1234 câu hỏi trắc nghiệm Toán 10 ôn thi THPT Quốc gia 2019 – Trần Quốc Nghĩa

Tài liệu gồm 122 trang được biên soạn bởi thầy Trần Quốc Nghĩa tuyển tập 1234 câu hỏi trắc nghiệm Toán 10 có đáp án. Các câu hỏi được phân loại theo từng chủ đề kiến thức khác nhau và được gắn ID dựa vào các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dụng cao.

Đến kỳ thi Toán THPT Quốc gia 2019 thì nội dung kiến thức được mở rộng đến chương trình Toán 10, do đó tài liệu không những hữu ích với các em học sinh lớp 10 mà các em học sinh khối 12 cũng có thể sử dụng để ôn tập cho kỳ thi THPTQG môn Toán.

TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 1
Chủ đề 1. MỆNH ĐỀ. TẬP HỢP
Câu 1. [0D1-1] Cho mệnh đề:
2
, 3 5 0
x x x
”. Mệnh đề ph định ca mệnh đề trên là
A.
2
, 3 5 0
x x x
. B.
2
, 3 5 0
x x x
.
C.
2
, 3 5 0
x x x
. D.
2
, 3 5 0
x x x
.
Câu 2. [0D1-1] Cho tp hp
3; 5
A
. Tp hp
bng
A.
; 3 5;

. B.
; 3 5;

.
C.
; 3 5;

. D.
; 3 5;

.
Câu 3. [0D1-3] Tìm mệnh đề sai.
A.
2
" ; 2 3 0"
x x x
. B.
2
" ; "
x x x
.
C.
2
" ; 5 6 0"
x x x
. D.
1
" ; "
x x
x
.
Câu 4. [0D1-3] Tìm mệnh đề đúng.
A.
2
" ; 3 0"
x x
B.
4 2
" ; 3x 2 0"
x x
C.
5 2
" ; x "
x x
. D.
2
" ; 2 1 1 4"
n n
Câu 5. [0D1-1] Phát biểu nào sau đây là mt mnh đề?
A. Mùa thu Hà Ni đẹp quá! B. Bạn có đi hc không?
C. Đề thi môn Toán khó quá! D. Ni là th đô của Vit Nam.
Câu 6. [0D1-1] Cho
*
, 10, 3
A x x x
. Chn khẳng định đúng.
A.
A
4
phn t. B.
A
3
phn t. C.
A
5
phn t. D.
A
2
phn t.
Câu 7. [0D1-1] Tp
; 3 5;2
 bng
A.
5; 3
. B.
; 5

. C.
; 2

. D.
3; 2
.
Câu 8. [0D1-1] Cho tp hp
, , ,
A a b c d
. Tp
A
có my tp con?
A.
15
. B.
12
. C.
16
. D.
10
.
Câu 9. [0D1-1] Cho mệnh đề
2
, 7 0”
x x x . Hi mnh đề o mệnh đề ph đnh ca
mệnh đề trên?
A.
2
, 7 0
x x x . B.
2
, 7 0
x x x .
C.
2
, 7 0
x x x . D.
2
, 7 0
x x x .
Câu 10. [0D1-1] Câu nào sau đây không là mnh đề?
A. Tam giác đều là tam giác có ba cnh bng nhau. B.
.
C.
4 5 1
. D. Bn hc gii quá!
Câu 11. [0D1-1] Tìm mệnh đề ph đnh ca mnh đề:
2
, 5 0
x x x
.
A.
2
, 5 0
x x x
. B.
2
, 5 0
x x x
.
C.
2
, 5 0
x x x
. D.
2
, 5 0
x x x
.
Câu 12. [0D1-1] Hình v sau đây (phn không b gch) là biu din ca tp hp nào?
A.
; 2 5;
 
. B.
; 2 5;
 
. C.
; 2 5;
 
. D.
; 2 5;
 
.
5
2
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 2
Câu 13. [0D1-1] Kết qu ca
4;1 2;3
là
A.
2;1
B.
4;3
C.
4;2
D.
1;3
Câu 14. [0D1-1] Khi s dng máy tính b túi vi
10
ch s thập phân ta được:
8 2,828427125
. Giá
tr gần đúng của
8
chính c đến hàng phần tm
A.
2,81
. B.
2,80
. C.
2,82
. D.
2,83
.
Câu 15. [0D1-1] Cho mnh đ cha biến
2
:"3 5 "
P x x x
vi
x
là s thc. Mệnh đ nào sau đây là đúng:
A.
3
P . B.
4
P . C.
1
P
. D.
5
P .
Câu 16. [0D1-1] Cho tp
0;2;4;6;8
A ;
3;4;5;6;7
B . Tp
\
A B
là
A.
0;6;8
. B.
0;2;8
. C.
3;6;7
. D.
0;2
.
Câu 17. [0D1-1] Mệnh đề nào dưới đây sai?
A.
1
1 2 ,
8
x x x
. B.
2
2
1 5
2 ,
2 2
x x
x
.
C.
2
2
1 1
,
1 3
x x
x
x x
. D.
2
1
,
1 2
x
x
x
.
Câu 18. [0D1-1] Tìm mệnh đề ph đnh ca mnh đề
2
" : "
x x x
.
A.
2
:
x x x
. B.
2
:
x x x
. C.
2
:
x x x
. D.
2
:
x x x
.
Câu 19. [0D1-1] Cho các phát biểu sau đây:
(I): “17 là s nguyên t
(II): “Tam giác vuông có một đường trung tuyến bng na cnh huyn”
(III): “Các em C14 hãy c gng hc tp tht tt nhé !
(IV): “Mi hình ch nhật đều ni tiếp được đường tròn”
Hi có bao nhiêu phát biu là mt đề?
A.
4
. B.
3
. C.
2
. D.
1
.
Câu 20. [0D1-1] Cho định Nếu hai tam giác bng nhau t din tích chúng bng nhau”. Mệnh đề nào
sau đây đúng?
A. Hai tam giác bằng nhau là điu kin cần để din tích chúng bng nhau.
B. Hai tam giác bằng nhau là điu kin cần và đủ để chúng có din tích bng nhau.
C. Hai tam giác có din tích bằng nhau là điều kiện đủ để chúng bng nhau.
D. Hai tam giác bằng nhau là điều kiện đủ để din tích chúng bng nhau.
Câu 21. [0D1-1] Cho mệnh đề “Có mt hc sinh trong lp C4 không chp hành lut giao thông”. Mnh
đề ph định ca mệnh đề này
A. Không có hc sinh nào trong lp C4 chp hành lut giao thông.
B. Mi hc sinh trong lớp C4 đều chp hành lut giao thông.
C. mt hc sinh trong lp C4 chp hành lut giao thông.
D. Mi hc sinh trong lp C4 không chp hành lut giao thông.
Câu 22. [0D1-1] Cho
x
là s t nhiên. Ph đnh ca mệnh đề
x
chn,
2
x x
là s chn” mnh đề:
A.
x
l,
2
x x
là s l. B.
x
l,
2
x x
là s chn.
C.
x
l,
2
x x
là s l. D.
x
chn,
2
x x
là s l.
Câu 23. [0D1-1] Tp hợp nào sau đây đúng mt tp hp con?
A.
. B.
1
. C.
. D.
1;
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 3
Câu 24. [0D1-1] Cho tp hp
P
. Tìm mệnh đề sai trong các mệnh đề sau?
A.
P P
. B.
P
. C.
P P
. D.
P P
.
Câu 25. [0D1-1] Phn bù ca
2;1
trong
là
A.
;1

. B.
; 2 1;
 
. C.
; 2

. D.
2;

.
Câu 26. [0D1-1] Độ cao ca mt ngọn núi được ghi lại như sau
1372,5m 0,2m
h . Độ chính xác
d
của phép đo trên là
A.
0,1m
d
. B.
1m
d
. C.
0,2m
d
. D.
2m
d
.
Câu 27. [0D1-1] Đo chiu i ca mt cây tớc, ta được kết qu
45 0,3(cm)
a . Khi đó sai số tuyt
đối của phép đo được ước lượng
A.
45
0,3
. B.
45
0,3
. C.
45
0,3
. D.
45
0,3
.
Câu 28. [0D1-1] Tp hợp nào sau đây đúng hai tập hp con?
A.
;
x
. B.
x
. C.
; ;
x y
. D.
;
x y
.
Câu 29. [0D1-1] Chiu cao ca mt ngọn đồi là
347,13m 0,2m
h . Đ chính xác
d
của phép đo
trên là
A.
347,33m
d
. B.
0,2m
d
. C.
347,13m
d
. D.
346,93m
d
.
Câu 30. [0D1-1] Theo thng , dân s Việt Nam năm
2016
được ghi li như sau
94 444 200 3000
S (người). S quy tròn ca s gần đúng
94 444 200
là
A.
94 440 000
. B.
94 450 000
. C.
94 444 000
. D.
94 400 000
.
Câu 31. [0D1-1] Cho các câu sau đây:
(I): “Phan-xi-păng là ngọn núi cao nht Vit Nam”. (II): “
2
9,86
”.
(III): “Mt quá!”. (IV): “Ch ơi, mấy gi ri?”.
Hi có bao nhiêu câu là mệnh đề?
A.
1
. B.
3
. C.
4
. D.
2
.
Câu 32. [0D1-1] Cho mệnh đề: “ Có mt hc sinh trong lp 10A không thích hc môn Toán”. Mnh đề
ph định ca mệnh đề này
A. “ Mi hc sinh trong lớp 10A đều tch hc môn Toán”.
B. “ Mi hc sinh trong lớp 10A đều không thích hc môn Toán”.
C. “ Mi hc sinh trong lớp 10A đều tch học môn Văn”.
D. “ Có mt hc sinh trong lp 10A thích hc môn Toán”.
Câu 33. [0D1-1] Tp hợp nào sau đây chỉ gm các s vô t?
A.
*
\
. B.
\
. C.
\
. D.
\ 0
.
Câu 34. [0D1-1] Cho hai tp hp
1;2;4;7;9
X
1;0;7;10
X . Tp hp
X Y
bao nhiêu
phn t?
A.
9
. B.
7
. C.
8
. D.
10
.
Câu 35. [0D1-1] Mệnh đề ph định ca mnh đề
2018
là s t nhiên chn”
A.
2018
là s chn. B.
2018
là s nguyên t.
C.
2018
không là s t nhiên chn. D.
2018
là s chính phương.
Câu 36. [0D1-1] Cho hai tp hp
2;3
A
1;B

. Tìm
A B
.
A.
2;A B

. B.
1;3
A B . C.
1;3
A B . D.
1;3
A B .
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 4
Câu 37. [0D1-1] Độ dài các cnh ca mt đám n hình ch nht là
7,8m 2cm
x
25,6m 4cm
y
. Cách viết chun ca din tích (sau khi quy tn) là
A.
2 2
200m 0,9m
. B.
2 2
199m 0,8m
. C.
2 2
199m 1m
. D.
2 2
200m 1m
.
Câu 38. [0D1-1] Cho giá tr gần đúng của
8
17
là
0,47
. Sai s tuyệt đối ca s
0,47
là
A.
0,001
. B.
0,003
. C.
0,002
. D.
0,004
.
Câu 39. [0D1-1] Cho
| 3
A x x
,
0;1;2;3
B . Tp
A B
bng
A.
1;2;3
. B.
3; 2; 1;0;1;2;3
.
C.
0;1;2
. D.
0;1;2;3
.
Câu 40. [0D1-1] Ph định ca mnh đề
2
" :2 5 2 0"
x x x
là
A.
2
" :2 5 2 0"
x x x
. B.
2
" :2 5 2 0"
x x x
.
C.
2
" : 2 5 2 0"
x x x
. D.
2
" : 2 5 2 0"
x x x
.
Câu 41. [0D1-1] Cho các tp hp
A
,
B
,
C
được minh ha bng biểu đồ Ven như hình n. Phn
màu xám trong hình là biu din ca tp hợp nào sau đây?
A.
A B C
. B.
\ \
A C A B
.
C.
\
A B C
. D.
\
A B C
.
Câu 42. [0D1-1] Câu nào trong các câu sau không phi là mệnh đề?
A.
có phi là mt s t không?. B.
2 2 5
.
C.
2
là mt s hu t. D.
4
2
2
.
Câu 43. [0D1-1] Cho
P Q
là mệnh đề đúng. Khẳng định nào sau đây là sai?
A.
P Q
sai. B.
P Q
đúng.
C.
Q P
sai. D.
P Q
sai.
Câu 44. [0D1-1] Cho
A
,
B
là hai tập hợp bất kì. Phần gạch sọc trong
hình vbên dưới là tập hợp nào sau đây?
A.
A B
. B.
\
B A
. C.
\
A B
. D.
A B
.
Câu 45. [0D1-1] Đo độ cao mt ngọn cây là
17,14m 0,3m
h
. Hãy viết số quy tròn của số
17,14
?
A.
17,1
. B.
17,15
. C.
17,2
. D.
17
.
Câu 46. [0D1-1] Cho s
4,1356 0,001
a . S quy tròn ca s gần đúng
4,1356
A.
4,135
. B.
4,13
. C.
4,136
. D.
4,14
.
Câu 47. [0D1-1] Mệnh đề nào sau là mệnh đề sai?
A.
2
: 0
x x
. B.
2
:
x x x
C.
2
:
n n n
. D. n
thì
2
n n
.
Câu 48. [0D1-1] Mệnh đề: “Mi động vật đều di chuyn” có mệnh đề ph đnh
A. ít nht mt động vt di chuyn. B. Mi động vật đều đứng yên.
C. ít nht mt động vt không di chuyn. D. Mọi động vật đều không di chuyn.
Câu 49. [0D1-1] Trong các câu sau, có bao nhiêu câu là mnh đề?
- Hãy c gng hc tht tt! - S
20
chia hết cho
6
.
- S
5
là s nguyên t. - S
x
là s chn.
A.
4
. B.
3
. C.
2
. D.
1
.
A
B
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 5
Câu 50. [0D1-1] Chn mnh đề sai.
A.
2
: 0
x x
”. B.
2
:
n n n
”. C.
: 2
n n n
”. D.
: 1
x x
”.
Câu 51. [0D1-2] Tp hp
3
1 2 4 0
A x x x x x
có bao nhiêu phn t?
A.
1
. B.
3
. C.
5
. D.
2
.
Câu 52. [0D1-2] Trong các tp hp sau, tp nào là tp rng?
A.
2
1
| 3 4 0
T x x x
. B.
2
1
| 3 0
T x x
C.
2
1
| 2
T x x
. D.
2
1
| 1 2 5 0
T x x x
.
Câu 53. [0D1-2] Cho các tp hp
| 3
A x x
,
|1 5
B x x
,
| 2 4
C x x
.
Khi đó
\
B C A C
bng
A.
2;3
. B.
3;5
. C.
;1

. D.
2;5
.
Câu 54. [0D1-2] Trong các mnh đề sau, mnh đề nào đúng?
A. x
,
2
1
x
1
x
. B. x
,
2
1
x
1
x
.
C. x
,
1
x
2
1
x
. D. x
,
1
x
2
1
x
.
Câu 55. [0D1-2] Cho các tập hợp
3; 6
M
; 2 3;N

. Khi đó
M N
A.
; 2 3; 6
 . B.
; 2 3;

.
C.
3; 2 3; 6
. D.
3; 2 3; 6
.
Câu 56. [0D1-2] Cho
A
,
B
là các tp khác rng và
A B
. Khẳng định nào sau đây sai?
A.
A B A
. B.
A B A
. C. \B A
. D. \A B
.
Câu 57. [0D1-2] Cho
;2
A ,
2;B

