Tóm tắt công thức và lý thuyết vật lí 11 cả năm

Tóm tắt công thức và lý thuyết vật lí 11 cả năm rất hay và bổ ích, bao gồm 21

trang giúp bạn tham khảo, ôn luyện hiệu quả và đạt kết quả cao trong kì thi sắp

tới.

Trang 1
21
F
12
F
q
1
.q
2
>0
r
21
F
12
F
q
1
.q
2
< 0
TÓM TẮT CÔNG THỨC VÀ LÍ THUYẾT VẬT LÝ 11
CHƯƠNG I. ĐIỆN TÍCH – ĐIỆN TRƯỜNG
I. Cách nhiễm điện. Có 3 cách nhiễm điện một vật: Cọ xát, tiếp xúc ,hưởng ứng
II. Định luật Cu lông:
Lực tương tác giữa 2 điện tích điểm q
1
; q
2
đặt cách nhau một khoảng r trong môi trường hằng
số điện môi ε là
12 21
;FF
có:
- Điểm đặt: trên 2 điện tích.
- Phương: đường nối 2 điện tích.
- Chiều: + Hướng ra xa nhau nếu q
1
.q
2
> 0 (q
1
; q
2
cùng dấu)
+ Hướng vào nhau nếu q
1
.q
2
< 0 (q
1
; q
2
trái dấu)
- Độ lớn:
2
21
.r
qq
kF
=
; k = 9.10
9
2
2
.Nm
C



(ghi chú: F là lực tĩnh điện)
- Biểu diễn:
3. Vật dẫn điện, điện môi:
+ Vật (chất) có nhiều điện tích tự do dẫn điện
+ Vật (chất) có chứa ít điện tích tự do cách điện. (điện môi)
4. Định luật bảo toàn điện tích: Trong 1 hệ cô lập về điện (hệ không trao đổi điện tích với các hệ
khác) thì tổng đại số các điện tích trong hệ là 1 hằng số
III. Điện trường
+ Khái niệm: môi trường tồn tại xung quanh điện tích tác dụng lực lên điện tích khác
đặt trong nó.
+ Cường độ điện trường: Là đại lượng đặc trưng cho điện trường về khả năng tác dụng lực.
EqF
q
F
E
.==
Đơn vị: E(V/m)
q > 0 :
F
cùng phương, cùng chiều với
E
.
q < 0 :
F
cùng phương, ngược chiều với
E
.
+ Đường sức điện trường: Là đường được vẽ trong điện trường sao cho hướng của tiếp tưyến
tại bất kỳ điểm nào trên đường cũng trùng với hướng của véc tơ CĐĐT tại điểm đó.
Tính chất của đường sức:
- Qua mỗi điểm trong đ.trường ta chỉ thể vẽ
được 1 và chỉ 1 đường sức điện trường.
- Các đường sức điện là các đường cong không
kín,nó xuất phát từ các điện tích dương,tận cùng các
điện tích âm.
- Các đường sức điện không bao giờ cắt nhau.
- Nơi nào có CĐĐT lớn hơn thì các đường sứcđó vẽ
mau và ngược lại
+ Điện trường đều:
- Có véc tơ CĐĐT tại mọi điểm đều bằng nhau.
- Các đường sức của điện trường đều là các đường thẳng song song cách đều nhau
Trang 2
r
r
+ Véctơ cường độ điện trường
E
do 1 điện tích điểm Q gây ra tại một điểm M cách Q một
đoạn r có: - Điểm đặt: Tại M.
- Phương: đường nối M và Q
- Chiều: Hướng ra xa Q nếu Q > 0
Hướng vào Q nếu Q <0
- Độ lớn:
2
.
Q
Ek
r
=
; k = 9.10
9
2
2
.Nm
C



- Biểu diễn:
+ Nguyên lí chồng chất điện trường:
12
.....
n
E E E E
= + + +
Xét trường hợp tại điểm đang xét chỉ có 2 cường độ điện trường
+
21
EEE
+=
+
2121
EEEEE +=
+
2121
EEEEE =
+
2
2
2
121
EEEEE +=
+
( )
cos2,
21
2
2
2
121
EEEEEEE ++==
Nếu
2
cos2
121
EEEE ==
IV. Công của lực điện trường: Công của lực điện tác dụng vào 1 điện tích không phụ thuộc vào dạng
của đường đi của điện tích chỉ phụ thuộc vào vị trí điểm đầu,điểm cuối của đường đi trong điện
trường
A
MN
= q.E.
''
NM
= q.E.d
MN
(với d
MN
=
''
NM
độ dài đại scủa hình chiếu của đường đi MN lên trục tođộ ox với
chiều dương của trục ox là chiều của đường sức)
. Liên hệ giữa công của lực điện và hiệu thế năng của điện tích
A
MN
= W
M
- W
N
= q V
M
- q.V
N
=q(V
M
-V
N
)=q.U
MN
. Thế năng đin trường- Đin thế ti các đim M,N
+ Đối vi đin trường đều gia hai bn t:
MM
qEdW =
;
NN
qEdW =
(J)
MM
EdV =
;
NN
EdV =
(V)
d
M
, d
N
là khong cách t đim M,N đến bn âm ca t.
+ Đối vi điên trường ca mt đin tích :
==
M
M
MM
d
r
Q
qkqEdW
=
M
M
r
Q
kqW
;
=
N
N
r
Q
kqW
Đin thế :
q
W
V
M
M
=
suy ra:
M
M
r
Q
kV =
d
M
=r
M
, d
N
=r
N
là khong cách t Q đến M,N
+ Hiệu điện thế giữa 2 điểm trong điện trường đại
lượng đặc trưng cho khả năng thực hiện công của điện trường
khi có 1 điện tích di chuyển giữa 2 điểm đó
. Liên hệ giữa E và U
M
E
q > 0
q < 0
M
E
Trang 3
''
NM
U
E
MN
=
hay :
d
U
E =
* Ghi chú: công thức chung cho 3 phần 6, 7, 8:
.
MN
MN M N MN
A
U V V E d
q
= = =
V. Vật dẫn trong điện trường
- Khi vật dẫn đặt trong điện trường mà không có dòng điện chạy trong vật thì ta gọi là vật dẫn
cân bằng điện (vdcbđ)
+ Bên trong vdcbđ cường độ điện trường bằng không.
+ Mặt ngoài vdcbđ: cường độ điện trường có phương vuông góc với mặt ngoài
+ Điện thế tại mọi điểm trên vdcbđ bằng nhau
+ Điện tích chỉ phân bố ở mặt ngoài của vật, sự phân bố là không đều (tập trung ở chỗ lồi nhọn)
VI. Điện môi trong điện trường
- Khi đặt một khối điện môi trong điện trường thì nguyên tử của chất điện môi được kéo dãn
ra một chút chia làm 2 đầu mang điện tích trái dấu (điện môi bị phân cực). Kết quả trong khối
điện môi hình thành nên một điện trường phụ ngược chiều với điện trường ngoài
VII. Tụ điện
- Định nghĩa: Hệ 2 vật dẫn đặt gần nhau, mỗi vật là 1 bản tụ. Khoảng không gian giữa 2 bản
là chân không hay điện môi
Tụ điện phẳng 2 bản tụ là 2 tấm kim loại phẳng có kích thước lớn ,đặt đối diện nhau, song
song với nhau
- Điện dung của tụ : Là đại lượng đặc trưng cho khả năng tích điện của tụ
Q
C
U
=
(Đơn vị là F.)
Công thức tính điện dung của tụ điện phẳng:
d
S
C
.4.10.9
.
9
=
. Với S là phần diện tích đối diện giữa 2 bản.
Ghi chú : Với mỗi một tụ điện 1 hiệu điện thế giới hạn nhất định, nếu khi sử dụng mà đặt
vào 2 bản tụ hđt lớn hơn hđt giới hạn thì điện môi giữa 2 bản bị đánh thủng.
- Ghép tụ điện song song, nối tiếp
GHÉP NỐI TIẾP
GHÉP SONG SONG
Cách mắc :
Bản thứ hai của tụ 1 nối với bản thứ nhất
của tụ 2, cứ thế tiếp tục
Bản thứ nhất của tụ 1 nối với bản thứ
nhất của tụ 2, 3, 4 …
Điện tích
Q
B
= Q
1
= Q
2
= … = Q
n
Q
B
= Q
1
+ Q
2
+ … + Q
n
Hiệu điện thế
U
B
= U
1
+ U
2
+ … + U
n
U
B
= U
1
= U
2
= … = U
n
Điện dung
n21B
C
1
...
C
1
C
1
C
1
+++=
C
B
= C
1
+ C
2
+ … + C
n
Ghi chú
C
B
< C
1
, C
2
… C
n
C
B
> C
1
, C
2
, C
3
- Năng lượng của tụ điện:
22
..
2 2 2
QU CU Q
W
C
= = =
- Năng lượng điện trường: Năng lượng của tụ điện chính năng lượng của điện trường
trong tụ điện.
Tụ điện phẳng
2
9
..
9.10 .8.
EV
W
=
Trang 4
với V=S.d là thể tích khoảng không gian giữa 2 bản tụ điện phẳng
Mật độ năng lượng điện trường:
2
8
WE
w
Vk
==
CHƯƠNG II. DÒNG ĐIỆN KHÔNG ĐỔI
I. DÒNG ĐIỆN
Dòng điện là dòng các điện tích (các hạt tải điện) di chuyển có hướng
Chiều quy ước của dòng điện là chiều dịch chuyển có hướng của các điện tích dương.
Dòng điện có:
* tác dụng từ (đặc trưng) (Chiếu quy ước I)
* tác dụng nhiệt, tác dụng hoá học tuỳ theo môi trường.
Cường độ dòng điện là đại lượng cho biết độ mạnh của dòng điện được tính bởi:
q: điện lượng di chuyển qua các tiết diện thẳng của vật dẫn
t: thời gian di chuyển
(t0: I là cường độ tức thời)
Dòng điện chiều cường độ không thay đổi theo thời gian được gọi dòng điện không đổi
(cũng gọi là dòng điệp một chiều).
Cường độ của dòng điện này có thể tính bởi:
q
I=
t
trong đó q là điện lượng dịch chuyển qua tiết diện thẳng của vật dẫn trong thời gian t.
Ghi chú:
a) Cường độ dòng điện không đổi được đo bằng ampe kế (hay miliampe kế, . . . ) mắc xen vào
mạch điện (mắc nối tiếp).
b) Với bản chất dòng điện và định nghĩa của cường độ dòng điện như trên ta suy ra:
* cường độ dòng điện có giá trị như nhau tại mọi điểm trên mạch không phân nhánh.
* cường độ mạch chính bằng tổng cường độ các mạch rẽ.
II. ĐỊNH LUẬT ÔM ĐỐI VƠI ĐOẠN MẠCH CHỈ CÓ ĐIÊN TRỞ
1) Định luật:
Cường độ dòng điện chạy qua đoạn mạch có có điện trở R:
- tỉ lệ thuận với hiệu điện thế hai đầu đoạn mạch.
- tỉ lệ nghịch với điện trở.
R
U
I =
(A)
Nếu có R và I, có thể tính hiệu điện thế như sau :
U
AB
= V
A
- V
B
= I.R ; I.R: gọi là độ giảm thế (độ sụt thế hay sụt áp) trên điện trở.
Công thức của định luật ôm cũng cho phép tính điện trở:
I
U
R =
()
2) Đặc tuyến V - A (vôn - ampe)
Đó là đồ thị biểu diễn I theo U còn gọi là đường đặc trưng vôn - ampe.
Đối với vật dẫn kim loại (hay hợp kim) ở nhiệt độ nhất định
đặc tuyến V –A là đoạn
đường thẳng qua gốc các trục: R có giá trị không phụ thuộc U.
(vật dẫn tuân theo định luật ôm).
Ghi chú : Nhắc lại kết quả đã tìm hiểu ở lớp 9.
Δq
I=
Δt
A
I
R
I
U
A
B
I
O
U
Trang 5
a) Điện trở mắc nối tiếp:
điện trở tương đương được tính bởi:
R
m
= R
l
+ R
2
+ R
3
+ + R
n
I
m
= I
l
= I
2
= I
3
=… = I
n
U
m
= U
l
+ U
2
+ U
3
+ + U
n
b) Điện trở mắc song song:
điện trở tương đương được anh bởi:
1 2 3
1
mn
R
+ + ++
1 1 1 1
=
R R R R
I
m
= I
l
+ I
2
+ + I
n
U
m
= U
l
= U
2
= U
3
= … = U
n
c) Điện trở của dây đồng chất tiết diện đều:
: điện trở suất (m)
S
l
R
=
l: chiều dài dây dẫn (m)
S: tiết diện dây dẫn (m
2
)
III. NGUỒN ĐIỆN:
Nguồn điện thiết bị tạo ra duy trì hiệu điện thế để duy trì dòng điện. Mọi nguồn điện đều có
hai cực, cực dương (+) và cực âm (-).
Để đơn giản hoá ta coi bên trong nguồn điện có lực lạ làm di chuyển các hạt tải điện (êlectron; Ion) để
giữ cho:
* một cực luôn thừa êlectron (cực âm).
* một cực luôn thiếu ẽlectron hoặc thừa ít êlectron hơn bên kia (cực dương).
Khi nối hai cực của nguồn điện bằng vật dẫn kim loại thì các
êlectron từ cực (-) di chuyển qua vật dẫn về cực (+).
Bên trong nguồn, các êlectron do tác dụng của lực lạ di chuyển từ cực
(+) sang cực (-). Lực lạ thực hiện công (chống lại công cản của trường
tĩnh điện). Công này được gọi là công của nguồn điện.
Đại lượng đặc trưng cho khả năng thực hiện công của nguồn điện
gọi là suất điện động E được tính bởi:
q
A
=
(đơn vị
của E là V)
trong đó : A là công của lực lạ làm di chuyển điện tích từ cực này sang cực kia. của nguồn điện.
|q| là độ lớn của điện tích di chuyển.
Ngoài ra, các vật dẫn cấu tạo thành nguồn điện cũng điện trở gọi điện trở trong r của nguồn
điện.
