=+
mt khong là d, ti thời điểm t. Phương trình sóng tại M có dng:
00
2 2 2
cos cos
M
dd
u a t a t
T

= + = +
T phương trình trên, ta thấy rng:
+ Nếu gi nguyên d, thì
M
u
ch ph thuc vào biến t, ta nói rng
M
u
tun hoàn theo thi gian vi chu kì T.
Bi vì
( ) ( )
00
2 2 d 2 2 d
cos . cos 2
M
u t T a t T a t
TT

+ = + + = + +
( )
0
2 2 d
cos
M
a t u t
T


= + =


+ Nếu gi nguyên t, thì
M
u
ch ph thuc vào biến d, ta nói rng
M
u
tun hoàn theo không gian vi chu
(tc là c sau mi khoảng có độ dài bng một bước sóng, sóng li có hình dng lp lại như cũ). Bởi vì
( )
( )
00
2
2 2 2
cos cos 2
M
d
d
u d a t a t
TT


+


+ = + = +




( )
0
22
cos
M
d
a t u d
T


= + =


.
Vy, sóng có tính cht tun hoàn theo không gian và thi gian.
III. GIAO THOA SÓNG
1. Định nghĩa
- Hai ngun kết hp là hai nguồn dao động có cùng tn s và có độ lệch pha không đổi theo thi gian.
- Hiện tượng giao thoa ca sóng hiện tượng hai sóng kết hợp dao động cùng phương gặp nhau, giao
thoa vi nhau.
Trang 4
Trên miền giao thoa có các điểm dao động với biên đ cực đại (sóng t hai ngun truyn tới điểm đó tăng
ờng nhau) và có các điểm dao động với biên độ cc tiu (sóng t hai ngun truyn ti điểm đó làm yếu
nhau) to thành hình nh giao thoa.
Chú ý
Điu kin giao thoa sóng: Hai nguồn dao động hai ngun kết hợp dao động cùng phương, tc hai
ngun có:
+ Cùng tn s
+ Cùng phương dao động
+ Có độ lệch pha khong đổi theo thi gian
2. Phương trình dao động ca một đim trên vùng giao thoa.
Trong chương trình Vật 12 ca B giáo dc, ch xét hai ngun kết hợp cùng pha; ngược pha. Nhưng đ
có cái nhìn tng quát, ta xét hai ngun
12
,SS
lch pha nhau bt kì, rồi sau đó mới xét các trường hp cùng
pha, ngược pha, vuông pha,…
Xét hai ngun kết hp
12
,SS
có phương trình dao động lần lượt là
( )
1
1
cos
S
u a t

=+
( )
2
2
cos
S
u a t

=+
Gi M là một đim nm trong vùng giao thoa gia hai ngun, cách ngun
1
S
mt khong
1
d
, cách ngun
2
S
mt khong
2
d
.
Phương trình sóng tại M do
1
S
truyn ti là
( )
1
1
1
2
cos 1
M
d
u a t


= +


Phương trình sóng tại M do
2
S
truyn ti là
( )
2
2
2
2
coss 2
M
d
u a t


= +


Phương trình sóng tổng hp ti M là
( )
12
12
12
22
cos cos 3
M M M
dd
u u u a t a t


= + = + + +
Ta có th thấy, đây chính là tổng hợp hai dao động điều hòa cùng phương, cùng tần s.
Để biết được phương trình dao động tng hp, ta có th dùng công thức lượng giác để biến đổi tng thành
tích cho (3), hoc th tính trc tiếp công thức biên độ tng hp ng thức xác định pha ban đu
trong phn tng hợp dao động phần dao động cơ đã được hc. đây ta sử dng công thc biến đổi tng
thành tích
cos cosb 2cos cos
22
a b a b
a
+−
+=
. Khi đó ta có:
Trang 5
12
12
22
cos cos
M
dd
u a t a t


= + + +
1 2 1 2
1 2 1 2
2 2 2 2
2 cos .cos
22
d d d d
t t t t
a
+ + + + +
( ) ( )
2 1 1 2
1 2 1 2
2 cos .cos
22
d d d d
at


−+
−+
= + +
Vậy, dao động ca phn t tại M dao động điều hòa, cùng tn s vi hai nguồn có biên độ dao động
( )
( )
21
12
2a cos 4
2
M
dd
A


=+


Trường hp hay gp nht là hai ngun cùng pha, tc là
12
2k
=+
, khi đó
( )
21
2a cos
M
dd
A
=
.
Chú ý: Nếu hai ngun
12
,SS
biên độ khác nhau, thì ta không th áp dng công thức lượng giác biến
tổng thành tích cho (3), mà khi đó ta sẽ dùng công thức tính biên độ tng hp của dao động.
C th, gi s
( )
( )
1
2
1
2
cos
cos
S
S
u a t
u b t


=+
=+
thì
1
2
1
1
2
2
2
cos
2
cos
M
M
d
u a t
d
u a t



= +


= +


Biên độ của dao động tng hp tại M được xác định bi
( )
21
22
12
2
2a cos
M
dd
A a b b


= + + +


Tiếp theo, ta s xét xem khi nào thì một điểm trên vùng giao thoa dao động với biên độ cực đại? Khi nào
dao động với biên độ cc tiu?
STUDY TIP
Trong phòng thi, ta không nên nh công thức như bên rồi áp dng, vì nó rt dài và khó nh. Có th bạn đọc
nh được trong thi gian hc phần này, nhưng đến lúc cui ôn thi bn s quên! Vy nên chúng ta hãy hc
theo bn cht sao li công thức đó? Bn cht ca chính vic tng hợp hai dao động điều hòa
cùng phương cùng tần s, và bài toán v tng hợp dao động ta đã xem xét kĩ ở phần trước ri!!!
4. V trí cực đại và cc tiu giao thoa
Để hiu mt cách tổng quát, trước hết, ta xét trưng hp hai ngun lch pha nhau bất kì, sau đó xét các
trường hp hay gặp là cùng pha, ngược pha.
4.1. Trường hp hai ngun lch pha nhau bt kì
- V trí cực đại giao thoa là v trí mà phn t tại đó dao động với biên độ cực đại.
- V trí tiu giao thoa là v trí mà phn t tại đó dao động với biên độ cc tiu (bng 0).
- Để xác định v trí cực đại và cc tiu giao thoa, ta có hai cách xác định;
Trang 6
* Cách th nht: S dng công thức biên độ sóng ti một điểm bt kì, tìm giá tr ln nht nh nht
của biên độ.
V trí cc tiu giao thoa
Ta có
( )
21
12
2 cos 0
2
M
dd
Aa


= +


Du bng xy ra khi
( ) ( )
2 1 2 1
1 2 1 2
cos 0 ,
2 2 2
d d d d
kk


−−

−−
+ = + = +


21
21
1
,
22
d d k k



= + +


.
Như vậy, v trí cc tiểu giao thoa được xác định thông qua
21
21
1
,
22
d d k k



= + +


.
V trí cực đại giao thoa
Ta có
( )
21
12
2 cos 2
2
M
dd
A a a


= +


Du bng xy ra khi
( ) ( )
2 1 2 1
2
1 2 1 2
cos 1 cos 1
22
d d d d


−−
−−
+ = + =
( ) ( )
2 1 2 1
22
1 2 1 2
1 cos 0 sin 0
22
d d d d


−−
−−
+ = + =
( )
21
12
,
2
dd
kk

+ =
21
21
,k
2
d d k


= +
.
Như vậy, v trí cực đại giao thoa được xác định thông qua
21
21
,
2
d d k k


= +
.
* Cách th hai: Xét độ lch pha ca hai sóng t ngun truyn tới điểm M. Đim M bất dao động vi
biên độ cực đại khi sóng ti t 2 nguồn đến điểm M
( )
12
MM
u vaøu
dao động cùng pha; dao động vi biên
độ cc tiu khi sóng ti t 2 nguồn đến điểm M dao động ngược pha.
Độ lch pha gia hai sóng ti ti M
( )
12
MM
u vaøu
( )
21
12
2 dd
= +
V trí cc tiu giao thoa
Để M là mt cc tiu giao thoa, thì sóng ti t 2 nguồn đến điểm
( )
12
MM
u vaøu
dao động ngược pha.
Trang 7
Để
12
MM
u vaøu
dao động ngược pha thì
2k
= +
, tương đương
( )
21
12
2
2 ,k
dd
k
+ = +
Tc là
21
21
1
,
22
d d k k