,
0;3
C . Chn phát biu sai.
A.
0;2
A C . B.
0;B C

.
C.
A B
. D.
2;3
B C .
Câu 58. [0D1-2] Cho s thc
0
a
. Điều kin cần và đủ để
4
;9 ;a
a
 
A.
2
0
3
a
. B.
3
0
4
a
. C.
2
0
3
a
. D.
3
0
4
a
.
Câu 59. [0D1-2] Cho
; 2
A

,
3;B

,
0;4 .
C Khi đó tp
A B C
là
A.
; 2 3;
 
. B.
; 2 3;

. C.
3;4
. D.
3;4
.
Câu 60. [0D1-2] Hãy litcác phn t ca tp hp:
2
, 1 0
X x x x .
A.
0
X . B.
2
X . C.
X . D.
0
X .
Câu 61. [0D1-2] Cho
;5
A  ,
0;B

. Tìm
A B
.
A.
0;5
A B . B.
0;5
A B . C.
0;5
A B . D.
;A B
 
.
Câu 62. [0D1-2] Hãy litcác phn t ca tp hp
2
| 2 5 3 0
X x x x
.
A.
1
X . B.
3
2
X
. C.
0
X . D.
3
1;
2
X
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 6
Câu 63. [0D1-2] Cho hai tp
0;5
A ;
2 ;3 1
B a a
, vi
1
a
. Tìm tt c các giá tr ca
a
để
A .
B
A.
5
2
1
3
a
a
. B.
5
2
1
3
a
a
. C.
1 5
3 2
a
. D.
1 5
3 2
a
.
Câu 64. [0D1-2] Cho mnh đề: x
;
2
2 0
x a
, vi
a
s thực cho trước. Tìm
a
để mệnh đề
đúng.
A.
2
a
. B.
2
a
. C.
2
a
. D.
2
a
.
Câu 65. [0D1-2] Cho
1; 9
A ,
3;B

, câu o sau đây đúng?
A.
1;A B

. B.
9;A B

.
C.
1;3
A B . D.
3;9
A B .
Câu 66. [0D1-2] Cho
2
tp hp
2 2
| 2 2 3 2 0
A x x x x x
,
2
|3 30
B n n ,
chn mệnh đề đúng?
A.
2
A B . B.
5;4
A B . C.
2;4
A B . D.
3
A B .
Câu 67. [0D1-2] Cho ba tp hp:
4;3
X ,
:2 4 0, 5
Y x x x
,
: 3 4 0
Z x x x
. Chọn câu đúng nht:
A.
X Y
. B.
Z X
. C.
Z X Y
. D.
Z Y
.
Câu 68. [0D1-2] Cho
;1
A

;
1;B

;
0;1
C . Câu nào sau đây sai?
A.
\ C ;0 1;A B
 
. B.
C 1
A B
.
C.
C ;A B
 
. D.
\ CA B
.
Câu 69. [0D1-2] Cho
; 1
A m

;
1;B

. Điều kiện để
A B
là
A.
1
m
. B.
2
m
. C.
0
m
. D.
2
m
.
Câu 70. [0D1-2] Tp hợp nào dưới đây giao của hai tp hp
: 1 3
A x x
,
: 2
B x x
?
A.
1;2
. B.
0;2
. C.
2;3
. D.
1;2
.
Câu 71. [0D1-2] Cho tp hp
| 2 5
M x x
. Hãy viết tp
M
dưới dng khoảng, đon.
A.
2;5
M . B.
2;5
M . C.
2;5
M . D.
2;5
M .
Câu 72. [0D1-2] Cho
1;3
A ;
2;5
B . Tìm mệnh đề sai.
A.
\ 3;5
B A . B.
2;3
A B . C.
\ 1;2
A B . D.
1;5
A B .
Câu 73. [0D1-2] Cho các tp
| 1
A x x
,
| 3
B x x
. Tp
\
A B
là :
A.
; 1 3;
 
. B.
1;3
. C.
1;3
. D.
; 1 3;
 
.
Câu 74. [0D1-2] Cho
1;A

,
2
| 1 0
B x x
,
0;4
C . Tp
A B C
bao nhiêu
phn t là s nguyên.
A.
3
. B.
1
. C.
0
. D.
2
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 7
Câu 75. [0D1-2] Cho hai tp hp
2;A

5
;
2
B

. Khi đó
\
A B B A
là
A.
5
; 2
2
. B.
2;

. C.
5
;
2

. D.
5
;
2

.
Câu 76. [0D1-2] Cho
1;3
A
0;5
B . Khi đó
\
A B A B
là
A.
1;3
. B.
1;3
. C.
1;3 \ 0
. D.
1;3
.
Câu 77. [0D1-2] Phương trình
3 1 2 5
x x
có bao nhiêu nghim?
A. V s. B.
1
. C.
0
. D.
2
.
Câu 78. [0D1-2] Xác định phn bù ca tp hp
; 2

trong
;4
 .
A.
2;4
. B.
2;4
. C.
2;4
. D.
2;4
.
Câu 79. [0D1-2] Xác định phn bù ca tp hp
; 10 10; 0
  trong
.
A.
10; 10
. B.
10; 10 \ 0
. C.
10; 0 0; 10
. D.
10; 0 0; 10
.
Câu 80. [0D1-2] Cho hai tp hp
X
,
Y
tha mãn
\ 7;15
X Y
1;2
X Y . Xác định s phn
t là s nguyên ca
X
.
A.
2
. B.
5
. C.
3
. D.
4
.
Câu 81. [0D1-2] Cho
P
là mệnh đề đúng,
Q
là mệnh đề sai, chn mệnh đề đúng trong các mnh đề
sau.
A.
P P
. B.
P Q
. C.
P Q
. D.
Q P
.
Câu 82. [0D1-2] Cho hai tp hp
3;3
A và
0;B
. Tìm
A B
.
A.
3;A B
. B.
3;A B
. C.
3;0
A B . D.
0;3
A B .
Câu 83. [0D1-2] Cho tam gc
ABC
G
là trng tâm. Mệnh đề nào sau đây sai?
A.
3
MA MB MC MG
 
, vi mi đim
M
. B.
0
GA GB GC

.
C.
2
GB GC GA
. D.
3
AG AB AC
.
Câu 84. [0D1-2] Trong mt phng
Oxy
, cho
2; 3
A
,
3;4
B . Ta đ đim
M
nm trên trc hoành
sao cho
A
,
B
,
M
thng hàng
A.
1;0
M . B.
4;0
M . C.
5 1
;
3 3
M
. D.
17
;0
7
M
.
Câu 85. [0D1-2] Mệnh đề ph định ca mnh đề
2
, 13 0
x x x
” là
A.
2
, 13 0
x x x
”. B.
2
, 13 0
x x x
”.
C.
2
, 13 0
x x x
”. D.
2
, 13 0
x x x
”.
Câu 86. [0D1-2] Trong các mnh đề sau, mnh đề nào đúng?
A.
6 2
là s hu t.
B. Phương trình
2
7 2 0
x x
2
nghim ti du.
C.
17
là s chn.
D. Phương trình
2
7 0
x x
có nghim.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 8
Câu 87. [0D1-2] Cho
;2
A
0;B

. Tìm
\
A B
.
A.
\ ;0
A B . B.
\ 2;A B

.
C.
\ 0;2
A B . D.
\ ;0
A B  .
Câu 88. [0D1-2] Cho hai tp hp
| 3 2
A x x
,
1; 3
B . Chn khẳng định đúng trong
các khẳng đnh sau:
A.
1; 2
A B . B.
\ 3; 1
A B
.
C.
; 1 3;C B
 
. D.
2; 1;0;1;2
A B .
Câu 89. [0D1-2] Cho
1;2;3
A , s tp con ca
A
là
A.
3
. B.
5
. C.
8
. D.
.
Câu 90. [0D1-2] Trong các tp hp sau, tp nào là tp rng?
A.
2
5 6 0
x x x
. B.
2
3 5 2 0
x x x
.
C.
2
1 0
x x x
. D.
2
5 1 0
x x x
.
Câu 91. [0D1-2] Cho s
367 653 964 213
a
. S quy tròn ca s gần đúng
367 653 964
A.
367 653 960
. B.
367 653 000
.
C.
367 654 000
. D.
367 653 970
.
Câu 92. [0D1-2] Kết qu ca phép toán
;1 1;2

A.
1;2
. B.
;2
 . C.
1;1
. D.
1;1
.
Câu 93. [0D1-2] Tìm mệnh đề ph đnh ca mnh đề
2
:" ; 1 0"
P x x x
.
A.
2
:" ; 1 0"
P x x x
. B.
2
P:" ; 1 0"
x x x
.
C.
2
:" ; 1 0"
P x x x
. D.
2
:" ; 1 0"
P x x x
.
Câu 94. [0D1-2] Cho tập
,
A a b
,
, , ,
B a b c d
. Có bao nhiêu tập
X
thỏa mãn
A X B
?
A.
4
. B.
5
. C.
3
. D.
6
.
Câu 95. [0D1-2] Cho
; 1
A a a
. Lựa chọn phương án đúng.
A.
; 1;C A a a
 
. B.
; 1;C A a a

.
C.
; 1;C A a a

. D.
; 1;C A a a

.
Câu 96. [0D1-2] Cho tập
X
1
n
phần tử (
n
). Stập con của
X
có hai phần tử là
A.
1
n n
.
B.
1
2
n n
. C.
1
n
. D.
1
2
n n
.
Câu 97. [0D1-2] Theo thng kê, dân s Vit Nam m
2002
là
79715675
người. Gi s sai s tuyt
đối ca s liu thng kê này nh hơn
10000
người.y viết s quy tròn ca s trên
A.
79710000
người. B.
79716000
người.
C.
79720000
người. D.
79700000
người.
Câu 98. [0D1-3] Lp 10A
10
hc sinh gii Toán,
10
hc sinh gii Lý,
11
hc sinh gii hóa,
6
hc
sinh gii c Toán và ,
5
hc sinh gii c Hóa và ,
4
hc sinh gii c Toán và Hóa,
3
hc
sinh gii c ba môn Toán, Lý, Hóa. S hc sinh gii ít nht mt trong ba n (Toán, Lý, Hóa)
ca lp 10A là
A.
19
. B.
18
. C.
31
. D.
49
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 9
Câu 99. [0D1-3] Cho các tp hp khác rng
3
1;
2
m
m
; 3 3;B
 
. Tp hp các g
tr thc ca
m
để
A B
là
A.
; 2 3;
 
. B.
2;3
.
C.
; 2 3;5
 . D.
; 9 4;

.
Câu 100. [0D1-3] Cho các tp hp khác rng
;
A m

2 2;2 2
B m m
. Tìm
m
để
R
C A B
.
A.
2
m
. B.
2
m
. C.
2
m
. D.
2
m
.
Câu 101. [0D1-3] Trong các mnh đề sau, mnh đề nào sai?
A.
n
,
2
11 2
n n
chia hết cho
11
. B.
n
,
2
1
n
chia hết cho
4
.
C. Tn ti s nguyên t chia hết cho
5
. D.
n
,
2
2 8 0
x
.
Câu 102. [0D1-3] Cho
2;A

,
;B m

. Điu kin cần và đ ca
m
sao cho
B
là tp con ca
A
là
A.
2
m
. B.
2
m
. C.
2
m
. D.
2
m
.
Câu 103. [0D1-3] Trong các mnh đề sau, mnh đề nào đúng?
A.
x
,
2
1 1
x x
. B.
, 3
x x
3
x
.
C.
2
, 1
n n
chia hết cho
4
. D.
2
, 1
n n
không chia hết cho
3
.
Câu 104. [0D1-3] Cho ba tp hp:
M
: tp hp các tam giác
2
góc tù.
N
: tp hợp các tam giác đ dài ba cnh là ba s nguyên liên tiếp.
P
: tp hp các s nguyên t chia hết cho
3
.
Tp hp nào là tp hp rng?
A. Ch
N
P
. B. Ch
P
M
. C. Ch
M
. D. C
M
,
N
P
.
Câu 105. [0D1-3] Xác định s phn t ca tp hp
| 4, 2017
X n n n
.
A.
505
. B.
503
. C.
504
. D.
502
.
Câu 106. [0D1-3] Cho hai tp hp
1;3
A
; 1
B m m
. Tìm tt c giá tr ca tham s
m
để
B A
.
A.
1
m
. B.
1 2
m
. C.
1 2
m
. D.
2
m
.
Câu 107. [0D1-3] Cho
m
mt tham s thc và hai tp hp
1 2 ; 3
A m m
,
| 8 5
B x x m
. Tt c các giá tr
m
để
A B
là
A.
5
6
m
. B.
2
3
m
. C.
5
6
m
. D.
2 5
3 6
m
.
Câu 108. [0D1-4] Lp
10
A
7
hc sinh gii Toán,
5
hc sinh gii ,
6
hc sinh gii Hoá,
3
hc sinh
gii c Toán ,
4
hc sinh gii c Toán Hoá,
2
hc sinh gii c Hoá,
1
hc sinh
gii c ba môn Toán, Lý, Hoá. S hc sinh gii ít nht mt môn (Toán, Lý, Hoá ) ca lp
10
A
là
A.
9
. B.
18
. C.
10
. D.
28
.
Câu 109. [0D1-4] Cho
3 3
A x mx mx
,
2
4 0
B x x
. Tìm
m
để
\
B A B
.
A.
3 3
2 2
m
. B.
3
2
m
. C.
3 3
2 2
m
. D.
3
2
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 10
Chủ đề 2. HÀM SỐ
Câu 110. [0D2-1] Trục đi xng ca parabol
2
5 3
y x x
là đường thẳng có phương trình
A.
5
4
x
. B.
5
2
x
. C.
5
4
x
. D.
5
2
x
.
Câu 111. [0D2-1] Hàm s
1 2 2
f x m x m
là hàm s bc nht khi và ch khi
A.
1
m
. B.
1
m
. C.
1
m
. D.
0
m
.
Câu 112. [0D2-1] Đim nào sau đây thuộc đ th ca hàm s
2
( 1)
x
y
x x
A.
0; 1
M
. B.
2;1
M . C.
2;0
M . D.
1;1
M .
Câu 113. [0D2-1] H s góc của đồ th hàm s
2018 2019
y x
bng
A.
2019
2018
. B.
2018
. C.
2019
. D.
2018
2019
.
Câu 114. [0D2-1] Hàm s
4 2
3
y x x
là
A. Hàm s va chn, va l. B. m s không chn, không l.
C. Hàm s l. D. Hàm s chn.
Câu 115. [0D2-1] Tập xác định ca hàm s
2
2
4
x
y
x x
là
A.
\ 0;2;4
. B.
\ 0;4
. C.
\ 0;4
. D.
\ 0;4
.
Câu 116. [0D2-1] Cho hàm s
2
f x x x
. Khẳng định nào sau đây là đúng?
A. Đồ th ca hàm s
f x
đối xng qua trc hoành.
B. Đồ th ca hàm s
f x
đối xng qua gc tọa độ.
C.
f x
là hàm s l.
D.
f x
là hàm s chn.
Câu 117. [0D2-1] Tìm tập xác định
D
ca hàm s
1
1f x x
x
.
A.
\ 0
D
. B.
1;D
.
C.
\ 1;0
D
. D.
1; \ 0
D .
Câu 118. [0D2-1] Cho hàm s
y f x
xác định trên tp
D
. Mệnh đề nào sau đây đúng?
A. Nếu
f x
không là hàm s l t
f x
là hàm s chn.
B. Nếu
f x f x
,
x D
t
f x
là hàm s l.
C. Đồ th hàm s l nhn trc tung làm trục đối xng.
D. Nếu
f x
là hàm s l thì
f x f x
,
x D
.
Câu 119. [0D2-1] Cho hàm s bc hai
2
y ax bx c
0
a đồ th
P
, đỉnh ca
P
được xác
định bi công thc nào?
A. ;
2 4
b
I
a a
. B. ;
4
b
I
a a
. C. ;
4
b
I
a a
. D. ;
2 2
b
I
a a
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 11
Câu 120. [0D2-1] Cho hàm s
2
0
y ax bx c a
. Khẳng định nào sau đây là sai?
A. Đồ th ca hàm s có trục đối xứng là đường thng
2
b
x
a
.
B. Đồ th ca hàm s ln ct trc hoành ti hai điểm phân bit.
C. Hàm s đồng biến trên khong ;
2
b
a

