
Si 11
(241)-201S
NG6NNGC&B5IS6NG
97
|NG6N
NGIT
HOC-vlTNGff
HOC-NGOAI
NGd
TH^TIM
HIEU LOGIC TRONG
MQT S6
TRUYEN
ClTCM
DAN
GIAN
VlfT
NAM
TRY
TO
UNDERSTAND THE LOGIC OF VIETNAM'S FUNNY FOLK STORIES
NGUYfiN
HOANG
YfiN
(TS;
Dfi
hgc
TSy
Bic)
Abstract: Vietnam's finmy folk stories have the mechanism causing
lim
from creating
implicit meanings
basuig
on breaking the common pragmatic rules. In some of fliem,
die
violation consists of logical elements. The three
fiiimy
stories are analyzed to determine and
temporarily
name
one
type
of
logic
in
Vietnam's
fiinny
folk
stories.
Key
words:
Vietnam's fiinny
folk
stories;
logic;
mechanism causing
liin.
LMddiu
1.1.
Logic hgc li khoa hgc nghito dm
nhftng quy
luft
vi btoh thic suy
lufti
cia tu
duy
nhfim di tdi
nhto Aide
ding dfin hidn flivic
khfich
quan.
Logic
hgc
phit triin ttt rit sdm vfi
dft dugc tit nhiiu thinh
tvni,
diu tidn v4 cbi
yiu d lihh vye toto hgc. Cuii tiii ki XX,
nhftng phuong phip
Uifin
hgc dugc
vfti
dyng
vfio
nghito
ciu cfic ngfinh khoa
hgc xS hdi,
vfi
diu tito
Ifi
ngdn
ngft
hgc.
Cfic phuong phip vfi
cfic
lofi
logic khfic nhau duge
vfti
dyng nhiiu
tiong nhftng khfio ettu ngdn ngfi. Logic
tid
tiifinh mdt diim tvra trong vide nghidn ciu
ngdn ngft ty nhida Mil quan hd giiia logic
hgc vfi ngdn ngtt hgc trd ndn gin bd, hip dan
cic
nh4
nghito
ettu.
Trayto
cudi
dto
gian Vidt Nam Ifi
mOt
phin ehuong trinh vfin hgc dSn gian dugc dua
vio gitog dfy trong nhfi
tiudng.
Viie tim hiiu
tiuyto cudi dto gian Viit Nam 14 mdt vide
Ifim hip din song vd eiing khd khfin.
Tfie
gifi
Hotog
Phd trong bii "Logic ngdn ngff
h(K^'
(fi di eft) din nhfing hito tugng dugc coi
14
mo
hi khd hiiu song vin cd logic. Logic cia
svi
kidn, tinh huing dd dugc
d$t
trong nhiing
inii
quan hd vdi nhfing tri thic phi thdng cia
ngudi dgc,
gfin
vdi
tinh
huing, vfin cinh ritog
cia vfin bin.
"Ldm
khi
cdi
goi
Id
"phi
logic"
thdt ra
Id
cdt logic md chimg ta chua phdt
hi$n
rd' [3]. Do dd, chfic chto ton tfi nhftng
lofi
logic khie nhau trong mgi tinh huing,
hoin cinh, ngay ci nhfing hito
htpng
vin bj
coi li "phi logic" nhit djnh cflng cd logic
ritog
1.1 Ti nhflng ggi
^
cia tfie gii Hoing Phd
vfi Hi
Ld,
ching
tdi
tin
rfing
nhttng
hito
tugng
phi logic do vi phfm cie quy tfie ngft dyng
nhfim
myc
dich
gfiy
eudi
trong
truy
to
"udi
dto
gian Vift
Nam
chfic chfin
cung
cd nhttng logic
ridng eia
nd.
Vdi suy
nghl
dd, ehing tdi thtt
tim hiiu
Logic
trong
m$l
si
tniy(n
cudi ddn
gian
Vi^lNam.
Co
chi
gSy
cudi
trong
tiuyto
eudi dto gian
Vi^t
Nam thvrc ra li co chi tfo ra cfic nghia
hfim
an
tito
CO
sd
vi
phfm cie
nguy
to
tfie
ngtt
dyng
flidng
fliudng.
Vdi quan
niim
nhttng vi
phfm dd li sai - phi logic ching tdi dfi tiin
binh
tim
hiiu logic tiuyto cudi
Vidt
Nam
tito
CO
sd tim ra sy cd li tiong chinh nhftng hito
tirgng pbi
logic
iy.