= + +


.
V trí cực đại giao thoa
Để M là mt cực đại giao thoa, thì sóng ti t 2 nguồn đến điểm M
( )
12
MM
u vaøu
dao động cùng pha.
Để
12
MM
u vaøu
dao động cùng pha thì
2k

=
, tương đương
( )
21
12
2
2 ,k
dd
k
+ =
Tc là
21
21
,
2
d d k k


= +
.
Chú ý:
- Hai ngun c định hai ngun cách nhau mt khoảng không đi. Mt khác, v trí cực đại giao thoa
tha mãn
21
21
,
2
d d k k


= +
và v trí cc tiu giao thoa tha mãn
21
21
1
,
22
d d k k



= + +


.
Suy ra, ng vi mt giá tr k, ta s
21
dd
không đổi,
- Như vậy, theo định nghĩa đường Hypebol, tp hợp các đim M tha mãn
21
21
2
d d k


= +
hoc
21
21
1
22
d d k



= + +


đều là đường Hypebol.
Các đường Hypebol này nhn
12
,SS
làm tiêu điểm.
Hypebol cc đại
Hypebol ng vi
21
21
2
d d k


= +
gi Hypebol cực đại. Các đưng nét liền các đường
Hypebol cực đại.
*
0k =
là cực đại bc 0 (cực đại trung tâm)
*
1k =
là cực đại bc 1.
*
2k =
là cực đại bc 2.
* ….
*
kn=
là cực đại bc n.
Hypebol cc tiu
Trang 8
Hypebol ng vi
21
21
1
22
d d k



= + +


gi Hypebol cc tiểu. Các đường nét đứt các đường
Hypebol cc tiu.
*
0; 1k =−
là cc tiu th nht.
*
1; 2k =
là cc tiu th hai.
*
2; 3k =
là cc tiu th ba.
* ….
*
;k n n=
là cc tiu th n.
Ví d
Trong trường hp hai nguồn cùng pha, các đường Hypebol được mô t bng hình v dưới đây:
4.2. Trường hp hai ngun cùng pha
Trường hp hai nguồn cùng pha chính trường hp tng quát bên trên khi thay
21
2m
−=
, vi m
nguyên.
V trí cc tiu giao thoa
21
11
22
d d k m k m
= + + = + +
21
1
,
2
d d k k


= +


Tc là ti những điểm có hiu
21
dd
bng s bán nguyên lần bước sóng.
V trí cực đại giao thoa
( )
21
d d k m k m
= + = +
21
,d d k k

=
Tc là ti những điểm có hiu
21
dd
bng s nguyên lần bước sóng.
4.3. Trường hp hai nguồn ngược pha
Trường hp hai nguồn cùng pha chính là trường hp tng quát bên trên khi thay
21
2m
= +
, vi
m nguyên.
V trí cc tiu giao thoa
( )
21
12
1
22
m
d d k k m


+
= + + = + +


Trang 9
21
,d d k k

=
Tc là ti những điểm có hiu
21
dd
bng s nguyên lần bước sóng.
V trí cực đại giao thoa
21
21
22
m
d d k k m


+
= + = + +


21
1
,
2
d d k k


= +


Tc là ti những điểm có hiu
21
dd
bng s bán nguyên lần bước sóng.
IV. SÓNG DNG
1. Khái nim sóng phn x
Sóng do ngun phát ra lan truyền trong môi trường khi gp vt cn thì b phn x truyền ngược tr li
theo phương cũ. Sóng truyền ngược li sau khi gp vt cn gi là sóng phn x.
2. Đặc điểm ca sóng phn x
- Sóng phn x có cùng biên độ, tn s vi sóng ti.
- Sóng phn x dấu ngược vi sóng tới (ngược pha vi sóng ti) đim phn x nếu đầu phn x c
định.
- Sóng phn x cùng du vi sóng ti (cùng pha vi sóng ti) điểm phn x nếu đầu phn x t do.
3. Khái nim v sóng dng
- Sóng dừng trường hp đặc bit của giao thoa sóng, trong đó s giao thoa gia sóng ti sóng
phn x.
- Những điểm tăng cường ln nhau gi bng sóng (những điểm biên đ dao đng cực đi), nhng
điểm trit tiêu ln nhau gi là nút sóng (những điểm có biên độ dao động cc tiu không dao động).
4. Phương trình sóng dừng
4.1. Trường hợp 1 đầu dao động nhỏ, 1 đầu c định
Xét sóng dng trên mt si dây. Đầu P của dây được kích thích dao động nh (được coi nút), đầu còn
lại Q được gn c định. Cho đầu P của dây dao động liên tc thì sóng ti sóng phn x liên tc gp
nhau, và giao thoa vi nhau vì chúng là các sóng kết hp.
Trang 10
Gi d là khong cách gia một điểm M bất kì trên dây và điểm c định Q. Bây gi, ta s xét khi đầu P dao
động th phương trình dao động của điểm được xác định bi biu thc nào?
Để biết được phương trình dao động ca M, ta cn biết được các phương trình sóng truyền tới M, sau đó
tng hp lại được phương trình sóng tại điểm M. Bình thường, vi lối suy nghĩ tự nhiên ta s gi s
phương trình sóng tại đầu dao động P là
( )
cosu a t
=
.
Sóng này truyn ti điểm M trên dây, truyn tới đu c định Q. Tại đầu c định Q, sóng b phn x
ngược tr li và sóng phn x truyền đến M. Ti M là s giao thoa ca sóng ti và sóng phn x, nên ta s
viết được phương trình sóng tại M.
Gi s khong cách gia PQ là l. Phương trình sóng tại M do ngun P truyền đến là
( )
2
2
cos cos
PM
ld
PM
u a t a t





= =




Phương trình sóng tại Q do ngun P truyền đến là
2
cos
PQ
l
u a t

=−


.
Phương trình sóng phản x ti Q là
22
cos cos
Q
ll
u a t a t


= = +
Phương trình sóng phản x truyn ti M là
2 2 2 2
cos cos
QM
l QM l d
u a t a t
= + = +
Phương trình sóng tại M là
( )


= + = + +





2
22
cos cos
M PM QM
ld
ld
u u u a t a t

( )




= + +







2
22
cos cos
ld
ld
a t t

( ) ( )
−−
= + + +
2 cos .cos
2 2 2 2
l d l d
t t l d l d
at

2 2 2 2
2 cos .cos 2 sin .cos
2 2 2
d l d l
a t a t

= + = +
T phương trình sóng tại M ta suy ra mt s kết qu quan trọng sau đây:
* Biên độ của điểm M trên dây cách đầu c định Q mt khong d
2
2a sin
M
d
A
=
* Điều kiện để có sóng dng trên dây
Vì đầu P dao động nhỏ, được coi là nút, nên tại đu P
0A =
. Cho M trùng vi P thì ta
dl=
và khi
đó đó do biên độ bng 0 nên
Trang 11
2 d 2 2 2
0 2a sin 2a sin sin 0
2
l l l
k l k
= = = = =
Trong đó
1,2,3,...k =
Vật điều kiện để sóng dng trên y với hai đu c định chiu dài dây phi
bng s nguyên ln nữa bước sóng.
* V trí điểm bng
Ta có
2
2a sin 2
M
d
Aa
=
nên điểm M dao động với biên độ cực đại khi đẳng thc xy ra, tc là
2 2 2
sin 1 cos 0
2
d d d
k
= = = +
1
4 2 2 2
bung
d k k