.
D. Hàm s nghch biến trên khong ;
2
b
a

.
Câu 121. [0D2-1] Phương trình
2
0 0
ax bx c a
có hai nghim phân bit cùng du khi và ch khi:
A.
0
0
P
. B.
0
0
S
. C.
0
0
P
. D.
0
0
S
.
Câu 122. [0D2-1] Tìm tập xác đnh
D
ca hàm s
1
1f x x
x
.
A.
\ 0
D
. B.
\ 1;0
D
.
C.
1; \ 0
D . D.
1;D

.
Câu 123. [0D2-1] Đường thẳng o sau đây song song với đường thng
2
y x
?
A.
2
5
2
y x
. B.
1 2
y x
. C.
1
3
2
y x
. D.
2 2
y x
.
Câu 124. [0D2-1] Cho hàm s
2
y ax bx c
đ th như hình
bên dưới. Khẳng định nào sau đây đúng?
A.
0, 0, 0
a b c
. B.
0, 0, 0
a b c
.
C.
0, 0, 0
a b c
. D.
0, 0, 0
a b c
.
Câu 125. [0D2-1] Parabol
2
2 3
y x x
có phương trình trục đối xng là
A.
1
x
. B.
2
x
. C.
1
x
. D.
2
x
.
Câu 126. [0D2-1] Bng biến thiên nào dưới đây là của hàm s
2
2 1
y x x
:
A. B.
C. D.
Câu 127. [0D2-1] Khng định nào v hàm s
3 5
y x
là sai:
A. Hàm s đồng biến trên
. B. Đồ th ct
Ox
ti
5
;0
3
.
C. Đồ th ct
Oy
ti
0;5
. D. Hàm s nghch biến trên
.
x
1
y
2
x
y
x
1
y
2
x
y
x
y
O
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 12
Câu 128. [0D2-1] Cho hàm s:
1
0
1
2 0
x
x
y
x x
. Tập xác định ca hàm s là tp hợp nào sau đây?
A.
2;
. B.
.
C.
\ 1
. D.
\ 1
2
x x x
.
Câu 129. [0D2-1] Cho hàm s:
2
2 1
y x x
, mệnh đề nào sai:
A. Đồ th hàm s nhn
1; 2
I
làm đnh. B. Hàm s nghch biến trên khong
;1

.
C. Hàm s đồng biến trên khong
1;

. D. Đ th hàm s có trục đi xng:
2
x
.
Câu 130. [0D2-1] Tập xác định ca hàm s
1
3
x
y
x
là
A.
3;
. B.
1; +
. C.
1; 3 3;
. D.
\ 3
.
Câu 131. [0D2-1] Tìm
m
để hàm s
3 2
y m x
nghch biến trên
.
A.
0
m
. B.
3
m
. C.
3
m
. D.
3
m
.
Câu 132. [0D2-1] Parabol
2
: 2 6 3
P y x x
có hoành độ đỉnh là?
A.
3
x
. B.
3
2
x
. C.
3
2
x
. D.
3
x
.
Câu 133. [0D2-1] Hàm s nào sau đây có tập xác đnh là
?
A.
2
3
4
x
y
x
. B.
2
2 1 3
y x x
.
C.
2 2
1 3
y x x
. D.
2
2
4
x
y
x
.
Câu 134. [0D2-1] Tìm
m
để hàm s
2 1 3
y m x m
đồng biến trên
.
A.
1
2
m
. B.
1
2
m
. C.
3
m
. D.
3
m
.
Câu 135. [0D2-1] Viết phương trình trục đi xng của đồ th hàm s
2
2 4
y x x
.
A.
1
x
. B.
1
y
. C.
2
y
. D.
2
x
.
Câu 136. [0D2-1] Cho hàm s
1
1
y
x
. Tìm tọa đ đim thuộc đ th ca hàm s có tung đ bng
2
.
A.
0; 2
. B.
1
; 2
3
. C.
2; 2
. D.
1; 2
.
Câu 137. [0D2-1] Trục đi xng ca parabol
2
2 2 1
y x x
là đường thẳng có phương trình
A.
1
x
. B.
1
2
x
. C.
2
x
. D.
1
2
x
.
Câu 138. [0D2-1] Tìm điều kin ca tham s
m
để hàm s
3 4 5
y m x m
đồng biến trên
A.
4
3
m
. B.
4
3
m
. C.
4
3
m
. D.
4
3
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 13
Câu 139. [0D2-1] Ta độ đỉnh
I
ca parabol
2
2 7
y x x
là
A.
1; 4
I
. B.
1; 6
I . C.
1; 4
I
. D.
1; 6
I .
Câu 140. [0D2-1] Tập xác định ca hàm s 1 2 6
y x x
là
A.
1
6;
2
. B.
1
;
2

. C.
1
;
2

. D.
6;

.
Câu 141. [0D2-1] Cho parabol
2
: 3 2 1
P y x x
. Điểm nào sau đây là đỉnh ca
P
?
A.
0;1
I . B.
1 2
;
3 3
I
. C.
1 2
;
3 3
I
. D.
1 2
;
3 3
I
.
Câu 142. [0D2-1] Hàm s nào trong bốn phương án lit
A, B, C, D có đ th như hình bên:
A.
2
y x
. B.
2 1
y x
.
C.
1
y x
. D.
1
y x
.
Câu 143. [0D2-1] Mt hàm s bc nht
y f x
–1 2
f
2 –3
f
. Hàm s đó là
A.
–2 3
y x
. B.
5 1
3
x
f x
. C.
2 3
y x
. D.
5 1
3
x
f x
.
Câu 144. [0D2-1] Cho hàm s
2
1 2 2 3 1
y m x m x m m
P
. Đỉnh của
P
là
1; 2
S
thì
m
bằng bao nhiêu?
A.
3
2
. B.
0
. C.
2
3
. D.
1
3
.
Câu 145. [0D2-1] Nghiệm của phương trình
2
8 5 0
x x
có thể xem hoành độ giao điểm của hai đồ
th hàm số:
A.
2
y x
8 5
y x
. B.
2
y x
8 5
y x
.
C.
2
y x
8 5
y x
. D.
2
y x
8 5
y x
.
Câu 146. [0D2-1] Cho hàm s
2 1
f x m x
. Với giá tr nào của
m
t m s đồng biến trên
?; nghịch biến trên
?
A. Vi
2
m
thì hàm s đồng biến trên
;
2
m
thì hàm s nghịch biến trên
.
B. Vi
2
m
t hàm số đồng biến trên
;
2
m
t hàm số nghịch biến trên
.
C. Vi
2
m
thì hàm s đồng biến trên
;
2
m
thì hàm s nghịch biến trên
.
D. Vi
2
m
thì hàm s đồng biến trên
;
2
m
thì hàm s nghịch biến trên
.
Câu 147. [0D2-1] Một chiếc cổng hình parabol phương trình
2
1
2
y x
. Biết cổng chiều rộng
5
d
mét (như hình
v). Hãy tính chiều cao
h
của cổng.
A.
4,45
h
mét. B.
3,125
h
mét.
C.
4,125
h
mét. D.
3,25
h
mét.
Câu 148. [0D2-1] Cho hàm s
2
0
y ax bx c a
có đồ thị là parabol
P
. Xét phương trình
2
0
ax bx c
1
. Chọn khẳng định sai:
A. Số giao đim của parabol
P
với trục hoành số nghiệm của phương trình
1
.
B. Snghim của phương trình
1
là sgiao điểm của parabol
P
với trục hoành.
C. Nghiệm của phương trình
1
là giao đim của parabol
P
với trục hoành.
D. Nghiệm của phương trình
1
là hoành độ giao đim của parabol
P
với trục hoành.
O
y
x
5m
h
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 14
Câu 149. [0D2-1] Giao đim của parabol
2
: 3 2
P y x x
với đường thẳng
1
y x
A.
1;2
;
2;1
. B.
1;0
;
3;2
. C.
2;1
;
0; 1
. D.
0; 1
;
2; 3
.
Câu 150. [0D2-2] Tìm các giá tr ca tham s
m
để hàm s
2 3 3
y m x m
nghch biến trên
A.
3
2
m
. B.
3
2
m
. C.
3
2
m
. D.
3
2
m
.
Câu 151. [0D2-2] Xét nh đồng biến, nghch biến ca hàm s
2
4 5
f x x x
trên các khong
;2

2;
. Khẳng định nào sau đây đúng?
A. Hàm s nghch biến trên
;2
 , đồng biến trên
2;
.
B. m s nghch biến trên các khong
;2

2;
.
C. Hàm s đồng biến trên
;2
 , nghch biến trên
2;
.
D. Hàm s đồng biến trên các khong
;2

2;
.
Câu 152. [0D2-2] Tập xác định ca hàm s
2
x
y
x
là
A.
0;

. B.
;2
 . C.
0; \ 2
 . D.
\ 2
.
Câu 153. [0D2-2] Xác định parabol
P
:
2
y ax bx c
,
0
a
biết
P
ct trc tung tại điểm tung
độ bng
1
và có giá tr nh nht bng
3
4
khi
1
2
x
A.
P
:
2
1
y x x
. B.
P
:
2
1
y x x
.
C.
P
:
2
2 2 1
y x x
. D.
P
:
2
0
y x x
.
Câu 154. [0D2-2] Nêu tính chn, l ca hai hàm s
2 2
f x x x
,
g x x
?
A.
f x
là hàm s chn,
g x
là hàm s chn B.
f x
là hàm s l,
g x
là hàm s chn.
C.
f x
là hàm s l,
g x
là hàm s l. D.
f x
là hàm s chn,
g x
là hàm s l.
Câu 155. [0D2-2] Đồ th ca hàm s nào sau đây là parabol đỉnh
1;3
I .
A.
2
2 4 3
y x x
. B.
2
1
y x x
. C.
2
2 4 5
y x x
. D.
2
2 2 1
y x x
.
Câu 156. [0D2-2] Tìm g tr nh nht ca hàm s
2
4 1
y x x
.
A.
3
. B.
1
. C.
3
. D.
13
.
Câu 157. [0D2-2] bao nhiêu giá tr thc ca
m
để đường thng
: 4 2
d y x m
tiếp xúc vi parabol
2
: 2 2 3 1
P y m x mx m
A.
3
. B.
1
. C.
2
. D.
0
.
Câu 158. [0D2-2] bao nhiêu giá tr nguyên ca tham s
m
thuộc đoạn
7;7
để phương trình
2
2 2 1 0
mx m x m
có hai nghim phân bit?
A.
14
. B.
8
. C.
7
. D.
15
.
Câu 159. [0D2-2] Biết đồ th m s
y ax b
đi qua điểm
1; 4
M h s góc bng
3
. Tích
P ab
?
A.
13
P
. B.
21
P
. C.
4
P
. D.
21
P
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 15
Câu 160. [0D2-2] Cho hàm s
2
2 2 3
khi 2
1
2 khi 2
x
x
f x
x
x x
. Tính
2 2
P f f
.
A.
3
P
. B.
2
P
. C.
7
3
P
. D.
6
P
.
Câu 161. [0D2-2] Hàm s
1 2
y m x m
đồng biến trên khong
;
 
khi:
A.
1 2
m
. B.
2
m
. C.
1
m
. D.
1
m
.
Câu 162. [0D2-2] Tp xác định ca hàm s
1
y x
là
A.
;1

. B.
1;

. C.
1;

. D.
.
Câu 163. [0D2-2] Cho phương trình
2
1
1
1
x
x
. Tp giá tr của x để phương tnh xác định
A.
1;

. B.
. C.
1; )

. D.
\ 1
.
Câu 164. [0D2-2] Min giá tr ca hàm s
2
2
3 2 3
1
x x
y
x
là
A.
3
1;
4
. B.
1;2
. C.
2;4
. D.
2;4
.
Câu 165. [0D2-2] Cho hàm s
Y f X
tập xác định
3;3
và đồ th như hình v. Khẳng đnh nào sau
đây đúng:
A. Hàm s đồng biến trên khong
3;1
1;4
.
B. m s ngch biến trên khong
2;1
.
C. Hàm s đồng biến trên khong
3; 1
1;3
.
D. Đồ th hàm s ct trc hoành ti
3
điểm phân bit.
Câu 166. [0D2-2] Cho hàm s
2
4 5
y x x
. Trong các mnh đề sau mệnh đề nào đúng.
A. Hàm s nghch biến trên khong
2;

.
B. m s đng biến trên khong
;2
 .
C. Hàm s đồng biến trên khong
3;

.
D. Hàm s nghch biến trên khong
;2

2;

.
Câu 167. [0D2-2] Tập xác định ca hàm s
3 8 khi 2
7 1 khi 2
x x x
y f x
x x
là
A.
. B.
\ 2
. C.
8
;
3

. D.
7;

.
Câu 168. [0D2-2] Bng biến thiên sau là ca hàm s nào
A.
2
2 4 4
y x x
. B.
2
3 6 1
y x x
. C.
2
2 1
y x x
. D.
2
2 2
y x x
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 16
Câu 169. [0D2-2] Đồ th ca hàm s
2 1 khi 2
3 khi 2
x x
y f x
x
đi qua đim o sau đây:
A.
0; 3
. B.
. C.
(2; 3)
. D.
0;1
.
Câu 170. [0D2-2] Đồ thm s nào sau đây đi qua
2
đim
1;2
A
0; 1
B
.
A.
1
y x
. B.
1
y x
. C.
3 1
y x
D.
3 1
y x
.
Câu 171. [0D2-2] Cho parabol
P
:
2
y ax bx c
có trục đối xứng đường thng
1
x
. Khi đó
4 2
a b
bng
A.
1
. B.
0
. C.
1
. D.
2
.
Câu 172. [0D2-2] Hàm s
1
f x ax a
đồng biến trên
khi và ch khi
A.
0 1
a
. B.
1
a
. C.
0 1
a
. D.
0
a
.
Câu 173. [0D2-2] Giá tr ln nht ca hàm s
2
2
5 9
f x
x x
bng
A.
11
8
. B.
11
4
. C.
8
11
. D.
4
11
.
Câu 174. [0D2-2] Hàm s
2
6 5
y x x
A. giá tr nh nht khi
3
x
. B. giá tr ln nht khi
3
x
.
C. giá tr ln nht khi
3
x
. D. giá tr nh nht khi
3
x
.
Câu 175. [0D2-2] Chn mnh đề sai trong các mnh đề sau:
A. Parabol
2
2 4
y x x
có b lõm lên trên.
B. m s
2
2 4
y x x
nghch biến trên khong
;2
 đồng biến trên khong
2;

.
C. Hàm s
2
2 4
y x x
nghch biến trên khong
;1

và đồng biến trên khong
1;

