TOP 10 đề thi toán 7 học kỳ II năm 2021-2022 (có đáp án)

Tổng hợp TOP 10 đề thi toán 7 học kỳ II năm 2021-2022 (có đáp án) được biên soạn gồm 29 trang. Mời các bạn tham khảo và học tập củng cố kiến thức để chuẩn bị cho kì thi sắp tới. Chúc các bạn đạt kết quả cao!!! 

Trang 1
ĐỀ 1
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HỌC 2021 2022
MÔN TOÁN 7
A. TRẮC NGHIỆM KHÁCH QUAN: (3 điểm) Thời gian làm bài 25 phút
( Học sinh chọn câu đúng rồi ghi vào giấy làm bài)
Câu 1. Thu gọn đa thức
3 2 3 2
75x x x +1B y yx
có kết quả là:
A/
2
2x +1B 
B/
2
9x +1B 
C/
32
2x 2 1xBy
D/
Câu 2. Thu gọn đơn thức
2
23
1
x . 3xy
3
, kết quả là:
A/
37
3x y
B/
58
1
xy
3
C/
57
1
xy
3
D/
46
3x y
Câu 3. Bậc của đơn thức
24
2xy x
là:
A/
3
B/ 7 C/ 6 D/ 7
Câu 4. Bậc của đa thức
6 6 3 6
78Q(x) x x 2xx
:
A/ 2 B/ 3 C/ 4 D/ 5
Câu 5. Nghiệm của đa thức
2
4x
là:
A/2 B/ 4 C/ 2 hoặc -2 D/ Vô nghiệm
( Bài toán dành cho câu 5 và câu 6.)
Theo dõi số kg táo trong mỗi thùng của một cửa hàng hoa quả được ghi lại như sau:
Câu 6: Dấu hiệu là:
A/ 20 thùng táo
B/ S kg táo trong mỗi thùng của một cửa hàng hoa quả
C/ Số số kg táo trong 20 thùng của một cửa hàng hoa quả
D/ Số thùng táo của một cửa hàng hoa qu,
Câu 7 : Mốt của dấu hiệu là :
A/ 60 B/ 50 C/ 30 D/ 40
Câu 8. Cho
ABC
cân
0
ˆ
60B
. Kết quả so sánh ba cạnh của tam giác là:
A/ AB=AC=BC B/ AC<BC<AC C/ AB<BC<AC D/BC<AC<AB
Câu 9. Một tam giác cân có góc ở đáy 50
0
. Khi đó góc ở đỉnh sẽ có số đo:
A/ 80
0
B/ 60
0
C/ 130
0
D/ 65
0
Câu 10. Tam giác ABC vuông tại A AB= 3 cm, BC=5 cm, khi đó độ dài cạnh AC :
A/ 8cm B/ 10cm C/ 4cm D/ 5cm
Câu 11. Cho tam giác ABC đường trung tuyến AM dài 6cm G trọng tâm. Khi đó đ
dài GA là:
A/ 2cm B/ 4cm C/ 6cm D/ 3cm
Câu 12. Cho tam giác ABC có
B
0
120
. Khi đó :
A/ AB >AC B/ AC > BC C/ AB = AC D/ AB < BC
20
30
30
50
70
30
40
60
30
0
30
40
70
60
40
50
50
30
20
40
B. PHẦN TỰ LUẬN: (7 điểm)
Bài 1: (1,5 điểm) Số học sinh nữ của từng lớp trong một trường THCS được ghi
lại ở bảng sau :
Trang 2
19 15 16 15 18 17 18 15 17 16
18 16 17 19 19 18 15 15 19 18
a) Lập bảng tần số.
b) Hi mi lp ca trường THCS có trung bình bao nhiêu hc sinh n ( làm tròn
kết qu đến hàng đơn vị)?
Bài 2: (1,0 điểm) Tính giá tr biu thc
4
2 11 5xxyy
ti x = 1, y = -1.
Bài 3: (1,5điểm) Cho đa thức
3 4 2 4 3 4
( ) 5 2 2 3 5P x x x x x x x x
a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo lũy thừa giảm của biến x.
b) Tính Q(x), biết P(x) + Q(x) =
2
2 12x
c) Tìm nghiệm của đa thức Q(x)
Bài 4: ( 2,5 điểm) Cho
ABC cân tại A (
0
A 90
) có G là trọng tâm., CE và BD là
hai trung tuyến, H trung điểm của BC. Trên tia đối của tia GA lấy điểm I sao
cho G là trung điểm của AI.
a) Chứng minh :
BHG =
CHG
b) Chứng minh : ba điểm A,G,H thẳng hàng
c) So sánh IB IC.
Bài 5: ( 0,5 điểm)
Ba thành phố A, B, C là ba đỉnh của một tam giác, biết rằng AC = 30km,
AB = 90km.
Nếu đặt C máy phát sóng truyền thanh bán kính hoạt động bằng 120km thì
thành phố B có nhận được tín hiệu không? sao?
HẾT.
ĐÁP ÁN
PHẦN 1: TRẮC NGHIỆM
Câu
1
Câu
2
Câu
3
Câu
4
Câu
5
Câu
6
Câu
7
Câu
8
Câu
9
Câu 10
Câu
11
Câu
12
A
D
D
B
C
B
C
A
A
C
B
B
PHẦN II : TỰ LUẬN
Bài
Câu
Hướng dẫn chấm
Điểm
1
a
Số học sinh nữ của từng lớp trong một trường THCS
0,25
b
Giá trị (x)
15
16
17
18
19
Tần số (n)
6
3
3
4
4
N=20
Mốt là 15
0,5
0,25
c
15.6 16.3 17.3 18.4 19.4
20
16,85 17
X

mỗi lớp của trường THCS có trung bình 17 học sinh nữ
0,5
Trang 3
2
4 2 4
4 4 2
2
2
2 11 5
5 2 11
0 2 11
2 11
5x x x
5x x x
x
x
y y y
y y y
y
y

Thay x= 1; y=-1 vào biểu thức tìm được ta có:
2
2. 1 11. 1 2 11 13
0,25
0,25
0,25
0,25
0,25
Vậy giá trị biểu thức
4
2 11 5xxyy
tại x =1; y= -1
là -15.
0,25
3
a)
42
24
34
. 11
5. 11 . . .
55 .
5x yy
y y x
yx


0,25
0,25
b)
Bậc: 7
Hệ số: -55
0,25
0,25
4
a
Xét
EGB và
DGCcó:
EB = DC ( cùng bằng nửa cạnh bên của tam giác cân)
HB =HC (gt)
HG : cạnh chung
Do đó
EGB =
DGCcó (c.c.c)
0,25
0,25
0,25
0,25
b
H là trung điểm của BC nên AH là đường trung tuyến
G là trọng tâm
ABC
Do đó G thuộc AH
Vậy A,G,H thẳng hàng
0,25
0,25
0,25
0,25
c
CM:
AHB =
AHC(ccc)
Suy ra :
0
90AHB AHC
- ta có : HB=HC,
:IH BC H
Nên : IB=IC ( q/hệ hình chiếu và đường xiên)
0,25
0,25
Theo đề bài AC = 30km, AB= 90km
G
D
E
H
B
C
A
I
Trang 4
5
90-30<BC<30+90
60<BC<120
Nếu đặtC máy phát sóng truyền thanh có bán kính hoạt
động bằng 120km thì thành phố B có nhận được tín hiệu
0,25
0,25
ĐỀ 2
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HỌC 2021 2022
MÔN TOÁN 7
I- PHẦN TRẮC NGHIỆM: (4,0 điểm).
Trong mỗi câu sau, học sinh chọn một chữ cái in hoa đứng trước u trả lời
đúng rồi ghi chữ cái in hoa đó ra giấy kiểm tra.
Câu 1. Đơn thức
22
2021.xy
đồng dạng với đơn thức:
A.
2
3xy
B.
3xy
C.
2
3( )xy
D.
2
3xy
Câu 2. Đa thức nào sau đây là đa thức một biến?
A.
2
3 2 5xx
B.
2
3xy
+1
C.
3xy
- 2x
D. 10 -
2
xy
Câu 3. Đơn thức
2 4 3
.9y z x y
có bậc :
A. 6
B. 8
C. 10
D. 12
Câu 4. Bậc của đa thức:
43
7 12Q x y xy
:
A. 2
B. 3
C. 4
D. 5
Câu 5. Giá trị x = -2 là nghiệm của đa thức :
A.
2f x x
B.
2f x x
C.
2
2f x x
D.
2f x x x
Câu 6. Tam giác ABC có G là trọng tâm, AM là trung tuyến thì:
A. AM = AB
B.
2
3
AG AM
C.
3
4
AG AB
D. GM = AG
Câu 7. Bộ ba đoạn thẳng nào không là ba cạnh của một tam giác?
A. 3cm; 3cm; 6cm
B. 2cm; 3cm; 4cm
C. 9cm; 15cm;
12cm
D. 3cm; 4cm; 5cm
Câu 8. Trong một tam giác cạnh đối diện với góc lớn hơn là:
A. Góc lớn hơn
B. Góc nhỏ hơn
C. Hai góc bằng
nhau
D. Cạnh lớn hơn
Trang 5
II- PHẦN TỰ LUẬN: (6,0 điểm)
Câu 1:(2,0 điểm) Điểm bài thi môn Toán của lớp 7A được cho bởi bảng sau :
a) Dấu hiệu ở đây là gì?
b) Lập bảng tần số.
c) Tính số trung bình cộng và tìm mốt của dấu hiệu.
Câu 2: (2,0 điểm) Cho
3
5 3 7P x x x x
32
5 2 3 2 2Q x x x x x
a) Thu gọn và sắp xếp đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến.
b) Tính P(x) + Q(x)
c) Tìm đa thức N(x) biết : N(x) + Q(x) = P(x)
d) Tính: N(1) + N(2).
Câu 3:(2,0 điểm) Cho
MNP
cân ti M ,v
MH NP
.
a) Chng minh :
MHN MHP
.
b) Chng minh MH là đưng phân giác ca
MNP
.
c) Gi k là đim nằm trên tia đối ca tia HM .Chng minh
KNP
cân.
--- HẾT ---
ĐÁP ÁN
I- Phần trắc nghiệm: (4,0 điểm)
Câu1
Câu 2
Câu 3
Câu 4
Câu 5
Câu 6
Câu 7
Câu 8
Đáp án
C
B
C
D
A
B
A
D
Điểm
0,5
0,5
0,5
0,5
0,5
0,5
0,5
0,5
II/ TỰ LUẬN: (6,0 điểm)
Câu
Đáp án
Điểm
Câu 1
Dấu hiệu điều tra là: Điểm bài thi môn Toán của mỗi học sinh lớp
7A.
0,5 điểm
Lập chính xác bảng “ tần số” dạng ngang hoặc dạng cột:
Giá trị (x)
3
4
5
6
7
8
9
10
Tần số (n)
1
1
3
4
8
6
4
3
N=30
0,5 điểm
10
9
8
4
6
7
6
9
8
5
3
7
7
8
7
8
10
7
5
7
5
7
8
7
9
9
6
10
6
8
Trang 6
H
K
P
N
M
*Tính số điểm trung bình làm bài thi môn Toán của lớp 7A là:
X
=
3.1 4.1 5.3 6.4 7.8 9.4 10.3 216
7,2
30 30

*Mốt của dấu hiệu là: 7.
0,5 điểm
0,5 điểm
Câu 2
Thu gọn hai đơn thức P(x) và Q(x)
3
5 3 7P x x x x
3
5 4 7xx
32
5 2 3 2 2Q x x x x x
=
32
5 4 5x x x
Tính tổng :
N(x) = P(x) + Q(x)
3
5 4 7xx
+ (
32
5 4 5x x x
) = 10x
3
2
2x
0,5 điểm
0,5 điểm
N(x) = P(x) - Q(x)
3
(5 4 7)xx
- (
32
5 4 5x x x
)
3
5 4 7xx
32
5 4 5x x x
=
2
8 12xx
0,5 điểm
Tính: N(1) + N(2) =
2
2
1 8 1 12 2 8.2 12
21