IV. PIN VÀ ACQUY
1. Pin điện hoá:
Khi nhúng một thanh kim loại vào một chất điện phân thì giữa
kim loại và chất điện phân hình thành một hiệu điện thế điện hoá.
Khi hai kim loại nhúng vào chất điện phân thì các hiệu điện thế
điện hoá của chúng khác nhau nên giữa chúng tồn tại một hiệu điện thế xác định. Đó sở để chế
tạo pìn điện hoá.
Pin điện hoá được chế tạo đầu tiên pin Vôn-ta (Volta) gồm một thanh Zn một thanh Cu
nhúng vào dung dịch H
2
SO
4
loãng.
Chênh lệch giữa các hiệu điện thế điện hoá là suất điện động của pin:
E = 1,2V.
2. Acquy
R
n
R
3
R
2
R
1
R
1
R
2
R
3
R
n
m
m
m
U
I=
R
m
m
m
U
I=
R
Trang 6
Acquy đơn giản và cũng được chế tạo đầu tiên là acquy chì (còn gọi là acquy axit để phân biệt với
acquy kiềm chế tạo ra về sau)
gồm:
* cực (+) bằng PbO
2
* cực (-) bằng Pb
nhúng vào dung dịch H
2
SO
4
loãng.
Do tác dụng của axit, hai cực của acquy tích điện trái dấu hoạt động như pin điện hoá suất
điện động khoảng 2V.
Khi hoạt động các bản cực của acquy bị biến đổi và trở thành giống nhau (có lớp PbSO4 Phủ bên
ngoài). Acquy không n phát điện được. c đó phải mắc acquy vào một nguồn điện để phục hồi các
bản cực ban đầu (nạp điện).
Do đó acquy có thể sử dụng nhiều lần.
Mỗi acquy có thể cung cấp một điện lượng lớn nhất gọi là dung lượng thường tính bằng đơn vị
ampe-giờ (Ah).
1Ah = 3600C
ĐIỆN NĂNG VÀ CÔNG SUẤT ĐIỆN - ĐỊNH LUẬT JUN LENXƠ
I. CÔNG VÀ CÔNG SUẤT CỦA DÒNG ĐIỆN CHẠY QUA MỘT ĐOẠN MẠCH
1. Công:
Công của dòng điện công của lực điện thực hiện khi làm di chuyển các điện tích tự do trong đoạn
mạch.
Công này chính là điện năng mà đoạn mạch tiêu thụ và được tính bởi:
A = U.q = U.I.t (J)
U : hiệu điện thế (V)
I : cường độ dòng điện (A); q : điện lượng (C); t : thời gian (s)
2 .Công suất
Công suất của dòng điện đặc trưng cho tốc độ thực hiện công của nó. Đây cũng chính công suất điện
tiêu thụ bởi đoạn mạch.
Ta có :
.
A
P U I
t
==
(W)
3. Định luật Jun - Len-xơ:
Nếu đoạn mạch chỉ điện trở thuần R, công của lực điện chỉ làm tăng nội năng của vật dẫn. Kết quả
vật dẫn nóng lên và toả nhiệt.
Kết hợp với định luật ôm ta có:
2
2
..
U
A Q R I t t
R
= = =
(J)
4. Đo công suất điện và điện năng tiêu thụ bởi một đoạn mạch
Ta dùng một ampe - kế để đo cường độ dòng điện và một vôn - kế để đo hiệu điện thế. Công suất tiêu thụ
được tính hởi:
P = U.I (W)
- Người ta chế tạo ra oát-kế cho biết P nhờ độ lệch của kim chỉ thị.
- Trong thực tế ta công điện (máy đếm điện năng) cho biết công dòng điện tức điện năng tiêu thụ
tính ra kwh. (1kwh = 3,6.10
6
J)
II. CÔNG VÀ CÔNG SUẤT CỦA NGUỒN ĐIỆN
1. Công
Công của nguồn điện công của lực lkhi làm di chuyển các điện ch giữa hai cực để duy trì hiệu điện
thế nguồn. Đây cũng là điện năng sản ra trong toàn mạch.
Ta có :
ItqA
==
(J)
: suất điện động (V)
I: cường độ dòng điện (A)
I
U
A
B
Trang 7
q : điện tích (C)
2. Công suất
Ta có :
I
t
A
P .
==
(W)
III. CÔNG VÀ CÔNG SUẤT CỦA CÁC DỤNG CỤ TIÊU THỤ ĐIỆN
Hai loại dụng cụ tiêu thụ điện:
1. Công và công suất của dụng cụ toả nhiệt:
- Công (điện năng tiêu thụ):
2
2
..
U
A R I t t
R
= =
(định luật Jun - Len-xơ)
- Công suất :
2
2
.
U
P R I
R
==
2. Công và công suất của máy thu điện
a) Suất phản điện
- Máy thu điện công dụng chuyển hoá điện năng thành các dạng năng lượng khác không phải nội
năng (cơ năng; hoá năng ; . . ).
Lượng điện năng này (A’) tỉ lệ với điện lượng truyền qua máy thu điện.
tIqA
pp
...
==
p
: đặc trưng cho khả năng biến đổi điện năng thành năng, hoá năng, .. . của máy thu điện gọi
suất phản điện.
- Ngoài ra cũng một phần điện năng máy thu điện nhận từ dòng điện được chuyển thành nhiệt
máy có điện trở trong r
p
.
tIrQ
p
..
2
=
- Vậy công mà dòng điện thực hiện cho máy thu điện tức là điện năng tiêu thụ bởi máy thu điện là:
tIrtIQAA
pp
....
2
+=
+
=
- Suy ra công suất của máy thu điện:
2
.. IrI
t
A
P
pp
+==
p
.I: công suất có ích;
p
r
.I
2
: công suất hao phí (toả nhiệt)
b) Hiệu suất của máy thu điện
Tổng quát : H(%) = =
Với máy thu điện ta có:
U
Ir
UtIU
tI
H
ppp
.
1
..
..
===
Ghi chú : Trên các dụng cụ tiêu thụ điện có ghi hai chi số: (Ví dụ: 100W-220V)
* P
đ
: công suất định mức.
* U
đ
: hiệu điện thế định mức.
ĐỊNH LUẬT ÔM TOÀN MẠCH, CÁC LOẠI ĐOẠN MẠCH
I. ĐỊNH LUẬT ÔM TOÀN MẠCH
1. Cường độ dòng điện trong mạch kín:
- tỉ lệ thuận với suất điện động của nguồn điện
- tỉ lệ nghịch với điện trở toàn phần của mạch.
* dụng cụ toả nhiệt
* máy thu điện
Điện năng có ích
Điện năng tiêu thụ
công suất có ích
công suất tiêu thụ
,r
R
I
Trang 8
Rr
I
+
=
Ghi chú:
* Có thể viết :
IrUIrR
AB
+=+= ).(
Nếu I = 0 (mạch hở) hoặc r << R thì
= U ( lưu ý trong các hình v
E=
)
* Ngược lại nếu R = 0 thì
r
I
=
: dòng điện có cường độ rất lớn; nguồn điện bị đoản mạch.
* Nếu mạch ngoài có máy thu điện (
p
;r
P
) thì định luật ôm trở thành:
p
p
rrR
I
++
=
* Hiệu suất của nguồn điện:
rR
RIrU
P
P
A
A
H
tp
ich
tp
ich
+
=====
1
II. ĐỊNH LUẬT ÔM ĐỐI VƠI CÁC LOẠI MẠCH ĐIỆN
1. Định luật Ohm chứa nguồn (máy phát):
Rr
U
I
AB
+
+
=
Đối với nguồn điện
: dòng điện đi vào cực âmđi ra từ cực dương.
U
AB
: tính theo chiều dòng điện đi từ A đến B qua mạch (U
AB
= - U
BA
).
2. Định luật Ohm cho đoạn mạch chứa máy thu điện:
Rr
U
I
p
pAB
+
=
Đối với máy thu
p
: dòng điện đi vào cực dươngđi ra từ cực âm.
U
AB
: tính theo chiều dòng điện đi từ A đến B qua mạch.
3. Công thức tổng quát của định luật Ohm cho đoạn mạch gồm máy phát và thu ghép nối tiếp:
p
pAB
rrR
U
I
++
+
=
Chú ý:
U
AB
: Dòng điện đi từ A đến B (Nếu dòng điện đi ngược lại là: -U
AB
)
: nguồn điện (máy phát) ;
p
: máy thu.
I > 0: Chiều dòng điện cùng chiều đã chọn.
I < 0: Chiều dòng điện ngược chiều đã chọn.
R: Tổng điện trở ở các mạch ngoài.
r: Tổng điện trở trong của các bộ nguồn máy phát.
r
p
: Tổng điện trở trong của các bộ nguồn máy thu.
4. Mắc nguồn điện thành bộ:
a. Mắc nối tiếp:
nb
n
rrr
+++=
+++=
...
...
21
21
chú ý: Nếu có n nguồn giống nhau.
1
,r
2
,r
2
3
,r
3
n
,r
n
b
,r
b
A
B
,r
R
I
A
B
,r
p
,r
p
R
I
A
B
,r
R
I
p
r
p
A
B
,r
R
I
p
,r
p
Trang 9
nrr
n
b
b
=
=
b. Mắc xung đối:
21
21
rrr
b
b
+=
=
c. Mắc song song ( các nguồn giống nhau).
nrr
b
b
/=
=
d. Mắc hỗn hợp đối xứng (các nguồn giống nhau).
m: là số nguồn trong một dãy (hàng ngang).
n: là số dãy (hàng dọc).
Tổng số nguồn trong bộ nguồn:
N = n.m
Chương III. DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG
I. H thng kiến thc trong chương
1. Dòng đin trong kim loi
- Các tính cht đin ca kim loi có th gii thích được da trên s mt ca các electron t do trong
kim loi. Dòng đin trong kim loi là dòng dch chuyn có hướng ca các êlectron t do.
- Trong chuyn động, các êlectron t do luôn luôn va chm vi các ion dao động quanh v trín bng
các nút mng truyn mt phn động năng cho chúng. S va chm này nguyên nhân gây ra đin
tr ca dây dânx kim loi và tác dng nhit. Đin tr sut ca kim loi tăng theo nhit độ.
- Hin tượng khi nhit độ h xung dưới nhit độ T
c
nào đó, đin tr ca kim loi (hay hp kim) gim
đột ngt đến giá tr bng không, là hin tượng siêu dn.
2. Dòng đin trong cht đin phân
- Dòng đin trong cht đin phân dòng chuyn dch có hướng ca các ion dương v catôt ion âm
v anôt. Các ion trong cht đin phân xut hin do s phân li ca các phân t cht tan trong i
trường dung môi.
Khi đến c đin cc tcác ion s trao đổi êlectron vi c đin cc ri được gii phóng ra đó,
hoc tham gia các phn ng ph. Mt trong các phn ng ph phn ng cc dương tan, phn ng
này xy ra trong các bình đin phân anôt kim loi mà mui cu mt trong dung dch đin
phân.
- Định lut Fa-ra-đây v đin phân.
Khi lượng m ca cht được gii phóng ra c đin cc t l vi đương lượng gam
n
A
ca cht đó
và vi đin lượng q đi qua dung dch đin phân. ( q=It )
1
,r
1
2
,r
2
1
,r
1
2
,r
2
,r
,r
,r
n
mr
r
m
b
b
=
=
r,
r,
r,
r,
Trang 10
Biu thc ca định lut Fa-ra-đây:
It
n
A
F
m
1
=
với F ≈ 96500 (C/mol)
3. Dòng đin trong cht khí
- Dòng đin trong cht khí dòng chuyn dch hướng ca các ion dương v catôt, các ion âm
êlectron v anôt.
Khi cường độ đin trường trong cht khí còn yếu, mun các ion êlectron dn đin trong cht
khí cn phi tác nhân ion hoá (ngn la, tia la đin....). Còn khi cường độ đin trường trong cht
khí đủ mnh thì có xy ra s ion hoá do va chm làm cho s đin tích t do (ion và êlectron) trong cht
khí tăng vt lên (s phóng đin t lc).
S ph thuc ca cường độ dòng đin trong cht khí vào hiu đin thế gia anôt catôt dng
phc tp, không tuân theo định lut Ôm (tr hiu đin thế rt thp).
- Tia la đin và h quang đin là hai dng phóng đin trong không khí điu kin thường.
Cơ chế ca tia la đin s ion hoá do va chm khi cường độ đin trường trong không khí ln hơn
3.10
5
(V/m)
- Khi áp sut trong cht khí ch còn vào khong t 1 đến 0,01mmHg, trong ng phóng đin s
phóng đin thành min: ngay phn mt catôt min ti catôt, phn còn li ca ng cho đến anôt là
ct sáng ant.
Khi áp sut trong ng gim dưới 10
-3
mmHg thì min ti catôt s chiếm toàn b ng, c đó ta tia
catôt. Tia catôt là dòng êlectron phát ra t catôt bay trong chân không t do.
4. Dòng đin trong chân không
- Dòng đin trong chân không dòng chuyn dch hướng ca c êlectron bt ra t catôt b nung
nóng do tác dng ca đin trường.
Đặc đim ca dòng đin trong chân không là nó ch chy theo mt chiu nht định tư anôt sang catôt.
5. Dòng đin trong bán dn
- Dòng đin trong bán dn tinh khiết là dòng dch chuyn có hướng ca các êlectron t do và l trng.
Tu theo loi tp cht pha vào bán dn tinh khiết, mà bán dn thuc mt trong hai loi là bán dn loi
n và bán dn loi p. Dòng đin trong bán dn loi n ch yếu là dòng êlectron, còn trong bán dn loi p
ch yếu là dòng các l trng.
Lp tiếp xúc gia hai loi bán dn p và n (lp tiếp xúc p n) có tính dn đin ch yếu theo mt chiu
nht định t p sang n.
Chương IV. TỪ TRƯỜNG
I. T TRƯỜNG
1. Tương tác t
Tương tác gia nam châm vi nam châm, gia dòng đin vi nam châm gia dòng đin vi ng đin
đều gi là tương tác t. Lc tương tác trong các trường hp đó gi là lc t.
2. T trường
Trang 11
- Khái nim t trường: Xung quanh thanh nam châm hay xung quanh dòng đin có t trường.