.
D. Trục đi xng ca parabol
2
2 4
y x x
là đường thng
1
x
.
Câu 176. [0D2-2] Cho đường thng
: 1
d y x
Parabol
2
: 2
P y x x
. Biết rng
d
ct
P
ti
hai điểm phân bit
A
,
B
. Khi đó din tích tam giác
OAB
(vi
O
là gc h trc tọa độ) bng
A.
4
. B.
2
.
C.
3
2
. D.
5
2
.
Câu 177. [0D2-2] Đồ th hình bên dưới đồ th ca hàm s nào?
A.
2
2 3 1
y x x
. B.
2
3 1
y x x
.
C.
2
2 3 1
y x x
. D.
2
3 1
y x x
.
Câu 178. [0D2-2] Biết đường thng :
d y mx
ct Parabol
2
: 1
P y x x
tại hai điểm phân bit
A
,
B
. Khi đó tọa độ trung đim
I
của đoạn thng
AB
là
A.
2
1
;
2 2
m m m
I
. B.
2
1 2 3
;
2 4
m m m
I
.
C.
1 3
;
2 4
I
. D.
1
2 2
m
I
.
Câu 179. [0D2-2] Tìm tập xác đnh ca hàm s
2
4 3
3
x
y x x
x
.
A.
;1 3;

. B.
;1 3;

. C.
3;
. D.
1;3
.
O
x
y
1
1
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 17
Câu 180. [0D2-2] Hàm s
2
4 3
y x x
đồng biến trên khong nào?
A.
1;3
. B.
;2
 . C.
;

. D.
2;
.
Câu 181. [0D2-2] Đồ th hàm s
2 2
2 2
y mx mx m
0
m parabol đỉnh nằm trên đường
thng
3
y x
thì
m
nhn giá tr nm trong khoảng nào dưới đây?
A.
1;6
. B.
; 2

. C.
3;3
. D.
0;

.
Câu 182. [0D2-2] Xác định
a
,
b
,
c
biết Parabol đồ th m s
2
y ax bx c
đi qua các điểm
0; 1
M ,
1; 1
N ,
1;1
P .
A.
2
1
y x x
. B.
2
1
y x x
. C.
2
2 1
y x . D.
2
1
y x x
.
Câu 183. [0D2-2] Tìm hàm s bc hai bng biến thiên như hình v dưới đây:
A.
2
4 5
y x x
. B.
2
4 3
y x x
. C.
2
4 5
y x x
. D.
2
2 2
y x x .
Câu 184. [0D2-2] Cho parabol
P
có phương trình
2
3 2 4
y x x . Tìm trục đối xng ca parabol
A.
2
3
x . B.
1
3
x . C.
2
3
x . D.
1
3
x .
Câu 185. [0D2-2] Cho
H
là đồ th hàm s
2
10 25 5
f x x x x . Xét các mnh đề sau:
I
.
H
đối xng qua trc
Oy
.
II
.
H
đối xng qua trc
Ox
.
III
.
H
không có tâm đối xng.
Mệnh đề nào đúng?
A. Ch
I
đúng. B.
I
III
đúng.
C.
II
III
đúng. D. Ch
II
đúng.
Câu 186. [0D2-2] Tìm tt c các giá tr ca tham s
m
để hàm s
2 2
y m x m
đồng biến trên
.
A.
2
m
. B.
2
m
. C.
2
m
. D.
2
m
.
Câu 187. [0D2-2] Tìm parabol
2
: 3 2
P y ax x
, biết rng parabol trục đối xng
3.
x
A.
2
3 2
y x x
. B.
2
1
2
2
y x x
. C.
2
1
3 2
2
y x x
. D.
2
1
3 2
2
y x x
.
Câu 188. [0D2-2] Hàm s
2 1
y x
có đồ th là hình nào trong các hình sau?
x
y
O
1

x
y
O
1

x
y
O
1

x
y
O
1

Hình 1 Hình 2 Hình 3 Hình 4
A. Hình 2 B. Hình 4. C. Hình 3. D. Hình 1.
Câu 189. [0D2-2] Đồ th hình bên dưới đồ th ca hàm s nào?
A.
2
3 1
y x x
.
B.
2
2 3 1
y x x
.
C.
2
3 1
y x x
.
D.
2
2 3 1
y x x
.
O
x
y
1
1
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 18
Câu 190. [0D2-2] Cho hàm s
2
f x x x
. Khẳng định nào sau đây là đúng?
A. Đồ th ca hàm s
f x
đối xng qua trc hoành.
B.
f x
là hàm s chn.
C. Đồ th ca hàm s
f x
đối xng qua gc ta độ.
D.
f x
là hàm s l.
Câu 191. [0D2-2] Biết rng hàm s
2
0
y ax bx c a
đạt cc tiu bng
4
ti
2
x
đ th
hàm s đi qua điểm
0;6
A . nh tích
P abc
.
A.
6
P
. B.
3
P
. C.
6
P
. D.
3
2
P
.
Câu 192. [0D2-2] Cho hàm s
2
2 4 3
y x x
đồ th parabol
P
. Mệnh đề nào sau đây sai?
A.
P
không có giao đim vi trc hoành. B.
P
đỉnh
1;1
S .
C.
P
có trục đi xứng là đường thng
1
y
. D.
P
đi qua điểm
1; 9
M .
Câu 193. [0D2-2] Cho hàm s:
2
2 3 khi 1 1
1 khi 1
x x
f x
x x
. Giá tr ca
1
f
;
1
f
lần t
A.
8
0
. B.
0
8
. C.
0
0
. D.
8
4
.
Câu 194. [0D2-2] Hàm s
2
2 5
y x x
đồng biến trên khong:
A.
1;

. B.
; 1

. C.
1;

. D.
;1

.
Câu 195. [0D2-2] Cho hàm s
2
y ax bx c
có đồ th như hình v, t du các h s ca nó là
A.
0, 0, 0
a b c
. B.
0, 0, 0
a b c
. C.
0, 0, 0
a b c
. D.
0, 0, 0
a b c
.
Câu 196. [0D2-2] Cho hàm s
2 1 khi 3
7
khi 3
2
x x
y
x
x
. Biết
0
5
f x
thì
0
x
là
A.
2
. B.
3
. C.
0
. D.
1
.
Câu 197. [0D2-2] Parabol
2
y ax bx c
đạt cc tiu bng
4
ti
2
x
đồ th đi qua
0;6
A
phương trình
A.
2
1
2 6
2
y x x
. B.
2
6 6
y x x
. C.
2
4
y x x
. D.
2
2 6
y x x
.
Câu 198. [0D2-2] Hàm s nào trong các hàm s sau không hàm s chn
A.
3 3
2 2 5
y x x
. B.
3 3
2 2
y x x
.
C.
2
1
2 2
x
y
x x
. D.
1 2 1 2
y x x
.
Câu 199. [0D2-2] Biết ba đưng thng
1
: 2 1
d y x
,
2
: 8
d y x
,
3
: 3 2 2
d y m x
đồng quy. Giá
tr ca
m
bng
A.
3
2
m
. B.
1
m
. C.
1
m
. D.
1
2
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 19
Câu 200. [0D2-2] Xác định phương trình của Parabol đỉnh
0; 1
I
và đi qua điểm
2;3
A .
A.
2
1
y x
. B.
2
1
y x
. C.
2
1
y x
. D.
2
1
y x
.
Câu 201. [0D2-2] Trong các hàm s sau có bao nhiêu hàm s đ th đối xng qua trc
Oy
:
1)
2
25 1
|3 | | 3 |
x
y
x x
; 2)
|1 4 | |1 4 |
y x x
;
3)
4 4
5 5 6
y x x
; 4)
3 3
8 8
y x x
.
A.
2
. B.
3
. C.
1
. D.
4
.
Câu 202. [0D2-2] Đồ thm s
4 2
2017 2018
y x x ct trc hoành tại bao nhiêu đim?
A.
3
. B.
1
. C.
2
. D.
4
.
Câu 203. [0D2-2] Hàm s
2
2 16 25
y x x
đồng biến trên khong:
A.
6;

. B.
4;

.
C.
;8
 . D.
; 4

.
Câu 204. [0D2-2] m tt c các giá tr ca tham s
m
đ đường thng
: 2 3
d y x
ct parabol
2
2
y x m x m
tại hai điểm phân bit nmng phía vi trc tung
.
Oy
A.
3
m
. B.
3
m
. C.
3
m
. D.
0
m
.
Câu 205. [0D2-2] Cho hàm s
2
2 4
y x x
có đồ th
P
. Tìm mệnh đề sai.
A.
P
có đỉnh
1;3
I . B.
min 4, 0;3
y x .
C.
P
có trục đi xng
1
x
. D.
max 7, 0;3
y x .
Câu 206. [0D2-2] Hàm s
2
2 3
y x x
có đồ th là hình nào trong các hình sau?
A. B. C. D.
Câu 207. [0D2-2] Trong các hàm s sau, bao nhiêu hàm s chn:
2
20
y x
,
4
7 2 1
y x x
,
4
10
x
y
x
,
2 2
y x x
,
4 4
4
x x x x
y
x
?
A.
3
. B.
1
. C.
4
. D.
2
.
Câu 208. [0D2-2] Hàm s nào cho dưới đây bảng biến thiên như hình bên?
x

2

y

1

A.
2
1
2 1
2
y x x
. B.
2
4 5
y x x
.
C.
2
2 8 7
y x x
. D.
2
4 3
y x x
.
1
1
3
4
1
1
2
5
4
2
O
x
y
3
5
6
1
1
3
4
1
1
2
3
4
2
O
x
y
3
1
1
3
4
1
1
2
3
4
2
O
x
y
3
1
1
3
4
1
1
2
3
4
2
O
x
y
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 20
Câu 209. [0D2-2] Hàm s o cho dưới đây có đồ th như hình v n:
A.
2 2
y x
.
B.
2
y x
.
C.
2
y x
.
D.
2 2
y x
.
Câu 210. [0D2-2] Cho hàm s
2
y ax bx c
có đồ th như hình bên. Khẳng định nào sau đây đúng?
A.
0, 0, 0
a b
.
B.
0, 0, 0
a b
.
C.
0, 0, 0
a b
.
D.
0, 0, 0
a b
.
Câu 211. [0D2-2] Tập xác định ca hàm s
2
3 1
5 6
x x
y
x x
là
A.
1;3 \ 2
. B.
1;2
. C.
1;3
. D.
2;3
.
Câu 212. [0D2-2] Hàm s nào dưới đây đồng biến trên
3;4
?
A.
2
1
2 1
2
y x x
. B.
2
7 2
y x x
. C.
3 1
y x
. D.
2
1
1
2
y x x
.
Câu 213. [0D2-2] Hàm s nào sau đây bng biến thiên như hình bên?
A.
2
5 2
y x x
. B.
2
1
2
y x x
. C.
2
3 1
y x x
. D.
2
1
3
4
y x x
.
Câu 214. [0D2-2] Cho hàm s
y ax b
đồ th như hình v bên.
Khẳng định nào sau đây đúng?
A.
0
a
,
0
b
.
B.
0
a
,
0
b
.
C.
0
a
,
0
b
.
D.
0
a
,
0
b
.
Câu 215. [0D2-2] Cho các hàm s
1
y x
,
2
2
y x
,
2
1
x
y
x
,
4 2
2 3
1
x x
y
x
. Khẳng đnh o
sau đây sai?
A. hai hàm s đồ th nhn gc ta độ làm tâm đối xng.
B. Có hai hàm s chn.
C. mt hàm s không chn, không l.
D. mt hàm s l.
Câu 216. [0D2-2] Hàm s nào sau đây có tập xác đnh là
?
A.
2
1
x
y
x
. B.
3
3 2 3
y x x
. C.
3
3 2 3
y x x
. D.
2
1
x
y
x
.
x

1

y

1
2

TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 21
Câu 217. [0D2-2] Cho hàm s
1 1
y f x x x
. Mệnh đề nào sau đây sai?
A. Hàm s
y f x
có tập xác định là
.
C. Đồ th hàm s
y f x
nhn trc
Oy
là trục đi xng.
B. m s
y f x
là hàm s chn.
D. Đồ th hàm s
y f x
nhn gc tọa độ
O
là tâm đối xng.
Câu 218. [0D2-1] Tìm
m
để hàm s
3 2
y m x
nghch biến trên
.
A.
0
m
. B.
3
m
. C.
3
m
. D.
3
m
.
Câu 219. [0D2-2] Đường thng
y ax b
có h s góc bng
2
và đi qua đim
3;1
A là
A.
2 1
y x
. B.
2 7
y x
. C.
2 5
y x
. D.
2 5
y x
.
Câu 220. [0D2-2] Hàm s
2
5 6 7
y x x
có giá tr nh nht khi
A.
3
5
x
. B.
6
5
x
. C.
3
5
x
. D.
6
5
x
.
Câu 221. [0D2-2] Hàm s nào có đồ th như hình v sau
A.
2
3 1
y x x
. B.
2
2 5 1
y x x
.
C.
2
2 5 1
y x x
. D.
2
2 5
y x x
.
Câu 222. [0D2-2] Hi bao nhiêu giá tr
m
nguyên trong na khong
10; 4
để đường thng
: 1 2
d y m x m
ct Parabol
2
: 2
P y x x
tại hai điểm phân bit cùng phía vi
trc tung?
A.
6
. B.
5
. C.
7
. D.
8
.
Câu 223. [0D2-2] Hàm s nào sau đây là hàm số l?
A.
g x x
. B.
2
k x x x
. C.
1
h x x
x
. D.
2
1 2
f x x
.
Câu 224. [0D2-2] Cho hàm s
2
y ax bx c
đ th như hình
v dưới đây. Mệnh nào sau đây đúng?
A.
0
a
,
0
b
,
0
c
. B.
0
a
,
0
b
,
0
c
.
C.
0
a
,
0
b
,
0
c
. D.
0
a
,
0
b
,
0
c
.
Câu 225. [0D2-2] Đường thẳng đi qua đim
2; 1
M
vng c với đường thng
1
5
3
y x
phương trình
A.
3 7
y x
. B.
3 5
y x
. C.
3 7
y x
. D.
3 5
y x
.
Câu 226. [0D2-2] Đim
A
hoành độ
1
A
x
thuc đồ th hàm s
2 3
y mx m
. Tìm
m
để đim
A
nm trong na mt phng ta độ phía trên trc hoành (không cha trc hoành).
A.
0
m
.
B.
0
m
. C.
1
m
. D.
0
m
.
Câu 227. [0D2-2] m
m
để Parabol
2 2
: 2 1 3
P y x m x m
ct trc hoành ti
2
điểm phân
bit có hoành độ
1
x
,
2
x
sao cho
1 2
. 1
x x
.
A.
2
m
. B. Không tn ti
m
.
C.
2
m
. D.
2
m
.
O
x
y
1
O
x
y
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 22
Câu 228. [0D2-2] Đồ th dưới đây là của hàm s nào sau đây?
A.
2
2 3
y x x
. B.
2
2 2
y x x
.
C.
2
2 4 2
y x x
. D.
2
2 1
y x x
.
Câu 229. [0D2-2] Tìm tập xác đnh ca hàm s
1
1
3
y x
x
.
A.
3;D
. B.
1; \ 3
D . C.
3;D
. D.
1; \ 3
D .
Câu 230. [0D2-2] Tìm
m
để Parabol
2
: 2 3
P y mx x
có trục đối xứng đi qua điểm
2;3
A .
A.
2
m
. B.
1
m
.
C.
1
m
. D.
1
2
m
.
Câu 231. [0D2-2] Cho parabol
2
: , 0
P y ax bx c a
có đồ th
như hình bên. Khi đó
2 2
a b c
có giá tr
A.
9
. B.
9
.
C.
6
. D.
6
.
Câu 232. [0D2-2] Cho hàm s
2 1 2 1
f x x x
3
2 3
g x x x
. Khi đó khẳng định nào dưới
đây là đúng?
A.
f x
là hàm s l,
g x
là hàm s chn. B.
f x
g x
đều là hàm s l.
C.
f x
g x
đều là hàm s l. D.
f x
là hàm s chn,
g x
là hàm s l.
Câu 233. [0D2-2] Ta độ giao đim của đường thng
: 4
d y x
và parabol
2
7 12
y x x
là
A.
2;6
4;8
. B.
2;2
4;8
. C.
2; 2
4;0
. D.
2;2
4;0
.
Câu 234. [0D2-2] Cho hàm s
2
y ax bx c
đồ th như hình dưới đây. Khẳng định nào sau đây
đúng?
A.
0
a
,
0
b
,
0
c
.
B.
0
a
,
0
b
,
0
c
.
C.
0
a
,
0
b
,
0
c
.
D.
0
a
,
0
b
,
0
c
.
Câu 235. [0D2-2] Hàm s nào sau đây đ th như hình bên?
A.
2
2 3
y x x
. B.
2
4 3
y x x
.
C.
2
4 3
y x x
. D.
2
2 3
y x x
.
Câu 236. [0D2-2] Bng biến thiên ca hàm s
2
2 4 1
y x x
là bảng nào sau đây?
A. . B. .
C. D. .
x
y
3
-4
-1
2
O
1
O
x
y
2
2
4
6
5
y
x
3
-3
1
2
O
1
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 23
Câu 237. [0D2-2] Tập xác định ca hàm s 8 2
y x x
là
A.
;4
 . B.
4;