0,5 điểm
Câu 3
Hình v + GT- KL
GT
MNP
cân (MN = MP );
MH NP
.
KL a/
MHN MHP
.
b/ MH là đưng phân giác ca
MNP
c/
KNP
cân
0,5 điểm
a/
MHN MHP
.
MHN và
MHP có :
0
90 ( )MHN MHP MH NP
MN = MP (GT)
MH cnh chung
Nên
MHN MHP
(ch-cgv)
0,5 điểm
b/ MH là đưng phân giác ca
MNP
Ta có
MHN MHP
(kq câu a )
NMH HMP
( Góc tương ứng)
Do đó MH là đưng phân giác ca
MNP
0,5 điểm
c/
KNP
cân
Ta có MK là đưng trung trc ca
MNP
.(
K MH
)
Suy ra KN = KP (tính chất đường trung trc của đoạn thng)
Do đó
KNP
cân ti k
0,5 điểm
Trang 7
Lưu ý: Học sinh làm bài theo cách khác mà đúng vẫn cho điểm tối đa tùy thuộc vào số điểm
của mỗi câu
ĐỀ 3
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HỌC 2021 2022
MÔN TOÁN 7
I/ TRẮC NGHIỆM : (4đ)
Điều tra khối lượng giấy vụn thu nhặt được cho kế hoạch nhỏ của các lớp ở trường
THCS A được ghi lại bảng sau ( Đơn vị Kg)
30
35
37
30
35
35
37
32
37
35
30
32
Da vào bảng trên hãy khoanh tròn vào các chữ cái đứng trước câu trả lời đúng :
Câu 1: . Dấu hiệu cần tìm hiểu là :
A. khối lượng giấy vụn thu nhặt được của các lớp ở trường THCS A
B. khối lượng giấy vụn thu nhặt được của mỗi lớp ở trường THCS A
C. khối lượng giấy vụn thu nhặt được của từng lớp ở trường THCS A
D. khối lượng giấy vụn thu nhặt được của trường THCS A
.Câu 2: Số đơn vị điều tra ở đây là:
A. 12 B. 10 C. 1 D. 20
Câu 3: Các giá trị khác nhau là:
A. 4 B. 30; 32; 35; 37 C. 12 D. 0; 2;
5; 7
Câu 4: Giá trị có tần số lớn nhất là:
A. 4 B. 35 C. 30 D. 37
Câu 5: Giá trị 37 có “tần số” là:
A. 3 B. 4 C. 5 D. 6
Câu 6: Khối lượng trung bình các lớp thu nhặt được là :
A. 32,5 B. 33,25 C. 33,75 D. 34,5
Câu 7: Kết quả của
22
15
24
xy xy
A.
2
7
4
xy
B.
2
7
4
xy
C.
3
4
xy
D.
2
3
4
xy
Câu 8 : Bậc của đơn thức – x
2
y
2
(-xy
4
) là
A. 9 B. 8 C. 6 D. 4
Câu 9: Giá trị của biểu thức
1
25
2
xy
tại x = 2; y = -1 là
A. 12,5 B. 0 C. 10 D. 11
Trang 8
Câu 10: Kết quả của phép tính
2 3 2
31
( ).( . )
43
xy x y x y
A.
62
1
4
xy
B.
64
1
4
xy
C. 4x
6
y
4
D. -4x
6
y
4
Câu 11: Thu gọn đa thức P = x
3
y 5xy
3
+ 2 x
3
y + 5 xy
3
bằng :
A. 3 x
3
y B. x
3
y C. x
3
y + 10 xy
3
D. 3 x
3
y -
10xy
3
Câu 12: Tổng ba góc của một tam giác bằng
A. 90
0
B. 180
0
C. 45
0
D. 80
0
Câu 13:
ABC vuông tại A, biết số đo góc C bằng 52
0
. Số đo góc B bằng:
A. 148
0
B. 38
0
C. 142
0
D. 128
0
Câu 14:
HIK vuông tại H có các cạnh góc vuông là 3cm; 4cm. Độ dài cạnh huyền
IK bằng
A. 8cm B. 16cm C. 5cm D.12cm
Câu 15: Trong các tam giác có các kích thước sau đây, tam giác nào là tam giác
vuông ?
A. 11cm; 12cm; 13cm B. 5cm; 7cm; 9cm
C. 12cm; 9cm; 15cm D. 7cm; 7cm; 5cm
Câu 16:
ABC và
DEF có AB = DE, BC = EF. Thêm điều kiện nào sau đây để
ABC =
DEF
A.
AD
B.
CF
C. AB = AC D. AC =
DF
II. TỰ LUẬN : (6 điểm)
Bài 1: ( 1,5 đ)
Một giáo viên theo dõi thời gian làm một bài tập (tính theo phút) của học sinh lớp
7A
(ai cũng làm được) và ghi lại như sau:
9
7
4
7
6
6
4
6
5
8
5
7
5
7
4
4
6
6
8
7
5
6
5
10
5
5
8
10
4
7
7
9
8
9
8
a/ Dấu hiệu ở đây là gì? Lập bảng “tần số”
b/ Tính số trung bình cộng của dấu hiệu (làm tròn đến chữ số thập phân thứ nhất).
Bài 2: ( 0,5 đ) Tính giá trị của biểu thức: A= - 3xy - 4y
2
. Tại x = 0,5 ; y = - 4
Bài 3: ( 1,5 đ) Cho các đa thức :
P(x) = 5 + x
3
2x + 4x
3
+ 3x
2
10
Q(x) = 4 5x
3
+ 2x
2
x
3
+ 6x + 11x
3
8x
a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến .
b) Tính P(x) + Q(x) ; P(x) Q(x) .
Trang 9
Bài 4: ( 2,5 đ) Cho tam giác ABC vuông tại A, có
0
B 60
và AB = 5cm. Tia phân
giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh:
ABD =
EBD.
b/ Chứng minh:
ABE là tam giác đều.
c/ Tính độ dài cạnh BC
Hết
ĐÁP ÁN
I. TRẮC NGHIỆM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
B
A
B
B
A
C
D
D
A
B
A
B
B
C
C
D
II. TỰ LUẬN :
Bài
1
( 1,5
đ)
a/
1 đ
-Dấu hiệu: Thời gian làm một bài tập (tính theo phút) của mỗi học
sinh lớp 7A.
- Bảng tần số
Thời gian
(x)
4
5
6
7
8
9
10
N=35
Tần số (n)
5
7
6
7
5
3
2
0,5
0,5
b/
0,5đ
X = ( 4.5 + 5.7 + 6.6+7.7+8.5+9.3 + 10.2 ) : 35 =227:35
6,5
0,5
Bài 2
( 0,5
đ)
Thay x= 0,5; y= -4 vào biểu thức A= 3xy - 4y
2
Ta được: A = -3 . 0,5 . (-4) - 4. (-4)
2
= 6 64 = -58
Vậy ........... ..........A =- 58
0,25đ
0,25đ
Bài
3
( 1,5
đ)
a)
P(x) = 5 + x
3
2x + 4x
3
+ 3x
2
10
=....= 5x
3
+ 3x
2
2x - 5
Q(x) = 4 5x
3
+ 2x
2
x
3
+ 6x + 11x
3
8x
=… = 5x
3
+ 2x
2
2x + 4
0,25
đ
0,25
đ
b)
P(x) + Q(x) = 10x
3
+ 5x
2
- 4x -1
P(x) - Q(x) = x
2
- 9
0,5đ
0,5đ
Bài
3
( 2,5
đ)
Vẽ hình và ghi gt,kl
0,5đ
E
D
C
B
A
Trang 10
a/
(0,7
5 đ)
Xét
ABD vuông tại A
EBD vuông tại E, có:
BD là cạnh huyền chung
ABD EBD
(BD là tia phân giác của
ABC
)
Do đó
vuông ABD =
vuông EBD (cạnh huyền – góc nhọn)
(0,7
5 đ)
b
(0,5
đ)
Xét
ABE có:AB = BE ( 2 cạnh tương ứng của
ABD =
EBD )
0
ABE 60
(gt)
Do đó
ABE đều( tính chất tam giác đều)
0,5
c/
(0,7
5 đ)
Tính độ dài cạnh BC
Ta có : Trong ABC vuông tại A có
0
BAC ABC C 180
00
90 ; 60 ( )BAC ABC gt
=>
0
30C
Ta có :
0
90BAC BAE EAC
(
ABC vuông tại A)
0
60BAE
(ABE đều) nên
0
30EAC
Xét EAC có
0
30EAC
0
30C
nên EAC cân tại E
EA = EC mà EA = AB = EB = 5cm(ABE đều)
Do đó EC = 5cm
Ta có BC = EB + EC ( vì
E BC
) mà EB = EC = 5 cm
BC = 5cm + 5cm = 10cm
0,75
Ghi chú: - Học sinh giải cách khác đúng vẫn chấm điểm tối đa.
ĐỀ 4
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HỌC 2021 2022
MÔN TOÁN 7
Câu 1. ( 3 điểm)
a. Chỉ ra các đơn thức, đa thức trong các biểu thức sau:
3
11
;
2
2x y
x2
;
32
5x y z
;
22
3x y 10xy
; x
b. Cho tam giác MNP
00
M 27 ; P 63
, cạnh nào cạnh lớn nhất của tam
giác ?
c. Cho
0
DEF, E 90
. Tính cạnh FD biết DE = 6cm, EF = 8cm
Câu 2. (2 điểm)
Điểm kiểm tra Toán Học kỳ I của lớp 7A được ghi lại như sau:
9 5 8 7 8 9 9 7 9 10 9
8 7 6 6 7 9 7 9 8 9 7
10 8 9 7 6 8 7 9 7 8 9
a. Dấu hiệu cần tìm ở đây là gì?
Trang 11
b. Lập bảng tần số và tính số trung bình cộng của dấu hiệu. Tìm mốt của dấu
hiệu
Câu 3. (3 điểm)
Cho hai đa thức: P(x) =
3 2 4
3x 2x 2x 7x 8 x
Q(x) =
2 3 2 4
2x 3x 3x 5x 5x
a. Thu gọn, sắp xếp theo lũy thừa giảm dần của biến và tìm bậc của mỗi đa
thức
b. Tính R(x) = P(x) + Q(x)
c. Chứng tỏ R(x) vô nghiệm
Câu 4. (2 điểm)
Cho tam giác ABC vuông tại A. Đường phân giác BE, kẻ EK vuông góc với
BC tại K. Kẻ CD vuông góc BE tại D.
Chứng minh rằng:
a.
ABE KBE
b. Ba đường thẳng AB, CD, EK đồng quy tại một điểm.
----------------------- Hết đề -----------------------
ĐÁP ÁN VÀ BIỂU ĐIỂM BÀI KT HKII
Câu
Nội dung
Điểm
Câu 1
(3.0đ)
a. Các đơn thức:
3
11
;
32
1
x y z
7
; x
Các đa thức:
3
11
;
32
1
x y z
7
; x;
22
13
x y xy
34
0.5
0.5
b.
MNP có
00
M 27 ; P 63
, =>
0
N 90
là góc lớn nhất
=> MP là cạnh lớn nhất (cạnh MP đối diện với góc N)
0.5
0.5
c.
0
DEF, E 90
=> Áp dụng định lý Pytago, ta có:
2 2 2
DF DE EF
=>
222
DF 6 8 36 64 100 DF 10cm 
0.5
0.5
Câu 2
(2.0đ)
a. Dấu hiệu cần tìm ở đây là điểm kiểm tra Toán Học kỳ I của 33
bạn 7A
b.
Các giá trị (x)
Tần số (n)
Các tích (x.n)
Giá trị TB
5
1
5
X
=
261
7,9
33
6
3
18
7
9
63
0.5
Trang 12
8
7
56
9
11
99
10
2
20
Tổng
N = 33
261
1.0
0.5
M
o
= 9
Câu 3
(3.0đ)
a. P(x) =
4 3 2
x 3x 2x 5x 8
Q(x) =
4 3 2
5x 3x 5x 5x
P(x) và Q(x) đều có bậc 4
0.5
0.5
b. R(x) = P(x) + Q(x) =
42
4x 7x 8
1.0
c. R(x) =
42
4x 7x 8
8 0 x
4 2 4 2 4 2
x 0, x 0 4x 0, 7x 0 4x 7x 0  
0.5
0.5
Câu 4
(2.0đ)
0.5
a.
ABE KBE
( hai tam giác vuông cạnh huyền - góc
nhọn)
0.5
b. Chỉ ra được AB, CD, EK là ba đường cao nên đồng quy
1.0
ĐỀ 5
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HỌC 2021 2022
MÔN TOÁN 7
Câu 1: (2.0 điểm) Điểm kiểm tra một tiết môn Toán của học sinh một lớp 7 tại một trường
THCS được cho trong bảng “tần số” sau:
Điểm số (x)
3
4
5
6
7
8
9
10
Tần số (n)
1
2
7
8
5
11
4
2
N = 40
a) Du hiệu điều tra đây là gì?
b) Có bao nhiêu hc sinh làm kim tra? S các giá tr khác nhau?
c) Tìm mt ca du hiu và tính s trung bình cng.
Câu 2: (1.0 điểm) Thu gọn và tìm bậc của các đơn thức sau:
a)
3
2 . 3A x y xy
b)
2 2 3
1
. 4 . 8
16
B x y x xyz




Câu 3: (1.0 điểm) Tìm đa thức M biết:
A
B
C
K
E
D
Trang 13
a)
2 3 2
1 2 1M x y x x y
b)
2 3 2 2
3 3 3 2 4x xy x M x xy y
Câu 4: (2 điểm) Cho các đa thức sau:
32
P( ) 3 3 2x x x x
32
Q( ) 5 2x x x x
a) Tính
P( ) ( )x Q x
b) Tính
P( ) ( )x Q x
c) Tìm nghiệm của đa thức H(x) biết
( ) P( ) ( )H x x Q x
.
Câu 5: (1.0 điểm) Cho hai đa thức
2
24f x x ax
2
5g x x x b
(a, b là hằng số).
Tìm các hệ số a, b sao cho
1 (5)fg
Câu 6: (3.0 điểm) Cho
ABC
vuông tại A, có AB = 6cm, AC = 8cm.
a) Tính độ dài cạnh BC và chu vi tam giác ABC.
b) Đường phân giác của góc B cắt AC tại D. Vẽ
DH BC H BC
.
Chứng minh:
ABD HBD
c) Chứng minh: DA < DC.
----------HẾT----------
(Học sinh không được sử dụng máy tính)
ĐÁP ÁN – THANG ĐIỂM
Câu
Ý
Đáp án
Thang điểm
Câu 1
(2.0 điểm)
a
Dấu hiệu điều tra: “Điểm kiểm tra 1 tiết môn Toán
của mỗi học sinh một lớp 7”
0.5
b
Có 40 học sinh làm kiểm tra. Có 8 giá trị khác
nhau.
0.5
c
Mốt của dấu hiệu: 8
Số trung bình cộng
6,825X
0.5
0.5
Câu 2
(1.0 điểm)
a
3 4 2
2 . 3 6A x y xy x y
. Bậc 6
0.5
b
2 2 3 6 3
1
. 4 . 8 2
16
B x y x xyz x y z