Tng quát: Xung quanh đin tích chuyn động có t trường.
- Tính cht cơ bn ca t trường: Gây ra lc t c dng lên mt nam châm hay mt dòng đin đặt
trong nó.
- Cm ng t: Để đặc trưng cho t trường v mt gây ra lc t, người ta đưa vào mt đại lượng vectơ
gi là cm ng t và kí hiu là
B
.
Phương ca nam châm th nm cân bng ti mt đim trong t trường là phương ca vectơ cm ng t
B
ca t trường ti đim đó. Ta quy ước ly chiu t cc Nam sang cc Bc ca nam châm th là chiu
ca
B
.
3. Đường sc t
Đường sc t đường được v sao cho hướng ca tiếp tuyến ti bt đim nào trên đường cũng trùng
vi hướng ca vectơ cm ng t ti đim đó.
4. Các tính cht ca đường sc t:
- Ti mi đim trong t trường, có th v được mt đường sc t đi qua và ch mt mà thôi.
- Các đường sc t là nhng đường cong kín. Trong trường hp nam châm, ngoài nam châm c đường
sc t đi ra t cc Bc, đi vào cc Nam ca nam châm.
- Các đường sc t không ct nhau.
- Nơi nào cm ng t ln hơn thì các đường sc
t đó v mau hơn (dày hơn), nơi nào cm ng
t nh hơn thì các đường sc t đó v thưa hơn.
5. T trường đều
Mt t trường mà cm ng t ti mi đim đều bng nhau gi là t trường đều.
II. PHƯƠNG, CHIU ĐỘ LN CA LC T TÁC DNG LÊN DÂY DN MANG DÒNG
ĐIN
1. Phương : Lc t tác dng lên đon dòng đin phương vuông c vi mt phng cha đon dòng
đin và cm ng ti đim kho sát .
2. Chiu lc t : Quy tc bàn tay trái
Quy tc bàn tay trái : Đặt bàn tay trái dui thng để c đường cm ng t xuyên vào lòng bàn tay
chiu t c tay đến ngón tay trùng vi chiu dòng đin. Khi đó ngón tay cái choãi ra 90
o
s ch chiu ca
lc t tác dng lên đon dây dn.
3. Độ ln (Định lut Am-pe). Lc t tác dng lên đon dòng đin cường độ I, chiu dài l hp vi t
trường đều
B
mt góc
sinBIF =
B Độ ln ca cm ng t . Trong h SI, đơn v ca cm ng t là tesla, kí hiu là T.
III. NGUYÊN LÝ CHNG CHT T TRƯỜNG
Gi s ta h n nam châm( hay dòng đin ). Ti đim M, T trường ch ca nam châm th nht là
1
B
,
ch ca nam châm th hai
2
B
, …, chỉ ca nam châm th n
n
B
. Gi
B
t trường ca h ti M
thì:
n
BBBB +++= ...
21
T TRƯỜNG CA NG ĐIN CHY TRONG DÂY DN HIØNH DNG ĐẶC
BIT
1. T trường ca dòng đin chy trong dây dn thng dài
Vectơ cm ng t
B
ti mt đim được xác định:
- Đim đặt ti đim đang xét.
- Phương tiếp tuyến vi đường sc t ti đim đang xét
- Chiu được xác định theo quy tc nm tay phi
- Độ ln
r
I
B
7
10.2
=
2. T trường ca dòng đin chy trong dây dn un thành vòng tròn
Vectơ cm ng t ti tâm vòng dây được xác định:
B
Trang 12
- Phương vuông góc vi mt phng vòng dây
- Chiu chiu ca đường sc t: Khum bàn tay phi theo vòng dây ca khung dây sao cho chiu t c
tay đến các ngón tay trùng vi chiu ca dòng đin trong khung , ngón tay cái choy ra ch chiu đương
sc t xuyên qua mt phng dòng đin
- Độ ln
R
NI
B
7
102
=
R: Bán kính ca khung dây dn
I: Cường độ dòng đin
N: S vòng dây
3. T trường ca dòng đin chy trong ng dây dn
T trường trong ng dây là t trường đều. Vectơ cm ng t
B
được xác định
- Phương song song vi trc ng dây
- Chiu là chiu ca đường sc t
- Độ ln
nIB
7
10.4
=
N
n =
: S vòng dây trên 1m
N là s vòng dây,
là chiu dài ng dây
TƯƠNG TÁC GIA HAI DÒNG ĐIN THNG SONG SONG. LC LORENXƠ
1. Lc tương tác gia hai dây dn song song mang dòng đin có:
- Đim đặt ti trung đim ca đon dây đang xét
- Phương nm trong mt phng hình v và vuông góc vi dây dn
- Chiu hướng vào nhau nếu 2 dòng đin cùng chiu, hướng ra xa nhau nếu hai dòng
đin ngược chiu.
- Độ ln :
r
II
F
21
7
10.2
=
l: Chiu dài đon dây dn, r Khong cách gia hai dây dn
2. Lc Lorenxơ có:
- Đim đặt ti đin tích chuyn động
- Phương vuông góc vi mt phng cha vectơ vn tc ca ht mang đin và vectơ cm
ng t ti đim đang xét
- Chiu tuân theo quy tc bàn tay trái: Đặt bàn tay trái dui thng để c đường cm ng t xuyên vào
lòng bàn tay chiu t c tay đến ngón tay trùng vi chiu dòng đin. Khi đó ngón tay cái choãi ra 90
o
s ch chiu ca lc Lo-ren-xơ nếu ht mang đin dương và nếu ht mang đin âm thì chiu ngược li
- Độ ln ca lc Lorenxơ
= vBSinqf
: Góc to bi
B,v
KHUNG DÂY MANG DÒNG ĐIN ĐẶT TRONG T TRƯỜNG ĐỀU
1. Trường hp đường sc t nm trong mt phng khung dây
Xét mt khung dây mang dòng đin đặt trong t trường đều
B
nm trong mt phng khung dây.
- Cnh AB, DC song song vi đường sc t nên lên lc t tác dùng lên
chúng bng không
- Gi
1
F
,
2
F
là lc t tác dng lên các cnh DA và BC.
Theo công thc Ampe ta thy
1
F
,
2
F
- đim đặt ti trung đim ca mi cnh
- phương vuông góc vi mt phng hình v
- chiu như hình v(Ngược chiu nhau)
- Độ ln F
1
= F
2
Vy: Khung dây chu tác dng ca mt ngu lc. Ngu lc này làm cho
khung dây quay v v trí cân bng bn
N
Q
P
M
I
1
I
2
B
F
C
D
A
B
I
D
C
.
2
F
1
F
+
B
1
F
2
F
4
F
A B
Trang 13
2. Trường hp đường sc t vuông góc vi mt phng khung dây
Xét mt khung dây mang dòng đin đặt trong t trường đều
B
vuông góc vi
mt phng khung dây.
- Gi
1
F
,
2
F
,
3
F
,
4
F
là lc t tác dng lên các cnh AB, BC, CD, DA
Theo công thc Ampe ta thy
31
FF
=
,
42
FF
=
Vy: Khung dây chu tác dng ca các cp lc cân bng. Các lc này khung
làm quay khung.
c. Momen ngu lc t tác dng lên khung dây mang dòng đin.
Xét mt khung dây mang dòng đin đặt trong t trường đều
B
nm trong mt phng khung dây
Tng quát
Vi
)n,B(
=
Chương V. CẢM ỨNG ĐIỆN TỪ
1. T thông qua din tích S:
Φ = BS.cosα ;
Li=
(Wb)
Vi L là độ t cm ca cun dây
VnL
27
104
=
(H)
N
n =
: s vòng dây trên mt đơn v chiu dài
2. Sut đin động cm ng trong mch đin kín:
t
c

=
(V)
- Độ ln sut đin động cm ng trong mt đon dây chuyn động:
sinBlv
c
=
(V)
),( vB
=
- Sut đin động t cm:
t
i
L
c
=
(V) (du tr đặc trưng cho định lut Lenx)
3. Năng lượng t trường trong ng dây:
2
2
1
LiW =
(J)
4. Mt độ năng lượng t trường:
27
10
8
1
Bw
=
(J/m
3
)
Chương VI. KHÚC XẠ ÁNH SÁNG
I. Hin tượng khúc x ánh sáng
Hin tượng khúc x ánh sáng hin tượng khi ánh sáng truyn qua mt phân cách gia hai môi trường
trong sut, tia sáng b b gãy khúc (đổi hướng đột ngt) mt phân cách.
2. Định lut khúc x ánh sáng
M : Momen ngẫu lực từ (N.m)
I: Cường độ dòng điện (A)
B: Từ trường (T)
S: Diện tích khung dây(m
2
)
M = IBSsin
Trang 14
+ Tia khúc x nm trong mt phng ti và bên kia pháp tuyến so vi tia ti. (Hình 33)
+ Đối vi mt cp môi trường trong sut nht định thì t s gia sin ca
góc ti (sini) vi sin ca góc khúc x (sinr) luôn luôn là mt s không đổi. S
không đổi này ph thuc vào bn cht ca hai môi trường và được gi là chiết
sut t đối ca môi trường cha tia khúc x (môi trường 2) đối vi môi trường
cha tia ti (môi trường 1); kí hiu là n
21
.
Biu thc:
21
sin
sin
n
r
i
=
+ Nếu n
21
> 1 thì góc khúc x nh hơn góc ti. Ta nói môi trường (2)
chiết quang kém môi trường (1).
+ Nếu n
21
< 1 thì góc khúc x ln hơn góc ti. Ta nói môi trường (2) chiết quang hơn môi trường (1).
+ Nếu i = 0 thì r = 0: tia sáng chiếu vuông góc vi mt phân cách s truyn thng.
+ Nếu chiếu tia ti theo hướng KI thì tia khúc x s đi theo hướng IS (theo nguyên v tính thun
nghch ca chiu truyn ánh sáng).
Do đó, ta có
12
21
1
n
n =
.
3. Chiết sut tuyt đối
Chiết sut tuyt đối ca mt môi trường là chiết sut ca nó đối vi chân không.
chiết sut ca không khí xp x bng 1, nên khi không cn độ chính xác cao, ta th coi chiết
sut ca mt cht đối vi không khí bng chiết sut tuyt đối ca nó.
Gia chiết sut t đối n
21
ca môi trường 2 đối vi môi trường 1 các chiết sut tuyt đối n
2
n
1
ca chúng có h thc:
1
2
21
n
n
n =
Ngoài ra, người ta đã chng minh được rng:
Chiết sut tuyt đối ca các môi trường trong sut t l nghch vi vn tc truyn ánh sáng trong c
môi trường đó:
2
1
1
2
v
v
n
n
=
Nếu môi trường 1 là chân không thì ta có: n
1
= 1 và v
1
= c = 3.10
8
m/s
Kết qu là:
2
n
=
2
v
c
hay v
2
=
2
n
c
.
vn tc truyn ánh sáng trong các môi trường đều nh hơn vn tc truyn ánh sáng trong chân
không, nên chiết sut tuyt đối ca các môi trường luôn luôn ln hơn 1.
Ý nghĩa ca chiết sut tuyt đối
Chiết sut tuyt đối ca môi trường trong sut cho biết vn tc truyn ánh sáng trong môi trường đó
nh hơn vn tc truyn ánh sáng trong chân không bao nhiêu ln.
HIN TƯỢNG PHN X TOÀN PHN NHNG ĐIU KIN ĐỂ HIN TƯỢNG XY
RA.
1. Hin tượng phn x toàn phn
Hin tượng phn x toàn phn hin tượng trong đó ch tn ti tia phn x không tia khúc
x.
2. Điu kin đểhin tượng phn x toàn phn
i
r
N
N
/
I
S
K
(1
)
(2
)
S
K
I
J
i
i
/
r
H
Trang 15
Tia sáng truyn theo chiu t môi trường chiết sut ln sang i
trường có chiết sut nh hơn. (Hình 34)
Góc ti ln hơn hoc bng góc gii hn phn x toàn phn (i
gh
).
3. Phân bit phn x toàn phn và phn x thông thường
Ging nhau
Cũng là hin tượng phn x, (tia sáng b ht li môi trường cũ).
Cũng tuân theo định lut phn x ánh sáng .
Khác nhau
Hin tượng phn x thông thường xy ra khi tia sáng gp mt mt phân cách hai môi trường
không cn thêm điu kin gì.
Trong khi đó, hin tượng phn x toàn phn ch xy ra khi tha mãn hai điu kin trên.
Trong phn x toàn phn, cường độ chùm tia phn x bng cường độ chùm tia ti. Còn trong phn x
thông thường, cường độ chùm tia phn x yếu hơn chùm tia ti.
4. Lăng kính phn x toàn phn
Lăng kính phn x toàn phn mt khi thy tinh hình lăng tr tiết din thng mt tam giác
vuông cân
ng dng
Lăng kính phn x toàn phn được dùng thay gương phng trong mt s dng c quang hc (như ng
nhòm, kính tim vọng …).
Có hai ưu đim là t l phn trăm ánh sáng phn x ln và không cn có lp m như gương phng.
Chương VII. MẮT VÀ CÁC DỤNG CỤ QUANG
Lăng kính
1. Định nghĩa
Lăng kính mt khi cht trong sut hình lăng tr đứng, tiết
din thng là mt hình tam giác.
Đường đi ca tia sáng đơn sc qua lăng kính
Ta ch kho t đường đi ca tia sáng trong tiết din thng ABC
ca lăng kính.
Nói chung, các tia sáng khi qua lăng kính b khúc x tia
luôn b lch v phía đáy nhiu hơn so vi tia ti.
Góc lch ca tia sáng đơn sc khi đi qua lăng kính
Góc lch D gia tia ló và tia ti là góc hp bi phương ca tia ti
và tia ló, (xác định theo góc nh gia hai đường thng).
2. Các công thc ca lăng kính:
S
R
I
J
i
1
i
2
r
1
r
2
A
B
C
D
Trang 16
O
F
F
/
(Hình 36)
(a)
(b)
(c)
+=
+=
=
=
A'iiD
'rrA
'rsi nn'isin
rsi nnisin
Điu kin để có tia ló
=
)sin(sin
2
0
0
Ani
ii
iA
gh
Khi tia sáng có góc lch cc tiểu: r’ = r = A/2; i’ = i = (D
m
+ A)/2
Khi góc lch đạt cc tiu: Tia tia ti đối xng nhau qua mt phng
phân giác ca góc chiết quang A .