. C.
0;4
. D.
0;

.
Câu 238. [0D2-2] Cho hàm s
3
2 3
khi 0
1
2 3
khi 2 0
2
x
x
x
f x
x
x
x
. Ta có kết qu nào sau đây đúng?
A.
1
1 ;
3
f
7
2
3
f
. B.
0 2;
f
3 7
f .
C.
1
f
: không xác đnh;
11
3
24
f
. D.
1 8; 3 0
f f
.
Câu 239. [0D2-2] Cho hàm s
3
3
6 2
2
khi
khi
khi
2
6 2
x x
x x
x
f x
x
. Khẳng đnh nào sau đây đúng?
A. Đồ th ca hàm s
f x
đối xng qua gc ta độ.
B. Đồ th ca hàm s
f x
đối xng qua trc hoành.
C.
f x
là hàm s l.
D.
f x
là hàm s chn.
Câu 240. [0D2-2] Tìm tập xác đnh ca hàm s
2
4 4 1
y x x
.
A.
1
;
2

. B.
1
;
2

. C.
. D.
.
Câu 241. [0D2-2] Parabol
2
y ax bx c
đi qua
8;0
A đỉnh
6; 12
I . Khi đó tích
. .
a b c
bằng
A.
10368
. B.
10368
. C.
6912
. D.
6912
.
Câu 242. [0D2-2] Đồ thị của hàm s
2 1
3 3
y x
là
A. . B. .
C. . D. .
O
x
1
2
1
3
y
d
O
x
y
1
3
1
2
d
O
x
y
1
2
1
3
d
O
x
y
1
1
3
d
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 24
Câu 243. [0D2-2] Tập xác định của hàm s
1
3
1
f x x
x
là
A.
1; 3
D . B.
;1 3;D
 
.
C.
1;3
D . D. D
.
Câu 244. [0D2-2] Cho hai hàm số:
2017 12 2017 12
f x x x
3
2018
g x x x
. Khi đó
A.
f x
g x
đều là hàm s lẻ. B.
f x
lẻ,
g x
chẵn.
C.
f x
chẵn,
g x
lẻ. D.
f x
g x
đều là hàm số chẵn.
Câu 245. [0D2-2] Cho hàm s bậc nhất
2
4 4 3 2
y m m x m
có đ th là
d
. Tìm s giá trị
nguyên dương của
m
để đường thẳng
d
cắt trục hoành trục tung lần lượt tại hai điểm
A
,
B
sao cho tam giác
OAB
là tam giác cân (
O
là gốc tọa độ).
A.
3
. B.
1
. C.
2
. D.
4
.
Câu 246. [0D3-2] Tìm g tr nhỏ nhất của hàm s
3 3
4 2 2
16 64 3 8 1
y x x x
.
A.
5
4
. B.
1
. C.
1
. D. Một đáp án khác.
Câu 247. [0D2-2] Cho hai đường thng
1
1
: 100
2
d y x và
2
1
: 100
2
d y x . Mệnh đề nào sau
đây đúng?
A.
1
d
2
d
trùng nhau. B.
1
d
2
d
vuông góc nhau.
C.
1
d
2
d
ct nhau. D.
1
d
2
d
song song vi nhau.
Câu 248. [0D2-2] Trong các hàm s sau, hàm s nào không phi là hàm s l?
A.
1
y
x
. B.
3
1
y x
. C.
3
y x x
. D.
3
y x x
.
Câu 249. [0D2-2] Tp hp nào sau đây là tập xác định ca hàm s
1 5
7 2
x
y x
x
?
A.
1 7
;
5 2
. B.
1 7
;
5 2
. C.
1 7
;
5 2
. D.
1 7
;
5 2
Câu 250. [0D2-2] Cho hàm s
2
2 1
y x x
. Chn câu sai.
A. Đồ th hàm s có trục đối xng
1
x
. B. Hàm s không chn, không l.
C. Hàm s tăng trên khoảng
; 1

. D. Đ th hàm s nhn
1;4
I
làm đnh.
Câu 251. [0D2-2] Cho hàm s
2
2 3
y x x
. Chọn câu đúng.
A. Hàm s nghch biến trên khong
1;
.
B. m s nghch biến trên khong
;1

.
C. Hàm s đồng biến trên
. D. Hàm s đồng biến trên khong
;1

.
Câu 252. [0D2-2] Đồ th hàm s
y ax b
ct trc hoành tại điểm hoành độ
3
x
đi qua điểm
2;4
M
. Giá tr
a
,
b
là:
A.
4
5
a
;
12
5
b
. B.
4
5
a
;
12
5
b
. C.
4
5
a
;
12
5
b
. D.
4
5
a
;
12
5
b
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 25
Câu 253. [0D2-3] Tìm các giá tr thc ca tham s
m
để đường thng
2
3 3 1
y m x m
song song
với đường thng
5
y x
?
A.
2
m
. B.
2
m
. C.
2
m
. D.
2
m
.
Câu 254. [0D2-3] Khi nuôit nghim trong h, mt nhà sinh hc thy rng: Nếu trên mi đơn vị din
tích ca mt h có
n
con t trung bình mi con sau mt v cân nng
360 10
P n n
(gam). Hi phi th bao nhiêu con cá trên mt đơn vị diện tích để trng lương
cá sau mt v thu được nhiu nht?
A.
12
. B.
18
. C.
36
. D.
40
.
Câu 255. [0D2-3] Dây truyn đỡ trên cu treo
dng Parabol
ACB
như hình v.
Đầu, cui của y được gn vào các
điểm
A
,
B
trên mi trc
AA
BB
với độ cao
30m
. Chiều dài đoạn
A B
trên nn cu bng
200m
.
Độ cao ngn nht ca dây truyn trên cu là
5m
OC
. Gi
Q
,
P
,
H
,
O
,
I
,
J
,
K
là các
điểm chia đon
A B
thành các phn bng nhau. Các thanh thẳng đứng ni nn cu với đáy y
truyn:
QQ
,
PP
,
HH
,
OC
,
II
,
JJ
,
KK
gi các dây cáp treo. Tính tổng độ dài ca các
dây cáp treo?
A. Đáp án khác. B.
36,87m
.
C.
73,75m
. D.
78,75m
.
Câu 256. [0D2-3] Hàm s nào sau đây đ th như hình bên?
A.
2
3 3
y x x
.
B.
2
5 3
y x x
.
C.
2
3 3
y x x
.
D.
2
5 3
y x x
.
Câu 257. [0D2-3] Cho parabol
2
4
y ax bx
trục đối xứng là đường thng
1
3
x
đi qua điểm
1;3
A . Tng giá tr
2
a b
là
A.
1
2
. B.
1
. C.
1
2
. D.
1
.
Câu 258. [0D2-3] Để đ th hàm s
2 2
2 1
y mx mx m
0
m
đỉnh nm trên đường thng
2
y x
thì
m
nhn g tr nm trong khoảng nào dưới đây?
A.
2; 6
. B.
; 2

. C.
0; 2
. D.
2; 2
.
Câu 259. [0D2-3] Đồ thm s
2
6 5
y x x
.
A. có tâm đối xng
3; 4
I
.
B. có tâm đối xng
3; 4
I
và trục đối xứng có phương trình
0
x
.
C. không có trục đối xng.
D. có trục đối xứng là đường thẳng có phương trình
0
x
.
A
B
Q
P
H
C
I
J
K
B
Q
P
H
C
I
J
K
A
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 26
Câu 260. [0D2-3] Mt h nông dân định trồng đậu cà trên din tích
800
m
2
. Nếu trng đậu thì cn
20
công và thu
3.000.000
đồng trên
100
m
2
nếu trng t cn
30
công và thu
4.000.000
đồng
trên
100
m
2
Hi cn trng mi loi y trên diện tích bao nhiêu để thu được nhiu tin nht
khi tng s công không quá
180
. Hãy chọn phương án đúng nhất trong các phương án sau:
A. Trng
600
m
2
đậu,
200
m
2
cà. B. Trng
500
m
2
đậu,
300
m
2
cà.
C. Trng
400
m
2
đậu,
200
m
2
cà. D. Trng
200
m
2
đậu,
600
m
2
cà.
Câu 261. [0D2-3] Tìm điểm
;
M a b
vi
0
a
nm trên
: 1 0
x y
cách
1;3
N mt khong
bng
5
. Giá tr ca
a b
là
A.
3
. B.
1
. C.
11
. D.
1
.
Câu 262. [0D2-3] Cho hàm s
y f x
bng biến thiên như sau:
Vi giá tr nào ca tham s
m
t phương trình
1
f x m
có bn nghim phân bit.
A.
1
m
. B.
1 3
m
. C.
0 1
m
. D.
3
m
.
Câu 263. [0D2-3] Cho hàm s
2
f x ax bx c
đồ th như hình bên dưới. Hi vi nhng gtr nào
ca tham s
m
t phương trình
1
f x m
có đúng
3
nghim phân bit.
A.
2 2
m
.
B.
3
m
.
C.
3
m
.
D.
2
m
.
Câu 264. [0D2-3] Cho hai hàm s
2
1
1
y x m x m
,
2
2 1
y x m
. Khi đồ th hai hàm s ct nhau
tại hai điểm pn bit t
m
có giá tr
A.
0
m
. B.
0
m
. C.
m
tùy ý. D. không có giá tr nào.
Câu 265. [0D2-3] Đường thng
: 2 6
m
d m x my
ln đi qua đim:
A.
3; 3
B.
2;1
C.
1; 5
D.
3;1
Câu 266. [0D2-3] Cho parabol
2
: 2.
P y ax bx
Xác định h s
a
,
b
biết
P
có đỉnh
2; 2
I
.
A.
1
a
,
4
b
. B.
1
a
,
4
b
. C.
1
a
,
4
b
. D.
4
a
,
1
b
.
Câu 267. [0D2-3] Cho hàm s
2
f x ax bx c
đồ th như hình bên
dưới. Hi vi nhng giá tr nào ca tham s
m
thì phương
tnh
1
f x m
có đúng
2
nghim phân bit.
A.
0
1
m
m
. B.
0
1
m
m
.
C.
1
m
. D.
0
m
.
Câu 268. [0D2-3] Mt ca hàng buôn giày nhp một đôi với g
40
đôla. Cửa hàng ước tính rng nếu
đôi giày được bán vi g
x
đôla thì mi tháng khách hàng s mua
120
x
đôi. Hỏi ca hàng
bán mt đôi giày giá bao nhiêu t thu được nhiu lãi nht?
A.
80
USD. B.
160
USD. C.
40
USD. D.
240
USD.
x
y
O
2

x
y
O
2

TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 27
Câu 269. [0D2-3] Cho hàm s
2 2
y m x m
. Có bao nhiêu giá tr nguyên ca
m
để hàm s
đồng biến trên
?
A.
2
. B.
3
. C.
4
. D.
5
.
Câu 270. [0D2-3] Tập xác định ca hàm s
2
2
9
6 8
x
y
x x
là
A.
3;8 \ 4
. B.
3;3 \ 2
. C.
3;3 \ 2
. D.
;3 \ 2
 .
Câu 271. [0D2-3] Trong các hàm s sau có bao nhiêu hàm s đ th nhn gc ta độ làm m đối
xng:
2
1
y x
;
5 3
y x x
;
y x
;
2
1
x
y
x
;
3 2
y x x
;
2
2 3
y x x
;
2
3 3
x x
y
x
.
A.
2
. B.
3
. C.
1
. D.
4
.
Câu 272. [0D2-3] Parabol
2
: 2
P y x ax b
đim
1;3
M với tung độ ln nhất. Khi đó giá trị
ca
b
là
A.
5
. B.
1
.
C.
2
. D.
3
.
Câu 273. [0D2-3] Cho hàm s
2
y ax bx c
đồ th như hình v
bên. Mệnh đề o dưới đây đúng?
A.
0
a
,
0
b
,
0
c
. B.
0
a
,
0
b
,
0
c
.
C.
0
a
,
0
b
,
0
c
. D.
0
a
,
b 0
,
c 0
.
Câu 274. [0D2-3] Một giá đỡ được gn vào bức tường như
hình v. Tam giác
ABC
vuông cân đnh
C
.
Người ta treo o đim
A
mt vt có trng lưng
10 N
. Khi đó lực tác đng o bc tường ti hai
điểm
B
C
cường độ ln lượt là:
A.
10 2 N
10 N
. B.
10 N
10 N
.
C.
10 N
10 2 N
. D.
10 2 N
10 2 N
.
Câu 275. [0D2-3] Tìm
m
để hàm s
2
2 2 3
y x x m
có giá tr nh nhất trên đoạn
2;5
bng
3
.
A.
3
m
. B.
9
m
. C.
1
m
. D.
0
m
.
Câu 276. [0D2-3] Xác định các h s
a
b
để Parabol
2
: 4
P y ax x b
có đỉnh
1; 5
I
.
A.
3
.
2
a
b
B.
3
.
2
a
b
C.
2
.
3
a
b
D.
2
.
3
a
b
Câu 277. [0D2-3] Cho parabol
2
:
P y ax bx c
0
a
đồ
th như hình bên. Tìm các giá tr
m
để phương trình
2
ax bx c m
có bn nghim phân bit.
A.
1 3
m
.
B.
0 3
m
.
C.
0 3
m
.
D.
1 3
m
.
O
x
y
1
10N
A
B
C
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 28
Câu 278. [0D2-3] Tìm tt c các giá tr
m
để đường thng
3 2
y mx m
ct parabol
2
3 5
y x x
ti
2
đim phân biệt có hoành độ trái du.
A.
3
m
. B.
3 4
m
. C.
4
m
. D.
4
m
.
Câu 279. [0D2-3] Đường thng
: 3 2 1
d y m x m
ct hai trc ta độ tại hai điểm
A
B
sao cho
tam giác
OAB
cân. Khi đó, số giá tr ca
m
tha mãn là
A.
1
. B.
0
. C.
3
. D.
2
.
Câu 280. [0D2-3] Cho parabol
2
0
y ax bx c a
,
P
có đồ thị như hình v.
Biết đồ th
P
cắt trục
Ox
tại các điểm lần lượt hoành độ là
2
,
2
.
Tập nghiệm của bất phương trình
0
y
A.
; 2 2;

. B.
2;2
.
C.
2;2
. D.
; 2 2;