= + = +


Trong đó
1,2,3,...k =
Lúc này, các điểm bụng cách đầu c định mt khong bng s bán nguyên ln na
bước sóng.
* V trí điểm nút
Ta có
2
2 sin 0
M
d
Aa
=
nên điểm M dao động với biên độ cc tiểu khi đẳng thc xy ra, tc là
2 2 2
sin 0 sin 0
2
nuùt
d d d
k d k
= = = =
.
Trong đó
1,2,3,...k =
lúc này, các điểm nút cách đầu c định mt khong bng s nguyên ln nửa bước
sóng.
4.2. Trường hợp 1 đầu dao động nhỏ, 1 đầu t do
Thc nghim chng t đầu t do là bng sóng. Sóng phn x tại đầu t do cùng pha vi sóng ti.
Gi s khong cách gia PQ là l. Phương trình sóng tại M do ngun P truyền đến là
( )
2
2
cos cos
PM
ld
PM
u a t a t





= =




Phương trình sóng tại Q do ngun P truyền đến là
2
cos
PQ
l
u a t

=−


Phương trình sóng phản x ti Q là
2
cos
Q PQ
l
u u a t

= =


Trang 12
Phương trình sóng phản x truyn ti M là
2 2 2 2
cos cos
QM
l QM l d
u a t a t

= =
Phương trình sóng tại M là
M PM QM
u u u
=+
( )
2
22
cos cos
ld
ld
a t a t




= + +




( )
2
22
cos cos
ld
ld
a t t






= + +






( ) ( )
2cos .cos
22
l d l d
t t l d l d
t

−−
= +
22
2 cos .cos
dl
at


=−
.
T phương trình sóng tại M ta suy ra mt s kết qu quan trọng sau đây:
* Biên độ của điểm M trên dây cách đầu t do Q mt khong d
2
2 cos
M
d
Aa
=
* Điều kiện để có sóng dng trên dây
Vì đầu P dao động nhỏ, được coi nút, nên tại đu P
0A =
. Cho M trùng vi P thì ta
dl=
khi
đó do biên độ bng 0 nên
2 2 2 2
0 2a cos 2 cos cos 0
2 4 2
d l l l
a k l k
= = = = + = +
Trong đó
0,1,2,3,...k =
Ta có th viết lại dưới dng
( )
21
4 2 4 4
l k k m
= + = + =
vi m là s l.
Vậy điều kin là chiu dài dây phi bng s l ln mt phần tư bước sóng.
* V trí điểm bng
Ta có
2
2 cos 2
M
d
A a a
=
nên điểm M dao động với biên độ cực đại khi đẳng thc xy ra, tc là
2 2 2
cos 1 sin 0
2
bung
d d d
k d k
= = = =
Trong đó
1,2,3,...k =
Lúc này, các đim bụng cách đu t do mt khong bng s nguyên ln nửa c
sóng.
* V trí điểm nút
Ta có
2d
2 cos 0
M
Aa
=
nên điểm M dao động với biên độ cc tiểu khi đẳng thc sy ra, tc là
2 2 1
cos 0
2 2 2
nuùt
dd
k d k


= = + = +


Trang 13
Trong đó
0,1,2,3,...k =
lúc này, các điểm nút cách đầu c định mt khong bng s bán nguyên ln na
bước sóng.
4.3. Nhn xét quan trng
ới đây là các nhận xét rt quan trọng để tr li các câu hi lí thuyết cũng như làm các bài tập liên quan
đến sóng dng, bạn đọc nên lưu ý kĩ!
Khi có sóng dng trên dây, ta có các nhận xét sau đây:
* Nhn xét v khong cách gia bng và nút
- Khong cách gia hai bng hoc hai nút lin k
2
. Điều này th giải thích đơn giản bng cách
thay k ca các biu thc d bi m
1m+
ri ly
( ) ( )
1d m d m+−
thì ta luôn có kết qu
2
.
- Khong cách gia nút và bng lin k
4
.
- Khong cách gia nút và bng bt kì trên dây là
4
k
.
- Khong cách gia hai bng bt kì hoc gia hai nút bt kì trên dây là
2
k
.
* Nhn xét v biên độ của các điểm trên dây
- Trường hợp 2 đầu c định
Biên độ của điểm M trên dây cách đầu c định Q mt khong d được xác định bi
2
2 sin
M
d
Aa
=
Vì khong cách gia các nút bt kì trên dây là
2
k
nên ta
2
d k x
=+
trong đó x là khong cách t nút
đến điểm M. Khi đó ta có
( )

+


= = = + =
2
2
2 2 2
2 sin 2a sin 2a sin 2 1 sin
k
M
kx
d x x
A a k a
2
2 sin
M
x
Aa

=


T đó suy ra, biên độ của điểm M trên dây trong trường hợp hai đầu c định th tính được khi biết
khong cách x gia mt nút bất kì và điểm M.
- Trường hợp 1 đầu c định 1 đầu t do
Biên độ của điểm M trên dây cách đầu t do Q mt khong d được xác định bi
2
2 cos
M
d
Aa

=


Trang 14
khong cách gia các bng bt trên dây
2
k
nên ta
2
d k x
=+
trong đó x khong cách t
bụng đến điểm M. Khi đó ta có
( )
2
2
2 2 2
2 cos 2 cos 2 cos 2 1 cos
k
M
kx
d x x
A a a a k a

+


= = = + =
2
2 cos
M
x
Aa

=


T đó suy ra, biên d ca điểm M trên dây trong trưng hợp 1 đầu c định, 1 đầu t do th tính được
khi biết khong cách x gia mt bng bất kì và điểm M.
Chú ý
Ngoài ra, t biu thức biên độ ta cón có các nhn xét sau đây:
- Biên độ ca bng là
2a
- B rng ca bng là
4a
* Nhn xét v pha của các điểm trên dây
- Các điểm nm trong cùng một bó sóng thì luôn dao động cùng pha.
Chng minh:
Xét trường hợp hai đầu c định.
Xét tt c các điểm thuc một bó sóng cách đầu c định mt khong d vi
+

= +


( 1)
22
22
2 sin .cos
2
n d n
dl
u a t


đây n = 0,1,2,…(n = 0 ng vi sóng th nht tính t đầu c định, n = 1 sóng th hai, …). Với
mỗi điểm cách đầu c định mt khong d,
+( 1)
22
n d n

thì có phương trình dao động là:

= +


22
2 sin .cos
2
dl
u a t

Nếu n chn thì vi mi
+( 1)
22
n d n

, ta có
+( 1)n d n

n chn nên dựa vào đường tròn lượng giác trong Toán hc, ta góc
2 d
thuc góc phần thứ nht
th hai, khi đó sin
2 d
> 0. Tc vi mọi điểm thuộc sóng đu sin
2 d
> 0, nghĩa là pha
của các điểm đó đều là

+−


2
2
l
t

, suy ra chúng luôn cùng pha.
Trang 15
Nếu n l thì ta có góc
2 d
thuc góc phần thứ ba th tư, khi đó khi đó sin
2 d
< 0. Tc vi mi
điểm thuộc sóng đều sin
2 d
< 0, nghĩa pha của các điểm đó đều