. Bậc 10
0.5
Câu 3
(1.0 điểm)
a
2 3 2
32
1 2 1
22
M x y x x y
M x x y
0.5
b
2 3 2 2
32
3 3 3 2 4
4
x xy x M x xy y
M xy x y
0.5
Câu 4
(2.0 điểm)
a
2
P( ) ( ) 2 2x Q x x x
0.75
b
32
P( ) ( ) 2 4 8 4x Q x x x x
0.75
c
2
0
2 2 0 2 1
1
x
x x x x
x
Vậy nghiệm của đa thức H(x) là x = 0; x = 1.
0.5
Câu 5
(1.0 điểm)
Theo đề bài ta có:
1 (2) 6 6 12f g a b a b
(1)
0.25
0.25
Trang 14
1 (5) 6 a b b a 6fg
(2)
Thay (2) vào (1) ta được:
6 12 3a a a
6 3 6 9ba
Vậy
3;b 9a
.
0.25
0.25
Câu 6
(3.0 điểm)
a
Áp dụng định Py-ta-go vào tam giác vuông ABC
ta có:
2 2 2
100 10BC AC AB BC
cm
Chu vi tam giác ABC: AB + AC + BC = 24 cm
0.5
0.5
b
Xét hai tam giác vuông ABD và HBD có:
BD là cạnh chung
ABD HBD
(BD là tia phân giác của góc B)
ABD HBD
(cạnh huyền góc nhọn)
0.5
0.5
c
Từ câu b)
ABD HBD
suy ra DA = DH (hai
cạnh tương ứng) (1)
Xét tam giác vuông DHC có: DC > DH (DC
cạnh huyền) (2)
Từ (1) và (2) suy ra: DC > DA
0.25
0.25
0.5
ĐỀ 6
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HỌC 2021 2022
MÔN TOÁN 7
I/ TRẮC NGHIỆM: (5,0 điểm). Chọn một phương án trả lời đúng của mỗi câu
hỏi sau ri ghi vo giy lm bi. V d: Câu 1 chọn phương án trả li A th ghi
1-A.
Câu 1: Biểu thức nào sau đây là đơn thức?
A. x + y.
B. x y.
C. x.y.
D.
.
x
y
Câu 2: Bậc của đơn thức 3x
4
y là
A. 3.
B. 4.
C. 5.
D. 7.
Câu 3: Tam giác ABC vuông tại A có AB = 3cm, BC = 5cm. Độ dài cạnh AC bằng
A. 2cm.
B. 4cm.
C.
34
cm.
D. 8cm.
Câu 4: Tích của hai đơn thức 7x
2
y và (xy) bằng
A. 7x
3
y
2
.
B. 7x
3
y
2
.
C. 7x
2
y.
D. 6x
3
y
2
.
H
B
A
C
D
K
Trang 15
Câu 5: Da vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn
thẳng có độ dài cho sau đây là ba cạnh của một tam giác?
A. 2cm; 3cm; 6cm.
B. 3cm; 4cm; 6cm.
C. 2cm; 4cm; 6cm.
D. 2cm; 3cm; 5cm.
Câu 6: Đơn thức nào sau đây đồng dạng với đơn thức –3x
2
y
3
?
A. 3x
3
y
2
.
B. 3(xy)
2
.
C. xy
3
.
D. x
2
y
3
.
Câu 7: Tam giác ABC cân tại A có
khi đó số đo của góc B bằng
A.
0
100 .
B.
0
50 .
C.
0
70 .
D.
0
40 .
Câu 8: Bậc của đa thức 12x
5
y 2x
7
+ x
2
y
6
A. 5.
B. 12.
C. 7.
D. 8.
Câu 9: Tam giác ABC có AB < AC < BC. Khẳng định nào sau đây là đúng?
A.
B.
C.
D.
Câu 10: Giá trị của biểu thức 2x
2
5x + 1 tại x = –1 là
A. 2.
B. 8.
C. 0.
D. 6.
Câu 11: Tam giác ABC có BM là đường trung tuyến và G là trọng tâm. Khẳng định
nào sau đây là đúng?
A.
3
.
2
BG
BM
B.
1
.
2
BG
GM
C.
1
.
3
MG
BM
D.
2
.
3
BM
BG
Câu 12: Thu gọn đa thức P = – 2x
2
y 4xy
2
+ 3x
2
y + 4xy
2
được kết quả là
A. P = x
2
y.
B. P = 5x
2
y.
C. P = x
2
y.
D. P = x
2
y 8xy
2
.
Câu 13: Tam giác ABC vuông tại A có AB < AC. Vẽ AH vuông góc với BC (H ϵ
BC). Khẳng định nào sau đây là đúng?
A. HB < HC.
B. HC < HB.
C. AB < AH.
D. AC < AH.
Câu 14: Nghiệm của đa thức f(x) = 2x – 8 là
A. 6.
B. 4.
C. 0.
D. 4.
Câu 15: Cho
ΔABC
ΔDEF
. Để kết luận
ΔABC
=
ΔDEF
theo trường
hợp cạnh huyền – cạnh góc vuông, cần có thêm điều kiện nào sau đây?
A. BC = EF;
C. AB = DE; AC = DF.
B. BC = EF; AC = DF.
D. BC = DE;
II/ TỰ LUẬN: (5,0 điểm).
Bài 1: (1,25 điểm).
Học sinh lớp 7A góp tiền ủng hộ cho trẻ em khuyết tật. Số tiền đóng góp của mỗi
học sinh được ghi ở bảng thống kê sau (đơn vị là nghìn đồng).
5
7
9
5
8
10
5
9
6
10
7
10
6
10
7
6
8
5
6
8
10
5
7
7
10
7
8
5
8
7
8
5
9
7
10
9
a) Dấu hiệu ở đây là gì?
0
A 40
C B A.
B C A.
A C B.
A B C.
0
A D 90
B E.
B E.
Trang 16
b) Lập bảng “tần số”.
c) Tính số trung bình cộng (làm tròn đến chữ số thập phân thứ nhất).
Bài 2: (1,25 điểm).
a) Cho hai đa thức A(x) = 2x
2
x
3
+ x 3 và B(x) = x
3
x
2
+ 4 3x.
Tính P(x) = A(x) + B(x).
b) Cho đa thức Q(x) = 5x
2
5 + a
2
+ ax. Tìm các giá trị của a để Q(x) có nghiệm
x = 1.
Bài 3: (2,5 điểm).
Cho
ΔABC
vuông tại A (AB < AC), tia phân giác của góc B cắt AC tại M. Trên tia
đối của tia MB lấy điểm D sao cho MB = MD, từ điểm D vẽ đường thẳng vuông góc với
AC tại N và cắt BC tại điểm E.
a) Chứng minh
ΔABM = ΔNDM
.
b) Chứng minh BE = DE.
c) Chứng minh rằng MN < MC.
--------------- Hết ---------------
Giám thị không giải thích gì thêm.
Họ và tên học sinh........................................................số báo danh...........................
ĐÁP ÁN
I/ TRẮC NGHIỆM: (5,0 điểm)
Điểm phần trắc nghiệm bằng số câu đúng chia cho 3 (lấy hai chữ số thập phân)
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đ/A
C
C
B
A
B
D
C
D
A
B
C
A
A
D
B
II/ TỰ LUẬN: (5,0 điểm)
Bài
Nội dung
Điểm
1
a
Dấu hiệu là: Số tiền đóng góp của mỗi học sinh lớp 7A
0,25
b
Bảng “tần số”
Giá trị (x)
5
6
7
8
9
10
Tần số (n)
7
4
8
6
4
7
N = 36
0,5
c
Tính đúng
7,5X
0,5
2
a
Cách 1: P(x) = (2x
2
x
3
+ x 3) + (x
3
x
2
+ 4 3x)
= (2x
2
x
2
) + ( x
3
+ x
3
) + (x 3x) + ( 3 + 4)
= x
2
2x + 1
0,25
0,25
0,25
Cách 2: A(x) = x
3
+ 2x
2
+ x 3
(0,25
)
Trang 17
B(x) = x
3
x
2
3x + 4
P(x) = A(x) + B(x) = x
2
2x + 1 (0,5)
b
Q(x) có nghiệm x = – 1
Q( 1) = 5.( 1)
2
5 + a
2
+ a.( 1) = 0
a
2
a = 0 suy ra
a(a-1)=0
a = 0 hoặc a = 1
0,25
0,25
3
Hình
vẽ
/
/
H
N
E
D
M
B
A
C
(Hình vẽ phục vụ câu a, b: 0,5 điểm)
0,5
a
Xét
ΔABM
ΔNDM
có:
(gt)
MB = MD (gt)
ối đỉnh)
Do đó
ΔABM = ΔNDM
(cạnh huyền – góc nhọn) (đpcm)
0,5
0,25
b
Ta có: (vì
ΔABM = ΔNDM
)
(vì BM là phân giác của góc B)
hay
ΔBED
cân tại E
Suy ra: BE = DE (đpcm)
0,25
0,25
0,25
Kẻ MH vuông góc với BC tại H
Ta có: MH = MA (vì BM là tia phân giác của góc B)
và MA = MN (
ΔABM = ΔNDM
)
MN = MH
0,25
Xét tam giác MHC vuông tại H MH < MC (vì MC là cạnh
huyền)
MN < MC (đpcm)
0,25
*Chú ý:
- Nếu học sinh làm cách khác đúng thì tổ chấm thống nhất cho điểm tối đa theo thang
điểm trên.
- Học sinh không vẽ hình Bài 3 phần tự luận thì không chấm nội dung.
-------------- Hết ---------------
0
A N 90
AMB NMD
ABM NDM
ABM CBM
NDM CBM
EDB EBD
Trang 18
ĐỀ 7
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HC 2021 2022
MÔN TOÁN 7
Câu 1. (2,0 điểm)
Khi điều tra về điểm kiểm tra học I môn Toán của học sinh lớp 7A trong m học
này, người ta thu được kết quả như sau:
7
9
6
7
6
5
7
9
5
5
8
7
9
8
7
8
10
9
7
7
7
4
5
6
8
10
9
8
6
7
a. Du hiu đây là gì ? Lập bảng “tần s”.
b. Tính s trung bình cng ca du hiu và tìm mt ca du hiu.
Câu 2. (2,0 điểm)
Cho đơn thức
23
2 1 3
3 2 4
A x y xy xy




.
a. Hãy thu gọn đơn thức
A
, chỉ ra hệ số, phần biến và bậc của đơn thức
.A
b. Tính giá trị của đơn thức
A
khi
1
4; .
2
xy
Câu 3. (2,5 điểm)
Cho hai đa thức
42
2 3 7 2M x x x x
24
.3 4 5 2N x x x x
a. Tính
P x M x N x
, rồi tìm nghiệm của đa thức
()Px
.
b. Tìm đa thức
Qx
sao cho:
Q x M x N x
.
Câu 4. (3,0 điểm)
Cho tam giác
ABC
vuông tại
A
6 , 10 .AB cm BC cm
a. Tính độ dài cạnh
AC
và so sánh các góc của tam giác
ABC
.
b. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Gọi
K
trung điểm của
cạnh
BC
, đường thẳng
DK
cắt cạnh
AC
tại
M
. Chứng minh BC = CD và tính độ dài đoạn
thẳng
AM
.
c. Đường trung trc
d
của đoạn thẳng
AC
cắt đường thẳng
DC
tại
Q
. Chứng minh
ba điểm
,,B M Q
thẳng hàng.
Câu 5. (0,5 điểm)
Trang 19
Tìm giá trị lớn nhất của biểu thức
2 2018 2021
2020 2018
x
T
x


--------------------------------Hết-------------------------------
Họ và tên học sinh:................................................. Số báo danh:...................
ĐÁP ÁN
Lưu ý khi chấm bi:
- Trên đây chỉ lược các bước giải. Lời giải của học sinh cần lập luận chặt
chẽ hợp logic. Nếu học sinh làm cách khác mà giải đúng thì cho điểm tối đa.
- Đối với câu 4, học sinh vẽ không vẽ hình thì không chấm.
Câu
Sơ lược các bước giải
Điểm
Câu 1
2,0 điểm
Phần
a
1 điểm
Dấu hiệu ở đâyđiểm kiểm tra học kì I môn Toán của học sinh
lớp 7A.
0.5
Bảng “ tần số”
Giá trị(x)
4
5
6
7
8
9
10
Tần số(n)
1
4
4
9
5
5
2
N=30
0.5
Phần
b
1 điểm
Số trung bình cộng của dấu hiệu:
4.1 5.4 6.4 7.9 8.5 9.5 10.2
7,2
30
X

0.5
Mốt của dấu hiệu là:
0
7M
0.5
Câu 2
2,0 điểm
Phần
a
1 điểm
Thu gọn đơn thức
A
:
2 3 2 3 4 5
2 1 3 2 1 3 1
. . . . . .
3 2 4 3 2 4 4
A x y xy xy x x x y y y x y
0.5
Đơn thức
A
có hệ số là
1
4
, phần biến là
45
xy
, bậc là 9
0.5
Phần
b
1 điểm
Thay
1
4;
2
xy
vào đơn thức
A
ta được:
5
43
4
52
1 1 4 4 4
. 4 . 2
4 2 4.2 4 .2 2
A



0.75
Vậy giá trị của đơn thức
A
tại
1
4;
2
xy
2
.
0.25
Câu 3
2,5 điểm
Phần
a
1,5
điểm
P x M x N x
4 2 2 4
2 3 7 2 3 4 5 2x x x x x x
4 2 2 4
2 3 7 2 3 4 5 2x x x x x x
0.5
4 4 2 2
2 2 3 3 7 4 2 5
37
x x x x x x
x
Vậy
( ) 3 7P x x
0.5
Trang 20
Ta có:
7
( ) 0 3 7 0 3 7
3
P x x x x
Vậy nghiệm của đa thức
()Px
7
3
x
0.25
0.25
Phần
b
1 điểm
Ta có:
Q x M x N x
Q x N x M x
2 4 4 2
3 4 5 2 2 3 7 2x x x x x x
2 4 4 2
3 4 5 2 2 3 7 2x x x x x x
4 4 2 2
2 2 3 3 4 7 5 2x x x x x x
42
4 6 11 3x x x
0.75
Vậy
42
( ) 4 6 11 3Q x x x x
0.25
Câu 4
3,0 điểm
d
Q
E
F
M
K
D
C
B
A
Phần a
1điểm
+)
ABC
vuông tại
A
(GT) nên
2 2 2
BC AB AC
( định lý Pitago).
Thay
6 , 10 .AB cm BC cm
(GT) tính được
8AC cm
.
0.5
+)
ABC
AB AC BC
6 8 10cm cm cm
C B A
( quan hệ giữa góc và cạnh trong tam giác)
0.5
Phần b
1.5
điểm
+) Xét
CBD
;CA BD
CA là trung tuyến suy ra
CBD
cân tại C suy ra
.CB CD
0.5
+)Trong
BCD
CA
DK
là các đường trung tuyến (do
A
là trung điểm của
BD
,
K
là trung điểm của
BC
).
M
là giao điểm của
CA
DK
nên
M
là trọng tâm của
BCD
(1)
0.5
1
3
AM AC
8
3
AM
(cm)
Vậy
8
3
AM cm
.
0.5
Phần c
0.5
Gọi
E
là giao điểm của d với
AC
,
F
là hình chiếu của
D
trên
d
.
0.25
Trang 21
điểm
//AE DF
,
//AD EF
Chứng minh
ADF FEA
(g.c.g)
DF AE
AE EC
nên
DF EC
CQE
=
DQF
( g.c.g)
CQ DQ
BQ
là đường trung tuyến của
BCD
(2)
Từ(1) và (2)
BQ
đi qua
M
hay ba điểm
,,B M Q
thẳng hàng.
0.25
Câu 5
0.5 điểm
0.5
+) Ta có
2 2018 2021
2019
2.
2020 2018 2020 2018
x
T
xx
+) Mặt khác
2018 0x 
với mọi x
2020
2018 2020x
với
mọi x
0.25
2019 2021
2
2020 2020
T
với mọi x, suy ra
2021
2020
Min T
khi x = 2018.
0.25
Điểm ton bi
10 điểm
ĐỀ 8
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HỌC 2021 2022
MÔN TOÁN 7
Câu 1: (1,5đ)
Điểm kiểm tra một tiết môn Toán của học sinh một lớp 7 được ghi lại trong bảng
sau:
6
4
3
2
10
5
7
9
5
10
1
2
5
7
9
9
5
10
9
10
2
1
4
3
1
2
4
6
8
9
a/ Hãy lập bảng tần số của dấu hiệu và tìm mốt của dấu hiệu?
b/ Hãy tính điểm trung bình của học sinh lớp đó?
Câu 2: (1,5đ)
a/Tìm các đơn thức đồng dạng trong các đơn thức sau:
5x
2
y ;
3
2
(xy)
2
; 4xy
2
; -2xy ;
3
2
x
2
y
b/ Hãy thu gọn và tìm bậc của đơn thức : B =
2
3
xy
2
. (
1
2
x
2
y)
Câu 3: (2,5đ)
Cho các đa thức
P(x) = 2x
2
3x 4
Q(x) = x
2
3x + 5
a/ Tính giá trị của đa thức P(x) tại x = 1 .
b/Tìm H(x) = P(x) - Q(x) .
Trang 22
c/ Tìm nghiệm của đa thức H(x) .
Câu 4 : (2đ)
a/ Cho
ABC