Khi góc lch đạt cc tiu D
min
:
2
sin
2
sin
min
A
n
AD
=
+
THU KÍNH MNG
1. Định nghĩa
Thu kính mt khi cht
trong sut gii hn bi hai mt
cong, thường hai mt cu.
Mt trong hai mt th
mt phng.
Thu kính mng thu
kính khong cách O
1
O
2
ca
hai chm cu rt nh so vi
bán kính R
1
và R
2
ca các mt cu.
2. Phân loi
Có hai loi: Thu kính rìa mng gi là thu kính hi t.
Thu kính rìa dày gi là thu kính phân kì.
Đường thng ni tâm hai chm cu gi là trc chính ca thu kính.
Coi O
1
O
2
O gi là quang tâm ca thu kính.
3. Tiêu đim chính
Vi thu kính hi t: Chùm tia hi t ti đim F
/
trên trc chính. F
/
gi tiêu đim chính ca thu
kính hi t.
Vi thu kính phân kì: Chùm tia không hi t thc s đường kéo dài ca chúng ct nhau ti
đim F
/
trên trc chính. F
/
gi là tiêu đim chính ca thu kính phân kì .
Mi thu kính mng hai tiêu đim chính nm đối xng nhau qua quang tâm. Mt tiêu đim gi
tiêu đim vt (F), tiêu đim còn li gi là tiêu đim nh (F
/
).
4. Tiêu c
Khong cách f t quang tâm đến các tiêu đim chính gi là tiêu c ca thu kính: f = OF = OF
/
.
5. Trc ph, các tiêu đim phtiêu din
Mi đường thng đi qua quang tâm O nhưng không trùng vi trc chính đều gi là trc ph.
Giao đim ca mt trc ph vi tiêu din gi là tiêu đim ph ng vi trc ph đó.
s các tiêu đim ph, chúng đều nm trên mt mt phng vuông góc vi trc chính, ti tiêu
đim chính. Mt phng đó gi tiêu din ca thu kính. Mi thu kính hai tiêu din nm hai bên
quang tâm.
6. Đường đi ca các tia sáng qua thu kính hi t
Trang 17
O
F
/
F
(Hình 37)
(a)
(b)
(c)
Các tia sáng khi qua thu kính hi t s b khúc x ra khi thu kính. 3 tia sáng thường gp
(Hình 36):
Tia ti (a) song song vi trc chính, cho tia ló đi qua tiêu đim nh.
Tia ti (b) đi qua tiêu đim vt, cho tia ló song song vi trc chính.
Tia ti (c) đi qua quang tâm cho tia ló truyn thng.
7. Đường đi ca các tia sáng qua thu kính phân kì
Các tia sáng khi qua thu kính phân s b khúc x ra khi thu kính. 3 tia sáng thường gp
(Hình 37):
Tia ti (a) song song vi trc chính, cho tia đường kéo i đi qua tiêu đim
nh.
Tia ti (b) hướng ti tiêu đim vt, cho tia ló song song vi trc chính.
Tia ti (c) đi qua quang tâm cho tia ló truyn thng.
8. Quá trình to nh qua thu kính hi t
Vt tht hoc o thường cho nh tht, ch trường hp vt tht nm trong
khong t O đến F mi cho nh o.
9. Quá trình to nh qua thu kính phân kì
Vt tht hoc o thường cho nh o, ch trường hp vt o nm trong khong t O đến F mi cho
nh tht.
10. Công thc thu kính
/
111
ddf
+=
Công thc này dùng được c cho thu kính hi tthu kính phân kì.
11. Độ phóng đại ca nh
Độ phóng đại ca nh là t s chiu cao ca nh và chiu cao ca vt:
d
d
AB
BA
k
==
''
* k > 0 : nh cùng chiu vi vt.
* k < 0 : nh ngược chiu vi vt.
Giá tr tuyt đối ca k cho biết độ ln t đối ca nh so vi vt.
Công thc tính độ t ca thu kính theo bán kính cong ca các mt và chiết sut ca thu kính:
+==
21
11
)1(
1
RR
n
f
D
.
Trong đó, n là chiết sut t đối ca cht làm thu kính đối vi môi trường đặt thu kính. R
1
và R
2
là bán
kính hai mt ca thu kính vi qui ước: Mt lõm: R > 0 ; Mt li: R < 0 ; Mt phng: R =
MẮT_CÁC TẬT CỦA MẮT
a/. Định nghĩa
Trang 18
v phương din quang hình hc, mt ging như mt máy nh,
cho mt nh tht nh hơn vt trên võng mc.
b/. cu to
thy tinh th: B phn chính: là mt thu kính hi ttiêu c f thay đổi được
võng mc: màn nh, sát dáy mt nơi tp trung các tế bào nhy sáng du các dây thn kinh th
giác. Trên võng mc có đin vàng V rt nhy sáng.
Đặc đim: d
= OV = không đổi: để nhìn vt các khong cách khác nhau (d thay đổi) => f thay
đổi (mt phi điu tiết )
d/. S điu tiết ca mt đim cc vin C
v
- đim cc cn C
c
S điu tiết
S thay đổi độ cong ca thy tinh th (và do đó thay đổi độ t hay tiêu c ca nó) để làm cho nh ca
các vt cn quan sát hin lên trên võng mc gi là s điu tiết
Đim cc vin C
v
Đim xa nht trên trc chính ca mt mà đặt vt ti đó mt th thy rõ được mà không cn điu
tiết ( f = f
max
)
Đim cc cn C
c
Đim gn nht trên trc chính ca mt đặt vt ti đó mt th thy được khi đã điu tiết ti đa ( f
= f
min
)
Khong cách t đim cc cn Cc đến cc vin Cv : Gi gii hn thy rõ ca mt
- Mt thường : f
max
= OV, OC
c
= Đ = 25 cm; OC
v
=
e/. Góc trong vt và năng sut phân ly ca mt
Góc trông vt : tg
AB
=
= góc trông vt ; AB: kích thườc vt ; = AO = khang cách t vt ti quang tâm O ca mt .
- Năng sut phân ly ca mt
Là góc trông vt nh nht
min gia hai đim A và B mà mt còn có th phân bit được hai đim đó .
min
1
1'
3500

rad
- s lưu nh trên võng mc
thi gian
0,1s để võng mc hi phc li sau khi tt ánh sáng kích thích.
3. Các tt ca mt Cách sa
a. Cn th
là mt khi không điu tiết có tiêu đim nm trước võng mc .
f
max
< OC; OC
c
< Đ ; OC
v
<
=> D
cn
> D
thường
- Sa tt : nhìn xa được như mt thường : phi đeo mt thu kính phân k sao cho nh vt
qua
kính hin lên đim cc vin ca mt.
BAAB
kính
=d
)( =
V
OCd
=
+==
V
V
OCddf
D
11111
l = OO’= khỏang cách từ kính đến mt, nếu đeo sát mt l =0 thì f
k
= -OV
b. Vin th
Là mt khi không đi tiết có tiêu đim nm sau võng mc .
f
max
>OV; OC
c
> Đ ; OC
v
: o sau mt . => D
vin
< D
thường
Sa tt : 2 cách :
+ Đeo mt thu kính hi t để nhìn xa vô cc như mt thương mà không cn điu tiết(khó thc hin).
+ Đeo mt thu kính hi t để nhìn gn như mt thường cách mắt 25cm . (đây là cách thương dùng )
BAAB
kính
Trang 19
25,0=d
)( =
C
OCd
=
+==
C
C
OCddf
D
11111
KÍNH LÚP
a/. Định nhgĩa:
mt dng c quang hc b tr cho mt trông vic quang sát các vt nh. Nó có tác dng làm tăng c
trông nh bng cách to ra mt nh o, ln hơn vt và nm trông gii hn nhìn thy rõ ca mt.
b/. cu to
Gm mt thu kính hi ttiêu c ngn(c vài cm)
c/. cách ngm chng
AB
1 1 2 2
kínhOk matO
A B A B⎯⎯
d
1
d
1
’ d
2
d
2
d
1
< O
F ; d
1
nm trong gii hn nhìn rõ ca mt: d
1
+ d
1
= O
K
O ; d
2
= OV
'
11
1 1 1
K
f d d
=+
Ngm chng cc cn
Điu chnh để nh A
1
B
1
nh o hiệm tại C
C
: d
1
= - (OC
C
- l)
(l là khong cách gia v trí đặt kính và mt)
BAAB
kính
d
)( =
C
OCd
=
+==
C
C
OCdddf
D
11111
Ngm chng C
V
Điu chnh để nh A
1
B
1
nh o hiệm tại C
V
: d
1
= - (OC
V
- l)
BAAB
kính
d
)( =
V
OCd
=
+==
V
V
OCdddf
D
11111
d/. Độ bi giác ca kính lúp
* Định nghĩa:
Độ bi giác G ca mt dng c quang hc b tr cho mt t s gia góc trông nh
ca mt vt qua
dng c quang hc đó vi góc trông trc tiếp
0
ca vt đó khi đặt vt ti đim cc cn ca mt.
00
tan
tan
=G
(vì góc
0
rt nh)
Với:
0
AB
tg
Ñ
=
* Độ bội giác của kính lúp:
Gọi l khoảng cách từ mắt đến kính d’ khoảng
cách từ ảnh A’B’ đến kính (d’ < 0), ta có :
A' B' A' B'
tg
OA d'
= =
+
Trang 20
suy ra:
0
tg A' B' Ñ
G.
tg AB d'
==
+
Hay:
Ñ
G = k.
d' +
(1)
k là độ phóng đại của ảnh.
- Khi ngắm chừng ở cực cận: thì
d' Ñ+=
do đó:
d
d
kG
CC
==
- Khi ngắm chừng ở cực viễn: thì
V
OCd =+
do đó:
V
V
OC
Đ
d
d
G
=
- Khi ngắm chừng ở vô cực: ảnh A’B’ ở vô cực, khi đó AB ở tại C
C
nên:
AB AB
tg
OF f
= =
Suy ra:
Ñ
G
f
=
G
có giá trị từ 2,5 đến 25.
khi ngm chng vô cc
+ Mt không phi điu tiết
+ Độ bi giác ca kính lúp không ph thuc vào v trí đặt mt.
Giá tr ca
G
được ghi trên vành kính: X2,5 ; X5.
Lưu ý: - Với l là khoảng cách từ mắt tới kính lúp thì khi: 0 ≤ l < f G
C
> G
V
l = f G
C
= G
V
l > f G
C
< G
V
- Trên vành kính thường ghi giá trị
25
()
G
f cm
¥
=
Ví dụ: Ghi X10 thì
25
10 2,5
()
G f cm
f cm
¥
= = Þ =
KÍNH HIỂN VI
a) Định nghĩa:
Kính hiển vi một dụng cụ quang học bổ trợ cho mắt làm tăng góc trông
ảnh của những vật nhỏ, với độ bội giác lớn lơn rất nhiều so với độ bội giác
của kính lúp.
b) Cấu tạo: Có hai bộ phận chính:
- Vật kính O
1
một thấu kính hội tụ tiêu cự rất ngắn (vài mm), dùng
để tạo ra một ảnh thật rất lớn của vật cần quan sát.
- Thị kính O
2
cũng một thấu kính hội tụ có tiêu cự ngắn (vài cm), dùng
như một kính lúp để quan sát ảnh thật nói trên.
Hai kính có trục chính trùng nhau và khoảng cách giữa chúng không đổi.
Trang 21
Bộ phận tụ sáng dùng để chiếu sáng vật cần quan sát.
d) Độ bội giác của kính khi ngắm chừng ở vô cực:
- Ta có:
1 1 1 1
2 2 2
A B A B
tg
O F f
= =
và tg =
AB
Ñ
Do đó:
11
02
AB
tg Ñ
Gx
tg AB f
==
(1)
Hay
12
G k G
=
Độ bội giác G
của kính hiển vi trong trường hợp ngắm chừng ở vô cực bằng tích của độ phóng đại k
1
của ảnh A
1
B
1
qua vật kính với độ bội giác G
2
của thị kính.
Hay
12
G
f .f
=
Với: =
/
12
FF
gọi là độ dài quang học của kính hiển vi.
Người ta thường lấy Đ = 25cm
KÍNH THIÊN VĂN
a) Định nghĩa:
Kính thiên văn dụng cụ quang học bổ trợ cho mắt làm tăng góc trông ảnh của những vật rất xa
(các thiên thể).
b) Cấu tạo: Có hai bộ phận chính:
- Vật kính O
1
: là một thấu kính hội tụ có tiêu cự dài (vài m)
- Thị kính O
2
: là một thấu kính hội tụ có tiêu cự ngắn (vài cm)
Hai kính được lắp cùng trục, khoảng cách giữa chúng có thể thay đổi được.
c) Độ bội giác của kính khi ngắm chừng ở vô cực:
- Trong cách ngắm chừng ở vô cực, người quan sát
điều chỉnh để ảnh A
1
B
2
ở vô cực. Lúc đó
11
2
AB
tg
f
=
11
0
1
AB
tg
f
=
Do đó, độ bội giác của kính thiên văn khi ngắm chừng ở vô cực là :
1
02
f
tg
G
tg f
==
| 1/21

Preview text:


TÓM TẮT CÔNG THỨC VÀ LÍ THUYẾT VẬT LÝ 11
CHƯƠNG I. ĐIỆN TÍCH – ĐIỆN TRƯỜNG
I
. Cách nhiễm điện. Có 3 cách nhiễm điện một vật: Cọ xát, tiếp xúc ,hưởng ứng
II.
Định luật Cu lông:
Lực tương tác giữa 2 điện tích điểm q1; q2 đặt cách nhau một khoảng r trong môi trường có hằng
số điện môi ε là F ; F có: 12 21
- Điểm đặt: trên 2 điện tích.
