


Preview text:
lOMoAR cPSD| 35883770 GIỚI HẠN Môn: Vi Tích Phân A. TÓM TẮT LÍ THUYẾT
I. Các công thức tính giới hạn cơ bản: sin x 1. lim = 1. x→0 x 1
2. lim (1 + α)α = e. α→0 x 1 3. lim 1 + = e. x→∞ x
II. Vô cùng bé tương đương:
1. sin α ∼ α.
2. tan α ∼ α. α2 3. 1 − cos α ∼ . 2
4. ln(1 + α) ∼ α.
5. eα − 1 ∼ α.
6. (1 + µ)α − 1 ∼ µα. III. Quy tắc L’ Hospital:
Giả sử các hàm f (x) và g(x) khả vi, gJ(x) /= 0 ở lân cận a và
lim f (x) = 0 và lim g(x) = 0 x→a x→a 1 lOMoAR cPSD| 35883770 hoặc
lim f (x) = ±∞ và lim g(x) = ±∞. x→a x→a 0 ∞
Nói cách khác, ta có dạng vô định hay . Khi đó 0 ∞ f (x) f J(x) lim = lim
x→a g(x)
x→a gJ(x) B. HƯỚNG DẪN GIẢI
I. Tính các giới hạn sau: 1 x 1 1) lim sin + cos . x→∞ x x Nhận xét:
Nhận định dạng: I.3 - công thức lim [u(x)]v(x). x→x0 1 1 u = sin + cos và v = x. xx 1 x
Các bài tập 2 đến 6, 12 và 13 của I: sử dụng công thức I.3
Các bài tập 7, 8, 11, 14, 15, 16 và 18 của I: sử dụng công thức VCB tương đương
Các bài tập 9, 10 và 17 của I: sử dụng quy tắc L’Hospital
ln(1 + 3x sin x) 7) lim x→0 tan2 x Nhận xét:
Tử và mẫu là hai VCB (xem lại định nghĩa về VCB) hoặc giới hạn có dạng vô định
0 nên ta có thể sử dụng công thức VCB tương đương (II) hoặc quy tắc L’Hospital 0
(III). Tuy nhiên, với bài toán này, giảng viên đề nghị sử dụng các VCB tương đương. Giải : 3x sin x 3x.x
lim ln(1 + 3x sin x) = lim = 3. 2 = lim 2 x→0 tan x x→0 2 x x→0 x 2 lOMoAR cPSD| 35883770 1 1 10) lim − x − tan x 0 = lim x→0 x tan x x2
x→0 x2 tan x 0 Giải :
Ta áp dụng quy tắc L’Hospital (lấy đạo hàm tử và mẫu) (3 lần) 1 − 1 2
lim x − tan x = lim cos2 x = lim cos2 x − 1 = lim — sin x
x→0 x2 tan x
x→0 2x tan x + x2 1
0 2x tan x cos2 x + x2 2
x→0 2x sin x cos x + x2 cos2 x x→ − sin x
−2 sin x cos x − sin 2x = lim = lim = lim
x→0 x sin 2x + x2
x→0 sin 2x + 2x cos 2x + 2x
x→0 sin 2x + 2x(1 + cos 2x) −2 cos 2x −2 = lim = = − 1 .
x→0 2 cos 2x + 2(1 + cos 2x) − 4x sin 2x 2 + 2(1 + 1) 3
II. Dùng quy tắc L’Hospital, tính các giới hạn sau đây: 3