+ +


2
2
l
t


, suy
ra chúng luôn cùng pha.
Trong trường hợp 1 đầu nút, 1 đầu bng, ta lp lun chứng minh tương tự như trên, xin dành cho
các bạn đọc.
Như vậy, ta đã có điều phi chng minh.
Nhn xét
Vi cách chứng minh như bên, ta hoàn toàn có thể chứng minh được các nhn xét tiếp theo đây.
- Các điểm nm trong 2 bó lin k luôn dao động ngược pha.
- Các điểm đối xng nhau qua bng thì luôn cùng pha. Tc là nếu sóng dng trên dây có nsóng, ta đánh
s 1,2,3,…, n cho các sóng thì các số chn s cùng pha vi nhau, các s l s cùng pha vi
nhau.
- Các điểm đối xng nhau qua một nút thì luôn dao động ngược pha. dụ, các điểm thuc 2 sóng lin
k s dao động ngược pha vi nhau.
* Nhn xét v vấn đề dây dui thng
Dây dui thng khi tt c các điểm trên dây có li độ dao động u = 0
Khong thi gian gia hai ln liên tiếp si dây dui thng khong thi gian vật đi từ u = 0 đến biên ri
tr v u = 0, hết thi gian T/2.
Khong thi gian gia n ln liên tiếp si dây dui thng là
( 1)
2
T
n
* Nhn xét v tốc độ truyn âm và vn tốc dao động
Cn phân bit gia khái nim tốc độ truyn sóng và vn tốc dao động ca mt phn t trên dây.
Tốc đ truyền sóng được xác định bi
=v
T
còn vn tốc dao động ca mt phn t trên dây đạo hàm
của li độ dao động ca phn t đó.
V. SÓNG ÂM
1. Khái nim
- Sóng âm là những sóng cơ học lan truyền trong môi trường rn, lỏng, khí,…
- Mt vật dao động phát ra âm gi ngun âm. Tn s ca âm phát ra bng tn s dao động ca ngun
âm.
- Âm nghe được nhng âm tác dụng làm cho màng nhĩ trong tai ta dao động, gây ra cm giác âm.
Người ta còn dùng thut ng âm thanh để ch âm mà ta nghe được.
- Sóng âm không truyền được trong chân không.
Chú ý
Trang 16
- Trong cht khí cht lng, sóng âm sóng dc trong c cht này lực đàn hi ch xut hin khi
biến dng nén, dãn.
- Trong cht rn, sóng âm gm c sóng ngang và sóng dc, vì lực đàn hồi xut hin c khi có biến dng lch
và biến dng nén, dãn.
2. Những đặc trưng vật lí ca âm
2.1. Tn s âm
Tn s âm tn s dao động của âm tai người bình thưng gii hn trong khong t 16 Hz đến
20.000 Hz.
2.2. Tốc độ truyn âm
- Tốc độ truyn âm ph thuộc vào tính đàn hồi, mật độ phn t và nhiệt độ của môi trường.
- Tốc độ truyn âm gim dn trong các môi trường rn, lng, khí.
STUDY TIP
- Voi, chim, b câu, …có thể “nghe” được h âm.
- Dơi, chó, cá heo, … có thể “nghe” được siêu âm.
2.3. Năng lượng âm
Sóng âm mang theo năng lượng t l với bình phương biên độ.
2.4. Cường độ âm
ờng độ âm I ti một điểm đại lượng đo bằng lượng năng lượng mà sóng âm ti qua một đơn vị din
tích đặt tại điểm đó, vuông góc với phương truyền sóng một đơn vị thi gian:
P
l
S
=
.
Đơn vị ờng độ âm là
2
W/m
hoc
( )
2
/.J sm
2.5. Mức cường độ âm
Là đại lượng Vật lí xác định bi
0
lg
I
L
I
=
Đơn vị: Ben (B).1B = 10dB (đề xi ben).
0
10lg
I
L
I
=
là cường độ âm chun,
12 2
0
10 W/Im
=
.
3. Những đặc trưng sinh lý của âm
3.1. Độ cao
Độ cao của âm là đặc trung sinh lí ph thuc vào tn s ca âm, âm có tn s càng ln nghe càng cao, âm
có tn s càng nh nghe càng trm.
3.2. Độ to
- Độ to ca âm mt khái nim nói v đặc trưng sinh của âm gn lin với đặc trưng vật mực cường
độ âm.
- Độ to ca âm ph thuộc vào cường độ âm, mức cường độ âm và tn s ca âm.
Trang 17
3.3. Âm sc
- Các nhc c khác nhau phát ra âm cùng một độ cao nhưng tai ta thể phân biệt được âm ca tng
nhc cụ, đó là vì chúng có âm sắc khác nhau.
- Âm có cùng một độ cao do các nhc c khác nhau phát ra có cùng một chu kì nhưng đồ th dao động ca
chúng có dng khác nhau.
- Vy, âm sc một đặc trung sinh ca âm, giúp ta phân bit âm do các ngun khác nhau phát ra. Âm
sc có liên quan mt thiết với đồ th dao động âm.
Chú ý
Không th ly mức cường độ âm làm s đo độ to của âm được
| 1/17

Preview text:

CHƯƠNG 2. LÍ THUYẾT SÓNG CƠ VÀ SÓNG ÂM
I. SÓNG CƠ HỌC VÀ CÁC ĐẶC TRƯNG 1. Định nghĩa
Sóng cơ là những dao động lan truyền trong một môi trường.
Ví dụ: Sóng trên mặt nước là sóng truyền từ một điểm dao động trên mặt nước (bằng cần rung tạo dao
động chẳng hạn) đến các phần tử khác thông qua môi trường là nước. Chú ý
Khi sóng cơ truyền đi, các phần tử vật chất không truyền đi theo sóng, mà dao động xung quanh một vị trí cân bằng xác định. 2. Phân loại
- Sóng cơ chia làm 2 loại: sóng ngang và sóng dọc.
+ Sóng ngang: là sóng trong đó các phân tử của môi trường dao động theo phương vuông góc với phương truyền sóng.
Ví dụ: Sóng trên mặt nước là sóng ngang.
+ Sóng dọc: là sóng trong đó các phần tử của môi trường dao động theo phương trùng với phương truyền sóng.
Ví dụ: Sóng âm là sóng dọc, phần tử môi trường là khí. STYDY TIP
- Trừ trường hợp sóng mặt nước, sóng ngang chỉ truyền trong chất rắn.
- Sóng dọc truyền được cả trong chất khí, chất lỏng và chất rắn.
- Sóng cơ không truyền được trong chân không.
3. Các đặc trưng của một sóng hình sin
3.1. Biên độ của sóng
- Biên độ A của sóng là biên độ dao động của một phần tử của môi trường có sóng truyền qua.
- Đơn vị: m, thông thường là cm.
3.2. Chu kì, tần số của sóng
- Chu kì T của sóng là chu kì dao độngcủa một phần tử của môi trường có sóng truyền qua. Đơn vị: giây.
- Tần số f của sónng là số dao động của một phần tử môi trường có sóng truyền qua trong một khoảng
thời gian. Đơn vị: Héc (Hz). 1 N f = = T t
N: số dao động thực hiện được trong khoảng thời gian: t  . Chú ý
Khi sóng truyền đi, tần số sóng không thay đổi Trang 1
3.3. Tốc độ truyền sóng
- Tốc độ truyền sóng v là tốc độ lan truyền dao động trong một môi trường.
- Đối với mỗi môi trường, tốc độ truyền sóng v có một giá trị không đổi.
Nhận xét: Tốc độ truyền sóng phụ thuộc vào:
+ Bản chất của môi trường (mật độ, tính đàn hồi của môi trường,…) + Nhiệt độ. Lưu ý
Tốc độ truyền sóng giảm theo thứ tự: rắn, lỏng, khí: vr > vl > vk 3.4. Bước sóng
- Bước sóng là quãng đường mà sóng truyền được trong một chu kì, hay là khoảng cách ngắn nhất
giữa hai điểm trên cùng phương truyền sóng mà tại đó dao động cùng pha. v  = vT = f STUDY TIP
- Khoảng cách giữa hai ngọn (đỉnh) sóng liên tiếp là một bước sóng.
- Khoảng cách giữa n ngọn (đỉnh) sóng liên tiếp là (n − ) 1 bước sóng.
3.5. Năng lượng sóng
- Năng lượng sóng là năng lượng dao động của các phần tử môi trường có sóng truyền qua.
II. PHƯƠNG TRÌNH SÓNG
1. Phương trình sóng
- Xét một sóng hình sin lan truyền trong một môi trường, sóng này phát ra từ một nguồn điện O. Giả sử
phương trình dao động tại O có dạng
u = a cos t +  O ( 0 ) Trong đó:
* u là li độ tại O tại thời điểm t (m) 0
* a là biên độ (m)
*  là tần số góc của sóng (rad/s)
*  là pha ban đầu (rad) 0
- Xét một điểm M nằm trên phương truyền sóng, cách O một khoảng d = OM . Nếu bỏ qua mất mát năng
lượng, thì biên độ của M bằng biên độ của nguồn O, dao động tại M sẽ trễ pha hơn dao động tại nguồn O 2 d một góc . Phương trình dao độ  ng tại M có dạng  2 d u
= a cos t + − M  0     Trang 2
- Nếu sóng truyền theo chiều dương Ox ( x  0) . Khi đó d = x = x . Phương trình sóng tại M có dạng  2 d   2 x u
= a cos t + −
= a cos t + − M  0   0       
- Nếu sóng truyền theo chiều âm Ox ( x  0) . Khi đó d = x = −x . Phương trình sóng tại M có dạng  2 d   2 x u
= a cos t + − = a cos t  + + M  0   0       
2. Một số tính chất của sóng suy ra từ phương trình sóng
- Xét phương trình sóng tại một điểm M bất kì, cách nguồn cố định O có phương trình
u = a cos t + 
một khoảng là d, tại thời điểm t. Phương trình sóng tại M có dạng: 0 ( 0 )  2 d   2 2 d u
= a cos t + − = a cos t +  − M  0   0      T  
Từ phương trình trên, ta thấy rằng:
+ Nếu giữ nguyên d, thì u chỉ phụ thuộc vào biến t, ta nói rằng u tuần hoàn theo thời gian với chu kì T. M M Bởi vì        
u (t + T ) 2 = a  (t +T ) 2 d 2 2 d cos . + − = a cos t + 2 +  − M 0   0   T    T    2 2 d  = a cos t +  − = u t  0  M ( )  T  
+ Nếu giữ nguyên t, thì u chỉ phụ thuộc vào biến d, ta nói rằng u tuần hoàn theo không gian với chu kì M M
 (tức là cứ sau mỗi khoảng có độ dài bằng một bước sóng, sóng lại có hình dạng lặp lại như cũ). Bởi vì (  +  + ) 2 2 (d  )  2 2 du d = a cos t +  −  = a cos t +  − − 2 M 0  0  T     T    2 2 d  = a cos t +  − = u d  . 0  M ( )  T  
Vậy, sóng có tính chất tuần hoàn theo không gian và thời gian. III. GIAO THOA SÓNG 1. Định nghĩa
- Hai nguồn kết hợp là hai nguồn dao động có cùng tần số và có độ lệch pha không đổi theo thời gian.
- Hiện tượng giao thoa của sóng là hiện tượng hai sóng kết hợp dao động cùng phương gặp nhau, giao thoa với nhau. Trang 3
Trên miền giao thoa có các điểm dao động với biên độ cực đại (sóng từ hai nguồn truyền tới điểm đó tăng
cường nhau) và có các điểm dao động với biên độ cực tiểu (sóng từ hai nguồn truyền tới điểm đó làm yếu
nhau) tạo thành hình ảnh giao thoa. Chú ý
Điều kiện giao thoa sóng: Hai nguồn dao động là hai nguồn kết hợp và dao động cùng phương, tức là hai nguồn có: + Cùng tần số + Cùng phương dao động
+ Có độ lệch pha khong đổi theo thời gian
2. Phương trình dao động của một điểm trên vùng giao thoa.
Trong chương trình Vật lí 12 của Bộ giáo dục, chỉ xét hai nguồn kết hợp cùng pha; ngược pha. Nhưng để
có cái nhìn tổng quát, ta xét hai nguồn S , S lệch pha nhau bất kì, rồi sau đó mới xét các trường hợp cùng 1 2
pha, ngược pha, vuông pha,…
Xét hai nguồn kết hợp S , S có phương trình dao động lần lượt là 1 2
u = a cos t +  S ( ) 1 1 u
= a cos t + S ( ) 2 2
Gọi M là một điểm nằm trong vùng giao thoa giữa hai nguồn, cách nguồn S một khoảng d , cách nguồn 1 1
S một khoảng d . 2 2    Phương trình sóng tạ 2 d
i M do S truyền tới là 1 u
= a cos t + − 1 M  1 ( ) 1 1       Phương trình sóng tạ 2 d
i M do S truyền tới là 2 u
= a coss t + − 2 M  2 ( ) 2 2          Phương trình sóng tổ 2 d 2 d ng hợp tại M là 1 2 u
= u + u = a cos t + −
+ a cos t + − 3 M M M  1   2 ( ) 1 2      
Ta có thể thấy, đây chính là tổng hợp hai dao động điều hòa cùng phương, cùng tần số.
Để biết được phương trình dao động tổng hợp, ta có thể dùng công thức lượng giác để biến đổi tổng thành
tích cho (3), hoặc có thể tính trực tiếp công thức biên độ tổng hợp và công thức xác định pha ban đầu