- Phương: đường nối 2 điện tích. - Chiều: + Hướng ra xa nhau nếu
q1.q2 > 0 (q1; q2 cùng dấu) + Hướng vào nhau nếu
q1.q2 < 0 (q1; q2 trái dấu) q q 2   1 2 = N.m - Độ lớn: F k   2  ; k = 9.109 2
(ghi chú: F là lực tĩnh điện) .rC  - Biểu diễn:    r  F r F F 21 12 21 F 12 q1.q2 >0 q1.q2 < 0 3. Vật d
ẫn điện, điện môi:
+ Vật (chất) có nhiều điện tích tự do → dẫn điện
+ Vật (chất) có chứa ít điện tích tự do → cách điện. (điện môi)
4. Định luật bảo toàn điện tích: Trong 1 hệ cô lập về điện (hệ không trao đổi điện tích với các hệ
khác) thì tổng đại số các điện tích trong hệ là 1 hằng số III. Điện trường
+ Khái niệm: Là môi trường tồn tại xung quanh điện tích và tác dụng lực lên điện tích khác đặt trong nó.
+ Cường độ điện trường: Là đại lượng đặc trưng cho điện trường về khả năng tác dụng lực.   F   E =  F = q E . Đơn vị: E(V/m) q  
q > 0 : F cùng phương, cùng chiều với E .  
q < 0 : F cùng phương, ngược chiều với E .
+ Đường sức điện trường: Là đường được vẽ trong điện trường sao cho hướng của tiếp tưyến
tại bất kỳ điểm nào trên đường cũng trùng với hướng của véc tơ CĐĐT tại điểm đó.
Tính chất của đường sức:
- Qua mỗi điểm trong đ.trường ta chỉ có thể vẽ
được 1 và chỉ 1 đường sức điện trường.
- Các đường sức điện là các đường cong không
kín,nó xuất phát từ các điện tích dương,tận cùng ở các điện tích âm.
- Các đường sức điện không bao giờ cắt nhau.
- Nơi nào có CĐĐT lớn hơn thì các đường sức ở đó vẽ mau và ngược lại
+ Điện trường đều:
- Có véc tơ CĐĐT tại mọi điểm đều bằng nhau.
- Các đường sức của điện trường đều là các đường thẳng song song cách đều nhau Trang 1
+ Véctơ cường độ điện trường E do 1 điện tích điểm Q gây ra tại một điểm M cách Q một
đoạn r có: - Điểm đặt: Tại M.
- Phương: đường nối M và Q - Chiều:
Hướng ra xa Q nếu Q > 0 Hướng vào Q nếu Q <0 Q 2  N.m  - Độ lớn: E = k   2  ; k = 9.109 2 .rC  - Biểu diễn: r E q > 0 E M q < 0 r M → → → →
+ Nguyên lí chồng chất điện trường: E = E + E + .....+E 1 2 n
Xét trường hợp tại điểm đang xét chỉ có 2 cường độ điện trường   
+ E = E + E 1 2  
+ E  E E = E + E 1 2 1 2  
+ E  E E = E E 1 2 1 2   + 2 2
E E E = E + E 1 2 1 2   + (E , E =
E = E + E + E E 1 2 )  2 2 2 cos 1 2 1 2 
Nếu E = E E = 2E cos 1 2 1 2
IV. Công của lực điện trường: Công của lực điện tác dụng vào 1 điện tích không phụ thuộc vào dạng
của đường đi của điện tích mà chỉ phụ thuộc vào vị trí điểm đầu,điểm cuối của đường đi trong điện trường A ' MN = q.E. ' M N = q.E.dMN (với d = ' '
M N là độ dài đại số của hình chiếu của đường đi MN lên trục toạ độ ox với MN
chiều dương của trục ox là chiều của đường sức)
. Liên hệ giữa công của lực điện và hiệu thế năng của điện tích
AMN = WM - WN = q VM - q.VN =q(VM-VN)=q.UMN
. Thế năng điện trường- Điện thế tại các điểm M,N
+ Đối với điện trường đều giữa hai bản tụ: W = qEd ; W = qEd (J) M M N N
V = Ed ; V = Ed (V) M M N N
dM, dN là khoảng cách từ điểm M,N đến bản âm của tụ.
+ Đối với điên trường của một điện tích : QQ   Q W = qEd = qk dW = q k ; W = q k M M M M   N   rr r M   N M W Q Điện thế : V M = suy ra: V = k M q M rM
dM=rM, dN=rN là khoảng cách từ Q đến M,N
+ Hiệu điện thế giữa 2 điểm trong điện trường là đại
lượng đặc trưng cho khả năng thực hiện công của điện trường
khi có 1 điện tích di chuyển giữa 2 điểm đó
. Liên hệ giữa E và U Trang 2 U U E MN = hay : E = ' ' M N d
* Ghi chú: công thức chung cho 3 phần 6, 7, 8: AMN U = V V = = E.d MN M N MN q
V. Vật dẫn trong điện trường
- Khi vật dẫn đặt trong điện trường mà không có dòng điện chạy trong vật thì ta gọi là vật dẫn cân bằng điện (vdcbđ)
+ Bên trong vdcbđ cường độ điện trường bằng không.
+ Mặt ngoài vdcbđ: cường độ điện trường có phương vuông góc với mặt ngoài
+ Điện thế tại mọi điểm trên vdcbđ bằng nhau
+ Điện tích chỉ phân bố ở mặt ngoài của vật, sự phân bố là không đều (tập trung ở chỗ lồi nhọn)
VI. Điện môi trong điện trường
- Khi đặt một khối điện môi trong điện trường thì nguyên tử của chất điện môi được kéo dãn
ra một chút và chia làm 2 đầu mang điện tích trái dấu (điện môi bị phân cực). Kết quả là trong khối
điện môi hình thành nên một điện trường phụ ngược chiều với điện trường ngoài VII. Tụ điện
- Định nghĩa: Hệ 2 vật dẫn đặt gần nhau, mỗi vật là 1 bản tụ. Khoảng không gian giữa 2 bản
là chân không hay điện môi
Tụ điện phẳng có 2 bản tụ là 2 tấm kim loại phẳng có kích thước lớn ,đặt đối diện nhau, song song với nhau
- Điện dung của tụ : Là đại lượng đặc trưng cho khả năng tích điện của tụ Q C = (Đơn vị là F.) U
Công thức tính điện dung của tụ điện phẳng: S . C =
. Với S là phần diện tích đối diện giữa 2 bản. . 9 109 4 .  d .
Ghi chú : Với mỗi một tụ điện có 1 hiệu điện thế giới hạn nhất định, nếu khi sử dụng mà đặt
vào 2 bản tụ hđt lớn hơn hđt giới hạn thì điện môi giữa 2 bản bị đánh thủng.
- Ghép tụ điện song song, nối tiếp GHÉP NỐI TIẾP GHÉP SONG SONG Cách mắc :
Bản thứ hai của tụ 1 nối với bản thứ nhất Bản thứ nhất của tụ 1 nối với bản thứ
của tụ 2, cứ thế tiếp tục nhất của tụ 2, 3, 4 … Điện tích QB = Q1 = Q2 = … = Qn QB = Q1 + Q2 + … + Qn Hiệu điện thế UB = U1 + U2 + … + Un UB = U1 = U2 = … = Un Điện dung 1 1 1 1 = + + CB = C1 + C2 + … + Cn ... + C C C C B 1 2 n Ghi chú CB < C1, C2 … Cn CB > C1, C2, C3 2 2 . Q U C.U Q
- Năng lượng của tụ điện: W = = = 2 2 2C
- Năng lượng điện trường: Năng lượng của tụ điện chính là năng lượng của điện trường trong tụ điện. 2 .E .V
Tụ điện phẳng W = 9 9.10 .8. Trang 3
với V=S.d là thể tích khoảng không gian giữa 2 bản tụ điện phẳng 2 WE
Mật độ năng lượng điện trường: w = = V k8
CHƯƠNG II. DÒNG ĐIỆN KHÔNG ĐỔI I. DÒNG ĐIỆN
• Dòng điện là dòng các điện tích (các hạt tải điện) di chuyển có hướng
Chiều quy ước của dòng điện là chiều dịch chuyển có hướng của các điện tích dương. • Dòng điện có:
* tác dụng từ (đặc trưng) (Chiếu quy ước I)
* tác dụng nhiệt, tác dụng hoá học tuỳ theo môi trường.
• Cường độ dòng điện là đại lượng cho biết độ mạnh của dòng điện được tính bởi:
q: điện lượng di chuyển qua các tiết diện thẳng của vật dẫn Δq I =
t: thời gian di chuyển Δt
(t→0: I là cường độ tức thời)
Dòng điện có chiều và cường độ không thay đổi theo thời gian được gọi là dòng điện không đổi
(cũng gọi là dòng điệp một chiều).
Cường độ của dòng điện này có thể tính bởi: q I I = A t
trong đó q là điện lượng dịch chuyển qua tiết diện thẳng của vật dẫn trong thời gian t. Ghi chú:
a) Cường độ dòng điện không đổi được đo bằng ampe kế (hay miliampe kế, . . . ) mắc xen vào
mạch điện (mắc nối tiếp).
b) Với bản chất dòng điện và định nghĩa của cường độ dòng điện như trên ta suy ra:
* cường độ dòng điện có giá trị như nhau tại mọi điểm trên mạch không phân nhánh.
* cường độ mạch chính bằng tổng cường độ các mạch rẽ.
II. ĐỊNH LUẬT ÔM ĐỐI VƠI ĐOẠN MẠCH CHỈ CÓ ĐIÊN TRỞ 1) Định luật:
• Cường độ dòng điện chạy qua đoạn mạch có có điện trở R:
- tỉ lệ thuận với hiệu điện thế hai đầu đoạn mạch.
- tỉ lệ nghịch với điện trở. U I = (A) R I R A B
• Nếu có R và I, có thể tính hiệu điện thế như sau : U
UAB = VA - VB = I.R ; I.R: gọi là độ giảm thế (độ sụt thế hay sụt áp) trên điện trở.
• Công thức của định luật ôm cũng cho phép tính điện trở: I U R = () I
2) Đặc tuyến V - A (vôn - ampe)
Đó là đồ thị biểu diễn I theo U còn gọi là đường đặc trưng vôn - ampe.
Đối với vật dẫn kim loại (hay hợp kim) ở nhiệt độ nhất định O U
đặc tuyến V –A là đoạn
đường thẳng qua gốc các trục: R có giá trị không phụ thuộc U.
(vật dẫn tuân theo định luật ôm).
Ghi chú :
Nhắc lại kết quả đã tìm hiểu ở lớp 9. Trang 4
a) Điện trở mắc nối tiếp:
điện trở tương đương được tính bởi: R1 R2 R3 Rn
Rm = Rl + R2+ R3+ + Rn I U
m = Il = I2 = I3 =… = In m I =
Um = Ul + U2+ U3+ + Un m
b) Điện trở mắc song song: R m
điện trở tương đương được anh bởi: 1
1 + 1 + 1 ++ 1 = R R R R R Um R1 R2 R m 1 2 3 n 3 Rn I = I m m = Il + I2 + … + In R U m
m = Ul = U2 = U3 = … = Un
c) Điện trở của dây đồng chất tiết diện đều:
: điện trở suất (m) l R = 
l: chiều dài dây dẫn (m) S
S: tiết diện dây dẫn (m2) III. NGUỒN ĐIỆN:
• Nguồn điện là thiết bị tạo ra và duy trì hiệu điện thế để duy trì dòng điện. Mọi nguồn điện đều có
hai cực, cực dương (+) và cực âm (-).
Để đơn giản hoá ta coi bên trong nguồn điện có lực lạ làm di chuyển các hạt tải điện (êlectron; Ion) để giữ cho:
* một cực luôn thừa êlectron (cực âm).
* một cực luôn thiếu ẽlectron hoặc thừa ít êlectron hơn bên kia (cực dương).
• Khi nối hai cực của nguồn điện bằng vật dẫn kim loại thì các
êlectron từ cực (-) di chuyển qua vật dẫn về cực (+).
Bên trong nguồn, các êlectron do tác dụng của lực lạ di chuyển từ cực
(+) sang cực (-). Lực lạ thực hiện công (chống lại công cản của trường
tĩnh điện). Công này được gọi là công của nguồn điện.
• Đại lượng đặc trưng cho khả năng thực hiện công của nguồn điện A
gọi là suất điện động E được tính bởi:  = (đơn vị q của E là V)
trong đó : A là công của lực lạ làm di chuyển điện tích từ cực này sang cực kia. của nguồn điện.
|q| là độ lớn của điện tích di chuyển.
Ngoài ra, các vật dẫn cấu tạo thành nguồn điện cũng có điện trở gọi là điện trở trong r của nguồn điện. IV. PIN VÀ ACQUY
1. Pin điện hoá:

• Khi nhúng một thanh kim loại vào một chất điện phân thì giữa
kim loại và chất điện phân hình thành một hiệu điện thế điện hoá.
Khi hai kim loại nhúng vào chất điện phân thì các hiệu điện thế
điện hoá của chúng khác nhau nên giữa chúng tồn tại một hiệu điện thế xác định. Đó là cơ sở để chế tạo pìn điện hoá.
• Pin điện hoá được chế tạo đầu tiên là pin Vôn-ta (Volta) gồm một thanh Zn và một thanh Cu
nhúng vào dung dịch H2SO4 loãng.
Chênh lệch giữa các hiệu điện thế điện hoá là suất điện động của pin: E = 1,2V. 2. Acquy Trang 5
• Acquy đơn giản và cũng được chế tạo đầu tiên là acquy chì (còn gọi là acquy axit để phân biệt với
acquy kiềm chế tạo ra về sau) gồm: * cực (+) bằng PbO2 * cực (-) bằng Pb
nhúng vào dung dịch H2SO4 loãng.
Do tác dụng của axit, hai cực của acquy tích điện trái dấu và hoạt động như pin điện hoá có suất điện động khoảng 2V.
• Khi hoạt động các bản cực của acquy bị biến đổi và trở thành giống nhau (có lớp PbSO4 Phủ bên
ngoài). Acquy không còn phát điện được. Lúc đó phải mắc acquy vào một nguồn điện để phục hồi các
bản cực ban đầu (nạp điện).
Do đó acquy có thể sử dụng nhiều lần.