Thdng thudng ndi theo
loi
hto in sd gittp
ngudi ndi khdng can tivc tiip tiii hito myc
dfeh, dyng y (phd phfin, dfi kfeh, ti cfio) cia
minh qua cfiu chft. Ngudi ndi
sd
trinh
dugc
sy
phto ing, bfit
bd
cia dii tugng
bj phd
fdiin,
di
kich.
D$c
bidt, hidu qufi cia
iii
ndi niy cao
hon loi ndi phd phto dfi kich trvrc tiip bdi nd
thi
hidn
duge sy thdng
minh,
tfii
tii,
sy df ddm

98
NG6NNGC&
D6I
S6NG
si
ll
(241)j01L.
hay thto thiy eia ngudi phd phto. Nd khiin
eho doi tugng bj dfi
kidi,
chi giiu phii im ttc,
bvrc
tic,
)ciu
hi,
ngugng,..
.mi d4nh
bim byng
khdng ndi dugc cto
gi
bdi ngudi ndi "vd can".
Cae
tfie
gifi dto gian stt dyng m$t trong cfic
cfich tfO nghia hto an hidu qufi li ehi dgng
xiy
dvmg
nhfing hoin cinh cd li di cho nhto
v^t
vi phfm cfic nguyto tfie ngft dyng:
nguydn tfie ehiiu
vft
ehi
xuit,
nguydn
tfie l$p
lufti,
nguyen
tfie
hdi thofi, si dyng cfic hinh
vi ngdn ngtt gito tiip, ttt dd tfo ra tiing cudi
vdi nhfing
y nghTa
khfic nhau.
Do dd,
CO
sd de nhto
ra
nhftng vi phfm
nfiy
14
nhftng li thuyit vi cic nguydn tfie ngft
dyng. Qua
vige
nhto
dito
nhttng vi phfm
cfic nguydn tfie ngtt dyng, ching tdi nhto
thiy bto thto nhttng vi phfm niy cung cd if,
cd logic ridng. Nhto fliic dugc nhttng vi
phfm
Ito
ngudi dgc bft cudi, song di hiiu
dugc tinh cd
If,
ed logic cia nhfhig sai phfm
thi khdng phfii ai cung
nlito
ra dugc. Tiong
bii viit niy, ehing tdi tiin hinh thi li giii
logic cua nhttng hidn tugng sai phfm iy
tiong mdt si
truygn
cudi.
2.
Khfio sit
at
thi
2.L
Cd m$t vin di
djt
ra Ifi, nhftng li
thuyit lidn quan
trvrc
tiip din n$i
dimg khto
sfit cia
chtog
tdi mdi ehu yiu dttng Ifi d
nhiing ggi md rat
ehimg
ehung vi
svr
tin tfi
ciia cfic
lofi
logic khic nhau trong ngdn ngft.
Bdi flii, chtog tdi mfnh dfn di xuit, ty xSy
dyng
m0t
co sd
If
tiiuyit ttt tren
flivrc
td
khio sfit, phto tfch mgt si
tiruy$n
eudi dto
gian Vidt
Nam.
Theo dd, ching tdi sd di theo
phuong phip quy nfp: di ttt phto tfch vf dy,
rut ra nhto xdt, ndu If do
d^t
tdn
lofi
logic
bfing md hlnh. Cy thi qua cie budc sau:
1/Phto
tich mgt si vto bto cy tiii; 2/Nhto
xdt: vi CO chi gSy eudi do vi phfm cfic
nguyto tfie ngft dyng vi Xic djnh cie
lofi
logic cia
tiuydn
cudi
(tito
co sd nhfing vi
phfm cie nguyen
tfie
ngft dyng).
11
Phdn
tich
vldtf
VI dfi
1.
Quan
sip
Oinh
bi
..
Via bto:
Mqt anh Unh H
«"*
"^^
trifc,
thay quan huyin ldm nhiiu dilu trdi
mdt,
thudng hay
chi
nhgo.
Quan vdn dinh bifngtrh
MQlhonucdngudidinvuchoanhtadntiSna
n^i
chv,
quan mung thdm
cd dip bdo
thu,
liin cho di bdt
vi.
Anh llnh
l^
vi, ddt cd
thdng
con di
theo.