00
A 80 , B 60
. So sánh ba cạnh của
ABC
b/ Cho
ABC cân tại A biết
0
A 70
. Tính số đo các góc còn lại của
ABC.
Câu 5: (2.5đ)
Cho
ABC vuông tại A, có AB = 9cm, AC = 12cm.
a/ Tính BC.
b/
Đường trung tuyến AM và đường trung tuyến BN cắt nhau tại G. Tính AG.
c/ Trên tia đối của tia NB, lấy điểm D sao cho NB=ND.Chứng minh:
CD AC
.
HẾT
ĐÁP ÁN
Câu
Hướng dẫn chấm
Số điểm
1
a/
Giá trị (x)
1
2
3
4
5
6
7
8
9
10
Tần số (n)
3
4
2
3
4
2
2
1
5
4
N= 30
0,75đ
M
0
= 9
0,25đ
b/
53,5
30
4.105.91.82.72.64.53.42.34.23.1
X
0,5đ
2
a/
Các đơn thức đồng dạng: 5x
2
y
3
2
x
2
y
0,5đ
b/
Thu gọn: B =
2
3
xy
2
. (
1
2
x
2
y) =
yyxx ....
2
1
.
3
2
22
0,25đ
=
33
3
1
yx
0,25đ
Bậc của đơn thức B là: 6
0,5đ
3
a/
P(1) = 2.1
2
3.1 4 = 5
0,5đ
b/
H(x) = P(x) Q(x) = (2x
2
3x 4) (x
2
3x + 5)
0,5đ
= x
2
9
0,5đ
c/
Ta có H(x)=0 => x
2
9 = 0
0,5đ
x
2
= 9 hay x =
3
0,5đ
4
a/
Theo định lí về tổng ba góc trong tam giác ABC, ta có:
A+ B + C = 180
0
0,25đ
Suy ra: C = 180
0
(A+ B) = 180
0
(80
0
+ 60
0
) = 40
0
0,25đ
Ta có A > B > C (80
0
> 60
0
> 40
0
) nên BC > AC > AB
0,25đ
0,25đ
b/
0,25đ
Trang 23
ABC
cân tại A nên B = C
0,25đ
Ta có Â + B + C = 180
0
suy ra B = C =
0
00
55
2
70180
0,25đ
0,25đ
5
Vẽ hình viết GT-KL
0,5 đ
a/
Áp dụng định lý Pytago trong tam giác vuông ABC, ta có:
BC
2
= AB
2
+ AC
2
= 9
2
+ 12
2
= 225
0,5đ
BC = 15 (cm)
0,5đ
b/
Ta có AM là đường trung tuyến trong tam giác vuông ABC, nên:
AM = BC/2 = 15 / 2 = 7,5 (cm)
0,25đ
Ta có G là trọng tâm của tam giác ABC, nên:
AG =
55,7.
3
2
3
2
AM
(cm)
0,25đ
c/
Xét hai tam giác:
DCN và
BAN, có:
ND = NB (gt)
BNADNC
(đđ)
NC = NA (gt)
Do đó,
DCN =
BAN ( c g c)
0,25đ
ACDCAC
0
90
0,25đ
Chú ý: HS có cách giải khác đúng thì vẫn cho điểm tối đa.
ĐỀ 9
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HỌC 2021 2022
MÔN TOÁN 7
I - Trắc nghiệm khách quan (3 điểm)
Em hãy chọn một chữ cái in hoa đứng trước câu trả lời đúng.
Câu 1. Điểm thi đua các tháng trong một năm học của lớp 7A được liệt kê trong
bảng:
Tháng
9
10
11
12
1
2
3
4
5
Điểm
6
7
7
8
8
9
10
8
9
Câu 1. Tần số của điểm 8 là:
A. 12; 1 và 4
B. 3
C. 8
D. 10.
Câu 2. Mốt của dấu hiệu điều tra trong câu 1 là:
A
B
C
G
M
N
D
Trang 24
A. 3
B. 8
C. 9
D. 10.
Câu 3. Số các giá trị có tần số bằng 7 là
A. 1
B. 2
C. 3
D. 4
Câu 4. Biểu thức nào sau đây được gọi là đơn thức
A. (2+x).x
2
B. 2 + x
2
C. 2
D. 2y+1
Câu 5. Bậc của đa thức M = x
6
+ 5x
2
y
2
+ y
2
x
4
y
3
- 1 là:
A. 4
B. 5
C. 6
D. 7.
Câu 6. Đơn thức đồng dạng với đơn thức 5
2
xy
là:
A. 3xy
B.
2
1
.3
3
xy
C.
2
31xy
D.
2
xy
Câu 7. Cách sắp xếp của đa thức nào sau đây là đúng (theo luỹ thừa giảm dần của
biến x)
A. 1 + 4x
5
3x
4
+5x
3
x
2
+2x
B. 5x
3
+ 4x
5
- 3x
4
+ 2x
2
+ 2x + 1
C. 4x
5
3x
4
+ 5x
3
x
2
+ 2x + 1
D. 1+ 2x x
2
+ 5x
3
3x
4
+ 4x
5
Câu 8. Giá trị của biểu thức
23
3xy
tại x = - 2 và y = - 1 là:
A. - 4
B. 12
C. - 10
D. - 12
Câu 9 : Cho tam giác MNP như hình vẽ . Khi đó ta có
A. NP > MN > MP B. MN < MP < NP
C. MP > NP > MN D. NP < MP < MN
Câu 10 Cho tam giác ABC có Â = 90
0
và AB = AC ta có:
A.
ABC
là tam giác vuông. B.
ABC
là tam giác cân.
C.
ABC
là tam giác vuông cân. D.
ABC
là tam giác đều.
Câu 11: Trong một tam giác góc đối diện với cạnh nhỏ nhất là:
A. Góc nhọn
B. Góc vuông
C. Góc tù
D. Góc bẹt
Câu 12: Bộ ba số đo nào sau đây có thể là độ dài ba cạnh của một tam giác?
A. 5cm, 3cm, 2cm
B. 3cm , 4cm, 5cm
C. 9cm, 6cm, 2cm
D. 3cm, 4cm, 7cm.
Câu 13. Bộ ba số đo nào sau đây có thể là độ dài ba cạnh của một tam giác vuông?
A. 3cm, 9cm, 14cm
B. 2cm, 3cm , 5cm
C. 4cm, 9cm, 12cm
D. 6cm, 8cm, 10cm
Câu 14. Cho tam giác cân biết hai cạnh bằng 3 cm và 7 cm. Chu vi của tam giác cân
đó là:
A. 12 cm
B. 10 cm
C. 17 cm
D. 6,5 cm
Câu 15.Cho tam giác ABC có G là trọng tâm, M là trung điểm của AC, N là trung
điểm của AB thì
A. GN =
1
3
CN
B. GN =
1
2
CN
C. BM= 2BG
D. AG =
2
3
BM
II. Tự luận (7 điểm).
Câu 16: (2 điểm) : Cho hai đa thức :
1322)(
23
xxxxA
23
( ) 2 3 6B x x x x
a) Sắp xếp các đa thức theo lũy thừa giảm dần của biến.
b) Tính A(x) + B(x) và A(x) B(x)
M
N
P
68
0
40
0
Trang 25
c) Chứng minh x = 1 là nghiệm của đa thức A(x) + B(x)
Câu 17: (1,0 điểm) Tìm nghiệm của các đa thức sau:
a) 4x + 9
b) 3x
2
4x
Câu 18: (3,0 điểm) Cho
ABC (Â = 90
0
) ; BD là phân giác của góc B (D
AC).
Trên tia BC lấy điểm E sao cho BA = BE.
a) Chứng minh
BAD =
BED =>DE
BE.
b) Chứng minh BD là đường trung trc của AE.
c) Kẻ AH
BC. So sánh EH và EC.
Câu 19: (1,0 điểm) T×m x biÕt : a)
55 50 45 40
40
1963 1968 1973 1978
x x x x
---------------------------------- Hết ----------------------------------
ĐÁP ÁN:
PHẦN TRẮC NGHIỆM (3đ):
Mỗi câu đúng được 0,2 điểm
Câu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Đáp án
A
B
B
C
D
D
C
B
B
C
A
B
D
C
A
PHẦN TỰ LUẬN (7 điểm)
Câu
Nội dung
Điểm
Câu 16
(2,0đ)
a) (0,5)
32
( ) 2 3 2 1A x x x x
32
( ) 3 2 6B x x x x
b) (1,0)
A(x) + B(x) = 5x
3
x
2
+ x -5
A(x) - B(x) = -x
3
5x
2
+ 3x + 7
c) (0,5)
Thay x = 1 vào đa thức A(x) + B(x) ta được
5.1
3
1
2
+ 1 -5 = 0. Vậy x = 1 là nghiệm của đa thức A(x) + B(x)
0,25
0,25
0,5
0,5
0,5
Câu 17
(1,0đ)
a) (0,5) Cho 4x + 9 = 0 <=> 4x = -9<=> x =
9
4
. Vậy đa thức 4x
+ 9 có nghiệm bằng
9
4
b) 3x
2
4x
Cho 3x
2
4x = 0 <=> x(3x - 4) = 0<=> x = 0 hoặc x =
4
3
Vậy đa thức 3x
2
4x có nghiệm bằng 0 hoặc
4
3
0,5
0,5
Trang 26
Câu 18
(3,0 đ)
Hình vẽ
a) (1,0)
Xét
BAD và
BED có
BA = BE (gt)
ABD EBD
(Vì BD là tia phân giác của goác ABC)
Cạnh BD chung
Nên
BAD =
BED (c.g.c)
=>
BED
=
BAD
= 90
0
=>DE
BE
b) (1,0): Gọi giao điểm của AE và BD là K
Xét
AKB và
EKB
BA = BE (gt)
ABK EBK
(Vì BD là tia phân giác của goc ABC)
Cạnh BK chung
Nên
AKB =
EKB (c.g.c)
=> KA = KB;
AKB EKB
= 90
0
=> AE
BD
=> BD là đường trung trc của AE. (0,5 đ)
c) (0,75)
Ta có AH
BC , EH và CH là hình chiếu của đường xiên AE và
AC trên cạnh BC
Mà AE < AC
=> EH < CH ( quan hệ đường xiên và hình chiếu)
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
0,25
Câu 19
(1,0 đ)
a)
55 50 45 40
40
1963 1968 1973 1978
x x x x
55 50 45 40
( 1) ( 1) ( 1) ( 1) 0
1963 1968 1973 1978
x x x x

2018 2018 2018 2018
0
1963 1968 1973 1978
xxxx

1111
(2018 )( ) 0
1963 1968 1973 1978
x
<=> 2018 - x = 0
0,25
0,25
0,25
Trang 27
<=> x = 2018
0,25
Lưu ý: Các cách làm khác đúng vẫn cho điểm tối đa câu đó.
ĐỀ 10
Thuvienhoclieu.com
ĐỀ KIM TRA HC K 2 - NĂM HỌC 2021 2022
MÔN TOÁN 7
I. TRẮC NGHIỆM : (3 điểm)
Chọn và ghi vào giấy làm bài chỉ một chữ cái in hoa đứng trước câu trả lời đúng
Câu 1: Đơn thức nào sau đây đồng dạng với đơn thức
2
3xy
A.
2
3xy
B.
( 3 )xy y
C.
2
3( )xy
D.
3xy
Câu 2: Đơn thức
2 4 3
1
9
3
y z x y
có bậc là :
A. 6 B. 8 C. 10 D. 12
Câu 3: Bậc của đa thức
3 4 3
7 11Q x x y xy
:
A. 7 B. 6 C. 5 D. 4
Câu 4: Giá trị x = 2 là nghiệm của đa thức :
A.
2f x x
B.
2
2f x x
C.
2f x x
D.
2f x x x
Câu 5: Kết qủa phép tính
2 5 2 5 2 5
52x y x y x y
A.
25
3xy
B.
25
8xy
C.
25
4xy
D.
25
4xy
Câu 6. Giá trị biểu thức 3x
2
y + 3y
2
x tại x = -2 và y = -1 là:
A. 12 B. -9 C. 18 D. -18
Câu 7. Thu gọn đơn thức P = x
3
y 5xy
3
+ 2 x
3
y + 5 xy
3
bằng :
A. 3 x
3
y B. x
3
y C. x
3
y + 10 xy
3
D. 3 x
3
y - 10xy
3
Câu 8. Số nào sau đây là nghiệm của đa thức f(x) =
3
2
x + 1 :
A.
3
2
B.
2
3
C. -
2
3
D. -
3
2
Câu 9: Đa thức g(x) = x
2
+ 1
A.Không có nghiệm B. Có nghiệm là -1
C.Có nghiệm là 1 D. Có 2 nghiệm
Câu 10: Độ dài hai cạnh góc vuông liên tiếp lần lượt là 3cm và 4cm thì độ dài cạnh
huyền là
A.5 B. 7 C. 6 D. 14
Trang 28
Câu 11: Tam giác có một góc 60º thì với điều kiện nào thì trở thành tam giác đều :
A. hai cạnh bằng nhau B. ba góc nhọn
C.hai góc nhọn D. một cạnh đáy
Câu 12: Nếu AM là đường trung tuyến và G là trọng tâm của tam giác ABC thì :
A.
AM AB
B.
2
3
AG AM
C.
3
4
AG AB
D.
AM AG
II. TỰ LUẬN: (7,0 điểm)
Câu 1:( 1,5 ®iÓm).
Điểm thi đua trong các tháng của năm học 2018-2019 của lớp 7A được liệt trong
bảng sau:
Tháng
9
10
11
12
1
2
3
4
5
Điểm
80
90
70
80
80
90
80
70
80
a) Dấu hiệu là gì?
b) Lập bảng tần số. Tìm mốt của dấu hiệu.
c) Tính điểm trung bình thi đua của lớp 7A.
Câu 2. (1,5 điểm)
Cho hai đa thức
3
5 3 7P x x x x
32
5 2 3 2 2Q x x x x x
a) Thu gọn hai đa thức P(x) và Q(x)
b) Tìm đa thức M(x) = P(x) + Q(x) và N(x) = P(x) – Q(x)
c) Tìm nghiệm của đa thức M(x).
Câu 3: (3,0 điểm).
Cho ABC có AB = 3 cm; AC = 4 cm; BC = 5 cm.
a) Chứng tỏ tam giác ABC vuông tại A.
b)Vẽ phân giác BD (D thuộc AC), từ D vẽ DE BC (E BC).
Chứng minh DA = DE.
c) ED cắt AB tại F. Chứng minh ADF = EDC rồi suy ra DF > DE.
Câu 4 (1,0 điểm):
Tìm n
Z sao cho 2n - 3 n + 1
ĐÁP ÁN VÀ BIỂU ĐIỂM
I. TRẮC NGHIỆM ( 3 điểm):- Mỗi câu đúng được 0,25 điểm.
Câu
1
2
3
4
5
6
7
8
9
10
11
12
Đáp án
B
C
D
C
A
D
A
C
A
A
A
B
II. TỰ LUẬN: (7 điểm).
Câu
Nội dung
Điểm
Trang 29
1
a)
Dấu hiệu điều tra là: Điểm thi đua trong tháng của lớp 7A.
0.25
b)
Lập chính xác bảng “ tần số” dạng ngang hoặc dạng cột:
Giá trị (x)
70
80
90
Tần số (n)
2
5
2
Mốt của dấu hiệu là: 80.
0.75
c)
Tính số điểm trung bình thi đua của lớp 7A là:
X =
70.2 90.2 80.5
80
9

0.5
2
a)
Thu gọn hai đơn thức P(x) và Q(x)
3
5 3 7P x x x x
3
5 4 7xx
32
5 2 3 2 2Q x x x x x
=
32
5 4 5x x x
0.25
0.25
b)
b) Tính tổng hai đa thức đúng được
M(x) = P(x) + Q(x)
3
5 4 7xx
+ (
32
5 4 5x x x
) =
2
2x
1,0
c)
c)
2
2x
=0
2
2
2
x
x