• Mỗi acquy có thể cung cấp một điện lượng lớn nhất gọi là dung lượng và thường tính bằng đơn vị ampe-giờ (Ah). 1Ah = 3600C
ĐIỆN NĂNG VÀ CÔNG SUẤT ĐIỆN - ĐỊNH LUẬT JUN – LENXƠ
I. CÔNG VÀ CÔNG SUẤT CỦA DÒNG ĐIỆN CHẠY QUA MỘT ĐOẠN MẠCH 1. Công:
Công của dòng điện là công của lực điện thực hiện khi làm di chuyển các điện tích tự do trong đoạn mạch.
Công này chính là điện năng mà đoạn mạch tiêu thụ và được tính bởi: I A = U.q = U.I.t (J) A B U : hiệu điện thế (V) U
I : cường độ dòng điện (A); q : điện lượng (C); t : thời gian (s) 2 .Công suất
Công suất của dòng điện đặc trưng cho tốc độ thực hiện công của nó. Đây cũng chính là công suất điện
tiêu thụ bởi đoạn mạch. A Ta có : P = = U.I (W) t
3. Định luật Jun - Len-xơ:
Nếu đoạn mạch chỉ có điện trở thuần R, công của lực điện chỉ làm tăng nội năng của vật dẫn. Kết quả là
vật dẫn nóng lên và toả nhiệt.
Kết hợp với định luật ôm ta có: 2 U 2 A = Q = . R I .t = t (J) R
4. Đo công suất điện và điện năng tiêu thụ bởi một đoạn mạch
Ta dùng một ampe - kế để đo cường độ dòng điện và một vôn - kế để đo hiệu điện thế. Công suất tiêu thụ được tính hởi: P = U.I (W)
- Người ta chế tạo ra oát-kế cho biết P nhờ độ lệch của kim chỉ thị.
- Trong thực tế ta có công tơ điện (máy đếm điện năng) cho biết công dòng điện tức điện năng tiêu thụ
tính ra kwh. (1kwh = 3,6.106J)
II. CÔNG VÀ CÔNG SUẤT CỦA NGUỒN ĐIỆN 1. Công
Công của nguồn điện là công của lực lạ khi làm di chuyển các điện tích giữa hai cực để duy trì hiệu điện
thế nguồn. Đây cũng là điện năng sản ra trong toàn mạch.
Ta có : A = q = It (J)
 : suất điện động (V)
I: cường độ dòng điện (A) Trang 6 q : điện tích (C) 2. Công suất A = =  Ta có : P I . (W) t
III. CÔNG VÀ CÔNG SUẤT CỦA CÁC DỤNG CỤ TIÊU THỤ ĐIỆN * dụng cụ toả nhiệt
Hai loại dụng cụ tiêu thụ điện: * máy thu điện
1. Công và công suất của dụng cụ toả nhiệt: 2 U
- Công (điện năng tiêu thụ): 2 A = . R I .t =
t (định luật Jun - Len-xơ) R 2 U - Công suất : 2 P = . R I = R
2. Công và công suất của máy thu điện a) Suất phản điện
- Máy thu điện có công dụng chuyển hoá điện năng thành các dạng năng lượng khác không phải là nội
năng (cơ năng; hoá năng ; . . ).
Lượng điện năng này (A’) tỉ lệ với điện lượng truyền qua máy thu điện.  A =  q . =  I . t . p p
 : đặc trưng cho khả năng biến đổi điện năng thành cơ năng, hoá năng, .. . của máy thu điện và gọi là p suất phản điện.
- Ngoài ra cũng có một phần điện năng mà máy thu điện nhận từ dòng điện được chuyển thành nhiệt vì
máy có điện trở trong rp. 2 
Q = r .I t . p
- Vậy công mà dòng điện thực hiện cho máy thu điện tức là điện năng tiêu thụ bởi máy thu điện là:
A = A + Q =  .I t . r .I 2 + t . p p
- Suy ra công suất của máy thu điện: A 2 P =
=  .I + r .I .I: công suất có ích; r .I2: công suất hao phí (toả nhiệt) t p p p p
b) Hiệu suất của máy thu điện Điện năng có ích công suất có ích Tổng quát : H(%) = =
Điện năng tiêu thụ công suất tiêu thụ
Với máy thu điện ta có:  I. t.  r I . H p p p = = = 1− U I . t . U U
Ghi chú : Trên các dụng cụ tiêu thụ điện có ghi hai chi số: (Ví dụ: 100W-220V)
* Pđ: công suất định mức.
* Uđ: hiệu điện thế định mức.
ĐỊNH LUẬT ÔM TOÀN MẠCH, CÁC LOẠI ĐOẠN MẠCH
I. ĐỊNH LUẬT ÔM TOÀN MẠCH
1. Cường độ dòng điện trong mạch kín:
- tỉ lệ thuận với suất điện động của nguồn điện
- tỉ lệ nghịch với điện trở toàn phần của mạch.  ,r I Trang 7 R  = I r + R Ghi chú:
* Có thể viết :  = (R + r I ). = U + Ir AB
Nếu I = 0 (mạch hở) hoặc r << R thì  = U ( lưu ý trong các hình vẽ = E )
* Ngược lại nếu R = 0 thì I =
: dòng điện có cường độ rất lớn; nguồn điện bị đoản mạch. r
* Nếu mạch ngoài có máy thu điện ( 
p ;rP) thì định luật ôm trở thành: ,r I  p,rp  − p = I R + r + r R p A
* Hiệu suất của nguồn điện: B A P U Ir R H ich ich = = = = − = A P  1  R + r tp tp
II. ĐỊNH LUẬT ÔM ĐỐI VƠI CÁC LOẠI MẠCH ĐIỆN  ,r R A I B
1. Định luật Ohm chứa nguồn (máy phát): U + I AB = r + R
Đối với nguồn điện  : dòng điện đi vào cực âmđi ra từ cực dương.
UAB: tính theo chiều dòng điện đi từ A đến B qua mạch (UAB = - UBA).
2. Định luật Ohm cho đoạn mạch chứa máy thu điện: U −  R I AB p = ,r A I B r + R p p,rp
Đối với máy thu  : dòng điện đi vào cực dương p
đi ra từ cực âm.
UAB: tính theo chiều dòng điện đi từ A đến B qua mạch.
3. Công thức tổng quát của định luật Ohm cho đoạn mạch gồm máy phát và thu ghép nối tiếp: U +  −   prp  AB p = ,r R I A I B R + r  + rp Chú ý:
▪ UAB: Dòng điện đi từ A đến B (Nếu dòng điện đi ngược lại là: -UAB)
▪  : nguồn điện (máy phát) ;  p : máy thu.
▪ I > 0: Chiều dòng điện cùng chiều đã chọn.
I < 0: Chiều dòng điện ngược chiều đã chọn.
▪ R: Tổng điện trở ở các mạch ngoài.
r: Tổng điện trở trong của các bộ nguồn máy phát.
rp: Tổng điện trở trong của các bộ nguồn máy thu.
4. Mắc nguồn điện thành bộ:
a. Mắc nối tiếp
:      2,r2 =  + + ,r ,r ,rn ... +  1 3 3 n 1 2 n
r = r + r + ... +   b 1 2 n b ,rb
chú ý: Nếu có n nguồn giống nhau. Trang 8  = nb r = nr b  
b. Mắc xung đối: 1,r1 2,r2  =  − b 1 2    r = r + r 1,r1 2,r2 ,r b 1 2
c. Mắc song song ( các nguồn giống nhau).   =  ,r b r = r / n b
d. Mắc hỗn hợp đối xứng (các nguồn giống nhau). ,r
m: là số nguồn trong một dãy (hàng ngang).
n: là số dãy (hàng dọc).  = m  b , r ,r mr
Tổng số nguồn trong bộ nguồn: r = b N = n.m n
Chương III. DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG ,r
I. Hệ thống kiến thức trong chương , r
1. Dòng điện trong kim loại
- Các tính chất điện của kim loại có thể giải thích được dựa trên sự có mặt của các electron tự do trong
kim loại. Dòng điện trong kim loại là dòng dịch chuyển có hướng của các êlectron tự do.
- Trong chuyển động, các êlectron tự do luôn luôn va chạm với các ion dao động quanh vị trí cân bằng
ở các nút mạng và truyền một phần động năng cho chúng. Sự va chạm này là nguyên nhân gây ra điện
trở của dây dânx kim loại và tác dụng nhiệt. Điện trở suất của kim loại tăng theo nhiệt độ.
- Hiện tượng khi nhiệt độ hạ xuống dưới nhiệt độ Tc nào đó, điện trở của kim loại (hay hợp kim) giảm
đột ngột đến giá trị bằng không, là hiện tượng siêu dẫn.
2. Dòng điện trong chất điện phân
- Dòng điện trong chất điện phân là dòng chuyển dịch có hướng của các ion dương về catôt và ion âm
về anôt. Các ion trong chất điện phân xuất hiện là do sự phân li của các phân tử chất tan trong môi trường dung môi.
Khi đến các điện cực thì các ion sẽ trao đổi êlectron với các điện cực rồi được giải phóng ra ở đó,
hoặc tham gia các phản ứng phụ. Một trong các phản ứng phụ là phản ứng cực dương tan, phản ứng
này xảy ra trong các bình điện phân có anôt là kim loại mà muối cẩu nó có mặt trong dung dịch điện phân.
- Định luật Fa-ra-đây về điện phân. A
Khối lượng m của chất được giải phóng ra ở các điện cực tỉ lệ với đương lượng gam của chất đó n
và với điện lượng q đi qua dung dịch điện phân. ( q=It ) Trang 9 1 A
Biểu thức của định luật Fa-ra-đây: m =
It với F ≈ 96500 (C/mol) F n
3. Dòng điện trong chất khí
- Dòng điện trong chất khí là dòng chuyển dịch có hướng của các ion dương về catôt, các ion âm và êlectron về anôt.
Khi cường độ điện trường trong chất khí còn yếu, muốn có các ion và êlectron dẫn điện trong chất
khí cần phải có tác nhân ion hoá (ngọn lửa, tia lửa điện....). Còn khi cường độ điện trường trong chất
khí đủ mạnh thì có xảy ra sự ion hoá do va chạm làm cho số điện tích tự do (ion và êlectron) trong chất
khí tăng vọt lên (sự phóng điện tự lực).
Sự phụ thuộc của cường độ dòng điện trong chất khí vào hiệu điện thế giữa anôt và catôt có dạng
phức tạp, không tuân theo định luật Ôm (trừ hiệu điện thế rất thấp).
- Tia lửa điện và hồ quang điện là hai dạng phóng điện trong không khí ở điều kiện thường.
Cơ chế của tia lửa điện là sự ion hoá do va chạm khi cường độ điện trường trong không khí lớn hơn 3.105 (V/m)
- Khi áp suất trong chất khí chỉ còn vào khoảng từ 1 đến 0,01mmHg, trong ống phóng điện có sự
phóng điện thành miền: ngay ở phần mặt catôt có miền tối catôt, phần còn lại của ống cho đến anôt là cột sáng anốt.
Khi áp suất trong ống giảm dưới 10-3mmHg thì miền tối catôt sẽ chiếm toàn bộ ống, lúc đó ta có tia
catôt. Tia catôt là dòng êlectron phát ra từ catôt bay trong chân không tự do.
4. Dòng điện trong chân không
- Dòng điện trong chân không là dòng chuyển dịch có hướng của các êlectron bứt ra từ catôt bị nung
nóng do tác dụng của điện trường.
Đặc điểm của dòng điện trong chân không là nó chỉ chạy theo một chiều nhất định tư anôt sang catôt.
5. Dòng điện trong bán dẫn
- Dòng điện trong bán dẫn tinh khiết là dòng dịch chuyển có hướng của các êlectron tự do và lỗ trống.
Tuỳ theo loại tạp chất pha vào bán dẫn tinh khiết, mà bán dẫn thuộc một trong hai loại là bán dẫn loại
n và bán dẫn loại p. Dòng điện trong bán dẫn loại n chủ yếu là dòng êlectron, còn trong bán dẫn loại p
chủ yếu là dòng các lỗ trống.
Lớp tiếp xúc giữa hai loại bán dẫn p và n (lớp tiếp xúc p – n) có tính dẫn điện chủ yếu theo một chiều nhất định từ p sang n.
Chương IV. TỪ TRƯỜNG I. TỪ TRƯỜNG 1. Tương tác từ
Tương tác giữa nam châm với nam châm, giữa dòng điện với nam châm và giữa dòng điện với dòng điện
đều gọi là tương tác từ. Lực tương tác trong các trường hợp đó gọi là lực từ. 2. Từ trường Trang 10
- Khái niệm từ trường
: Xung quanh thanh nam châm hay xung quanh dòng điện có từ trường.
Tổng quát: Xung quanh điện tích chuyển động có từ trường.
- Tính chất cơ bản của từ trường: Gây ra lực từ tác dụng lên một nam châm hay một dòng điện đặt trong nó.
- Cảm ứng từ: Để đặc trưng cho từ trường về mặt gây ra lực từ, người ta đưa vào một đại lượng vectơ 
gọi là cảm ứng từ và kí hiệu là B .
Phương của nam châm thử nằm cân bằng tại một điểm trong từ trường là phương của vectơ cảm ứng từ 
B của từ trường tại điểm đó. Ta quy ước lấy chiều từ cực Nam sang cực Bắc của nam châm thử là chiều  của B . 3. Đường sức từ
Đường sức từ là đường được vẽ sao cho hướng của tiếp tuyến tại bất kì điểm nào trên đường cũng trùng
với hướng của vectơ cảm ứng từ tại điểm đó.
4. Các tính chất của đường sức từ:
- Tại mỗi điểm trong từ trường, có thể vẽ được một đường sức từ đi qua và chỉ một mà thôi.
- Các đường sức từ là những đường cong kín. Trong trường hợp nam châm, ở ngoài nam châm các đường
sức từ đi ra từ cực Bắc, đi vào ở cực Nam của nam châm.
- Các đường sức từ không cắt nhau.
- Nơi nào cảm ứng từ lớn hơn thì các đường sức
từ ở đó vẽ mau hơn (dày hơn), nơi nào cảm ứng
từ nhỏ hơn thì các đường sức từ ở đó vẽ thưa hơn.