Quan v&a trdng
thiy, ddp
bdn
thit:
-
Bdnhl
Ddnh cho nd chiia cdi tdt dn hii Id *•'
Anh llnh li ngodnh Up thing Ihtnh bdo
con:
-
Con lui
ra
Quan sdp ddnh
bi
diyl
b.
Co chd gfiy cudi: Cfiu chuvto
g4y
cudi
do sy
vi
phfm nguydn tic vi chidu
v|L
Ngudi
dto thich ngfo mfn vdi quan trto
<B
lgi dyng
sy da chiiu
vft
cia ldi ndi trto (Idi ndi cia
quan
huyto)-
"Quan
sdp
ddnh
ha' viia li ldi
ndi thvrc cia ngudi dto vdi
c$u
con trai ding
gin
diy,
vtta
14 ldi ximg
hd vdi
quan.
CUnh
svr
da chieu
vft
eia ldi ndi da tfo
Ito
nhftng hiiu
lim
tiii
vdi quy
tfie
ehiiu
vft
thdng thudng
(Quan
14
ting ldp thing
ti:j
nto mgi ngudi dto
phfii
kinh
tigng,
le
phdp).
c Logic eia sy vi phfm: M$e dtt
)a]it hign
hign tugng phi logic (sai so vdi cie quy
tfie
thdng thudng), song khi
d$t
trong hoto cinh
ey flii eia
tiuyto
ching tdi nhto fli^y nhfing
cfii sai iy vin cd logic ritog tin tfi. Cfiu ndi
"/(!/)
/d"
cia ngudi dto via hgp vdi hoto cfinh
diin ra eia
tiuyto:
ngudi dto ndi vdi (tea eon
tiai ding gin diy, Ifi viia
14
Idi
icung
"bi" vdi
quaiL
Quan huyto
nhto lu
hto y sto cay
tiong phfit
ngdn
song khdng flii bude
tdi
ngudi
dto
Ito
linh thdng
minh.
Anh
dS
cd
tiiii ndi
ra
cto nfiy di
tito
nguoi tto quan huyto Cto
ndi
vi phfm quy
tfie
ehiiu
vjt
d d4y, vi thi cd
logic
rieng
- logic
IJp
Id. Sy cd
II
vfi phi
II
tin
tfi ngay tiong mgt phfit ngdn
14
hito
qui
tit
yiu cia lofi logic nfiy. Logic
% Id
giip ta
nhto ra y
ngUa
eo bto cia
tniyto:
di cao sy
flidng mmh,
Ito Unh
eia ngudi dto, Idn to tto
quan huy
to
l>d ^ hsy
flift
v$t
VliiflMitriUdtdy
a.
Vto
bto:
MQI
nguoi
sip di
chai
xa,
ddn
con
rdng:
-Nhdcdai
hdi,
thi
bdo bi
chdu
di
chcri
vdng.

si
11
(241)-2015
NG6N
NGC
&
Bin
S6NG
99
Nhung
lgi
s<r
con
mdi
chai
quin mA
W
cin
thdn
tdy
but
viit
cho nd
mdl
cdi
^dy
rdi
bdo
rdng:
-
Cd
ai
hdi,
IM
mdy
cd dua
cdi
giay
ndyra
Con cim ffScy bo vdo tin do. Cd ngdy
chdng
thdy
ai
hdi.
Til
Mn sdn
cd
ngpn
den,
con
Idygiiy ra
xem,
chdng
may
vd
ji
di
glqy
(Mymm.
Horn
sau
c6
ngudi
din
chai
hoi:
- Thiy
chdu
cd
nhd
Ididng?
N6
ngin
nga
hii
Idu,
sifc nhd
ra
sd
vdo
tdi
khdng
my gi^V
liin
ndi
rdng:
-
Mit rii.
Khdch
gl^
minh
hdi:-
Mdt
bao
gia?
m
ddp:-Til
hdm
qua.
-Saomdmit?
-CMy...
b.
Co
ehi gfiy
cudi:
Tiuyto
giy
cudi do vi
phfm
quy
tie chiiu
vft
chi
icuit
v4
quy tfie hgi
tinfi.
Sy
hiiu lim vi chiiu vfit flii hito d vide
c$u
bd
vfi dng khieh hiiu nhfim nhau.
C^
bd
ndi vi giiy td cha dua hdm qua, cdn dng
khich Ifi nghl vi bi cto
bd,
(fieu
nfiy dfi tfo
nto
tinh
huing ding
cudi.