.
Câu 281. [0D2-3] Các đường thẳng
5 1
y x
; 3
y x a
;
3
y ax
đồng quy với g trị của
a
là
A.
11
. B.
10
. C.
12
. D.
13
.
Câu 282. [0D2-3] Tìm
m
để hàm s
2 3 3 1
5
x m x
y
x m
x m
xác định trên khoảng
0;1
.
A.
3
1;
2
m
. B.
3;0
m . C.
3;0 0;1
m . D.
3
4;0 1;
2
m
.
Câu 283. [0D2-4] Tìm các giá tr thc ca tham s
m
để hàm s
2
x m
y
x m
xác định trên
1;2
.
A.
1
2
m
m
. B.
1
2
m
m
. C.
1
2
m
m
. D.
1 2
m
.
Câu 284. [0D2-4] Mt doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loi. Hin nay doanh
nghip đang tp trung chiến lược vào kinh doanh xe hon đa Future Fi vi chi p mua vào mt
chiếc
27
(triệu đồng) bán ra vi g
31
triệu đồng. Vi gbán này t s lưng xe mà
khách hàng s mua trong mt năm
600
chiếc. Nhm mục tiêu đẩy mạnh hơn nữa lượng tiêu
th ng xe đang ăn khách này, doanh nghiệp d đnh giảm g bán và ưc tính rng nếu gim
1
triệu đồng mi chiếc xe thì s lượng xe bán ra trong mt năm sẽ tăng thêm
200
chiếc. Vy
doanh nghip phi đnh giá bán mi bao nhiêu để sau khi đã thc hin gim giá, li nhun
thu được s là cao nht.
A.
30
triu đồng. B.
29
triu đồng. C.
triu đồng. D.
29,5
triu đồng.
Câu 285. [0D2-4] Cng Arch ti tnh ph St Louis ca M hình dng là mt parabol (hình v). Biết
khong ch gia hai chân cng bng
162m
. Trên thành cng, ti v trí độ cao
43m
so vi
mặt đt (đim
M
), ngưi ta th mt si dây chạm đất (y căng thẳng theo phương vuông góc
với đất). V t chạm đất của đầu si dây này cách chân cng A một đoạn
10m
. Gi s các s liu
trên là chính xác. Hãy tính đ cao ca cng Arch (tính t mặt đất đến điểm cao nht ca cng).
A.
175,6
m. B.
197,5
m. C.
210
m. D.
185,6
m.
O
x
y
2
2
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 29
Câu 286. [0D2-4] Đồ th hàm s
2 1
y x m
to vi h trc tọa độ
Oxy
tam giác din tích bng
25
2
. Khi đó
m
bng
A.
2
m
;
3
m
. B.
2
m
;
4
m
. C.
2
m
;
3
m
. D.
2
m
.
Câu 287. [0D2-4] Khi qu bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rng qu đạo
ca qu là mt cung parabol trong mt phng vi h ta độ
Oth
,trong đó
t
là thi gian (tính
bng giây ), k t khi qu bóng được đá lên;
h
độ cao( tính bng mét ) ca qu bóng. Gi
thiết rng qu bóng được đá lên t độ cao
1,2m
. Sau đó
1
giây, đạt đ cao
8,5m
2
giây
sau khi đá lên, đ cao
6m
. Hãy tìm hàm s bc hai biu th độ cao
h
theo thi gian
t
phn đồ th trùng vi qu đo ca qu bóng trong tình hung trên.
A.
2
4,9 12,2 1,2
y t t . B.
2
4,9 12,2 1,2
y t t .
C.
2
4,9 12,2 1,2
y t t . D.
2
4,9 12,2 1,2
y t t .
Câu 288. [0D2-4] Hi bao nhiêu giá tr
m
nguyên trong na khong
0;2017
để phương trình
2
4 5 0
x x m
có hai nghim phân bit?
A.
2016
. B.
2008
. C.
2009
. D.
2017
.
Câu 289. [0D2-4] Trong mt phng tọa độ
Oxy
, cho hai điểm
1;2
A
3;4
B . Đim
;0
a
P
b
(vi
a
b
là phân s ti gin) trên trc hoành tha mãn tng khong cách t
P
tới hai điểm
A
B
là
nh nht. Tính
S a b
.
A.
2
S
B.
8
S
. C.
7
S
. D.
4
S
.
Câu 290. [0D2-4] Cho hàm s
2
1
2
y x m x m
m
0
m
xác định trên
1;1
. Giá tr lớn nhất,
giá tr nhỏ nhất của hàm strên
1;1
lần lượt là
1
y
,
2
y
thỏa mãn
1 2
8
y y
. Khi đó giá trị
của
m
bằng
A.
1
m
. B. m
. C.
2
m
. D.
1
m
,
2
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 30
Chủ đề 3. PHƯƠNG TRÌNH. HỆ PHƯƠNG TRÌNH
Câu 291. [0D3-1] Điu kin xác định của phương trình
1 2 3
x x x
là
A.
3
x
. B.
2
x
. C.
1
x
. D.
3
x
.
Câu 292. [0D3-1] Tp hp các giá tr của m để phương trình
2
1 0
x mx m
hai nghim trái du?
A.
1;10
. B.
1;

. C.
1;

. D.
2 8;

.
Câu 293. [0D3-1] Phương trình
2
1 3 1 0
m x x
có nghim khi ch khi
A.
5
4
m
. B.
5
4
m
. C.
5
4
m
. D.
5
4
m
,
1
m
.
Câu 294. [0D3-1] Biết phương trình
2
0
ax bx c
,
( 0)
a
có hai nghim
1
x
,
2
x
. Khi đó:
A.
1 2
1 2
a
x x
b
a
x x
c
. B.
1 2
1 2
b
x x
a
c
x x
a
. C.
1 2
1 2
2
2
b
x x
a
c
x x
a
. D.
1 2
1 2
b
x x
a
c
x x
a
.
Câu 295. [0D3-1] Vi
m
bng bao nhiêu thì phương trình
1 0
mx m
vô nghim?
A.
0
m
. B.
0
m
1
m
. C.
1
m
. D.
1
m
.
Câu 296. [0D3-1] Cp s
;
x y
nào sau đây không là nghiệm của phương trình
2 3 5
x y ?
A.
5
; ; 0
2
x y . B.
; 1; 1
x y . C.
5
; 0;
3
x y . D.
; 2; 3
x y .
Câu 297. [0D3-1] Giá tr
2
x
là điều kin của phương trình o sau đây?
A.
1
2 1
2
x x
x
. B.
1
2 0
x x
x
.
C.
1
2
4
x x
x
. D.
1
0
2
x
x
.
Câu 298. [0D3-1] Tìm nghim ca h phương trình
2 3 0
4 2
x y
x y
.
A.
; 2;1
x y . B.
10 1
; ;
7 7
x y
. C.
10 1
; ;
7 7
x y
. D.
; 2; 1
x y
.
Câu 299. [0D3-1] Phương trình
2
2 2 0
x mx m
có mt nghim
2
x
t
A.
1
m
. B.
1
m
.
C.
2
m
. D.
2
m
.
Câu 300. [0D3-1] Phương trình
3 2 5 0
x y
nhn cp s nào sau đây là nghiệm
A.
2; 3
. B.
1; 1
. C.
3;2
. D.
1;1
.
Câu 301. [0D3-1] Khng định đúng nhất trong các khẳng định sau:
A. Phương trình:
3 5 0
x
có nghim là
5
3
x
.
B. Phương trình:
0 7 0
x
nghim.
C. Phương trình:
0 0 0
x
có tp nghim
.
D. C A, B, C đều đúng.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 31
Câu 302. [0D3-1] Gi s
1
x
2
x
hai nghim của phương trình:
2
3 10 0
x x
. Giá tr ca tng
1 2
1 1
x x
A.
3
10
. B.
10
3
. C.
3
10
. D.
10
3
.
Câu 303. [0D3-1] Phương trình sau có bao nhiêu nghim: 2 2
x x
?
A.
0
. B.
1
. C.
2
. D. s.
Câu 304. [0D3-1] Cho đ th hàm s
y f x
như hình v
-4 -3 -2 -1 1 2 3 4
-4
-2
2
4
x
y
Kết lun nào trong các kết lun sau là đúng:
A. Hàm s l. B. m s va chn va l.
C. Đồng biến trên
. D. Hàm s chn.
Câu 305. [0D3-1] Cho phương trình: 2 2
x x
1
. Tp hp các nghim của phương trình
1
là tp
hp o sau đây?
A.
; 2
 . B.
. C.
2;
. D.
0;1; 2
.
Câu 306. [0D3-1] S nghim của phương trình
2
1 1
2
1 1
x x
x x
A.
0
. B.
1
. C.
2
. D.
3
.
Câu 307. [0D3-1] Gii phương trình
1 3 3 1 0
x x
.
A.
1
;
3
. B.
1
2
. C.
1
;
3

. D.
1
;
3
.
Câu 308. [0D3-1] Hãy ch ra phương trình bc nhất trong các phương trình sau:
A.
1
2
x
x
. B.
2
4 0
x
. C.
2 7 0
x
. D.
. 5 0
x x
.
Câu 309. [0D3-1] B
2; 1
;
1;
;x y z là nghim ca h phương trình nào sau đây?
A.
3 2 3
2 6
5 2 3 9
x y z
x y z
x y z
. B.
2 1
2 6 4 6
2 5
x y z
x y z
x y
. C.
3 1
2
0
x y z
x y z
x y z
. D.
2
2 6
10 4 2
x y z
x y z
x y z
.
Câu 310. [0D3-1] Cho phương trình
0
ax b
. Chọn mnh đề sai:
A. Phương trình vô s nghiệm khi và ch khi
0
a b
.
B. Phương trình nghim duy nhất khi và ch khi
0
a
.
C. Phương trình vô nghiệm khi và chỉ khi
0
0
a
b
.
D. Phương trình luôn có nghim khi và ch khi
0
0
a
b
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 32
Câu 311. [0D3-1] Phương trình sau có bao nhiêu nghiệm 1 1
x x
?
A.
0
. B. s. C.
1
. D.
2
.
Câu 312. [0D3-2] Phương trình
2
1 2 3 2 0
m x m x m
có hai nghim phân bit khi:
A.
1
24
1
m
m
. B.
1
24
1
m
m
. C.
1
24
m . D.
1
24
m .
Câu 313. [0D3-2] S nghim của phương trình
1
2 3 3
x
x x
là:
A.
2
. B.
0
. C.
1
. D.
3
.
Câu 314. [0D3-2] Điu kin xác định của phương trình
2
2 3
2
5
x
x x
x
là
A.
\ 0; 2
x
. B.
2;5 \ 0
x . C.
2;5 \ 0; 2
. D.
;5 \ 0; 2

.
Câu 315. [0D3-2] Điu kin xác định của phương trình
2
4 2
1
3
x
x
x
là
A.
4;x
. B.
4;3 \ 1
x
. C.
;3
x  . D.
\ 1
x
.
Câu 316. [0D3-2] Phương trình
2 2 2
6 17 6
x x x x x
có bao nhiêu nghim thc phân bit?
A.
2
. B.
1
. C.
4
. D.
3
.
Câu 317. [0D3-2] Phương trình
2 3 1
x
tương đương với phương trình nào dưới đây?
A.
3 2 3 3
x x x
. B.
4 2 3 4
x x x
.
C. 2 3
x x x
. D.
3 2 3 1 3
x x x
.
Câu 318. [0D3-2] Phương trình
2
3 0
m m x m
là phương trình bc nht khi và ch khi:
A.
0
m
hoc
1
m
. B.
1
m
C.
0
m
. D.
0
m
1
m
.
Câu 319. [0D3-2] Tp tt c các giá tr ca tham s
m
để phương trình
2
1 2 2 0
m x mx m
hai nghim ti du là
A.
\ 1
. B.
2:
. C.
2;1
. D.
2;1
.
Câu 320. [0D3-2] S giá tr nguyên ca tham s
m
thuc
5;5
để phương trình
2 2
4 0
x mx m
hai nghim âm phân bit là
A.
5
. B.
6
. C.
10
. D.
11
Câu 321. [0D3-2] Tìm
m
để phương trình
2 2 2
m x m
nghim duy nht.
A.
1
m
. B.
1
m
2
m
. C.
1
m
. D.
2
m
.
Câu 322. [0D3-2] Phương trình
2
5 4 3 0
x x x
có bao nhiêu nghim?
A.
0
. B.
1
. C.
2
. D.
3
.
Câu 323. [0D3-2] Phương trình
3 2 2 1 2
x x x
có bao nhiêu nghiệm?
A.
0
. B.
1
. C.
2
. D.
3
.
Câu 324. [0D3-2] Có bao nhiêu giá tr thc ca
m
để phương trình
2 2
2 1
m m x x m
nghim?
A.
2
. B. Đáp án khác. C.
3
. D.
1
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 33
Câu 325. [0D3-2] Cho phương trình
2
1 1 0
m x m
1
. Trong các kết lun sau kết lun nào đúng?
A. Vi
1
m
phương trình
1
nghim duy nht.
B. Vi
1
m
phương trình
1
có nghim duy nht.
C. Vi
1
m
phương trình
1
nghim duy nht.
D. C ba kết luận trên đều đúng.
Câu 326. [0D3-2] Mt học sinh đã giải phương trình
2
5 2
x x
(1) như sau:
(I). (1)
2
2
5 2
x x
(II).
9
4 9
4
x x
(III). Vây phương trình có mt nghim
9
4
x
lun trên nếu sai t sai t giai đon nào
A. (I). B. (III). C. (II). D. lun đúng.
Câu 327. [0D3-2] Cho h phương trình
2 2 2
2
4 2
x y
x y xy m m
. Tìm tt c các giá tr ca
m
để h trên
nghim.
A.
1
;1
2
. B.
1;

. C.
0;2
. D.
1
;
2

.
Câu 328. [0D3-2] Tp hp các giá tr ca
m
để phương trình
2
1
1 1
x m m
x
x x
nghim
A.
1
;
3
. B.
1;

. C.
1
;
3
. D.
1
;
3

.
Câu 329. [0D3-2] Phương trình
2
4 3 2 0
x x x
có bao nhiêu nghim?
A.
1
. B.
2
. C.
0
. D.
3
.
Câu 330. [0D3-2] Cho h phương trình
2 1
3 4 1
x y m
x y m
. Giá tr
m
thuộc khoảng nào sau đây để hệ
phương trình có nghiệm duy nhất
0 0
;
x y
tha mãn
0 0
2 3 1
x y
?
A.
5;9
m . B.
5;1
m . C.
0; 3
m . D.
4;1
m .
Câu 331. [0D3-2] Tng tt c các nghim của phương trình:
2
3 2 1
x x x
A.
3
. B.
3
. C.
2
. D.
1
.
Câu 332. [0D3-2] Cho phương trình
2
1 1 7 5
m x m x m
. Tt c các giá tr thc ca tham s
m
để phương trình đã cho vô nghim
A.
2; 3
m m
. B.
3
m
. C.
1
m
. D.
2
m
.
Câu 333. [0D2-2] Cho hàm s
7 3
f x m x
. bao nhiêu s t nhiên
m
để
f x
đồng biến
trên
?
A.
2
. B.
4
. C.
3
. D. s.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 34
Câu 334. [0D3-2] Cho hàm s
3
f x mx m
, vi
m
là tham s thc. bao nhiêu giá tr nguyên
ca
m
để phương trình
0
f x
không có nghim thuộc đon
0;2
?
A. s B.
5
. C.
3
. D.
4
.
Câu 335. [0D3-2] H phương trình
2
2 2
3
4
x xy
y xy m
có nghim khi
A.
1
1
m
m
. B.
1
m
. C.
1
m
. D.
1
m
.
Câu 336. [0D3-2] Mt hc sinh tiến hành gii phương trình
5 6 6
x x
như sau:
Bước 1: Điu kin
6
5 6 0
5
x x
.
Bước 2: Phương trình đã cho tương đương với
2
5 6 6
x x
2
17 30 0
x x
2
15
x
x
.
Bước 3: Đối chiếu điu kin, thy c
2
nghim tha mãn nên phương trình
2
nghim
2
x
,
15
x
.
Li gii ca hc sinh trên:
A. Sai t bước 3. B. Đúng. C. Sai t bước 1. D. Sai t bước 2.
Câu 337. [0D3-2] Có bao nhiêu giá tr nguyên dương của tham s
m
để phương trình
2 2
2 2 9 0
x mx m
có nghim?
A.
3
. B.
7
. C.
4
. D.
2
.
Câu 338. [0D3-2] S nghim của phương trình:
2
4 1 7 6 0
x x x
là
A.
0
. B.
3
. C.
1
. D.
2
.
Câu 339. [0D3-2] Tp tt cc giá tr ca tham s
m
đ pơng trình
2
2 3 2 0
x mx m
có nghim là
A.
1;2
. B.
;1 2; .
 