Đa thức M(x) có hai nghiệm
2x 
3
Hình
vẽ
0.5
a)
Chứng minh
2 2 2
BC AB AC
Suy ra
ABC vuông tại A.
0.75
b)
Chứng minh
ABD =
EBD (cạnh huyền – góc nhọn).
Suy ra DA = DE.
0.75
c)
Chứng minh ADF = EDC suy ra DF = DC
Chứng minh DC > DE.Từ đó suy ra DF > DE.
1
4
2 3 1 5 1n n n
Xét các giá trị của n + 1 là ước của 5:
n + 1
-1
1
-5
5
n
-2
0
-6
4
6; 2;0;4n
0.5
0.5
F
E
D
C
B
A
Trang 30
| 1/30

Preview text:

ĐỀ 1
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7
A. TRẮC NGHIỆM KHÁCH QUAN:
(3 điểm) Thời gian làm bài 25 phút
( Học sinh chọn câu đúng rồi ghi vào giấy làm bài)
Câu 1. Thu gọn đa thức 3 2 3 2
B  x y  7x  yx  5x +1 có kết quả là: A/ 2 B  2  x +1 B/ 2 B  9  x +1 C/ 3 2
B  2x y  2x 1 D/ 2 B  2  x -1 1
Câu 2. Thu gọn đơn thức  x .3xy 2 2 3 , kết quả là: 3 1 1 A/ 3 7 3x  y B/ 5 8  x y C/ 5 7  x y D/ 4 6 3x  y 3 3
Câu 3. Bậc của đơn thức 2 4 2  xy x là: A/ 3 B/ 7 C/ 6 D/ 7
Câu 4. Bậc của đa thức 6 6 3 6
Q(x)  x  7x  x  8x  2 là : A/ 2 B/ 3 C/ 4 D/ 5
Câu 5. Nghiệm của đa thức 2 x  4 là: A/2 B/ 4
C/ 2 hoặc -2 D/ Vô nghiệm
( Bài toán dành cho câu 5 và câu 6.)
Theo dõi số kg táo trong mỗi thùng của một cửa hàng hoa quả được ghi lại như sau: 20 30 30 50 70 30 40 60 30 0 30 40 70 60 40 50 50 30 20 40
Câu 6: Dấu hiệu là: A/ 20 thùng táo
B/ Số kg táo trong mỗi thùng của một cửa hàng hoa quả
C/ Số số kg táo trong 20 thùng của một cửa hàng hoa quả
D/ Số thùng táo của một cửa hàng hoa quả,
Câu 7 : Mốt của dấu hiệu là : A/ 60 B/ 50 C/ 30 D/ 40 Câu 8. Cho ABC  cân có 0
ˆB  60 . Kết quả so sánh ba cạnh của tam giác là: A/ AB=AC=BC
B/ ACC/ ABD/BCCâu 9. Một tam giác cân có góc ở đáy 500. Khi đó góc ở đỉnh sẽ có số đo: A/ 800 B/ 600 C/ 1300 D/ 650
Câu 10. Tam giác ABC vuông tại A có AB= 3 cm, BC=5 cm, khi đó độ dài cạnh AC là: A/ 8cm B/ 10cm C/ 4cm D/ 5cm
Câu 11. Cho tam giác ABC có đường trung tuyến AM dài 6cm và G là trọng tâm. Khi đó độ dài GA là: A/ 2cm B/ 4cm C/ 6cm D/ 3cm
Câu 12. Cho tam giác ABC có B  0 120 . Khi đó : A/ AB >AC B/ AC > BC C/ AB = AC D/ AB < BC
B. PHẦN TỰ LUẬN: (7 điểm)
Bài 1:
(1,5 điểm) Số học sinh nữ của từng lớp trong một trường THCS được ghi lại ở bảng sau : Trang 1 19 15 16 15 18 17 18 15 17 16 18 16 17 19 19 18 15 15 19 18 a) Lập bảng tần số.
b) Hỏi mỗi lớp của trường THCS có trung bình bao nhiêu học sinh nữ ( làm tròn
kết quả đến hàng đơn vị)? 4
Bài 2: (1,0 điểm) Tính giá trị biểu thức x y  2x 11y  5 tại x = 1, y = -1.
Bài 3: (1,5điểm) Cho đa thức 3 4 2 4 3 4
P(x)  5x  2x  2x 3
x x 5x x
a) Thu gọn và sắp xếp các hạng tử của đa thức trên theo lũy thừ a giảm của biến x.
b) Tính Q(x), biết P(x) + Q(x) = 2 2x 12
c) Tìm nghiệm của đa thức Q(x)
Bài 4: ( 2,5 điểm) Cho  ABC cân tại A ( 0
A  90 ) có G là trọng tâm., CE và BD là
hai trung tuyến, H là trung điểm của BC. Trên tia đối của tia GA lấy điểm I sao
cho G là trung điểm của AI.
a) Chứng minh :  BHG =  CHG
b) Chứng minh : ba điểm A,G,H thẳng hàng c) So sánh IB và IC.
Bài 5: ( 0,5 điểm)
Ba thành phố A, B, C là ba đỉnh của một tam giác, biết rằng AC = 30km, AB = 90km.
Nếu đặt ở C máy phát sóng truyền thanh có bán kính hoạt động bằng 120km thì
thành phố B có nhận được tín hiệu không? Vì sao? HẾT. ĐÁP ÁN PHẦN 1: TRẮC NGHIỆM Câu Câu Câu Câu Câu Câu Câu Câu Câu Câu 10 Câu Câu 1 2 3 4 5 6 7 8 9 11 12 A D D B C B C A A C B B PHẦN II : TỰ LUẬN Bài Câu Hướng dẫn chấm Điểm
Số học sinh nữ của từng lớp trong một trường THCS 0,25 a Giá trị (x) 15 16 17 18 19 0,5 1 Tần số (n) 6 3 3 4 4 N=20 b Mốt là 15 0,25
15.6 16.3 17.3 18.4 19.4 X  20 0,5 c  16,85  17
mỗi lớp của trường THCS có trung bình 17 học sinh nữ Trang 2 4 2 4
5x y  2x 11y  5x y   4 4 5x y  5x y 2  2x 11y 0,25 2  0  2x 11y 0,25 2 2  2x 11y 0,25
Thay x= 1; y=-1 vào biểu thức tìm được ta có: 0,25    2 2. 1 11. 1  2 11 13 0,25
Vậy giá trị biểu thức 4
x y  2x 11y  5 tại x = 0,25 1; y= -1 là -15. 4 5x . y  2 11  y  0,25 a)  5.  11 . 2 . y y  4 .x 3 3 4  55  y .x 0,25 b) Bậc: 7 0,25 Hệ số: -55 0,25 A E D G B C H I Xét  EGB và  DGCcó:
EB = DC ( cùng bằng nửa cạnh bên của tam giác cân) 0,25 a HB =HC (gt) 0,25 4 HG : cạnh chung 0,25
Do đó  EGB =  DGCcó (c.c.c) 0,25
H là trung điểm của BC nên AH là đường trung tuyến 0,25 G là trọng tâm  ABC 0,25 b Do đó G thuộc AH 0,25 Vậy A,G,H thẳng hàng 0,25
CM:  AHB =  AHC(ccc) Suy ra : 0
AHB AHC  90 0,25 c
- ta có : HB=HC, IH BC : H
Nên : IB=IC ( q/hệ hình chiếu và đường xiên) 0,25
Theo đề bài AC = 30km, AB= 90km Trang 3 5 ⇒ 90-300,25 60
Nếu đặt ở C máy phát sóng truyền thanh có bán kính hoạt 0,25
động bằng 120km thì thành phố B có nhận được tín hiệu ĐỀ 2
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7
I- PHẦN TRẮC NGHIỆM: (4,0 điểm).
Trong mỗi câu sau, học sinh chọn một chữ cái in hoa đứng trước câu trả lời
đúng rồi ghi chữ cái in hoa đó ra giấy kiểm tra. Câu 1. Đơn thức 2 2
2021.x y đồng dạng với đơn thức: A. 2 3  x y B. 3  xy C. 2 3(xy) D. 2 3xy
Câu 2. Đa thức nào sau đây là đa thức một biến? A. 2 3
x  2x  5 B. 2 3  x y +1 C. 3  xy - 2x D. 10 - 2 xy Câu 3. Đơn thức 2 4 3
y z .9x y có bậc là : A. 6 B. 8 C. 10 D. 12
Câu 4. Bậc của đa thức: 4 3
Q  7x y xy 12 là : A. 2 B. 3 C. 4 D. 5
Câu 5. Giá trị x = -2 là nghiệm của đa thức :
A. f x  2  x
B. f x  x  2
C. f x 2  x  2
D. f x  x2  x
Câu 6. Tam giác ABC có G là trọng tâm, AM là trung tuyến thì: 2 3 A. AM = AB B. AG AM C. AG AB D. GM = AG 3 4
Câu 7. Bộ ba đoạn thẳng nào không là ba cạnh của một tam giác?
A. 3cm; 3cm; 6cm B. 2cm; 3cm; 4cm C. 9cm; 15cm; D. 3cm; 4cm; 5cm 12cm
Câu 8. Trong một tam giác cạnh đối diện với góc lớn hơn là: A. Góc lớn hơn B. Góc nhỏ hơn
C. Hai góc bằng D. Cạnh lớn hơn nhau Trang 4
II- PHẦN TỰ LUẬN: (6,0 điểm)
Câu 1:(2,0 điểm)
Điểm bài thi môn Toán của lớp 7A được cho bởi bảng sau : 10 9 8 4 6 7 6 9 8 5 3 7 7 8 7 8 10 7 5 7 5 7 8 7 9 9 6 10 6 8
a) Dấu hiệu ở đây là gì? b) Lập bảng tần số.
c) Tính số trung bình cộng và tìm mốt của dấu hiệu.
Câu 2: (2,0 điểm) Cho P x 3
 5x  3x  7  x Qx 3 2
 5x  2x 3 2x x  2
a) Thu gọn và sắp xếp đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến. b) Tính P(x) + Q(x)
c) Tìm đa thức N(x) biết : N(x) + Q(x) = P(x) d) Tính: N(–1) + N(2).
Câu 3:(2,0 điểm) Cho M
NP cân tại M ,vẽ MH NP . a) Chứng minh : MHN MHP .
b) Chứng minh MH là đường phân giác của MNP .
c) Gọi k là điểm nằm trên tia đối của tia HM .Chứng minh KNP  cân. --- HẾT --- ĐÁP ÁN
I- Phần trắc nghiệm: (4,0 điểm) Câu1 Câu 2 Câu 3 Câu 4 Câu 5 Câu 6 Câu 7 Câu 8 Đáp án C B C D A B A D Điểm 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5
II/ TỰ LUẬN: (6,0 điểm) Câu Đáp án Điểm
Dấu hiệu điều tra là: Điểm bài thi môn Toán của mỗi học sinh lớp 0,5 điểm 7A.
Lập chính xác bảng “ tần số” dạng ngang hoặc dạng cột: 0,5 điểm Câu 1 Giá trị (x) 3 4 5 6 7 8 9 10 Tần số (n) 1 1 3 4 8 6 4 3 N=30 Trang 5
*Tính số điểm trung bình làm bài thi môn Toán của lớp 7A là: 0,5 điểm X =
3.1  4.1  5.3  6.4  7.8  9.4  10.3 216   7, 2 30 30 0,5 điểm
*Mốt của dấu hiệu là: 7.
Thu gọn hai đơn thức P(x) và Q(x) 0,5 điểm P x 3
 5x  3x  7  x 3
 5x  4x  7 Q x 3 2
 5x  2x 3 2x x  2 = 3 2
5x x  4x  5 Tính tổng : N(x) = P(x) + Q(x) 3
 5x  4x  7 + ( 3 2
5x x  4x  5 ) = 10x3 2 x  2 0,5 điểm Câu 2 N(x) = P(x) - Q(x) 3
 (5x  4x  7) - ( 3 2
5x x  4x  5 ) 0,5 điểm 3    3 2     5x 4x 7 5x x 4x 5 = 2 x  8x 12  2    2 1 8
1 12  2  8.2 12 0,5 điểm Tính: N(–1) + N(2) =      21 Hình vẽ + GT- KL 0,5 điểm M GT M
NP cân (MN = MP ); MH NP . KL a/ MHN MHP .
b/ MH là đường phân giác của MNP N P H c/ KNP  cân K a/ MHN MHP . 0,5 điểm
Câu 3  MHN và  MHP có : 0
MHN MHP  90 (MH NP) MN = MP (GT) MH cạnh chung Nên MHN MHP (ch-cgv)
b/ MH là đường phân giác của MNP 0,5 điểm Ta có MHN MHP (kq câu a )
NMH HMP ( Góc tương ứng)
Do đó MH là đường phân giác của MNP c/ KNP  cân 0,5 điểm
Ta có MK là đường trung trực của M
NP .( K MH )
Suy ra KN = KP (tính chất đường trung trực của đoạn thẳng) Do đó KNP  cân tại k Trang 6
Lưu ý: Học sinh làm bài theo cách khác mà đúng vẫn cho điểm tối đa tùy thuộc vào số điểm của mỗi câu ĐỀ 3
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7
I/ TRẮC NGHIỆM : (4đ)
Điều tra khối lượng giấy vụn thu nhặt được cho kế hoạch nhỏ của các lớp ở trường
THCS A được ghi lại bảng sau ( Đơn vị Kg) 30 35 37 30 35 35 37 32 37 35 30 32
Dựa vào bảng trên hãy khoanh tròn vào các chữ cái đứng trước câu trả lời đúng :
Câu 1: . Dấu hiệu cần tìm hiểu là :
A. khối lượng giấy vụn thu nhặt được của các lớp ở trường THCS A
B. khối lượng giấy vụn thu nhặt được của mỗi lớp ở trường THCS A
C. khối lượng giấy vụn thu nhặt được của từng lớp ở trường THCS A
D. khối lượng giấy vụn thu nhặt được của trường THCS A
.Câu 2: Số đơn vị điều tra ở đây là: A. 12 B. 10 C. 1 D. 20
Câu 3: Các giá trị khác nhau là: A. 4 B. 30; 32; 35; 37 C. 12 D. 0; 2; 5; 7
Câu 4: Giá trị có tần số lớn nhất là: A. 4 B. 35 C. 30 D. 37