Sy vi phfm nguyto
tfie
hii
fliofi
thi hito qua nhttng ciu bi
Idi
qui
ngin ggn nfiy dfi vi phfm
nguyto
tfie ijch svr
trong quan nidm eia ngudi Vidt
C^
bd ndi
chuyto
vdi
ngudi
ldn
nhung khdng
thua gii li
I^,
ta4 ldi khdng
dtog
vdi nhttng quy tfie
chung Ngudi dgc nhto ra cfii ding cudi eia
nhftng hito tirgng khdng btoh fliudng, phi
logic
iy. Song kit
luto
nhttng hito
higng
niy
phi logic li vln ehua diy di, fliiiu chinh xfic
bdi
d$t trong hoto cinh cia tiuydn, nhfing sai
phfm
nfiy
vSn
cd
logic ritog,v.v.
c.
Logic (nia sy vi phfm: Gfin nhfhig hito
tugng phi logic
cio
vi phfm cfic nguyto tic
chiiu
v§t
nto tidn, ching tdi nhto fli^y
bto
ttito sy 1ft)
Id
khd hiiu eia Idi ndi nfiy cflng
tfo
nto dugc rit nhiiu
f
nghia Ndi
cidi
khfic
cd logic Ift) Id tin tfi tiong tniyto tiiu Ifim
Vidt Nam. Trong cfiu chuydn nfiy, cudc dii
fliofi khdng
^
14
phi li, bdi xdt vi
m^
hinh
fliic nhftng eude fliofi nfiy tvr ching Sa^
khdp ghdp mgt cfich rit ty nhito Sau mdi
fliam fliofi hii dfip
Ifi
mdt
ttiam
fliofi
din
nhft)
dung
theo
quy tfie. Ta cd thi nhto ra
s\r
hgp
li
niy qua btog sau:
Khich
•TTiiy
chto ed
nli4 khdng
•Mitbaogid^
Cjubd
•Tii
hdm
qua
Sao
m4
mat
| -
Chdyi
,
Nhu
v$y,
khi khdng xdt din ddi tugng
nil
ngudi ndi hudng
tiH
tiong phfit ngdn
flii
euic
fliofi hoto toto hgp
li:
ngudi hdi
tim
dugc
nil
dung
thdng
tin
miidi
cin, cdn ngudi
tr4
Idi
dft)
ing dugc
n$i
dung cto hdi. Khfich suy dugc
nhfing thdng tin vi
chtt
nli4
qua
mil cto tri
ldi
cia cto bd: Mdl rii! -> ngudi chi nhfi dfi
chit; Til hdm
qua^
Thdi gian ehi nhi qua
ddi
14
tii hdm
qua;
CW)»>
Nguyto nhto qua
ddi
14
do chfiy. Cdn cto bd, do mii
nghl
Ha
doi
tirgng
"0
gidf
nto dfi tii ldi
mit
cieh
lit
ngiy flio "vd tiiic". Td giiy eba dua mit
t6i
hdm qua Ii
do
cto so
^
Ita
ebiy mit Ci cto
tii ldi cia cto bd Iln suy luto cia khfich diu
dtog vdi logic (mft; di thvrc ti hai ngudi ndi
vi hai dii tugng khic
nhau).
Ngudi
d(?c
nhto
ra diiu phi li, miu thuin trong cudc thofi
niy 14 do ldi ngudi ki chuydn. niu
khdim
flieo ddi cto
ehuygn
mi ehi nghe eude ddi
dip thi chua chfic ngudi nghe
dS
nhto ra sai
lim phi logic. Nhu
v^y,
tdn tfi logic 1ft) Id
trong ciu huyto nfiy. CUnh logic 1ft) Id dfi
stt dyng nhu
mOt
thi phfip nghd
thu|tt
gfiy
eudi,
tfo nto tinh huong nhfim
Iln
nglu
nUdn,...
VI dft
3.
Bim chd
ci
a.
Vto bto: Nhd
no
thdy
quan
lgi
tham
nhiing
trong
Idng
rdt
khinh.
Mdt
hdm,
cdc
quan
din
nhd
chai,
trong
si dd cd cd mdy
bgn ding song thua trudc. Ong ra bdo
ngudi
nhd
don
rupu
thil
Ngudi nhd bung
mdm
Un,
dng ta ding
ddy
thua:
-
Chd
miy
kht
ring din
nhd
tdm,
cdc
ngdi
c6
bung
yiu nhd
nho
thanh
bgch
din
chai,
cd chin
ru(ru
nhgt
xin cdc ngdi
chiiu
ci
cho.