5. Từ trường đều
Một từ trường mà cảm ứng từ tại mọi điểm đều bằng nhau gọi là từ trường đều.
II. PHƯƠNG, CHIỀU VÀ ĐỘ LỚN CỦA LỰC TỪ TÁC DỤNG LÊN DÂY DẪN MANG DÒNG ĐIỆN
1. Phương
: Lực từ tác dụng lên đoạn dòng điện có phương vuông góc với mặt phẳng chứa đoạn dòng
điện và cảm ứng tại điểm khảo sát .
2. Chiều lực từ : Quy tắc bàn tay trái
Quy tắc bàn tay trái : Đặt bàn tay trái duỗi thẳng để các đường cảm ứng từ xuyên vào lòng bàn tay và
chiều từ cổ tay đến ngón tay trùng với chiều dòng điện. Khi đó ngón tay cái choãi ra 90o sẽ chỉ chiều của
lực từ tác dụng lên đoạn dây dẫn.
3. Độ lớn (Định luật Am-pe). Lực từ tác dụng lên đoạn dòng điện cường độ I, có chiều dài l hợp với từ
trường đều B một góc  F =  BI sin
B Độ lớn của cảm ứng từ . Trong hệ SI, đơn vị của cảm ứng từ là tesla, kí hiệu là T.
III. NGUYÊN LÝ CHỒNG CHẤT TỪ TRƯỜNG
Giả sử ta có hệ n nam châm( hay dòng điện ). Tại điểm M, Từ trường chỉ của nam châm thứ nhất là B , 1
chỉ của nam châm thứ hai là B , …, chỉ của nam châm thứ n là B . Gọi B là từ trường của hệ tại M 2 n
thì: B = B + B + ... + B 1 2 n
TỪ TRƯỜNG CỦA DÒNG ĐIỆN CHẠY TRONG DÂY DẪN CÓ HIØNH DẠNG ĐẶC BIỆT
1. Từ trường của dòng điện chạy trong dây dẫn thẳng dài

Vectơ cảm ứng từ B tại một điểm được xác định:
- Điểm đặt tại điểm đang xét.
- Phương tiếp tuyến với đường sức từ tại điểm đang xét
- Chiều được xác định theo quy tắc nắm tay phải − I - Độ lớn B 7 = . 2 10 r  B
2. Từ trường của dòng điện chạy trong dây dẫn uốn thành vòng tròn
Vectơ cảm ứng từ tại tâm vòng dây được xác định: Trang 11
- Phương vuông góc với mặt phẳng vòng dây
- Chiều là chiều của đường sức từ: Khum bàn tay phải theo vòng dây của khung dây sao cho chiều từ cổ
tay đến các ngón tay trùng với chiều của dòng điện trong khung , ngón tay cái choảy ra chỉ chiều đương
sức từ xuyên qua mặt phẳng dòng điện − NI - Độ lớn B 7 = 210 R
R: Bán kính của khung dây dẫn
I: Cường độ dòng điện N: Số vòng dây
3. Từ trường của dòng điện chạy trong ống dây dẫn
Từ trường trong ống dây là từ trường đều. Vectơ cảm ứng từ B được xác định
- Phương song song với trục ống dây
- Chiều là chiều của đường sức từ − N - Độ lớn B 7 = 4 10 . nI n = : Số vòng dây trên 1m 
N là số vòng dây,  là chiều dài ống dây
TƯƠNG TÁC GIỮA HAI DÒNG ĐIỆN THẲNG SONG SONG. LỰC LORENXƠ
1. Lực tương tác giữa hai dây dẫn song song mang dòng điện có: M P
- Điểm đặt tại trung điểm của đoạn dây đang xét
- Phương nằm trong mặt phẳng hình vẽ và vuông góc với dây dẫn I2
- Chiều hướng vào nhau nếu 2 dòng điện cùng chiều, hướng ra xa nhau nếu hai dòng I1 đ C iện ngược chiều. 7 I I B - Độ lớn : F 1 2 10 . 2 − =
 l: Chiều dài đoạn dây dẫn, r Khoảng cách giữa hai dây dẫn r F D 2. Lực Lorenxơ có:
- Điểm đặt tại điện tích chuyển động
- Phương vuông góc với mặt phẳng chứa vectơ vận tốc của hạt mang điện và vectơ cảm N Q
ứng từ tại điểm đang xét
- Chiều tuân theo quy tắc bàn tay trái: Đặt bàn tay trái duỗi thẳng để các đường cảm ứng từ xuyên vào
lòng bàn tay và chiều từ cổ tay đến ngón tay trùng với chiều dòng điện. Khi đó ngón tay cái choãi ra 90o
sẽ chỉ chiều của lực Lo-ren-xơ nếu hạt mang điện dương và nếu hạt mang điện âm thì chiều ngược lại  
- Độ lớn của lực Lorenxơ f = q vBSin   : Góc tạo bởi , v B
KHUNG DÂY MANG DÒNG ĐIỆN ĐẶT TRONG TỪ TRƯỜNG ĐỀU
1. Trường hợp đường sức từ nằm trong mặt phẳng khung dây  A
Xét một khung dây mang dòng điện đặt trong từ trường đều B B
nằm trong mặt phẳng khung dây.
- Cạnh AB, DC song song với đường sức từ nên lên lực từ tác dùng lên chúng bằng không  .   F - Gọi F F
1 , 2 là lực từ tác dụng lên các cạnh DA và BC. 1   
Theo công thức Ampe ta thấy F F 1 , 2 có F2 - đ I
iểm đặt tại trung điểm của mỗi cạnh -
phương vuông góc với mặt phẳng hình vẽ - D
chiều như hình vẽ(Ngược chiều nhau) C  - F Độ lớn F 1 = F2 1 A B
Vậy: Khung dây chịu tác dụng của một ngẫu lực. Ngẫu lực này làm cho
khung dây quay về vị trí cân bằng bền + Trang 12   F F B 2 4
2. Trường hợp đường sức từ vuông góc với mặt phẳng khung dây

Xét một khung dây mang dòng điện đặt trong từ trường đều B vuông góc với mặt phẳng khung dây.     - Gọi F F F F
1 , 2 , 3 , 4 là lực từ tác dụng lên các cạnh AB, BC, CD, DA    
Theo công thức Ampe ta thấy F = −F F = −F 1 3 , 2 4
Vậy: Khung dây chịu tác dụng của các cặp lực cân bằng. Các lực này khung làm quay khung.
c. Momen ngẫu lực từ tác dụng lên khung dây mang dòng điện.
Xét một khung dây mang dòng điện đặt trong từ trường đều B
nằm trong mặt phẳng khung dây
M : Momen ngẫu lực từ (N.m)
I: Cường độ dòng điện (A) B: Từ trường (T)
S: Diện tích khung dây(m2) Tổng quát  
Với  = ( , B n) M = IBSsin
Chương V. CẢM ỨNG ĐIỆN TỪ
1. Từ thông qua diện tích S:
Φ = BS.cosα ;  = Li (Wb) −
Với L là độ tự cảm của cuộn dây L 7 = 410 n V 2 (H) N n =
: số vòng dây trên một đơn vị chiều dài 
2. Suất điện động cảm ứng trong mạch điện kín:   = − (V) c t
- Độ lớn suất điện động cảm ứng trong một đoạn dây chuyển động:    = Blvsin   = c (V) (B,v ) i
- Suất điện động tự cảm:  = −L
(V) (dấu trừ đặc trưng cho định luật Lenx) c t  1
3. Năng lượng từ trường trong ống dây: 2 W = Li (J) 2 1
4. Mật độ năng lượng từ trường: 7 2 w = 10 B (J/m3) 8
Chương VI. KHÚC XẠ ÁNH SÁNG
I. Hiện tượng khúc xạ ánh sáng
Hiện tượng khúc xạ ánh sáng là hiện tượng khi ánh sáng truyền qua mặt phân cách giữa hai môi trường
trong suốt, tia sáng bị bẻ gãy khúc (đổi hướng đột ngột) ở mặt phân cách.
2. Định luật khúc xạ ánh sáng Trang 13
+ Tia khúc xạ nằm trong mặt phẳng tới và ở bên kia pháp tuyến so với tia tới. (Hình 33)
+ Đối với một cặp môi trường trong suốt nhất định thì tỉ số giữa sin của
góc tới (sini) với sin của góc khúc xạ (sinr) luôn luôn là một số không đổi. Số
không đổi này phụ thuộc vào bản chất của hai môi trường và được gọi là chiết
suất tỉ đối của môi trường chứa tia khúc xạ (môi trường 2) đối với môi trường S N
chứa tia tới (môi trường 1); kí hiệu là n21. i (1 sin i I Biểu thức: = n ) 21 sin r (2 r )
+ Nếu n21 > 1 thì góc khúc xạ nhỏ hơn góc tới. Ta nói môi trường (2)
chiết quang kém môi trường (1). N K + Nếu n /
21 < 1 thì góc khúc xạ lớn hơn góc tới. Ta nói môi trường (2) chiết quang hơn môi trường (1).
+ Nếu i = 0 thì r = 0: tia sáng chiếu vuông góc với mặt phân cách sẽ truyền thẳng.
+ Nếu chiếu tia tới theo hướng KI thì tia khúc xạ sẽ đi theo hướng IS (theo nguyên lí về tính thuận
nghịch của chiều truyền ánh sáng). 1 Do đó, ta có n = . 21 n12
3. Chiết suất tuyệt đối
– Chiết suất tuyệt đối của một môi trường là chiết suất của nó đối với chân không.
– Vì chiết suất của không khí xấp xỉ bằng 1, nên khi không cần độ chính xác cao, ta có thể coi chiết
suất của một chất đối với không khí bằng chiết suất tuyệt đối của nó.
– Giữa chiết suất tỉ đối n21 của môi trường 2 đối với môi trường 1 và các chiết suất tuyệt đối n2 và n1 n của chúng có hệ thức: 2 n = 21 n1
– Ngoài ra, người ta đã chứng minh được rằng:
Chiết suất tuyệt đối của các môi trường trong suốt tỉ lệ nghịch với vận tốc truyền ánh sáng trong các môi trường đó: n v 2 1 = n v 1 2
Nếu môi trường 1 là chân không thì ta có: n1 = 1 và v1 = c = 3.108 m/s c c Kết quả là: n = hay v . 2 v 2 = 2 n2
– Vì vận tốc truyền ánh sáng trong các môi trường đều nhỏ hơn vận tốc truyền ánh sáng trong chân
không, nên chiết suất tuyệt đối của các môi trường luôn luôn lớn hơn 1.
Ý nghĩa của chiết suất tuyệt đối
Chiết suất tuyệt đối của môi trường trong suốt cho biết vận tốc truyền ánh sáng trong môi trường đó
nhỏ hơn vận tốc truyền ánh sáng trong chân không bao nhiêu lần.
HIỆN TƯỢNG PHẢN XẠ TOÀN PHẦN VÀ NHỮNG ĐIỀU KIỆN ĐỂ HIỆN TƯỢNG XẢY RA.
1. Hiện tượng phản xạ toàn phần
Hiện tượng phản xạ toàn phần là hiện tượng mà trong đó chỉ tồn tại tia phản xạ mà không có tia khúc xạ.
2. Điều kiện để có hiện tượng phản xạ toàn phần S K r H J Trang 14 i I i/
– Tia sáng truyền theo chiều từ môi trường có chiết suất lớn sang môi
trường có chiết suất nhỏ hơn. (Hình 34)
– Góc tới lớn hơn hoặc bằng góc giới hạn phản xạ toàn phần (i gh).
3. Phân biệt phản xạ toàn phần và phản xạ thông thường Giống nhau
– Cũng là hiện tượng phản xạ, (tia sáng bị hắt lại môi trường cũ).
– Cũng tuân theo định luật phản xạ ánh sáng . Khác nhau
– Hiện tượng phản xạ thông thường xảy ra khi tia sáng gặp một mặt phân cách hai môi trường và
không cần thêm điều kiện gì.
Trong khi đó, hiện tượng phản xạ toàn phần chỉ xảy ra khi thỏa mãn hai điều kiện trên.
– Trong phản xạ toàn phần, cường độ chùm tia phản xạ bằng cường độ chùm tia tới. Còn trong phản xạ
thông thường, cường độ chùm tia phản xạ yếu hơn chùm tia tới.
4. Lăng kính phản xạ toàn phần
Lăng kính phản xạ toàn phần là một khối thủy tinh hình lăng trụ có tiết diện thẳng là một tam giác vuông cân Ứng dụng
Lăng kính phản xạ toàn phần được dùng thay gương phẳng trong một số dụng cụ quang học (như ống
nhòm, kính tiềm vọng …).
Có hai ưu điểm là tỉ lệ phần trăm ánh sáng phản xạ lớn và không cần có lớp mạ như ở gương phẳng.
Chương VII. MẮT VÀ CÁC DỤNG CỤ QUANG Lăng kính 1. Định nghĩa
Lăng kính là một khối chất trong suốt hình lăng trụ đứng, có tiết
diện thẳng là một hình tam giác.
Đường đi của tia sáng đơn sắc qua lăng kính
– Ta chỉ khảo sát đường đi của tia sáng trong tiết diện thẳng ABC của lăng kính.
– Nói chung, các tia sáng khi qua lăng kính bị khúc xạ và tia ló
luôn bị lệch về phía đáy nhiều hơn so với tia tới.
Góc lệch của tia sáng đơn sắc khi đi qua lăng kính
Góc lệch D giữa tia ló và tia tới là góc hợp bởi phương của tia tới A
và tia ló, (xác định theo góc nhỏ giữa hai đường thẳng). D
2. Các công thức của lăng kính: I i 1 i2 r r 1 2 J R S B Tran C g 15 sin i = n sin r A  2igh sin i' = n sin r'  
Điều kiện để có tia lói i A = r + r' 0  
sin i = n sin( A −  D = i + i'−A  ) 0
Khi tia sáng có góc lệch cực tiểu: r’ = r = A/2; i’ = i = (Dm + A)/2
Khi góc lệch đạt cực tiểu: Tia ló và tia tới đối xứng nhau qua mặt phẳng
phân giác của góc chiết quang A . D + A A
Khi góc lệch đạt cực tiểu D = min : sin min n sin 2 2 THẤU KÍNH MỎNG 1. Định nghĩa
Thấu kính là một khối chất
trong suốt giới hạn bởi hai mặt
cong, thường là hai mặt cầu.