trong phần tổng hợp dao động ở phần dao động cơ đã được học. Ở đây ta sử dụng công thức biến đổi tổng a + b a b
thành tích cos a + cosb = 2 cos cos . Khi đó ta có: 2 2 Trang 4  2 d   2 d  1 2 u
= a cos t + −
+ a cos t + − M  1   2         2 d   2 d   2 d   2 d  1 2 1 2 t + − − t + − t + − + t + −         1 2 1 2             2a cos .cos 2 2   −  (d d    +  d + d  1 2 2 1 ) ( 1 2 1 2 ) = 2a cos + .cost + −  2  2     
Vậy, dao động của phần tử tại M là dao động điều hòa, cùng tần số với hai nguồn và có biên độ dao động   −  (d d  1 2 2 1 ) là A = 2a cos  +  M (4) 2     (d d 2 1 )
Trường hợp hay gặp nhất là hai nguồn cùng pha, tức là  =  + k2 , khi đó A = 2a cos . 1 2 M
Chú ý: Nếu hai nguồn S , S có biên độ khác nhau, thì ta không thể áp dụng công thức lượng giác biến 1 2
tổng thành tích cho (3), mà khi đó ta sẽ dùng công thức tính biên độ tổng hợp của dao động.   2 d  1 u
= a cos t + −    u
= a cos t +  M 1 1    S ( 1 )  Cụ thể, giả sử 1  thì  u
= b cos t +    2 d S ( 2 ) 2 2 u
= a cos t + − M   2 2      2 d d  2 2 ( 2 1)
Biên độ của dao động tổng hợp tại M được xác định bởi A = a + b + 2ab cos  − +  M 1 2   
Tiếp theo, ta sẽ xét xem khi nào thì một điểm trên vùng giao thoa dao động với biên độ cực đại? Khi nào
dao động với biên độ cực tiểu? STUDY TIP
Trong phòng thi, ta không nên nhớ công thức như bên rồi áp dụng, vì nó rất dài và khó nhớ. Có thể bạn đọc
nhớ được trong thời gian học phần này, nhưng đến lúc cuối ôn thi bạn sẽ quên! Vậy nên chúng ta hãy học
theo bản chất vì sao lại có công thức đó? Bản chất của nó chính là việc tổng hợp hai dao động điều hòa
cùng phương cùng tần số, và bài toán về tổng hợp dao động ta đã xem xét kĩ ở phần trước rồi!!!
4. Vị trí cực đại và cực tiểu giao thoa
Để hiểu một cách tổng quát, trước hết, ta xét trường hợp hai nguồn lệch pha nhau bất kì, sau đó xét các
trường hợp hay gặp là cùng pha, ngược pha.
4.1. Trường hợp hai nguồn lệch pha nhau bất kì
- Vị trí cực đại giao thoa là vị trí mà phần tử tại đó dao động với biên độ cực đại.
- Vị trí tiểu giao thoa là vị trí mà phần tử tại đó dao động với biên độ cực tiểu (bằng 0).
- Để xác định vị trí cực đại và cực tiểu giao thoa, ta có hai cách xác định; Trang 5
* Cách thứ nhất: Sử dụng công thức biên độ sóng tại một điểm bất kì, tìm giá trị lớn nhất và nhỏ nhất của biên độ.
Vị trí cực tiểu giao thoa   −  (d d  1 2 2 1 )
Ta có A = 2a cos  +   0 M 2      −  (d d   −  d d  1 2 2 1 ) ( 1 2 2 1 )
Dấu bằng xảy ra khi cos  +  = 0  + = + k ,k  2  2  2    1   − 2 1
d d = k +  + ,k  . 2 1    2  2
Như vậy, vị trí cực tiểu giao thoa được xác định thông qua  1   − 2 1
d d = k +  + ,k  . 2 1    2  2
Vị trí cực đại giao thoa   −  (d d  1 2 2 1 )
Ta có A = 2a cos  +   2a M 2      −  (d d    −  d d  1 2 2 1 ) 2 ( 1 2 2 1 )
Dấu bằng xảy ra khi cos  +  =1  cos  +  =1 2  2        −  d d    −  d d  2 ( 1 2 2 1 ) 2 ( 1 2 2 1 )  1− cos  +  = 0  sin  +  = 0 2  2       −  (d d 1 2 2 1 )  + = k , k  2   − 2 1
d d = k + ,k  . 2 1 2  −
Như vậy, vị trí cực đại giao thoa được xác định thông qua 2 1
d d = k + ,k  . 2 1 2
* Cách thứ hai: Xét độ lệch pha của hai sóng từ nguồn truyền tới điểm M. Điểm M bất kì dao động với
biên độ cực đại khi sóng tới từ 2 nguồn đến điểm M (u vaøu dao động cùng pha; dao động với biên M M 1 2 )
độ cực tiểu khi sóng tới từ 2 nguồn đến điểm M dao động ngược pha.
Độ lệch pha giữa hai sóng tới tại M (u vaøu M M 1 2 ) 2 (d d 2 1 )   =  − + 1 2 
Vị trí cực tiểu giao thoa
Để M là một cực tiểu giao thoa, thì sóng tới từ 2 nguồn đến điểm (u vaøu dao động ngược pha. M M 1 2 ) Trang 6
Để u vaøu dao động ngược pha thì  =  + k2 , tương đương M M 1 2 2 (d d 2 1 )  − + =  + k2 ,k  1 2   1   − Tức là 2 1
d d = k +  + ,k   . 2 1  2  2
Vị trí cực đại giao thoa
Để M là một cực đại giao thoa, thì sóng tới từ 2 nguồn đến điểm M (u vaøu dao động cùng pha. M M 1 2 )
Để u vaøu dao động cùng pha thì 
 = k2 , tương đương M M 1 2 2 (d d 2 1 )  − + = k2 ,k  1 2   − Tức là 2 1
d d = k + ,k . 2 1 2 Chú ý:
- Hai nguồn cố định và hai nguồn cách nhau một khoảng không đổi. Mặt khác, vị trí cực đại giao thoa  − thỏa mãn 2 1
d d = k +
,k và vị trí cực tiểu giao thoa thỏa mãn 2 1 2  1   − 2 1
d d = k +  + ,k   . 2 1  2  2
Suy ra, ứng với một giá trị k, ta sẽ có d d không đổi, 2 1  −
- Như vậy, theo định nghĩa đường Hypebol, tập hợp các điểm M thỏa mãn 2 1
d d = k +  hoặc 2 1 2  1   − 2 1
d d = k +  +  
 đều là đường Hypebol. 2 1  2  2
Các đường Hypebol này nhận S ,S làm tiêu điểm. 1 2 Hypebol cực đại  − Hypebol ứng với 2 1
d d = k +
 gọi là Hypebol cực đại. Các đường nét liền là các đường 2 1 2 Hypebol cực đại.
* k = 0 là cực đại bậc 0 (cực đại trung tâm)
* k = 1 là cực đại bậc 1.
* k = 2 là cực đại bậc 2. * ….
* k = n là cực đại bậc n. Hypebol cực tiểu Trang 7  1   − Hypebol ứng với 2 1
d d = k +  +  
 gọi là Hypebol cực tiểu. Các đường nét đứt là các đường 2 1  2  2 Hypebol cực tiểu.
* k = 0; −1 là cực tiểu thứ nhất.
* k = 1; −2 là cực tiểu thứ hai.
* k = 2; −3 là cực tiểu thứ ba. * …. * k =  ;
n n là cực tiểu thứ n. Ví dụ
Trong trường hợp hai nguồn cùng pha, các đường Hypebol được mô tả bằng hình vẽ dưới đây:
4.2. Trường hợp hai nguồn cùng pha
Trường hợp hai nguồn cùng pha chính là trường hợp tổng quát bên trên khi thay  − = 2 m  , với m 2 1 nguyên.
Vị trí cực tiểu giao thoa  1   1 
d d = k +
 + m = k + m+     2 1  2   2   1 
d d = k + ,k   2 1  2 
Tức là tại những điểm có hiệu d d bằng số bán nguyên lần bước sóng. 2 1
Vị trí cực đại giao thoa
d d = k + m = k + m  2 1 ( )
d d = k   ,k 2 1
Tức là tại những điểm có hiệu d d bằng số nguyên lần bước sóng. 2 1
4.3. Trường hợp hai nguồn ngược pha
Trường hợp hai nguồn cùng pha chính là trường hợp tổng quát bên trên khi thay  − =  + 2 m  , với 2 1 m nguyên.
Vị trí cực tiểu giao thoa  1   + 2 m
d d = k +   +
 = k + m+1  2 1 ( )  2  2 Trang 8
d d = k   ,k 2 1
Tức là tại những điểm có hiệu d d bằng số nguyên lần bước sóng. 2 1
Vị trí cực đại giao thoa  + 2 m   1 
d d = k +  = k + m+   2 1 2  2   1 
d d = k + ,k   2 1  2 
Tức là tại những điểm có hiệu d d bằng số bán nguyên lần bước sóng. 2 1 IV. SÓNG DỪNG
1. Khái niệm sóng phản xạ
Sóng do nguồn phát ra lan truyền trong môi trường khi gặp vật cản thì bị phản xạ và truyền ngược trở lại
theo phương cũ. Sóng truyền ngược lại sau khi gặp vật cản gọi là sóng phản xạ.