Cdc
quan
dm diia, gip mdy mdn Cdc
quan
dn
thdy
ngon
mtingi
liin khi
khd
hdi:
d^d!dgl?kiabdtgl,...

100
NG6NNGC
&
Bin
S6NG
si
ll
(241)-201i.
Nhd nho
thong
thd
ndi:
-
Ddy Id
chd,
kia
cungldchd,
bdmloanldchdcd.
b.
Co
(^
gay eudi:
Tnwto
gay eudi
d
phit ngdn cuoi cing,
fliiy do dfi eo tinh vi phfm quy
tfie
hgi thofi
khi
ei
tinh
lin>e
bd ttt "thif trong
ti
hgp ttt
"thit
chff"
de tfo nto hiiu lam
vi
eUiu
vft.
Dfing Id nhfi nho phfii
Hi
ldi day di: -
fWy td
fthlt)
chd,
kia cdng
Id nhit)
chd,
bdm loan Id
Ithll) chd cd
c Logic ciia
sy
vi
phfm:
Ldi ndi eia fliiy do ifi khdng btoh thirdng
khi so sfinh vdi cie quy tie hdi thofi song gfin
vdi ngtt cfinh cd van cd logic ritog. Thay do
da
CO
tinh luge bd ttt "thjt" tfo nto
tinh
"1ft)
id" trong ldi ndi. Ldi ndi niy via cd thi Uiu
theo nghia thyc: cfic mdn
to
diu Ito ttt thjt
chd,
Ifi
via cd
tlii
Uiu theo sy quy
cUiu;
cic
quan
Ifi
mgt lu
chd
- mgt lu chuyto
to
ban ci.
Cie quan di rit cay ci
song khdng
thi
tiidi
gi
thiy di ci. Hito
qui mia mai
chto hiim
14 do
ngudi nghe ty suy
ra
cdn bto flito eto ndi dfi
dugc ngyy trang bfing mdt y ngUa khic -
mOt
(fiiu btoh thudng. Thiy do da vto
dvng tiifli
1ft)
Id
cia eto ndi
m$t
cfich xuat
sfie,
tfo nto
"tfnh anh toto" cho ldi ndi cia minh, ding
thdi flii Uto thfii dg phd phto dfi kich bgn
tham
quaiL
Nhu vfy,
id iing
tin tfi logic ift)
Id trong cto tiuyto niy. Ctog nhu nhttng cfiu
chuyto khfic stt dyng tinh da nghia cia Idi ndi
trong cto
chuyto
nfiy ed vai
tid
tfo
Uto
qui
giy cudi
v4 myc dich phd
phto
logic Ifti Id
thi
Uto sy phong phi, (fi dfng, hip
din,
flii
vj
eia ngdn
ngft tilng
Vigt
13.
CasdUnh
thinh
logic % Id
Theo Ttt diin Tiing Vidt
"Lfti
Id:
Cd tinh
chit
hai
m^
khdng
rd ring, dttt
kfafit,
nhfim lin
tiinh
hoft:
ehe gilu (fiiu
^":
An
ndi
ldp
Id.
Ihdi dd lip Id khd
Miu Trong
fliyc
ti, ed
lit
nUiu nhfhig ldi
ndi,
vigc ito bay hfinh dgng,
tilii dd Ift)
Id
khd
]a^
Co sd cia nhftng sy
1ft)
Id
nfiy
li
dvra trto tinh hai
m|t,
khdng rd
ring cia
^
ngUa ldi
ndi,
hinh
dOng,..Alvic
dfeh
ciia ngudi
si dyng
Idi
ndi hinh ddng
"l^
IcT Ifi
nhto lin trinh ho$e che giiu dieu gl.
Do dd, chfic chiin tin
tfi
logic
ift)
1*
A""*
nhftng hfinh
ddng ldi
ndi
khdng rd
ring.
Qua
tim
Uiu
tiuydn
eudi, ed flii nhto fl>iy
bong nhflng tiuyto
giy
cudi do vi phfm quy
tfie cUiu v«t Odi
dyng tinh da
diiiu
v|t)
hay
quy tie hgi fliofi
(dya
tito
sy mo hd vd
ngUa
cia phfit ngdn) fliudng
tin tfi
logic
l$p
Id.