C.
1;2
. D.
;1 2; .
 
Câu 340. [0D3-2] Tập xác định của phương trình
2
3
1
2
1
x
x x
x
là
A.
2;D
. B.
0; \ 1
D . C.
0;D
. D.
0; \ 1;2
D .
Câu 341. [0D3-2] Cho h phương trình
1
1
x my
mx y
I
,
m
là tham s. Mệnh đề o sai?
A. H
I
có nghim duy nht
1
m
. B. Khi
1
m
thì h
I
có vô s nghim.
C. Khi
1
m
thì h
I
nghim. D. H
I
có vô s nghim.
Câu 342. [0D3-2] Gii phương trình
2
2 8 4 2
x x x
.
A.
4
x
. B.
0
4
x
x
. C.
4 2 2
x
. D.
6
x
.
Câu 343. [0D3-2] Tìm tt c các tham s
m
để phương trình
2
9 3
m x m nghiệm đúng với mi
x
.
A.
3
m
. B.
3
m
. C. Không tn ti
m
. D.
3
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 35
Câu 344. [0D3-2] Tính tng tt c các nghim của phương trình
2
2 3 2 2
x x x
A.
3
2
. B.
1
. C.
3
. D.
2
.
Câu 345. [0D3-2] Phương trình
4 2
4 5 0
x x có bao nhiêu nghim thc?
A.
4
. B.
2
. C.
1
. D.
3
.
Câu 346. [0D3-2] Tìm điều kin ca tham s
m
để h phương trình
1
mx y m
x my
nghim duy nht.
A.
1
m
. B.
1
m
. C.
1
m
. D.
1
m
.
Câu 347. [0D3-2] Cho phương trình
2
1 1 1 0
x x x
. Phương trình nào sau đây tương đương
với phương trình đã cho?
A.
2
1 0
x
. B.
1 0
x
. C.
1 1 0
x x
. D.
1 0
x
.
Câu 348. [0D3-2] Tính tng tt c các nghim của phương trình
2 2 2
x x
.
A.
1
2
. B.
2
3
. C.
6
. D.
20
3
.
Câu 349. [0D3-2] m tt c các giá tr ca tham s
m
đ hai đồ th hàm s
2
2 3
y x x
và
2
y x m
có đim chung.
A.
7
2
m
. B.
7
2
m
. C.
7
2
m
. D.
7
2
m
.
Câu 350. [0D3-2] Cho biết
0
m
0
n
là các nghim của phương trình
2
0
x mx n
. Tính tng
m n
.
A.
1
2
m n
. B.
1
2
m n
. C.
1
m n
. D.
1
m n
.
Câu 351. [0D3-2] tt c bao nhiêu giá tr nguyên ca tham s
10;10
m để phương trình
2
9 3 3
m x m m
có nghim duy nht?
A.
2
. B.
21
. C.
19
. D.
18
.
Câu 352. [0D3-2] Hai bạn Vân Lan đi mua trái cây. Vân mua
10
qu quýt,
7
qu cam vi gtin
17800
. Lan mua
12
qu quýt,
6
qu cam hết
18000
. Hi giá tin mi qu quýt, qu cam là bao
nhiêu?
A. Quýt
1400
, cam
800
. B. Quýt
700
, cam
200
.
C. Quýt
800
, cam
1400
. D. Quýt
600
, cam
800
.
Câu 353. [0D3-2] S nghim của phương trình
3 2 2 1
x x
A.
3
. B.
0
. C.
2
. D.
1
.
Câu 354. [0D3-2] H phương trình
2 2
2 2
7
3
x y xy
x y xy
có tt c các nghim
A.
; 1; 2 ;
x y
; 2; 1 ;
x y
; 1;2 ;
x y
; 2; 1
x y
.
B.
; 1; 2 ;
x y
; 2; 1
x y
.
C.
; 1;2 ;
x y
; 2;1
x y .
D.
; 1; 2 ;
x y
; 2; 1
x y
;
; 1;2 ;
x y
; 2;1
x y .
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 36
Câu 355. [0D3-2] Để gii phương trình
2 2 3 1
x x , mt học sinh đã lp lun như sau:
I
Bình phương
2
vế:
2 2
1 4 4 4 12 9 2
x x x x
2
II 3 8 5 0 3
x x .
5
III 1
3
x x
.
IV
Vy
1
có hai nghim
1
1
x
2
5
3
x
Cách gii trên sai t bước nào?
A.
IV
. B.
II
. C.
III
. D.
I
.
Câu 356. [0D3-2] Tng các nghim của phương trình
3 7 1 2
x x
là
A.
2
. B.
–1
. C.
2
. D.
4
.
Câu 357. [0D3-2] S nghim nguyên của phương trình: 3 5 7
x x x
là
A.
0
. B.
2
. C.
3
. D.
1
.
Câu 358. [0D3-2] H phương trình o dưới đây vô nghim?
A.
2 5
2 3 1
x y
x y
. B.
3 1
1 3
1
2 2
x y
x y
. C.
3 1
1 1
3 3
x y
x y
. D.
3 2
5
x y
x y
.
Câu 359. [0D3-2] S nghim của phương trình:
2
1 1
6
1 1
x x
x x
A.
0
. B.
2
. C.
1
. D.
3
.
Câu 360. [0D3-2] Tìm giá tr ca tham s m để phương trình
2 2
2 3
mx m m x m
nghim.
A.
2
m
. B.
0
m
. C.
1
2
m
. D.
1
m
.
Câu 361. [0D3-2] Phương trình
2 3 1
x x
có tng các nghim
A.
1
2
. B.
1
4
. C.
1
4
. D.
3
4
.
Câu 362. [0D3-2] Tìm tt c giá tr ca tham s
m
để phương trình
2
2 1 0
x mx m
có 2 nghim
phân bit
1
x
,
2
x
sao cho
2 2
1 2
2
x x
.
A.
1
2
0
m
m
. B.
0
m
. C.
1
2
m
. D.
1
2
0
m
m
.
Câu 363. [0D3-2] Hàm s nào dưới đây có tập xác định là tp
?
.
A.
2
y x x
. B.
2
1
1
x
y
x
. C.
2
1
y
x x
. D.
1
1
y
x
.
Câu 364. [0D3-2] Phương trình
2
2 8 2
x x x
có s nghim
A.
0
. B.
2
. C.
3
. D.
1
.
Câu 365. [0D3-2] Cho phương trình
3 2
4 4 0
x mx x m
. Tìm
m
để đúng hai nghiệm
A.
2
m
. B.
2
m
. C.
2; 2
m
. D.
0
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 37
Câu 366. [0D3-2] Gi
n
là s các giá tr ca tham s
m
để phương trình
2
2 2 4
mx m x m
nghim. Thế thì
n
là
A. 0. B. 1. C. 2. D. vô s.
Câu 367. [0D3-2] Phương trình
2
2 1 0
mx m x m
có hai nghim khi:
A.
1
2
m
. B.
1
2
m
0
m
. C.
1
1
3
m
. D.
1
2
m
0
m
.
Câu 368. [0D3-2] S nghim phương trình
4 2
2 5 5 7 1 2 0
x x
là
A.
0
. B.
4
. C.
1
. D.
2
.
Câu 369. [0D3-2] Gi
1
x
,
2
x
là các nghiệm phương trình
2
4 7 1 0
x x
. Khi đó giá trị ca biu thc
2 2
1 2
M x x
A.
41
16
M . B.
41
64
M . C.
57
16
M . D.
81
64
M .
Câu 370. [0D3-2] Phương trình
2 4 2 4 0
x x
có bao nhiêu nghim?
A.
0
. B.
1
. C.
2
. D. s.
Câu 371. [0D3-2] S nghim nguyên dương của phương trình
1 3
x x
là
A.
0
. B.
1
. B.
2
. D.
3
.
Câu 372. [0D2-4] Hi bao nhiêu giá tr
m
nguyên trong na khong
0;2017
để phương trình
2
4 5 0
x x m
có hai nghim phân bit?
A.
2016
. B.
2008
. C.
2009
. D.
2017
.
Câu 373. [0D3-2] Gi
n
là c s các giá tr ca tham s
m
để phương trình
1 2
0
2
x mx
x
nghim duy nht. Khi đó
n
là:
A.
2
. B.
1
. C.
0
. D.
3
.
Câu 374. [0D3-2] Gi
S
là tp hp tt c các giá tr thc ca tham s
m
để phương trình
2
2 2
mx m m x m x
có tp nghim là
. Tính tng tt c các phn t ca
S
.
A.
1
. B.
1
. C.
2
. D.
0
.
Câu 375. [0D3-2] Cho phương trình
2
2 4
m x m
. Có bao nhiêu giá tr ca tham s
m
để phương
tnh có tp nghim
?
A. s. B.
2
. C.
1
. D.
0
.
Câu 376. [0D3-2] Tìm tập xác đnh của phương trình
5
1
3 2017 0
x
x
x
.
A.
1;

. B.
1; \ 0
 . C.
1; \ 0
 . D.
1;

.
Câu 377. [0D3-2] Cho phương trình
3 1 1 3
m m x m
(
m
tham s). Khẳng định nào sau đây
đúng?
A.
1
3
m
thì phương trình tp nghim
1
m
.
B.
0
m
1
3
m
thì phương trình tp nghim là
1
m
.
C.
0
m
thì phương trình tp nghim
.
D.
0
m
1
3
m
t phương trình vô nghim.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 38
Câu 378. [0D3-2] Tìm phương trình tương đương với phương trình
2
6 1
0
2
x x x
x
trong các
phương trình sau:
A.
2
4 3
0
4
x x
x
. B.
2 1
x x
. C.
3
1 0
x
. D.
2
3
2
x
x
x
.
Câu 379. [0D3-2] Cho phương trình:
2
3 2
3
x x
x
x
có nghim
a
. Khi đó
a
thuc tp:
A.
1
;3
3
. B.
1 1
;
2 2
. C.
1
;1
3
. D.
.
Câu 380. [0D3-2] Trong các phương trình sau, phương trình nào tương đương với phương trình
1 0
x
?
A.
2 0
x
. B.
1 0
x
. C.
2 2 0
x
. D.
1 2 0
x x
.
Câu 381. [0D3-2] Cho phương trình
0
f x
có tp nghim
1
;2 1
S m m
và phương trình
0
g x
tp nghim
2
1;2
S . Tìm tt c các giá tr
m
để phương trình
0
g x
là phương trình
h qu của phương trình
0
f x
.
A.
3
1
2
m
. B.
1 2
m
. C.
m
. D.
3
1
2
m
.
Câu 382. [0D3-2] S các nghim nguyên của phương trình
3 2
5 2 5 2 2
x x x x
A.
0
. B.
1
. C.
2
. D.
3
.
Câu 383. [0D3-2] Tìm
m
để phương trình
2
2 1 1 0
mx m x m
nghim.
A.
1
m
. B.
1
m
hoc
0
m
. C.
0
m
1
m
. D.
0
m
1
m
.
Câu 384. [0D3-2] Trong hệ trục tọa độ
Oxy
, cho
M
N
là hai điểm thuộc đường tròn lượng giác. Hai
góc lượng giác
,
Ox OM
,
Ox ON
lệch nhau
180
. Chọn nhận xét đúng
A.
M
,
N
có tung độ và hoành độ đều bằng nhau.
B.
M
,
N
tung độ và hoành độ đều đối nhau.
C.
M
,
N
có tung độ bằng nhau và hoành độ đối nhau.
D.
M
,
N
có hoành độ bằng nhau và tung độ đối nhau.
Câu 385. [0D3-2] Cho phương trình
2
0
ax bx c
0
a
. Phương trình hai nghiệm âm phân biệt
khi ch khi:
A.
0
0
0
S
P
. B.
0
0
P
. C.
0
0
0
S
P
. D.
0
0
0
S
P
.
Câu 386. [0D3-2] Phương trình
2
0
ax bx c
có nghiệm duy nhất khi và chỉ khi:
A.
0
a
0
b
. B.
0
0
a
hoặc
0
0
a
b
.
C.
0
a b
. D.
0
0
a
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 39
Câu 387. [0D3-2] Điều kin xác định của phương trình
1 3 2
2 4
x
x
x
x
là
A.
2
x
3
2
x
. B.
3
2
2
x
. C.
2
x
0
x
. D.
3
2
2
0
x
x
.
Câu 388. [0D3-2] Phương trình
4 2
2 2 1 0 (1)
x mx m có 4 nghiệm pn biệt khi và ch khi:
A.
1
2
m
. B.
1
2
m
1
m
. C.
m
. D.
1
m
.
Câu 389. [0D3-2] Phương trình
2
2 3 5
x x x
có tổng các nghiệm nguyên
A.
2
. B.
3
. C.
1
. D.
4
.
Câu 390. [0D3-2] Hệ phương trình
2 3
13
3 2
12
x y
x y
có nghiệm là
A.
1
2
x
;
1
3
y
. B.
1
2
x
;
1
3
y
. C.
1
2
x
;
1
3
y
. D.
1
2
x
;
1
3
y
.
Câu 391. [0D3-2] Tp nghim của phương trình:
2 3 5
x x
là tp hp nào sau đây?
A.
7 3
;
4 2
. B.
3 7
;
2 4
. C.
7 3
;
4 2
. D.
3 7
;
2 4
.
Câu 392. [0D3-2] Tng nghim bé nht và ln nht của phương trình
1 3 3 4 2
x x x
A.
0
. B.
1
. C.
2
. D.
3
.
Câu 393. [0D3-2] Phương trình
2 2
4 5 0
m x x m
có hai nghim trái du, giá tr
m
A.
; 2 0;2
m  . B.
; 2 0;2
m .
C.
2;0 2;m

. D.
2;2
m .
Câu 394. [0D3-2] Cho phương trình
2
4 2
2
2
x x
x
x
. S nghiệm của phương trìnhy
A.
0
. B.
2
. C.
4
. D.
1
.
Câu 395. [0D3-2] Cho phương trình
2
4 2
2
2
x x
x
x
. S nghiệm của phương trìnhy
A.
0
. B.
2
. C.
4
. D.
1
.
Câu 396. [0D3-3] Tìm
m
để phương trình
2 2
3 0
x mx m hai nghim
1
x
,
2
x
độ dài các cnh
góc vuông ca mt tam giác vuông vi cnh huyền có độ dài bng
2
là
A.
0;2
m . B.
3
m . C.
2;0
m . D.
m
.
Câu 397. [0D3-3] Tt c các giá tr ca tham s
m
để phương trình
2
2
1 1
2 1 0
x m x
x x
nghim
A.
3
;
4
m