2. Đặc điểm của sóng phản xạ
- Sóng phản xạ có cùng biên độ, tần số với sóng tới.
- Sóng phản xạ có dấu ngược với sóng tới (ngược pha với sóng tới) ở điểm phản xạ nếu đầu phản xạ cố định.
- Sóng phản xạ cùng dấu với sóng tới (cùng pha với sóng tới) ở điểm phản xạ nếu đầu phản xạ tự do.
3. Khái niệm về sóng dừng
- Sóng dừng là trường hợp đặc biệt của giao thoa sóng, trong đó có sự giao thoa giữa sóng tới và sóng phản xạ.
- Những điểm tăng cường lẫn nhau gọi là bụng sóng (những điểm có biên độ dao động cực đại), những
điểm triệt tiêu lẫn nhau gọi là nút sóng (những điểm có biên độ dao động cực tiểu – không dao động).
4. Phương trình sóng dừng
4.1. Trường hợp 1 đầu dao động nhỏ, 1 đầu cố định
Xét sóng dừng trên một sợi dây. Đầu P của dây được kích thích dao động nhỏ (được coi là nút), đầu còn
lại Q được gắn cố định. Cho đầu P của dây dao động liên tục thì sóng tới và sóng phản xạ liên tục gặp
nhau, và giao thoa với nhau vì chúng là các sóng kết hợp. Trang 9
Gọi d là khoảng cách giữa một điểm M bất kì trên dây và điểm cố định Q. Bây giờ, ta sẽ xét khi đầu P dao
động thị phương trình dao động của điểm được xác định bởi biểu thức nào?
Để biết được phương trình dao động của M, ta cần biết được các phương trình sóng truyền tới M, sau đó
tổng hợp lại là được phương trình sóng tại điểm M. Bình thường, với lối suy nghĩ tự nhiên ta sẽ giả sử
phương trình sóng tại đầu dao động P là u = aco ( s t ) .
Sóng này truyền tới điểm M trên dây, và truyền tới đầu cố định Q. Tại đầu cố định Q, sóng bị phản xạ
ngược trở lại và sóng phản xạ truyền đến M. Tại M là sự giao thoa của sóng tới và sóng phản xạ, nên ta sẽ
viết được phương trình sóng tại M.
Giả sử khoảng cách giữa PQ là l. Phương trình sóng tại M do nguồn P truyền đến là     2 2  (l d PM ) u = acos t
= acost −    PM            Phương trình sóng tạ 2 l
i Q do nguồn P truyền đến là u = acos t −   . PQ          Phương trình sóng phả 2 l 2 l
n xạ tại Q là u = −acos t − = acos t − +      Q      
Phương trình sóng phản xạ truyền tới M là  2 l 2QM   2 l 2 d u = acos t − + − = acos t − + −     QM        
Phương trình sóng tại M là 
2 (l d )   2 l 2d u = u +u = aco  s t  −  + acos t  − +  − M PM QM             
2 (l d )    2 l 2d  = aco  s t  −  + cos t  − +  −                 t   (l d )   t   l  d
  (l d )    = l d 2a co  s − − + − + .co  s t  + − − −   2  2  2    2          2 d     2l  2 d   2l  = 2acos − .cos  t + − = 2asin .cos  t + −     2   2     2  
Từ phương trình sóng tại M ta suy ra một số kết quả quan trọng sau đây:
* Biên độ của điểm M trên dây cách đầu cố định Q một khoảng d 2 d A = 2a sin M
* Điều kiện để có sóng dừng trên dây
Vì đầu P dao động nhỏ, được coi là nút, nên tại đầu P có A = 0 . Cho M trùng với P thì ta có d = l và khi
đó đó do biên độ bằng 0 nên Trang 10 2 d 2 l 2 l 2 l  0 = 2a sin = 2a sin  sin = 0 
= k  l = k     2
Trong đó k = 1,2,3,... Vật điều kiện để có sóng dừng trên dây với hai đầu cố định là chiều dài dây phải
bằng số nguyên lần nữa bước sóng.
* Vị trí điểm bụng 2 d Ta có A = 2a sin
 2a nên điểm M dao động với biên độ cực đại khi đẳng thức xảy ra, tức là M  2 d 2 d 2 d     1   sin = 1 cos = 0  = + k  = + = +    d k k   2 bung 4 2  2  2
Trong đó k = 1,2,3,... Lúc này, các điểm bụng cách đầu cố định một khoảng bằng số bán nguyên lần nửa bước sóng.
* Vị trí điểm nút 2 d
Ta có A = 2a sin
 0 nên điểm M dao động với biên độ cực tiểu khi đẳng thức xảy ra, tức là M  2 d 2 d 2 d  sin = 0  sin = 0 
= k  d = k . nuù t    2
Trong đó k = 1,2,3,... lúc này, các điểm nút cách đầu cố định một khoảng bằng số nguyên lần nửa bước sóng.
4.2. Trường hợp 1 đầu dao động nhỏ, 1 đầu tự do
Thực nghiệm chứng tỏ đầu tự do là bụng sóng. Sóng phản xạ tại đầu tự do cùng pha với sóng tới.
Giả sử khoảng cách giữa PQ là l. Phương trình sóng tại M do nguồn P truyền đến là     2 2  (l d PM ) u = acos t
= acost −    PM            Phương trình sóng tạ 2 l
i Q do nguồn P truyền đến là u = acos t −   PQ       Phương trình sóng phả 2 l
n xạ tại Q là u = u = acos t −   Q PQ    Trang 11         Phương trình sóng phả 2 l 2 QM 2 l 2 d
n xạ truyền tới M là u = acos t − − = acos t − −     QM        
Phương trình sóng tại M là u = u + uM PM QM
2 (l d)   2 l 2 d
= acost
 + acos t − +  −             
2 (l d)    2 l 2 d
= acost −  + cost − +  −              
   (l d)       (l d t t l d ) l d  = 2cos − − − + .cost − − −   2  2              2 d   2 l  = 2acos .cos  t −     .    
Từ phương trình sóng tại M ta suy ra một số kết quả quan trọng sau đây:  * Biên độ 2 d
của điểm M trên dây cách đầu tự do Q một khoảng d A = 2a cos M
* Điều kiện để có sóng dừng trên dây
Vì đầu P dao động nhỏ, được coi là nút, nên tại đầu P có A = 0 . Cho M trùng với P thì ta có d = l và khi
đó do biên độ bằng 0 nên 2 d 2 l 2 l 2 l    0 = 2a cos = 2a cos  cos = 0 
= + k  l = + k     2 4 2    
Trong đó k = 0,1,2,3,... Ta có thể viết lại dưới dạng l = + k = (2k + ) 1
= m với m là số lẻ. 4 2 4 4
Vậy điều kiện là chiều dài dây phải bằng số lẻ lần một phần tư bước sóng.
* Vị trí điểm bụng 2 d
Ta có A = 2a cos
 2a nên điểm M dao động với biên độ cực đại khi đẳng thức xảy ra, tức là M  2 d 2 d 2 d  cos = 1 sin = 0  = k  d = k bung    2
Trong đó k = 1,2,3,... Lúc này, các điểm bụng cách đầu tự do một khoảng bằng số nguyên lần nửa bước sóng.
* Vị trí điểm nút 2 d
Ta có A = 2a cos
 0 nên điểm M dao động với biên độ cực tiểu khi đẳng thức sảy ra, tức là M  2 d 2 d   1   cos = 0 
= + k  d = k +     2 nuù t  2  2 Trang 12
Trong đó k = 0,1,2,3,... lúc này, các điểm nút cách đầu cố định một khoảng bằng số bán nguyên lần nửa bước sóng.
4.3. Nhận xét quan trọng
Dưới đây là các nhận xét rất quan trọng để trả lời các câu hỏi lí thuyết cũng như làm các bài tập liên quan
đến sóng dừng, bạn đọc nên lưu ý kĩ!
Khi có sóng dừng trên dây, ta có các nhận xét sau đây:
* Nhận xét về khoảng cách giữa bụng và nút
- Khoảng cách giữa hai bụng hoặc hai nút liền kề là
. Điều này có thể giải thích đơn giản bằng cách 2 
thay k của các biểu thức d bởi mm+ 1 rồi lấy d (m+ ) 1 − d ( )
m thì ta luôn có kết quả . 2 
- Khoảng cách giữa nút và bụng liền kề là . 4 
- Khoảng cách giữa nút và bụng bất kì trên dây là k . 4 
- Khoảng cách giữa hai bụng bất kì hoặc giữa hai nút bất kì trên dây là k . 2