Nhftng
vi
phfm iy kU so sfinh vdi logic khfich
quan sd bj coi
14
pU logic, song
dSt
trong ngtt
cfinh ritog cia truydn chtog Ifi cd
^
ngUa,
ed
li bdi hto y mfi ngirdi phfit ngdn (tfie gifi) gii
gfim.
Nhftiig
ldi ndi da nghia, nhttng ciu ndi
mo
ho v4 cfi
tinh
da cUiu vft kU
du(^
tie gifi
stt dyng eho nhto vft phfit ngdn bao gid ctog
flii
Udn
myc dfeh nfio dd.
Di sft
dyng dugc
cto ndi Ift) id chfic chfin ngudi ndi phfii cd
tir
duy vi nhttng ldi ndi Ift)
Id,
nhto
tbic
tnrdc
dugc
Uto
qui tfo
ra
hto
-j
eia
Idi
ndi iy. Ndi
cfich khfic chfic chfin tin tfi logic 1ft)
Id
Irong
tiuyto cudi
Vi$t
Nam. NhOng ciu chuyto
vi
logic Ift) id d phin phto tich
di
cho ehing ta
flily didu
dd.
Viie nhto
di^
logic Ift)
Id trong
tiuyto cudi Viit Nam cd vai trd quan tigng
cia ngft cfinh.
S(i (fiing
- sai cia ldi ndi
l|p
Id,
vito nto uiu theo
nghIa
nio
14
ding din vdi
hoto cinh cy tiii
cia
liuyto.
V4y
logic 1ft) Id dugc xiy dvmg dvra tito
nhfing
CO
sd nfio?
Qua phto tich mdt
si
tniyto cudi trong
liuyto cudi
dto
gian Viit Nam, chtog
tdi
nhto thiy
ed
flii khfii quit quy titoh
Unh
thinh
logic lft> Id
nhu sau:
A (ngudi
ndi)
tfo
ra
phit ngdn X trong tinh
huing
Z
X cd nUiu cieh Uiu khie nhau
(XI,
X2,
X3...)
A
muin
hudng
faM
cich Uiu XI
XI
Ito
in,
chto
biini,dikich...
B (ngudi
nghe)
B khdng tiii tiich phft A vi tinh da nghia
eiaXtrongZ.
Nhd tinh da nghia cia X nto dyng
^
cia A
vto dugc uiu mdt cieh di
dfing.
Hon
tiii
nOa,
A ed flii vto vto cfic
etoh
Uiu
4y
di dii din
Ifi
sy ttidi phft, bude tgi eia
B.
Thudng flilB

Si
11 (241)-2015
NG6NNGC&D6fIS6NG
101
sd khdng flii tiich gito
A
vi nghia cto chtt
khdng trye tiip
Ito
to
B.
B
ty nhto ra hto
:^
chtt
khdng
phii
do A trvrc
tiip
ndi ra.
CUnh bdi
djic
tiung tito mfi logic 1ft)
Id
dfi
dugc vto dyng
rgng
rii vto trong
vige
thi
hito cie him
^
(^
ngirdi
ndi.
Stt dyng logic
Ift) Id (nhit li bong
flidi
phong kiin), ngudi
ndi cd thi dto bto an toto tinh mfng kU
gito
tiip
Idn to
dfi kich m$t
dii
tinimg
nio dd.
Do dd, ngudi
vfti
dyng logic 1ft) id thinh
cdng
li ngudi khdng cU diing cto mi
cdn
tit
thdng
minh,
tii gidi. Hon
the,
vto
dyng logic
1ft) Id vto cic tic phim vto hgc sd tfo ra
dugc nhttng diiu thi vj, hip
din,
ldi cuin
ngudi
dgc,
bit
hg
phii tu duy.
3.KitIu$nbandiu
3.1.
Ranh gidi gifta logic vi pU logic vin
rat mong manh, trong sy doi sinh
v(Ji
hoto
cinh niy
mit Uto tm^mg
cd thi Ifi pU logic
song dft trong hoto cinh khto cflng chinh
hito
tirgng
iy
Ifi
cd logic, ed li ridng eia nd.