Câu 5: Giá trị 37 có “tần số” là: A. 3 B. 4 C. 5 D. 6
Câu 6: Khối lượng trung bình các lớp thu nhặt được là : A. 32,5 B. 33,25 C. 33,75 D. 34,5 Câu 7: Kết quả của 1 5 2 2 xy xy là 2 4 7 7 3  3 A. 2  xy B. 2 xy C. xy D. 2 xy 4 4 4 4
Câu 8 : Bậc của đơn thức – x2y2(-xy4) là A. 9 B. 8 C. 6 D. 4
Câu 9: Giá trị của biểu thức 1 2
x  5 y tại x = 2; y = -1 là 2 A. 12,5 B. 0 C. 10 D. 11 Trang 7
Câu 10: Kết quả của phép tính 3 1 2 3 2 ( xy).( x . y x y ) là 4 3 1 1 A. 6 2  x y B. 6 4
x y C. 4x6y4 D. -4x6y4 4 4
Câu 11: Thu gọn đa thức P = x3y – 5xy3 + 2 x3y + 5 xy3 bằng :
A. 3 x3y B. x3y C. x3y + 10 xy3 D. 3 x3y - 10xy3
Câu 12: Tổng ba góc của một tam giác bằng A. 900 B. 1800 C. 450 D. 800
Câu 13:  ABC vuông tại A, biết số đo góc C bằng 520. Số đo góc B bằng: A. 1480 B. 380 C. 1420 D. 1280
Câu 14:  HIK vuông tại H có các cạnh góc vuông là 3cm; 4cm. Độ dài cạnh huyền IK bằng A. 8cm B. 16cm C. 5cm D.12cm
Câu 15: Trong các tam giác có các kích thước sau đây, tam giác nào là tam giác vuông ? A. 11cm; 12cm; 13cm B. 5cm; 7cm; 9cm C. 12cm; 9cm; 15cm D. 7cm; 7cm; 5cm
Câu 16:  ABC và  DEF có AB = DE, BC = EF. Thêm điều kiện nào sau đây để  ABC =  DEF A. A  D B. C  F C. AB = AC D. AC = DF
II. TỰ LUẬN : (6 điểm) Bài 1: ( 1,5 đ)
Một giáo viên theo dõi thời gian làm một bài tập (tính theo phút) của học sinh lớp 7A
(ai cũng làm được) và ghi lại như sau: 9 7 4 7 6 6 4 6 5 8 5 7 5 7 4 4 6 6 8 7 5 6 5 10 5 5 8 10 4 7 7 9 8 9 8
a/ Dấu hiệu ở đây là gì? Lập bảng “tần số”
b/ Tính số trung bình cộng của dấu hiệu (làm tròn đến chữ số thập phân thứ nhất).
Bài 2: ( 0,5 đ) Tính giá trị của biểu thức: A= - 3xy - 4y2 . Tại x = 0,5 ; y = - 4
Bài 3: ( 1,5 đ) Cho các đa thức :
P(x) = 5 + x3 – 2x + 4x3 + 3x2 – 10
Q(x) = 4 – 5x3 + 2x2 – x3 + 6x + 11x3 – 8x
a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến .
b) Tính P(x) + Q(x) ; P(x) – Q(x) . Trang 8
Bài 4: ( 2,5 đ) Cho tam giác ABC vuông tại A, có 0
B  60 và AB = 5cm. Tia phân
giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh:  ABD =  EBD.
b/ Chứng minh:  ABE là tam giác đều.
c/ Tính độ dài cạnh BC Hết ĐÁP ÁN I. TRẮC NGHIỆM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 B A B B A C D D A B A B B C C D II. TỰ LUẬN : Bài
-Dấu hiệu: Thời gian làm một bài tập (tính theo phút) của mỗi học 0,5 a/ 1 sinh lớp 7A. 1 đ ( 1,5 - Bảng tần số 0,5 đ) Thời gian 10 N=35 4 5 6 7 8 9 (x) Tần số (n) 5 7 6 7 5 3 2 b/
X = ( 4.5 + 5.7 + 6.6+7.7+8.5+9.3 + 10.2 ) : 35 =227:35  6,5 0,5 0,5đ Bài 2 ( 0,5
Thay x= 0,5; y= -4 vào biểu thức A= – 3xy - 4y2 đ)
Ta được: A = -3 . 0,5 . (-4) - 4. (-4)2 = 6 – 64 = -58 0,25đ
Vậy ........... ..........A =- 58 0,25đ Bài a)
P(x) = 5 + x3 – 2x + 4x3 + 3x2 – 10 0,25 3 =....= 5x3 + 3x2 – 2x - 5 đ ( 1,5 đ)
Q(x) = 4 – 5x3 + 2x2 – x3 + 6x + 11x3 – 8x =… = 5x3 + 2x2 – 2x + 4 0,25 đ b)
P(x) + Q(x) = 10x3 + 5x2 - 4x -1 0,5đ P(x) - Q(x) = x2 - 9 0,5đ Bài 0,5đ B 3 ( 2,5 đ) E A D C Vẽ hình và ghi gt,kl Trang 9
Xét  ABD vuông tại A và  EBD vuông tại E, có: a/ BD là cạnh huyền chung (0,7 (0,7 5 đ)
ABD  EBD (BD là tia phân giác của ABC )
5 đ) Do đó vuông ABD =  vuông EBD (cạnh huyền – góc nhọn) b
Xét  ABE có:AB = BE ( 2 cạnh tương ứng của  ABD =  EBD ) mà 0 ABE  60 (gt) 0,5 (0,5
Do đó  ABE đều( tính chất tam giác đều) đ) Tính độ dài cạnh BC
Ta có : Trong  ABC vuông tại A có 0 BAC  ABC  C  180 mà 0 0
BAC  90 ; ABC  60 (gt) => 0 C  30 0,75 Ta có : 0    (  ABC vuông tại A) c/ BAC BAE EAC 90 Mà 0
BAE  60 (ABE đều) nên 0 EAC  30 (0,7 5 đ) Xét EAC có 0 EAC  30 và 0
C  30 nên EAC cân tại E 
EA = EC mà EA = AB = EB = 5cm(ABE đều) Do đó EC = 5cm
Ta có BC = EB + EC ( vì E BC ) mà EB = EC = 5 cm  BC = 5cm + 5cm = 10cm
Ghi chú: - Học sinh giải cách khác đúng vẫn chấm điểm tối đa. ĐỀ 4
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7
Câu 1. ( 3 điểm)
a. Chỉ ra các đơn thức, đa thức trong các biểu thức sau: 2 3  2x  y ;  ; 2 2 3x y 10xy ; x 11 x  ; 3 2 5x y z 2 b. Cho tam giác MNP có 0 0
M  27 ; P  63 , cạnh nào là cạnh lớn nhất của tam giác ? c. Cho 0 D
 EF, E  90 . Tính cạnh FD biết DE = 6cm, EF = 8cm
Câu 2. (2 điểm)
Điểm kiểm tra Toán Học kỳ I của lớp 7A được ghi lại như sau: 9 5 8 7 8 9 9 7 9 10 9 8 7 6 6 7 9 7 9 8 9 7 10 8 9 7 6 8 7 9 7 8 9
a. Dấu hiệu cần tìm ở đây là gì? Trang 10
b. Lập bảng tần số và tính số trung bình cộng của dấu hiệu. Tìm mốt của dấu hiệu
Câu 3. (3 điểm) Cho hai đa thức: P(x) = 3 2 4
3x  2x  2x  7x  8  x Q(x) = 2 3 2 4 2
 x  3x  3x  5x  5x
a. Thu gọn, sắp xếp theo lũy thừa giảm dần của biến và tìm bậc của mỗi đa thức b. Tính R(x) = P(x) + Q(x)
c. Chứng tỏ R(x) vô nghiệm
Câu 4. (2 điểm)
Cho tam giác ABC vuông tại A. Đường phân giác BE, kẻ EK vuông góc với
BC tại K. Kẻ CD vuông góc BE tại D. Chứng minh rằng: a. A  BE  K  BE
b. Ba đường thẳng AB, CD, EK đồng quy tại một điểm.
----------------------- Hết đề -----------------------
ĐÁP ÁN VÀ BIỂU ĐIỂM BÀI KT HKII Câu Nội dung Điểm  a. Các đơn thức: 3  1 ; 3 2 x y z ; x 11 7 0.5  1  1 3 Các đa thức: 3 ; 3 2 x y z ; x; 2 2 x y  xy 11 7 3 4 0.5 Câu 1 b.  MNP có 0 0 M  27 ; P  63 , => 0
N  90 là góc lớn nhất 0.5 (3.0đ)
=> MP là cạnh lớn nhất (cạnh MP đối diện với góc N) 0.5 c. 0 D
 EF, E  90 => Áp dụng định lý Pytago, ta có: 2 2 2 0.5 DF  DE  EF => 2 2 2
DF  6  8  36  64  100  DF  10cm 0.5
a. Dấu hiệu cần tìm ở đây là điểm kiểm tra Toán Học kỳ I của 33 bạn 7A 0.5 b. Câu 2 Các giá trị (x) Tần số (n) Các tích (x.n) Giá trị TB (2.0đ) 5 1 5 261 6 3 18 X = 7,9 33 7 9 63 Trang 11 8 7 56 9 11 99 1.0 10 2 20 Tổng N = 33 261 0.5 Mo = 9 a. P(x) = 4 3 2 x  3x  2x  5x  8 Q(x) = 4 3 2 5x   3x  5x  5x 0.5
P(x) và Q(x) đều có bậc 4 0.5 Câu 3 (3.0đ) b. R(x) = P(x) + Q(x) = 4 2 4  x  7x 8 1.0 c. R(x) = 4 2 4
 x  7x 8  8  0 x  0.5 4 2 4 2 4 2 Vì x  0, x  0  4
 x  0,  7x  0  4x 7x  0 0.5 C K D 0.5 Câu 4 E (2.0đ) B A a. A
 BE  KBE ( vì hai tam giác vuông có cạnh huyền - góc 0.5 nhọn)
b. Chỉ ra được AB, CD, EK là ba đường cao nên đồng quy 1.0 ĐỀ 5
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7
Câu 1: (2.0 điểm) Điểm kiểm tra một tiết môn Toán của học sinh một lớp 7 tại một trường
THCS được cho trong bảng “tần số” sau: Điểm số (x) 3 4 5 6 7 8 9 10 Tần số (n) 1 2 7 8 5 11 4 2 N = 40
a) Dấu hiệu điều tra ở đây là gì?
b) Có bao nhiêu học sinh làm kiểm tra? Số các giá trị khác nhau?
c) Tìm mốt của dấu hiệu và tính số trung bình cộng.
Câu 2: (1.0 điểm) Thu gọn và tìm bậc của các đơn thức sau:  1  a) A   3 2x y . 3  xy b) 2 2 B   x y .    3
4x .8xyz  16 
Câu 3: (1.0 điểm) Tìm đa thức M biết: Trang 12 a) M   2 x y   3 2 1  2
x x y 1 b) 2 3 2 2
3x  3xy x M  3x  2xy  4 y
Câu 4: (2 điểm) Cho các đa thức sau: 3 2
P(x)  x  3x  3x  2 và 3 2
Q(x)  x x  5x  2
a) Tính P(x)  Q(x)
b) Tính P(x)  Q(x)
c) Tìm nghiệm của đa thức H(x) biết H (x)  P(x)  Q(x) .
Câu 5: (1.0 điểm) Cho hai đa thức f x 2
 2x ax  4 và g x 2
x 5x b (a, b là hằng số).
Tìm các hệ số a, b sao cho f  
1  g(2) và f   1  g(5)
Câu 6: (3.0 điểm) Cho ABC
vuông tại A, có AB = 6cm, AC = 8cm.
a) Tính độ dài cạnh BC và chu vi tam giác ABC.
b) Đường phân giác của góc B cắt AC tại D. Vẽ DH BC H BC . Chứng minh: ABD   HBD c) Chứng minh: DA < DC.
----------HẾT----------
(Học sinh không được sử dụng máy tính)
ĐÁP ÁN – THANG ĐIỂM Câu Ý Đáp án Thang điểm
Dấu hiệu điều tra: “Điểm kiểm tra 1 tiết môn Toán a
của mỗi học sinh một lớp 7” 0.5 Câu 1
Có 40 học sinh làm kiểm tra. Có 8 giá trị khác b 0.5 (2.0 điểm) nhau.
Mốt của dấu hiệu: 8 0.5 c
Số trung bình cộng X  6,825 0.5 a A   3
x y   xy 4 2 2 . 3  6  x y . Bậc 6 0.5 Câu 2 (1.0 điểm)   1 2 2 3 6 3 b B   x y . 
 4x .8xyz  2
x y z . Bậc 10 0.5 16  M   2 x y   3 2 1  2
x x y 1 a 0.5 3 2 Câu 3 M  2  x  2x y (1.0 điểm) 2 3 2 2
3x  3xy x M  3x  2xy  4 y b 0.5 3 2
M xy x  4 y 2 a
P(x)  Q(x)  2x  2x 0.75 b 3 2
P(x)  Q(x)  2x  4x  8x  4 0.75 Câu 4   (2.0 điểm) x 0 2
2x  2x  0  2x x   1   c x 1 0.5
Vậy nghiệm của đa thức H(x) là x = 0; x = 1. Theo đề bài ta có: Câu 5 (1.0 điểm) 0.25 f  
1  g(2)  6  a  6
 b a b  1  2 (1) 0.25 Trang 13 f  
1  g(5)  6  a   b  b  a 6 (2) Thay (2) vào (1) ta được: 0.25
a a  6  1  2  a  3  0.25
b a  6  3   6  9  Vậy a  3  ;b  9  . K A D Áp dụng định lí
B Py-ta-go vào tam giác vuông C ABC H Câu 6 ta có: (3.0 điểm) a 2 2 2
BC AC AB  100  BC  10 cm 0.5
Chu vi tam giác ABC: AB + AC + BC = 24 cm 0.5
Xét hai tam giác vuông ABD và HBD có: BD là cạnh chung 0.5 b
ABD HBD (BD là tia phân giác của góc B) ABD H
BD (cạnh huyền – góc nhọn) 0.5 Từ câu b) ABD
 HBD suy ra DA = DH (hai 0.25 cạnh tương ứng) (1) c
Xét tam giác vuông DHC có: DC > DH (DC là 0.25 cạnh huyền) (2)
Từ (1) và (2) suy ra: DC > DA 0.5 ĐỀ 6
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7
I/ TRẮC NGHIỆM:
(5,0 điểm). Chọn một phương án trả lời đúng của mỗi câu
hỏi sau rồi ghi vào giấy làm bài. Ví dụ: Câu 1 chọn phương án trả lời A thì ghi 1-A.