* Nhận xét về biên độ của các điểm trên dây
- Trường hợp 2 đầu cố định  Biên độ 2 d
của điểm M trên dây cách đầu cố định Q một khoảng d được xác định bởi A = 2a sin M   
Vì khoảng cách giữa các nút bất kì trên dây là k
nên ta có d = k
+ x trong đó x là khoảng cách từ nút 2 2
đến điểm M. Khi đó ta có    2 k +  x  2d  2   2 x   = = = +  = k x A a k 2a M (− 2 2 sin 2a sin 2a sin  )   1 sin           2 x
A = 2a sin  M   
Từ đó suy ra, biên độ của điểm M trên dây trong trường hợp hai đầu cố định có thể tính được khi biết
khoảng cách x giữa một nút bất kì và điểm M.
- Trường hợp 1 đầu cố định 1 đầu tự do    Biên độ 2 d
của điểm M trên dây cách đầu tự do Q một khoảng d được xác định bởi A = 2a cos  M    Trang 13  
Vì khoảng cách giữa các bụng bất kì trên dây là k
nên ta có d = k
+ x trong đó x là khoảng cách từ 2 2
bụng đến điểm M. Khi đó ta có    2 k + x   2 d  2   2 x    x A = a = a = a + k = a −     M ( )k 2 2 cos 2 cos 2 cos 2 1 cos          2 x
A = 2a cos  M   
Từ đó suy ra, biên dộ của điểm M trên dây trong trường hợp 1 đầu cố định, 1 đầu tự do có thể tính được
khi biết khoảng cách x giữa một bụng bất kì và điểm M. Chú ý
Ngoài ra, từ biểu thức biên độ ta cón có các nhận xét sau đây:
- Biên độ của bụng là 2a
- Bề rộng của bụng là 4a
* Nhận xét về pha của các điểm trên dây
- Các điểm nằm trong cùng một bó sóng thì luôn dao động cùng pha. Chứng minh:
Xét trường hợp hai đầu cố định.
Xét tất cả các điểm thuộc một bó sóng cách đầu cố định một khoảng d với   nd  (n +1) 2 2 2d   2 l u = 2asin .cos t  + −     2  
Ở đây n = 0,1,2,…(n = 0 ứng với bó sóng thứ nhất tính từ đầu cố định, n = 1 là bó sóng thứ hai, …). Với  
mỗi điểm cách đầu cố định một khoảng d, n
d  (n +1) thì có phương trình dao động là: 2 2 2d   2 l u = 2asin .cos t  + −     2    
Nếu n chẵn thì với mọi n
d  (n +1) , ta có n  d  (n +1) 2 2 2d
Vì n chẵn nên dựa vào đường tròn lượng giác trong Toán học, ta có góc  thuộc góc phần tư thứ nhất  2d
và thứ hai, khi đó sin 2 d > 0, có nghĩa là pha
 > 0. Tức là với mọi điểm thuộc bó sóng đều có sin    2 l
của các điểm đó đều là t  + −    2 
, suy ra chúng luôn cùng pha.  Trang 14 2d
Nếu n lẻ thì ta có góc  thuộc góc phần tư thứ ba và thứ tư, khi đó khi đó sin 2 d
 < 0. Tức là với mọi    2 l  điể 2 d
m thuộc bó sóng đều có sin
< 0, có nghĩa là pha của các điểm đó đề t  + − +  u là    2  , suy  ra chúng luôn cùng pha.
Trong trường hợp 1 đầu là nút, 1 đầu là bụng, ta lập luận và chứng minh tương tự như trên, xin dành cho các bạn đọc.
Như vậy, ta đã có điều phải chứng minh. Nhận xét
Với cách chứng minh như bên, ta hoàn toàn có thể chứng minh được các nhận xét tiếp theo đây.
- Các điểm nằm trong 2 bó liền kề luôn dao động ngược pha.
- Các điểm đối xứng nhau qua bụng thì luôn cùng pha. Tức là nếu sóng dừng trên dây có n bó sóng, ta đánh
số 1,2,3,…, n cho các bó sóng thì các bó có số chẵn sẽ cùng pha với nhau, các bó có số lẻ sẽ cùng pha với nhau.
- Các điểm đối xứng nhau qua một nút thì luôn dao động ngược pha. Ví dụ, các điểm thuộc 2 bó sóng liền
kề sẽ dao động ngược pha với nhau.
* Nhận xét về vấn đề dây duỗi thẳng
Dây duỗi thẳng khi tất cả các điểm trên dây có li độ dao động u = 0
Khoảng thời gian giữa hai lần liên tiếp sợi dây duỗi thẳng là khoảng thời gian vật đi từ u = 0 đến biên rồi
trở về u = 0, hết thời gian T/2. T
Khoảng thời gian giữa n lần liên tiếp sợi dây duỗi thẳng là (n −1) 2
* Nhận xét về tốc độ truyền âm và vận tốc dao động
Cần phân biệt giữa khái niệm tốc độ truyền sóng và vận tốc dao động của một phần tử trên dây. 
Tốc độ truyền sóng được xác định bởi v =
còn vận tốc dao động của một phần tử trên dây là đạo hàm T
của li độ dao động của phần tử đó. V. SÓNG ÂM 1. Khái niệm
- Sóng âm là những sóng cơ học lan truyền trong môi trường rắn, lỏng, khí,…
- Một vật dao động phát ra âm gọi là nguồn âm. Tần số của âm phát ra bằng tần số dao động của nguồn âm.
- Âm nghe được là những âm có tác dụng làm cho màng nhĩ trong tai ta dao động, gây ra cảm giác âm.
Người ta còn dùng thuật ngữ âm thanh để chỉ âm mà ta nghe được.
- Sóng âm không truyền được trong chân không. Chú ý Trang 15
- Trong chất khí và chất lỏng, sóng âm là sóng dọc vì trong các chất này lực đàn hồi chỉ xuất hiện khi có biến dạng nén, dãn.
- Trong chất rắn, sóng âm gồm cả sóng ngang và sóng dọc, vì lực đàn hồi xuất hiện cả khi có biến dạng lệch và biến dạng nén, dãn.
2. Những đặc trưng vật lí của âm 2.1. Tần số âm
Tần số âm là tần số dao động của âm mà tai người bình thường có giới hạn trong khoảng từ 16 Hz đến 20.000 Hz.
2.2. Tốc độ truyền âm
- Tốc độ truyền âm phụ thuộc vào tính đàn hồi, mật độ phần tử và nhiệt độ của môi trường.
- Tốc độ truyền âm giảm dần trong các môi trường rắn, lỏng, khí. STUDY TIP
- Voi, chim, bồ câu, …có thể “nghe” được hạ âm.
- Dơi, chó, cá heo, … có thể “nghe” được siêu âm.
2.3. Năng lượng âm
Sóng âm mang theo năng lượng tỉ lệ với bình phương biên độ.
2.4. Cường độ âm
Cường độ âm I tại một điểm là đại lượng đo bằng lượng năng lượng mà sóng âm tải qua một đơn vị diện tích đặ P
t tại điểm đó, vuông góc với phương truyền sóng một đơn vị thời gian: l = . S
Đơn vị cường độ âm là 2
W / m hoặc J ( 2 / . s m )
2.5. Mức cường độ âm Là đại lượ I
ng Vật lí xác định bởi L = lg I 0
Đơn vị: Ben (B).1B = 10dB (đề I xi ben). L = 10lg I 0 I
là cường độ âm chuẩn, 12 2 I = 10 W / m . 0 0
3. Những đặc trưng sinh lý của âm 3.1. Độ cao
Độ cao của âm là đặc trung sinh lí phụ thuộc vào tần số của âm, âm có tần số càng lớn nghe càng cao, âm
có tần số càng nhỏ nghe càng trầm. 3.2. Độ to
- Độ to của âm là một khái niệm nói về đặc trưng sinh lí của âm gắn liền với đặc trưng vật lí mực cường độ âm.
- Độ to của âm phụ thuộc vào cường độ âm, mức cường độ âm và tần số của âm. Trang 16 3.3. Âm sắc
- Các nhạc cụ khác nhau phát ra âm có cùng một độ cao nhưng tai ta có thể phân biệt được âm của từng
nhạc cụ, đó là vì chúng có âm sắc khác nhau.
- Âm có cùng một độ cao do các nhạc cụ khác nhau phát ra có cùng một chu kì nhưng đồ thị dao động của chúng có dạng khác nhau.
- Vậy, âm sắc là một đặc trung sinh lí của âm, giúp ta phân biệt âm do các nguồn khác nhau phát ra. Âm
sắc có liên quan mật thiết với đồ thị dao động âm. Chú ý
Không thể lấy mức cường độ âm làm số đo độ to của âm được Trang 17