Một trong hai mặt có thể là mặt phẳng.
Thấu kính mỏng là thấu
kính có khoảng cách O1O2 của
hai chỏm cầu rất nhỏ so với
bán kính R1 và R2 của các mặt cầu. (a) 2. Phân loại (b)
Có hai loại: – Thấu kính rìa mỏng gọi là thấu kính hội tụ. F O F/
– Thấu kính rìa dày gọi là thấu kính phân kì. (c)
Đường thẳng nối tâm hai chỏm cầu gọi là trục chính của thấu kính. (Hình 36)
Coi O1  O2  O gọi là quang tâm của thấu kính.
3. Tiêu điểm chính
– Với thấu kính hội tụ: Chùm tia ló hội tụ tại điểm F/ trên trục chính. F/ gọi là tiêu điểm chính của thấu kính hội tụ.
– Với thấu kính phân kì: Chùm tia ló không hội tụ thực sự mà có đường kéo dài của chúng cắt nhau tại
điểm F/ trên trục chính. F/ gọi là tiêu điểm chính của thấu kính phân kì .
Mỗi thấu kính mỏng có hai tiêu điểm chính nằm đối xứng nhau qua quang tâm. Một tiêu điểm gọi là
tiêu điểm vật (F), tiêu điểm còn lại gọi là tiêu điểm ảnh (F/). 4. Tiêu cự
Khoảng cách f từ quang tâm đến các tiêu điểm chính gọi là tiêu cự của thấu kính: f = OF = OF/ .
5. Trục phụ, các tiêu điểm phụ và tiêu diện
– Mọi đường thẳng đi qua quang tâm O nhưng không trùng với trục chính đều gọi là trục phụ.
– Giao điểm của một trục phụ với tiêu diện gọi là tiêu điểm phụ ứng với trục phụ đó.
– Có vô số các tiêu điểm phụ, chúng đều nằm trên một mặt phẳng vuông góc với trục chính, tại tiêu
điểm chính. Mặt phẳng đó gọi là tiêu diện của thấu kính. Mỗi thấu kính có hai tiêu diện nằm hai bên quang tâm.
6. Đường đi của các tia sáng qua thấu kính hội tụ Trang 16
Các tia sáng khi qua thấu kính hội tụ sẽ bị khúc xạ và ló ra khỏi thấu kính. Có 3 tia sáng thường gặp (Hình 36):
– Tia tới (a) song song với trục chính, cho tia ló đi qua tiêu điểm ảnh.
– Tia tới (b) đi qua tiêu điểm vật, cho tia ló song song với trục chính.
– Tia tới (c) đi qua quang tâm cho tia ló truyền thẳng.
7. Đường đi của các tia sáng qua thấu kính phân kì
Các tia sáng khi qua thấu kính phân kì sẽ bị khúc xạ và ló ra khỏi thấu kính. Có 3 tia sáng thường gặp (Hình 37):
– Tia tới (a) song song với trục chính, cho tia ló có đường kéo dài đi qua tiêu điểm ảnh. (a)
– Tia tới (b) hướng tới tiêu điểm vật, cho tia ló song song với trục chính.
– Tia tới (c) đi qua quang tâm cho tia ló truyền thẳng. F/ O F
8. Quá trình tạo ảnh qua thấu kính hội tụ (c)
Vật thật hoặc ảo thường cho ảnh thật, chỉ có trường hợp vật thật nằm trong (b)
khoảng từ O đến F mới cho ảnh ảo. (Hình 37)
9. Quá trình tạo ảnh qua thấu kính phân kì
Vật thật hoặc ảo thường cho ảnh ảo, chỉ có trường hợp vật ảo nằm trong khoảng từ O đến F mới cho ảnh thật. 1 1 1
10. Công thức thấu kính = + / f d d
Công thức này dùng được cả cho thấu kính hội tụ và thấu kính phân kì.
11. Độ phóng đại của ảnh A' B d
Độ phóng đại của ảnh là tỉ số chiều cao của ảnh và chiều cao của vật: k = ' = − AB d
* k > 0 : Ảnh cùng chiều với vật.
* k < 0 : Ảnh ngược chiều với vật.
Giá trị tuyệt đối của k cho biết độ lớn tỉ đối của ảnh so với vật.
– Công thức tính độ tụ của thấu kính theo bán kính cong của các mặt và chiết suất của thấu kính: 1  1 1  D = = (n − ) 1 +  . fR R 1 2 
Trong đó, n là chiết suất tỉ đối của chất làm thấu kính đối với môi trường đặt thấu kính. R1 và R2 là bán
kính hai mặt của thấu kính với qui ước: Mặt lõm: R > 0 ; Mặt lồi: R < 0 ; Mặt phẳng: R = 
MẮT_CÁC TẬT CỦA MẮT a/. Định nghĩa Trang 17
về phương diện quang hình học, mắt giống như một máy ảnh,
cho một ảnh thật nhỏ hơn vật trên võng mạc. b/. cấu tạo
• thủy tinh thể: Bộ phận chính: là một thấu kính hội tụ có tiêu cự f thay đổi được
• võng mạc:  màn ảnh, sát dáy mắt nơi tập trung các tế bào nhạy sáng ở dầu các dây thần kinh thị
giác. Trên võng mạc có điển vàng V rất nhạy sáng.
• Đặc điểm: d’ = OV = không đổi: để nhìn vật ở các khoảng cách khác nhau (d thay đổi) => f thay
đổi (mắt phải điều tiết )
d/. Sự điều tiết của mắt – điểm cực viễn Cv- điểm cực cận Cc • Sự điều tiết
Sự thay đổi độ cong của thủy tinh thể (và do đó thay đổi độ tụ hay tiêu cự của nó) để làm cho ảnh của
các vật cần quan sát hiện lên trên võng mạc gọi là sự điều tiết • Điểm cực viễn Cv
Điểm xa nhất trên trục chính của mắt mà đặt vật tại đó mắt có thể thấy rõ được mà không cần điều tiết ( f = fmax) • Điểm cực cận Cc
Điểm gần nhất trên trục chính của mắt mà đặt vật tại đó mắt có thể thấy rõ được khi đã điều tiết tối đa ( f = fmin)
Khoảng cách từ điểm cực cận Cc đến cực viễn Cv : Gọi giới hạn thấy rõ của mắt
- Mắt thường : fmax = OV, OCc = Đ = 25 cm; OCv = 
e/. Góc trong vật và năng suất phân ly của mắt AB Góc trông vật : tg =
 = góc trông vật ; AB: kích thườc vật ; = AO = khỏang cách từ vật tới quang tâm O của mắt .
- Năng suất phân ly của mắt
Là góc trông vật nhỏ nhất  min giữa hai điểm A và B mà mắt còn có thể phân biệt được hai điểm đó . 1   1'  rad min 3500
- sự lưu ảnh trên võng mạc
là thời gian  0,1s để võng mạc hồi phục lại sau khi tắt ánh sáng kích thích.
3. Các tật của mắt – Cách sửa a. Cận thị
là mắt khi không điều tiết có tiêu điểm nằm trước võng mạc .
fmax < OC; OCc< Đ ; OCv <  => Dcận > Dthường
- Sửa tật : nhìn xa được như mắt thường : phải đeo một thấu kính phân kỳ sao cho ảnh vật ở  qua
kính hiện lên ở điểm cực viễn của mắt. AB kính ⎯⎯→A B   1 1 1 1 1
d =  d = ( − OC − )  D = = + = − V V f d d  OC −  V
l = OO’= khỏang cách từ kính đến mắt, nếu đeo sát mắt l =0 thì fk = -OV b. Viễn thị
Là mắt khi không điề tiết có tiêu điểm nằm sau võng mạc .
fmax >OV; OCc > Đ ; OCv : ảo ở sau mắt . => Dviễn < Dthường Sửa tật : 2 cách :
+ Đeo một thấu kính hội tụ để nhìn xa vô cực như mắt thương mà không cần điều tiết(khó thực hiện).
+ Đeo một thấu kính hội tụ để nhìn gần như mắt thường cách mắt 25cm . (đây là cách thương dùng ) AB kính ⎯⎯→A B   Trang 18 1 1 1 1 1 d = , 0 25 d = (
OC − ) D = = + = − C C f d d  OC −  C KÍNH LÚP a/. Định nhgĩa:
Là một dụng cụ quang học bổ trợ cho mắt trông việc quang sát các vật nhỏ. Nó có tác dụng làm tăng góc
trông ảnh bằng cách tạo ra một ảnh ảo, lớn hơn vật và nằm trông giới hạn nhìn thấy rõ của mắt. b/. cấu tạo
Gồm một thấu kính hội tụ có tiêu cự ngắn(cỡ vài cm) c/. cách ngắm chừng AB kínhOk matO
⎯⎯⎯→ A B ⎯⎯⎯ → A B 1 1 2 2 d1 d1’ d2 d2’ d ’ ’ ’
1 < O’F ; d1 nằm trong giới hạn nhìn rõ của mắt: d1 + d1 = OKO ; d2 = OV 1 1 1 = + ' f d d K 1 1
• Ngắm chừng ở cực cận Điều chỉnh để ảnh A ’
1B1 là ảnh ảo hiệm tại CC : d1 = - (OCC - l)
(l là khoảng cách giữa vị trí đặt kính và mắt) AB kính ⎯⎯→A B   1 1 1 1 1 d d = (
OC − ) D = = + = − C C f d dd OC −  C • Ngắm chừng ở CV Điều chỉnh để ảnh A ’
1B1 là ảnh ảo hiệm tại CV : d1 = - (OCV - l) AB kính ⎯⎯→A B   1 1 1 1 1 d d = ( − OC − )  D = = + = − V V f d dd OC −  V
d/. Độ bội giác của kính lúp * Định nghĩa:
Độ bội giác G của một dụng cụ quang học bổ trợ cho mắt là tỉ số giữa góc trông ảnh  của một vật qua
dụng cụ quang học đó với góc trông trực tiếp  của vật đó khi đặt vật tại điểm cực cận của mắt. 0  tan G =    (vì góc  và rất nhỏ) tan 0 0 0 AB Với: tg = 0 Ñ
* Độ bội giác của kính lúp:
Gọi l là khoảng cách từ mắt đến kính và d’ là khoảng
cách từ ảnh A’B’ đến kính (d’ < 0), ta có : A' B' A' B' tg = = OA d' + Trang 19 tg A'B' Ñ suy ra: G = = . tg AB d' + 0 Ñ Hay: G = k. (1) d' +
k là độ phóng đại của ảnh.
- Khi ngắm chừng ở cực cận: thì d' + = Ñ do đó: − dG = k = C C d
- Khi ngắm chừng ở cực viễn: thì d +  = OC do đó: VdĐ G =  V d OCV
- Khi ngắm chừng ở vô cực: ảnh A’B’ ở vô cực, khi đó AB ở tại CC nên: AB AB tg = = OF f Suy ra: Ñ G =  f
G có giá trị từ 2,5 đến 25.
• khi ngắm chừng ở vô cực
+ Mắt không phải điều tiết
+ Độ bội giác của kính lúp không phụ thuộc vào vị trí đặt mắt.
Giá trị của G đượ 
c ghi trên vành kính: X2,5 ; X5.
Lưu ý: - Với l là khoảng cách từ mắt tới kính lúp thì khi: 0 ≤ l < f  GC > GV l = f  GC = GV
l > f  GC < GV
- Trên vành kính thường ghi giá trị 25 G¥ = f (cm) Ví dụ: Ghi X10 thì 25 G =
= 10 Þ f = 2,5cm ¥ f (cm) KÍNH HIỂN VI a) Định nghĩa:
Kính hiển vi là một dụng cụ quang học bổ trợ cho mắt làm tăng góc trông
ảnh của những vật nhỏ, với độ bội giác lớn lơn rất nhiều so với độ bội giác của kính lúp.
b) Cấu tạo: Có hai bộ phận chính:
- Vật kính O1 là một thấu kính hội tụ có tiêu cự rất ngắn (vài mm), dùng
để tạo ra một ảnh thật rất lớn của vật cần quan sát.
- Thị kính O2 cũng là một thấu kính hội tụ có tiêu cự ngắn (vài cm), dùng
như một kính lúp để quan sát ảnh thật nói trên.
Hai kính có trục chính trùng nhau và khoảng cách giữa chúng không đổi. Trang 20
Bộ phận tụ sáng dùng để chiếu sáng vật cần quan sát.
d) Độ bội giác của kính khi ngắm chừng ở vô cực: A B A B AB - Ta có: 1 1 1 1 tg = = O F f và tg = Ñ 2 2 2 tg A B Ñ Do đó: 1 1 G = = x  tg (1)  AB f 0 2 Hay G = k  G  1 2
Độ bội giác G của kính hiển vi trong trường hợp ngắm chừng ở vô cực bằng tích của độ phóng đại k1
của ảnh A1B1 qua vật kính với độ bội giác G2 của thị kính.
.Ñ  Hay G = F F  f .f
Với:  = /1 2 gọi là độ dài quang học của kính hiển vi. 1 2
Người ta thường lấy Đ = 25cm KÍNH THIÊN VĂN
a) Định nghĩa:
Kính thiên văn là dụng cụ quang học bổ trợ cho mắt làm tăng góc trông ảnh của những vật ở rất xa (các thiên thể).
b) Cấu tạo: Có hai bộ phận chính:
- Vật kính O1: là một thấu kính hội tụ có tiêu cự dài (vài m)
- Thị kính O2: là một thấu kính hội tụ có tiêu cự ngắn (vài cm)
Hai kính được lắp cùng trục, khoảng cách giữa chúng có thể thay đổi được.
c) Độ bội giác của kính khi ngắm chừng ở vô cực:
- Trong cách ngắm chừng ở vô cực, người quan sát
điều chỉnh để ảnh A1B2 ở vô cực. Lúc đó A B A B 1 1 tg = tg = f và 1 1 0 f 2 1
Do đó, độ bội giác của kính thiên văn khi ngắm chừng ở vô cực là : tg f1 G = =  tg  f 0 2 Trang 21