Câu 1: Biểu thức nào sau đây là đơn thức? x A. x + y. B. x – y. C. x.y. D. . y
Câu 2: Bậc của đơn thức 3x4y là A. 3. B. 4. C. 5. D. 7.
Câu 3: Tam giác ABC vuông tại A có AB = 3cm, BC = 5cm. Độ dài cạnh AC bằng A. 2cm. B. 4cm. C. 34 cm. D. 8cm.
Câu 4: Tích của hai đơn thức 7x2y và (–xy) bằng
A. –7x3y2. B. 7x3y2. C. –7x2y. D. 6x3y2. Trang 14
Câu 5: Dựa vào bất đẳng thức tam giác, kiểm tra xem bộ ba nào trong các bộ ba đoạn
thẳng có độ dài cho sau đây là ba cạnh của một tam giác?
A. 2cm; 3cm; 6cm.
B. 3cm; 4cm; 6cm.
C. 2cm; 4cm; 6cm.
D. 2cm; 3cm; 5cm.
Câu 6: Đơn thức nào sau đây đồng dạng với đơn thức –3x2y3? A. –3x3y2. B. 3(xy)2. C. –xy3. D. x2y3.
Câu 7: Tam giác ABC cân tại A có 0  A
40 khi đó số đo của góc B bằng A. 0 100 . B. 0 50 . C. 0 70 . D. 0 40 .
Câu 8: Bậc của đa thức 12x5y – 2x7 + x2y6 là A. 5. B. 12. C. 7. D. 8.
Câu 9: Tam giác ABC có AB < AC < BC. Khẳng định nào sau đây là đúng? A. C  B  A. B. B  C  A. C. A  C  B. D. A  B  C.
Câu 10: Giá trị của biểu thức 2x2 – 5x + 1 tại x = –1 là A. –2. B. 8. C. 0. D. –6.
Câu 11: Tam giác ABC có BM là đường trung tuyến và G là trọng tâm. Khẳng định nào sau đây là đúng? BG 3 BG 1 MG 1 BM 2 A.  . B.  . C.  . D.  . BM 2 GM 2 BM 3 BG 3
Câu 12: Thu gọn đa thức P = – 2x2y – 4xy2 + 3x2y + 4xy2 được kết quả là A. P = x2y.
B. P = – 5x2y. C. P = – x2y. D. P = x2y – 8xy2.
Câu 13: Tam giác ABC vuông tại A có AB < AC. Vẽ AH vuông góc với BC (H ϵ
BC). Khẳng định nào sau đây là đúng? A. HB < HC. B. HC < HB. C. AB < AH. D. AC < AH.
Câu 14: Nghiệm của đa thức f(x) = 2x – 8 là A. –6. B. –4. C. 0. D. 4. Câu 15: Cho 0
ΔABC và ΔDEF có A  D  90 . Để kết luận ΔABC = ΔDEF theo trường
hợp cạnh huyền – cạnh góc vuông, cần có thêm điều kiện nào sau đây?
A. BC = EF; B  E.
C. AB = DE; AC = DF. B. BC = EF; AC = DF. D. BC = DE; B  E.
II/ TỰ LUẬN: (5,0 điểm).
Bài 1: (1,25 điểm).
Học sinh lớp 7A góp tiền ủng hộ cho trẻ em khuyết tật. Số tiền đóng góp của mỗi
học sinh được ghi ở bảng thống kê sau (đơn vị là nghìn đồng). 5 7 9 5 8 10 5 9 6 10 7 10 6 10 7 6 8 5 6 8 10 5 7 7 10 7 8 5 8 7 8 5 9 7 10 9
a) Dấu hiệu ở đây là gì? Trang 15
b) Lập bảng “tần số”.
c) Tính số trung bình cộng (làm tròn đến chữ số thập phân thứ nhất).
Bài 2: (1,25 điểm).
a) Cho hai đa thức A(x) = 2x2 – x3 + x – 3 và B(x) = x3 – x2 + 4 – 3x. Tính P(x) = A(x) + B(x).
b) Cho đa thức Q(x) = 5x2 – 5 + a2 + ax. Tìm các giá trị của a để Q(x) có nghiệm x = – 1.
Bài 3: (2,5 điểm).
Cho ΔABC vuông tại A (AB < AC), tia phân giác của góc B cắt AC tại M. Trên tia
đối của tia MB lấy điểm D sao cho MB = MD, từ điểm D vẽ đường thẳng vuông góc với
AC tại N và cắt BC tại điểm E.
a) Chứng minh ΔABM = ΔNDM . b) Chứng minh BE = DE.
c) Chứng minh rằng MN < MC.
--------------- Hết ---------------
Giám thị không giải thích gì thêm.
Họ và tên học sinh........................................................số báo danh........................... ĐÁP ÁN
I/ TRẮC NGHIỆM: (5,0 điểm)
Điểm phần trắc nghiệm bằng số câu đúng chia cho 3 (lấy hai chữ số thập phân) Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đ/A C C B A B D C D A B C A A D B
II/ TỰ LUẬN: (5,0 điểm)
Bài Nội dung Điểm a
Dấu hiệu là: Số tiền đóng góp của mỗi học sinh lớp 7A 0,25 Bảng “tần số” 1 b Giá trị (x) 5 6 7 8 9 10 0,5 Tần số (n) 7 4 8 6 4 7 N = 36 c Tính đúng X  7,5 0,5
Cách 1: P(x) = (2x2 – x3 + x – 3) + (x3 – x2 + 4 – 3x) 0,25
= (2x2 – x2) + (– x3 + x3) + (x – 3x) + (– 3 + 4) 0,25 2 a = x2 – 2x + 1 0,25
Cách 2: A(x) = – x3 + 2x2 + x – 3 (0,25 ) Trang 16 B(x) = x3 – x2 – 3x + 4
P(x) = A(x) + B(x) = x2 – 2x + 1 (0,5) Q(x) có nghiệm x = – 1
 Q(– 1) = 5.(– 1)2 – 5 + a2 + a.(– 1) = 0  a2 – a = 0 suy ra b 0,25 a(a-1)=0  0,25 a = 0 hoặc a = 1 B H / E Hình 0,5 vẽ A M N C / D
(Hình vẽ phục vụ câu a, b: 0,5 điểm) Xét ΔABM và ΔNDM có:   0 A N 90 (gt) 3 MB = MD (gt) 0,5 a A MB  N MD (đối đỉnh)
Do đó ΔABM = ΔNDM (cạnh huyền – góc nhọn) (đpcm) 0,25 Ta có: A B M  N D M (vì ΔABM = ΔNDM ) 0,25 AB M  CB M
(vì BM là phân giác của góc B) b  ND M  CB M hay ED B  EB D  ΔBED cân tại E 0,25 Suy ra: BE = DE (đpcm) 0,25
Kẻ MH vuông góc với BC tại H
Ta có: MH = MA (vì BM là tia phân giác của góc B) 0,25
và MA = MN (vì ΔABM = ΔNDM )  MN = MH
Xét tam giác MHC vuông tại H có MH < MC (vì MC là cạnh huyền)  MN < MC (đpcm) 0,25 *Chú ý:
- Nếu học sinh làm cách khác đúng thì tổ chấm thống nhất cho điểm tối đa theo thang điểm trên.
- Học sinh không vẽ hình
Bài 3 phần tự luận thì không chấm nội dung.
-------------- Hết --------------- Trang 17 ĐỀ 7
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7
Câu 1. (2,0 điểm)
Khi điều tra về điểm kiểm tra học kì I môn Toán của học sinh lớp 7A trong năm học
này, người ta thu được kết quả như sau: 7 9 6 7 6 5 7 9 5 5 8 7 9 8 7 8 10 9 7 7 7 4 5 6 8 10 9 8 6 7
a. Dấu hiệu ở đây là gì ? Lập bảng “tần số”.
b. Tính số trung bình cộng của dấu hiệu và tìm mốt của dấu hiệu.
Câu 2. (2,0 điểm)     Cho đơn thức 2 1 3 2 3 A x y xy xy   . 3  2  4
a. Hãy thu gọn đơn thức A , chỉ ra hệ số, phần biến và bậc của đơn thức . A 1
b. Tính giá trị của đơn thức A khi x  4  ; y  . 2
Câu 3. (2,5 điểm)
Cho hai đa thức M x 4 2  2
x 3x  7x  2 và N x 2 4
 3x  4x  5 2x .
a. Tính P x  M x  N x , rồi tìm nghiệm của đa thức P(x) .
b. Tìm đa thức Q x sao cho: Qx  M x  N x .
Câu 4. (3,0 điểm)
Cho tam giác ABC vuông tại A AB  6 c , m BC  10 c . m
a. Tính độ dài cạnh AC và so sánh các góc của tam giác ABC .
b. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Gọi K là trung điểm của
cạnh BC , đường thẳng DK cắt cạnh AC tại M . Chứng minh BC = CD và tính độ dài đoạn thẳng AM .
c. Đường trung trực d của đoạn thẳng AC cắt đường thẳng DC tại Q . Chứng minh
ba điểm B, M ,Q thẳng hàng.
Câu 5. (0,5 điểm) Trang 18   
Tìm giá trị lớn nhất của biểu thức 2 x 2018 2021 T   2020  x  2018
--------------------------------Hết-------------------------------
Họ và tên học sinh:................................................. Số báo danh:................... ĐÁP ÁN
Lưu ý khi chấm bài:
- Trên đây chỉ là sơ lược các bước giải. Lời giải của học sinh cần lập luận chặt
chẽ hợp logic. Nếu học sinh làm cách khác mà giải đúng thì cho điểm tối đa.
- Đối với câu 4, học sinh vẽ không vẽ hình thì không chấm. Câu
Sơ lược các bước giải Điểm Câu 1 2,0 điểm
Dấu hiệu ở đây là điểm kiểm tra học kì I môn Toán của học sinh Phần lớp 7A. 0.5 a Bảng “ tần số”
1 điểm Giá trị(x) 4 5 6 7 8 9 10 0.5 Tần số(n) 1 4 4 9 5 5 2 N=30
Số trung bình cộng của dấu hiệu: Phần
4.1  5.4  6.4  7.9  8.5  9.5  10.2 0.5 b X   7,2 1 điểm 30
Mốt của dấu hiệu là: M  7 0.5 0 Câu 2 2,0 điểm
Thu gọn đơn thức A: Phần 2   1   3  2  1  3  1 2 3 A x y xy xy  . .     2 x . . x x 3 . y y .y  4 5  x y 0.5 a 3  2  4  3 2 4  4
1 điểm Đơn thức A có hệ số là 1 , phần biến là 4 5 x y , bậc là 9 0.5 4 1 Thay x  4;
y  vào đơn thức A ta được: 2 Phần 5 4 3 0.75 1 4  1  4 4 4 b A  . 4   .     2   5 2 1 điểm   4 2 4.2 4 .2 2
Vậy giá trị của đơn thức A tại 1 x  4;  y  là 2 . 0.25 2 Câu 3 2,5 điểm
P x  M x  N x   4 2
x x x     2 4 2 3 7 2
3x  4x  5  2x Phần 0.5 4 2 2 4 a  2
x  3x  7x  2  3x  4x  5  2x 1,5   4 4
x x    2 2 2 2 3
x  3x    7
x  4x   2   5 điểm  3  x  7 0.5 Vậy P(x)  3  x  7 Trang 19 7 
Ta có: P(x)  0  3  x  7  0  3
x  7  x 0.25 3 7 
Vậy nghiệm của đa thức P(x) là x 0.25 3
Ta có: Q x  M x  N x
Qx  N x  M xPhần   2 4
x x   x    4 2 3 4 5 2 2
x  3x  7x  2 0.75 b 2 4 4 2
 3x  4x  5  2x  2x  3x  7x  2 1 điểm   4 4
x x    2 2 2 2
3x  3x   4x  7x   5   2 4 2
 4x  6x 11x  3 Vậy 4 2
Q(x)  4x  6x 11x  3 0.25 Câu 4 3,0 điểm D d F Q A M E C K B +) ABC
vuông tại A (GT) nên 2 2 2
BC AB AC ( định lý Pitago). Phần a 0.5
Thay AB  6 c , m BC  10 c .
m (GT) tính được AC  8cm . 1điểm +) ABC
AB AC BC 6cm  8cm 10cm0.5
C B A ( quan hệ giữa góc và cạnh trong tam giác) +) Xét C
BD CA B ;
D CA là trung tuyến suy ra CBD cân tại 0.5
C suy ra CB C . D +)Trong B
CD CADK là các đường trung tuyến (do A
là trung điểm của BD , K là trung điểm của BC ).
Phần b Mà M là giao điểm của CADK nên M là trọng tâm của 0.5 1.5 BCD (1) điểm  1 8 AM
AC AM  (cm) 3 3 0.5 Vậy 8 AM  cm. 3
Phần c Gọi E là giao điểm của d với AC , F là hình chiếu của D trên 0.25 0.5 d . Trang 20 điểm
AE / /DF , AD / /EF Chứng minh ADF FEA (g.c.g)
DF AE AE EC nên DF EC
 CQE = DQF ( g.c.g)  CQ DQ
BQ là đường trung tuyến của BCD (2) 0.25
Từ(1) và (2)  BQ đi qua M hay ba điểm B,M ,Q thẳng hàng. Câu 5 0.5 điểm 2  x  2018  2021 2019 +) Ta có T   2   . 2020  x  2018 2020  x  2018 0.25
+) Mặt khác x  2018  0 với mọi x  2020  x  2018  2020 với 0.5 mọi x 2019 2  021  T  2    với mọi x, suy ra 2020 2020 0.25 2021  Min T  khi x = 2018. 2020 Điểm toàn bài 10 điểm ĐỀ 8
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7 Câu 1: (1,5đ)
Điểm kiểm tra một tiết môn Toán của học sinh một lớp 7 được ghi lại trong bảng sau: 6 4 3 2 10 5 7 9 5 10 1 2 5 7 9 9 5 10 9 10 2 1 4 3 1 2 4 6 8 9
a/ Hãy lập bảng tần số của dấu hiệu và tìm mốt của dấu hiệu?
b/ Hãy tính điểm trung bình của học sinh lớp đó? Câu 2: (1,5đ)
a/Tìm các đơn thức đồng dạng trong các đơn thức sau: 3 3 5x2y ; (xy)2 ; – 4xy2 ; -2xy ; x2y 2 2
b/ Hãy thu gọn và tìm bậc của đơn thức 2 1 : B =  xy2. (  x2y) 3 2 Câu 3: (2,5đ) Cho các đa thức P(x) = 2x2 – 3x – 4 Q(x) = x2 – 3x + 5
a/ Tính giá trị của đa thức P(x) tại x = 1 . b/Tìm H(x) = P(x) - Q(x) . Trang 21
c/ Tìm nghiệm của đa thức H(x) . Câu 4 : (2đ) a/ Cho A  BC có  0  0 A 80 , B
60 . So sánh ba cạnh của A  BC
b/ Cho  ABC cân tại A biết 0
A  70 . Tính số đo các góc còn lại của  ABC. Câu 5: (2.5đ)
Cho  ABC vuông tại A, có AB = 9cm, AC = 12cm. a/ Tính BC.