Ldi ndi mo hi cia nhi nho tiong "Birn
chd
C(f'
[8,
i 84] 14 pU
logic so vdi nguydn tfie hdi
fliofi bdi sy mo hi vfi khdng diy di lugng tin
tiong ldi ndi. Song cflng ehinh ldi ndi iy kU
dft vto trong hoin cinh ridng cia tiuydn Ifi
cd logic eia tfnh lip
Ittng
(choi chft), logic
cua to muu. Khdng phfii nglu nUdn nhi nho
vi phfm phuong chto vi lugng, dng dfi ci
tinh ndi flitta dd dft mye dich
khoe
khoang
cia
minh.
Diiu dd cho thiy
svr
cin tUit phii
xfic djnh
mit
co sd logic chuin
mvrc
kU dfinh
gii mdt
Uto tugng
14 lo^e
hay pU
logic.
Mii
quan hd gitta logic v4 pU logic
14
mii quan
h?
gfin bd
m$t
tiiiit tiong ctog mdt Uto
tirgng. Cto ctt di xie djnh
mdt
Udn tirgng
pho logic
14
nhfing "Irl thic phi
Ihon^'
hay
"togic IMch
quan".
Trong ndi tfi nhftng Uto
tiigng bj xem
14
pU logic ludn cd nhftng hd
tiling logic ritog gfin vdi ngft cinh, tinh
huing mi Uto tugng xiy ra. V4 nhu viy,
phfii chtog cd mdt
kidii
logic lip Id vfi nhftng
kiiu logic khfic nfta xuit Uto tiong cto
tiuydn eudi dto gian Viit Nam dft tiong ngft
cfinh ritog eia tiing tiuydn.
3.1 Ci nhftng
Uto
tugng logic vfi pU
logic tiong tiuyto cudi dto gian Viit Nam
diu hudng tdi
mOt
myc dich chung
14
tfo ra
tiing cudi. PU logic tfo nto dft; trung
"truyin
bia
d(it"
cdn logic
Ifi tfo
nto tinh
"c6
If,
gfin bd, lito kit cto Uto tugng, sy kito
cia tiuyto cudi. Tuy nUdn, tto dyng giy
cudi cia
nbibig Uto
tugng phi logic
li\re
ti^
v4 mfnh
mS
hon
14
logic nii tfi gfin vdi ngtt
cfinh, tinh huing
tniyto-
Logic cia nhihig
Uto tugng pU logic thudng hudng tdi viic
tfo ra
cUeu
siu eia tiing cudi trong dyng
^
phd phin, di kich
xa
hii, hay mia mai tfnh
etoh. Sau nhfhig tiing cudi gidn gia tfo ndn
bdi nhfing
Uto
tugng
pM
logic li nhttng
khto phi vi y flittc xi hdi siu sfic d tttng
tmydn.
3.3. Mgi
svr
vjt,
Uto
tugng tin tfi, xiy ra
trong thi gidi khto quan xung quanh ta bao
gid cflng cd quy
lii$t
ridng cia nd. Di vto
ngdn ngtt vto chuong nhiing quy
lu$t khtoh
quan niy dugc phii hgp vin
logie
nhto thic
cia ngudi stog tic ndn
tvr
flito
nhttng
svr
vft,
Udn tugng dugc phto inh trong vto chuong
cflng cd logic ritog di tin tfi. Vide tim Uiu
logic cia nhfing
Uto
tugng pU logic cUnh
li tim uiu y dd eia ngudi stog tto kU xiy
dvmg ldn nhftng Uto tugng cd vin di logic.
Do dd mi
vide
phin tich, cto nhto tiuyto
cudi ctog dugc siu sfic vi toto
(fito
hon.
TAI
LIpU THAM
KHAO
1.
Didp Quang Ban (2009), Giao tiip,
diin
ngdn
vd
cdu tgo cua vdn
bdn,
Nxb Gito
dye.
2.
Truong Chinh-Phong Chiu (2004),
Tiing cudi ddn gian Viit Nam, Nxb Khoa
hgcXah$i,HiNdi.
3.
Hotog Phd (ehi bito) (1994), Ti diin
tiing
Viit,
Nxb khoa hgc Xa
h^i.
Hi
Ndi.
4.
Nguyin Hotog Yin
(2011),
Hdm i
h^l
thogi trong truyin cudi ddn gian Viit Nam,
Nxb Tft diln Btoh khoa,
H4
Nil.
5.
Yuie.G (1997, bto djch tiing Viit
2003),
Dvng
hgc,
Nxb Dfi hgc
CMc
gia H4
Nii.
Bấm Tải xuống để xem toàn bộ.