b/ Đường trung tuyến AM và đường trung tuyến BN cắt nhau tại G. Tính AG.
c/ Trên tia đối của tia NB, lấy điểm D sao cho NB=ND.Chứng minh: CD  AC . HẾT ĐÁP ÁN Câu Hướng dẫn chấm Số điểm 1 Giá trị (x) 1 2 3 4 5 6 7 8 9 10 0,75đ a/
Tần số (n) 3 4 2 3 4 2 2 1 5 4 N= 30 M0 = 9 0,25đ 3 . 1  4 . 2  2 . 3  3 . 4  4 . 5  2 . 6  2 . 7  1 . 8  5 . 9  4 . 10 b/ X   53 , 5 0,5đ 30 2 3 a/
Các đơn thức đồng dạng: 5x2y và x2y 0,5đ 2 Thu gọn: B = 2  1  2   1  xy2. (  x2y) =   .   .x.x2  .y2.y0,25đ 3 2  3   2  b/ 1 = 3 3 x y 0,25đ 3
Bậc của đơn thức B là: 6 0,5đ 3 a/
P(1) = 2.12 – 3.1 – 4 = – 5 0,5đ b/
H(x) = P(x) – Q(x) = (2x2 – 3x – 4) – (x2 – 3x + 5) 0,5đ = x2 – 9 0,5đ
Ta có H(x)=0 => x2 – 9 = 0 0,5đ c/ x2 = 9 hay x =  3 0,5đ 4
Theo định lí về tổng ba góc trong tam giác ABC, ta có: 0,25đ A+ B + C = 1800 a/ 0,25đ
Suy ra: C = 1800 – (A+ B) = 1800 – (800 + 600) = 400 0,25đ
Ta có A > B > C (800 > 600 > 400) nên BC > AC > AB 0,25đ b/ 0,25đ Trang 22ABC  cân tại A nên B = C 0,25đ 0 0 180  70 0,25đ
Ta có Â + B + C = 1800 suy ra B = C = 0  55 2 0,25đ C D M N G 5 A B Vẽ hình viết GT-KL 0,5 đ
Áp dụng định lý Pytago trong tam giác vuông ABC, ta có: 0,5đ a/
BC2 = AB2 + AC2 = 92 + 122 = 225 BC = 15 (cm) 0,5đ
Ta có AM là đường trung tuyến trong tam giác vuông ABC, nên: 0,25đ AM = BC/2 = 15 / 2 = 7,5 (cm) b/
Ta có G là trọng tâm của tam giác ABC, nên: 2 2 0,25đ AG = AM  5 , 7 .  5 (cm) 3 3
Xét hai tam giác:  DCN và  BAN, có: ND = NB (gt) DNC BNA (đđ) 0,25đ c/ NC = NA (gt)
Do đó,  DCN =  BAN ( c – g – c) C   A   0
90  DC AC 0,25đ
Chú ý: HS có cách giải khác đúng thì vẫn cho điểm tối đa. ĐỀ 9
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7
I - Trắc nghiệm khách quan (3 điểm)
Em hãy chọn một chữ cái in hoa đứng trước câu trả lời đúng.
Câu 1. Điểm thi đua các tháng trong một năm học của lớp 7A được liệt kê trong bảng: Tháng 9 10 11 12 1 2 3 4 5 Điểm 6 7 7 8 8 9 10 8 9
Câu 1. Tần số của điểm 8 là:
A. 12; 1 và 4 B. 3 C. 8 D. 10.
Câu 2. Mốt của dấu hiệu điều tra trong câu 1 là: Trang 23 A. 3 B. 8 C. 9 D. 10.
Câu 3. Số các giá trị có tần số bằng 7 là A. 1 B. 2 C. 3 D. 4
Câu 4. Biểu thức nào sau đây được gọi là đơn thức A. (2+x).x 2 B. 2 + x 2 C. – 2 D. 2y+1
Câu 5. Bậc của đa thức M = x 6 + 5x2y2 + y2 – x4y3 - 1 là: A. 4 B. 5 C. 6 D. 7.
Câu 6. Đơn thức đồng dạng với đơn thức 5 2 xy là: A. 3xy 1 B. 2  xy  D. 2 xy .3x y C. 2 3 1 3
Câu 7. Cách sắp xếp của đa thức nào sau đây là đúng (theo luỹ thừa giảm dần của biến x)
A. 1 + 4x5 – 3x4 +5x3 – x2 +2x
B. 5x3 + 4x5 - 3x4 + 2x2 + 2x + 1
C. 4x5 – 3x4 + 5x3 – x2 + 2x + 1
D. 1+ 2x – x2 + 5x3 – 3x4 + 4x5
Câu 8. Giá trị của biểu thức 2 3
3x y tại x = - 2 và y = - 1 là: A. - 4 B. 12 C. - 10 D. - 12
Câu 9 : Cho tam giác MNP như hình vẽ . Khi đó ta có M
A. NP > MN > MP B. MN < MP < NP
C. MP > NP > MN D. NP < MP < MN 680 400 N P
Câu 10 Cho tam giác ABC có Â = 900 và AB = AC ta có: A. ABC  là tam giác vuông. B. ABC  là tam giác cân. C. ABC  là tam giác vuông cân. D. ABC  là tam giác đều.
Câu 11: Trong một tam giác góc đối diện với cạnh nhỏ nhất là: A. Góc nhọn B. Góc vuông C. Góc tù D. Góc bẹt
Câu 12: Bộ ba số đo nào sau đây có thể là độ dài ba cạnh của một tam giác? A. 5cm, 3cm, 2cm B. 3cm , 4cm, 5cm C. 9cm, 6cm, 2cm D. 3cm, 4cm, 7cm.
Câu 13. Bộ ba số đo nào sau đây có thể là độ dài ba cạnh của một tam giác vuông?
A. 3cm, 9cm, 14cm B. 2cm, 3cm , 5cm
C. 4cm, 9cm, 12cm D. 6cm, 8cm, 10cm
Câu 14. Cho tam giác cân biết hai cạnh bằng 3 cm và 7 cm. Chu vi của tam giác cân đó là: A. 12 cm B. 10 cm C. 17 cm D. 6,5 cm
Câu 15.Cho tam giác ABC có G là trọng tâm, M là trung điểm của AC, N là trung điểm của AB thì 1 1 C. 2 A. BM= 2BG GN = CN B. GN = CN D. AG = BM 3 2 3
II. Tự luận (7 điểm).
Câu 16: (2 điểm) : Cho hai đa thức : ( A x)  2 3 x  2x  3 2 x  1 2 3
B(x)  2x  3x x  6
a) Sắp xếp các đa thức theo lũy thừa giảm dần của biến.
b) Tính A(x) + B(x) và A(x) – B(x) Trang 24
c) Chứng minh x = 1 là nghiệm của đa thức A(x) + B(x)
Câu 17: (1,0 điểm) Tìm nghiệm của các đa thức sau: a) 4x + 9 b) 3x 2 – 4x
Câu 18: (3,0 điểm) Cho  ABC (Â = 900) ; BD là phân giác của góc B (DAC).
Trên tia BC lấy điểm E sao cho BA = BE.
a) Chứng minh  BAD =  BED =>DE  BE.
b) Chứng minh BD là đường trung trực của AE.
c) Kẻ AH  BC. So sánh EH và EC. 55  x 50  x 45  x 40  x
Câu 19: (1,0 điểm) T×m x biÕt : a)     4  0 1963 1968 1973 1978
---------------------------------- Hết ---------------------------------- ĐÁP ÁN:
PHẦN TRẮC NGHIỆM (3đ):
Mỗi câu đúng được 0,2 điểm Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Đáp án A B B C D D C B B C A B D C A
PHẦN TỰ LUẬN (7 điểm) Câu Nội dung Điểm a) (0,5) 3 2 (
A x)  2x  3x  2x 1 0,25 3 2
B(x)  3x  2x x  6 0,25 b) (1,0) Câu 16 (2,0đ)
A(x) + B(x) = 5x3 – x2 + x -5 0,5
A(x) - B(x) = -x3 – 5x2 + 3x + 7 0,5 c) (0,5)
Thay x = 1 vào đa thức A(x) + B(x) ta được
5.13 – 12 + 1 -5 = 0. Vậy x = 1 là nghiệm của đa thức A(x) + B(x) 0,5 9
a) (0,5) Cho 4x + 9 = 0 <=> 4x = -9<=> x =  . Vậy đa thức 4x 4 + 9 có nghiệm bằng 9  0,5 4 Câu 17 b) 3x (1,0đ) 2 – 4x
Cho 3x 2 – 4x = 0 <=> x(3x - 4) = 0<=> x = 0 hoặc x = 4 3
Vậy đa thức 3x 2 – 4x có nghiệm bằng 0 hoặc 4 0,5 3 Trang 25 Hình vẽ 0,25 a) (1,0) Xét  BAD và  BED có BA = BE (gt)  Câu 18 ABD
EBD (Vì BD là tia phân giác của goác ABC) 0,25 (3,0 đ) Cạnh BD chung
Nên  BAD =  BED (c.g.c) 0,25
=> BED = BAD = 900 0,25 =>DE  BE 0,25
b) (1,0): Gọi giao điểm của AE và BD là K Xét  AKB và  EKB BA = BE (gt)
ABK EBK (Vì BD là tia phân giác của goc ABC) Cạnh BK chung 0,25
Nên  AKB =  EKB (c.g.c) 0,25
=> KA = KB; AKB  EKB = 900 => AE  BD 0,25
=> BD là đường trung trực của AE. (0,5 đ) 0,25 c) (0,75)
Ta có AH  BC , EH và CH là hình chiếu của đường xiên AE và 0,25 AC trên cạnh BC Mà AE < AC 0,25
=> EH < CH ( quan hệ đường xiên và hình chiếu) 0,25 55  x 50  x 45  x 40  x a)     4  0 1963 1968 1973 1978 55  x 50  x 45  x 40  x  0,25 ( 1)  ( 1)  ( 1)  ( 1)  0 1963 1968 1973 1978 Câu 19 (1,0 đ) 2018  x 2018  x 2018  x 2018  x      0 0,25 1963 1968 1973 1978 1 1 1 1  (2018  x)(    )  0 1963 1968 1973 1978 0,25 <=> 2018 - x = 0 Trang 26 <=> x = 2018 0,25
Lưu ý: Các cách làm khác đúng vẫn cho điểm tối đa câu đó. ĐỀ 10
ĐỀ KIỂM TRA HỌC KỲ 2 - NĂM HỌC 2021 –2022 Thuvienhoclieu.com MÔN TOÁN 7
I. TRẮC NGHIỆM :
(3 điểm)
Chọn và ghi vào giấy làm bài chỉ một chữ cái in hoa đứng trước câu trả lời đúng
Câu 1:
Đơn thức nào sau đây đồng dạng với đơn thức 2 3xy A. 2 3  x y B. ( 3  xy) y C. 2 3(xy) D. 3  xy 1 Câu 2: Đơn thức 2 4 3
y z 9x y có bậc là : 3 A. 6 B. 8 C. 10 D. 12
Câu 3:
Bậc của đa thức 3 4 3
Q x  7x y xy 11 là : A. 7 B. 6 C. 5 D. 4
Câu 4:
Giá trị x = 2 là nghiệm của đa thức :
A. f x  2  x B. f x 2
x  2 C. f x  x  2 D. f x  xx  2
Câu 5:
Kết qủa phép tính 2 5 2 5 2 5 5
x y x y  2x y A. 2 5 3x y B. 2 5 8x y C. 2 5 4x y D. 2 5 4  x y
Câu 6.
Giá trị biểu thức 3x2y + 3y2x tại x = -2 và y = -1 là:
A. 12 B. -9 C. 18 D. -18
Câu 7.
Thu gọn đơn thức P = x3y – 5xy3 + 2 x3y + 5 xy3 bằng :
A. 3 x3y B. x3y C. x3y + 10 xy3 D. 3 x3y - 10xy3 2
Câu 8. Số nào sau đây là nghiệm của đa thức f(x) = x + 1 : 3 2 3 3 2
A. B. C. - D. - 3 2 2 3
Câu 9: Đa thức g(x) = x2 + 1 A.Không có nghiệm
B. Có nghiệm là -1
C.Có nghiệm là 1 D. Có 2 nghiệm
Câu 10:
Độ dài hai cạnh góc vuông liên tiếp lần lượt là 3cm và 4cm thì độ dài cạnh huyền là A.5 B. 7 C. 6 D. 14 Trang 27
Câu 11:
Tam giác có một góc 60º thì với điều kiện nào thì trở thành tam giác đều :
A. hai cạnh bằng nhau B. ba góc nhọn
C.hai góc nhọn D. một cạnh đáy
Câu 12:
Nếu AM là đường trung tuyến và G là trọng tâm của tam giác ABC thì : 2 3 A. AM AB B. AG AM C. AG
AB D. AM AG 3 4
II. TỰ LUẬN
: (7,0 điểm) Câu 1:( 1,5 ®iÓm).
Điểm thi đua trong các tháng của năm học 2018-2019 của lớp 7A được liệt kê trong bảng sau: Tháng 9 10 11 12 1 2 3 4 5 Điểm 80 90 70 80 80 90 80 70 80 a) Dấu hiệu là gì?
b) Lập bảng tần số. Tìm mốt của dấu hiệu.
c) Tính điểm trung bình thi đua của lớp 7A. Câu 2. (1,5 điểm)
Cho hai đa thức Px 3
 5x  3x  7  x Qx 3 2  5
x  2x  3 2x x  2
a) Thu gọn hai đa thức P(x) và Q(x)
b) Tìm đa thức M(x) = P(x) + Q(x) và N(x) = P(x) – Q(x)
c) Tìm nghiệm của đa thức M(x). Câu 3: (3,0 điểm).
Cho ABC có AB = 3 cm; AC = 4 cm; BC = 5 cm.
a) Chứng tỏ tam giác ABC vuông tại A.
b)Vẽ phân giác BD (D thuộc AC), từ D vẽ DE  BC (E  BC). Chứng minh DA = DE.
c) ED cắt AB tại F. Chứng minh ADF = EDC rồi suy ra DF > DE. Câu 4 (1,0 điểm):
Tìm n  Z sao cho 2n - 3 n + 1
ĐÁP ÁN VÀ BIỂU ĐIỂM
I. TRẮC NGHIỆM ( 3 điểm):- Mỗi câu đúng được 0,25 điểm. Câu 1 2 3 4 5 6 7 8 9 10 11 12 Đáp án B C D C A D A C A A A B
II. TỰ LUẬN: (7 điểm).
Câu Nội dung Điểm Trang 28 a)
Dấu hiệu điều tra là: Điểm thi đua trong tháng của lớp 7A. 0.25
Lập chính xác bảng “ tần số” dạng ngang hoặc dạng cột: Giá trị (x) b) 70 80 90 0.75 Tần số (n) 2 5 2 1
Mốt của dấu hiệu là: 80.
Tính số điểm trung bình thi đua của lớp 7A là: c) 70.2  90.2  80.5 0.5 X =  80 9
Thu gọn hai đơn thức P(x) và Q(x) 3 0.25 a) P x 3
 5x  3x  7  x  5x  4x  7 Q x 3 2  5
x  2x  3 2x x  2 = 3 2 5
x x  4x  5 0.25
b) Tính tổng hai đa thức đúng được 1,0 2 b) M(x) = P(x) + Q(x) 3 
5x  4x  7 + ( 3 2 5
x x  4x  5 ) = 2 x  2 c) 2 x  2 =0 2  x  2 c)  x   2
Đa thức M(x) có hai nghiệm x   2 F 0.5 A D Hình vẽ B E C 3 Chứng minh 2 2 2 BC  AB  AC a) 0.75
Suy ra  ABC vuông tại A.
Chứng minh  ABD =  EBD (cạnh huyền – góc nhọn). b) 0.75 Suy ra DA = DE.
Chứng minh ADF = EDC suy ra DF = DC c)
Chứng minh DC > DE.Từ đó suy ra DF > DE. 1
2n  3 n  1  5 n  1 0.5
Xét các giá trị của n + 1 là ước của 5: 4 n + 1 -1 1 -5 5 n -2 0 -6 4  n   6  ; 2  ;0;  4 0.5 Trang 29 Trang 30