. B.
3 3
; ;
4 4
m
 
.
C.
3
;
4
m
. D.
3 3
;
4 4
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 40
Câu 398. [0D3-3] m tt c các giá tr thc ca
m
để phương trình
2
4 6 3 0
x x m
nghim
thuc đoạn
1;3
.
A.
2 11
3 3
m
. B.
11 2
3 3
m
.
C.
2
1
3
m
. D.
11
1
3
m
.
Câu 399. [0D3-3] Xác định
m
để phương trình
2
6 7
m x x
4
nghim phân bit.
A.
16;16
m . B.
0;16
m . C.
m
. D.
0;16
m .
Câu 400. [0D3-3] H phương trình
2
2
3
3
x x y
y y x
có bao nhiêu nghim?
A.
3
. B.
2
. C.
1
. D.
4
.
Câu 401. [0D3-3] bao nhiêu giá tr m nguyên để phương trình
2
2 2 2 4 2 3 0
x x x m
có nghim.
A.
1
. B.
3
. C.
0
. D.
2
.
Câu 402. [0D3-3] S giá tr nguyên ca tham s thc
m
thuộc đoạn
10;10
để phương trình
2
0
x x m
nghim
A.
21
. B.
9
. C.
20
. D.
10
.
Câu 403. [0D3-3] Cho phương trình
2 2
3 0
mx m x m
. Tìm tt c các giá tr ca tham s
m
để
phương trình hai nghim
1
x
,
2
x
tha mãn
1 2
13
4
x x
. Khi đó tổng bình phương các giá trị
tìm được ca tham s
m
bng
A.
265
16
. B.
16
. C.
9
16
. D.
73
16
.
Câu 404. [0D3-3] Mt s t nhiên hai ch s dng
ab
, biết hiu ca hai ch s đó bằng
3
. Nếu
viết các ch s theo th t ngược li t được mt s bng
4
5
s ban đầu tr đi
10
. Khi đó
2 2
a b
bng
A.
45
. B.
89
. C.
117
. D.
65
.
Câu 405. [0D3-3] bao nhiêu giá tr nguyên của m để phương trình
2 2
4 1 1 0
x x m
có
4
nghim phân bit
A.
1
. B.
0
. C.
2
. D. s.
Câu 406. [0D3-3] Tp tt c các giá tr ca tham s
m
để phương trình
2
2 2 0
x mx m
hai
nghiệm dương phân bit
A.
2;
. B.
; 2

.
C.
; 1 2;

. D.
1;2
.
Câu 407. [0D3-3] Biết phương trình
2
3 1 3 7 3 1 0
x x x x
mt nghim dng
a b
x
c
,
trong đó
a
,
b
,
c
là các s nguyên t. Tính
S a b c
.
A.
14
S
. B.
21
S
. C.
10
S
. D.
12
S
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 41
Câu 408. [0D3-3] H phương trình
2
2 2 2 2
2 5 4 6 4 4 0
1
2 3
2
x y x y x xy y
x y
x y
có mt nghim
0 0
;
x y
. Khi đó
2
0 0
P x y
có giá tr
A.
1
. B.
17
16
. C.
3
. D.
2
.
Câu 409. [0D3-3] Cho hàm s
2
4 3
y x x
, đồ th
P
. Gi s
d
dường thẳng đi qua
0; 3
A h s góc
k
. Xác định
k
sao cho
d
cắt đồ th
P
ti
2
đim phân bit
E
,
F
sao cho
OEF
vuông ti
O
(
O
là gc ta độ). Khi đó
A.
1
3
k
k
. B.
1
2
k
k
. C.
1
2
k
k
. D.
1
3
k
k
.
Câu 410. [0D3-3] Để phương trình sau
4
nghim phân bit:
2 2
10 2 8 5
x x x x a
. Giá tr ca
tham s
a
là
A.
1;10
a . B.
1
a
. C.
43
4
4
a . D.
45
4;
4
a
.
Câu 411. [0D3-3] Có tt c bao nhiêu gtr nguyên không dương ca tham s
m
để phương trình
2 1
x m x
có nghim duy nht?
A.
4
. B.
3
. C.
1
. D.
2
.
Câu 412. [0D3-3] Gi s phương trình
2
2 4 1 0
x mx
(vi
m
tham s) hai nghim
1
x
,
2
x
. Tìm
giá tr nh nht ca biu thc
1 2
T x x
.
A.
2
min
3
T
. B.
min 2
T
. C.
min 2
T
. D.
2
min
2
T .
Câu 413. [0D3-3] Gi
S
là tp hp các giá tr ca tham s
m
sao cho parabol
P
:
2
4
y x x m
ct
Ox
tại hai điểm phân bit
A
,
B
tha mãn
3
OA OB
. Tính tng
T
các phn t ca
S
.
A.
3
T
. B.
15
T
. C.
3
2
T
. D.
9
T
.
Câu 414. [0D3-3] Phương trình
3 3 3
5 6 2 11
x x x
có bao nhiêu nghim.
A.
2
. B.
3
. C.
1
. D.
0
.
Câu 415. [0D3-3] Tp nghim của phương trình
4
2 2
1 1 2
x x x x
A.
. B.
7
;1
2
. C.
0
. D.
1
.
Câu 416. [0D3-3] Phương trình
2 2
4 3 3 2
m m x m m
có nghim duy nht khi:
A.
3
m
. B.
1
m
3
m
. C.
1
m
. D.
1
m
hoc
3
m
.
Câu 417. [0D3-3] Tìm m để phương trình
4 2 2
1 1 0
m x mx m
ba nghim phân bit.
A.
1
m
. B.
1
m
. C.
1
m
. D.
0
m
.
Câu 418. [0D3-3] Phương trình
4 3 2
5 8 10 4 0
x x x x
có bao nhiêu nghim nguyên?
A.
4
. B.
1
. C.
2
. D.
0
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 42
Câu 419. [0D3-3] Cho hàm s
2
2 2
y x x
đ th
P
, và đường thng
d
phương trình
y x m
. Tìm
m
để
d
ct
P
tại hai đim phân bit
A
,
B
sao cho
2 2
OA OB
đạt giá tr
nh nht.
A.
5
2
m
. B.
5
2
m
. C.
1
m
. D.
2
m
.
Câu 420. [0D3-3] Cho phương trình
2
1 3 1 0
m x x
. Phương trình nghim khi
A.
5
4
m
. B.
1
m
. C.
5
4
m
. D.
5
4
m
.
Câu 421. [0D3-3] S nghim của phương trình
2
2 8 4 4 2
x x x x
A.
3
. B.
1
. C.
4
. D.
2
.
Câu 422. [0D3-3] Tp hp tt c các giá tr ca tham s
m
để phương trình
2
1 1 4 1
x x x m
có nghim
A.
2;

. B.
6;

. C.
2;6
. D.
2;2 2
.
Câu 423. [0D3-3] Có tt c bao nhiêu giá tr ca
m
đ phương trình
2 3
0
1
x mx
x
có nghim duy nht?
A.
0
. B.
2
. C.
3
. D.
1
.
Câu 424. [0D3-3] Tng bình phương các nghiệm của phương trình
2 2
5 2 2 5 10 0
x x x x
là
A.
5
. B.
13
. C.
10
. D.
25
.
Câu 425. [0D3-3] Tìm tt c các giá tr ca
m
để phương trình
2
2 3 0
x x m
nghim
0;4
x .
A.
;5
m . B.
4; 3
m
. C.
4;5
m . D.
3;m
Câu 426. [0D3-3] Phương trình
2
2 3 5 1
x x x
có nghim:
A.
1
x
. B.
2
x
. C.
3
x
. D.
4
x
.
Câu 427. [0D3-3] Tng các bình phương các nghim của phương trình
2
1 3 3 4 5 2 0
x x x x
A.
17
. B.
4
. C.
16
. D.
8
.
Câu 428. [0D3-3] Cho phương trình
3 2
2 1 4 1 2 1 0
x m x m x m
. Tìm
m
để phương trình
mt nghim duy nht?
A.
m
. B.
0
m
. C.
1
m
. D.
2
m
.
Câu 429. [0D3-3] Phương trình
2
3 3 2 5
x x x
có tích ca tt c các nghim nguyên
A.
4
. B.
1
. C.
56
. D.
0
.
Câu 430. [0D3-3] Phương trình
2
2 3 5
x x x
có tng các nghim nguyên
A.
2
. B.
3
. C.
1
. D.
4
.
Câu 431. [0D3-3] nhiu nht bao nhiêu s nguyên
m
thuc na khong
2017;2017
để phương
tnh
2
2 2 2
x x m x
có nghim:
A.
2014
. B.
2021
. C.
2013
. D.
2020
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 43
Câu 432. [0D3-3] Tìm
m
để phương trình
2 2 2
2
1
m x
x m
x
2
nghim phân bit.
A.
5
2
m
1
m
. B.
5
2
m
3
2
m
.
C.
5
2
m
1
2
m
. D.
5
2
m
.
Câu 433. [0D3-3] Nghim ca h phương trình
4 1
5
2
5 2
3
2
x y
x y
là
A.
; 3;11
x y . B.
; 3;1
x y . C.
; 13;1
x y . D.
; 3;1
x y .
Câu 434. [0D3-3] Mt xe hơi khởi hành t Krông Năng đi đến Nha Trang cách nhau
175
km. Khi v xe
tăng vận tc trung bình hơn vận tc trung bình lúc đi
20
km/gi. Biết rng thời gian dùng để
đi và v
6
gi; vn tc trung bình lúc đi là
A.
60
km/gi. B.
45
km/gi. C.
55
km/gi. D.
50
km/gi.
Câu 435. [0D3-3] Điu kiện cần và đủ đ phương trình
2
2 1 0
mx m x m
có hai nghiệm phân biệt là
A.
0
m
,
1
2
m
.
B.
1
2
m
. C.
1
2
m
. D.
0
m
.
Câu 436. [0D3-3] bao nhiêu g tr nguyên của m để phương trình
2
2 3 2 0
x x m
đúng mt
nghiệm
0;4
x .
A.
5
. B.
4
. C.
6
. D.
9
.
Câu 437. [0D3-3] Cho phương trình
3 2
2 1 4 1 2 1 0
x m x m x m
. S các giá trị của
m
để
phương trình có mt nghiệm duy nhất?
A.
0
. B. s. C.
1
. D.
2
.
Câu 438. [0D3-3] Khi hphương trình
2 1
2 2 2
4 1
x my z
x my z
x m y z
nghim
; ;
x y z
với
0
4
3
m
m
, giá tr
2017 2018 2017
T x y z
A.
2017
T
. B.
2018
T
. C.
2017
T
. D.
2018
T
.
Câu 439. [0D3-4] Cho h phương trình
2 2
2
2 8 3 12 9
4 18 6 7 2 3 1 0
x xy x y y
x y x x y
có nghim
;
a b
. Khi
đó giá trị biu thc
2 2
5 4
T a b
A.
24
T
. B.
21
T
. C.
5
T
. D.
4
T
.
Câu 440. [0D3-4] Cho biết tp hp tt c các giá tr ca tham s
m
để phương trình
2
2
1 1
2 3 2 1 0
x x m
x x
nghim ;
a
S
b

, vi
a
,
b
là các s nguyên
dương và
a
b
là phân s ti gin. Tính
T a b
.
A.
13
T
. B.
17
T
. C.
49
T
. D.
3
T
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 44
Câu 441. [0D3-4] Các nghim ca h
2 2
3 2 16
2 4 33
xy x y
x y x y
là
A.
; 3 3; 2 3 ;
x y
; 3 3; 2 3
x y
.
B.
; 3 3; 3 3 ;
x y
; 2 3; 2 3
x y
.
C.
; 3; 2 ;
x y
; 3;2
x y
D.
; 3;3 ;
x y
; 2;2
x y .
Câu 442. [0D3-4] Tìm các giá tr ca
m
để phương trình 2 1
x x m
có nghim:
A.
2
m
. B.
2
m
. C.
2
m
. D.
2
m
.
Câu 443. [0D3-4] Gi
S
tp hp tt các giá tr thc ca tham s
m
để đường thng
:
d y mx
ct
parabol
2
: 2 3
P y x x
tại hai điểm phân bit
A
B
sao cho trung đim
I
của đon
thng
AB
thuộc đường thng
: 3
y x
. Tính tng tt c các phn t ca
S
.
A.
2
. B.
1
. C.
5
. D.
3
.
Câu 444. [0D3-4] Cho biết tp hp tt c các giá tr ca tham s
m
để phương trình
2
2
1 1
2 3 5 1 0
x x m
x x
nghim ;
a
S
b

, vi
a
,
b
là các s nguyên
dương và
a
b
là phân s ti gin. Tính
.
T a b
A.
5
T
. B.
5
T
. C.
11
T
. D.
55
T
.
Câu 445. [0D3-4] Cho
;
với
x
,
y
nguyên nghiệm của hệ phương trình
2
2
7 1
12 2
xy y x y
x
x
y
t
tích
xy
bằng
A.
1
. B.
2
. C.
3
. D.
4
.
Câu 446. [0D3-4] Có bao nhiêu giá tr
m
nguyên dương để hệ phương trình
3
2 9
mx y
x my
nghim
duy nhất
;
sao cho biểu thức 3
A x y
nhn g trị nguyên
A.
4.
B.
2.
C.
3.
D.
1.
Câu 447. [0D3-3] Cho hàm s
f x
c định trên
có đồ th như
hình vẽ. Phương trình
2 1 0
f x
có bao nhiêu nghim?
A.
1
. B.
3
.
C.
2
. D.
4
.
Câu 448. [0D3-3] Tìm phương trình đường thng :
d y ax b
. Biết đường thng
d
đi qua điểm
1;3
I
to vi hai tia
Ox
,
Oy
mt tam giác có din tích bng
6
?
A.
3 6
y x
. B.
9 72 72 6
y x
.
C.
9 72 72 6
y x
. D.
3 6
y x
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 45
Chủ đề 4. BẤT ĐẲNGTHỨC. BẤT PHƯƠNG TRÌNH
Câu 449. [0D4-1] Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
A.
2 5 3 0
x y z
. B.
2
3 2 4 0
x x
. C.
2
2 5 3
x y
. D.
2 3 5
x y
.
Câu 450. [0D4-1] Bt phương trình
3 9 0
x
tp nghim là
A.
3;
. B.
;3

. C.
3;
. D.
; 3

.
Câu 451. [0D4-1] Cho
2 1
f x x
. Khẳng định nào sau đây là khng đnh sai
A.
1
0;
2
f x x
. B.
1
0;
2
f x x
. C.
0; 2
f x x
. D.
0; 0
f x x
.
Câu 452. [0D4-1] Cho các bất đẳng thc
a b
c d
. Bất đẳng thức nào sau đây đúng
A.
a c b d
. B.
a c b d
. C.
ac bd
. D.
a b
c d
.
Câu 453. [0D4-1] Tìm tập xác định của hàm s
2
2 5 2
y x x
.
A.
1
;
2

. B.
1
;2
2
. C.
1
; 2;
2

. D.
2;

.
Câu 454. [0D4-1] Đim nào sau đây thuộc min nghim ca bất phương trình
2 3 0
x y
?
A.
1; 3
Q
. B.
3
1;
2
M
. C.
1;1
N . D.
3
1;
2
P
.
Câu 455. [0D4-1] Tp nghim ca bt phương trình
2 5 0
x x là
A.
5;

. B.
; 2 5;
 
. C.
2;5
. D.
5; 2
.
Câu 456. [0D4-1] Tìm mệnh đề đúng.
A.
a b ac bc
. B.
a b ac bc
.
C.
a b a c b c
. D.
a b
ac bd
c d
.
Câu 457. [0D4-1] Tam thức nào dưới đây luôn dương với mi giá tr ca
x
?
A.
2
10 2
x x
. B.
2
2 10
x x . C.
2
2 10
x x . D.
2
2 10
x x .
Câu 458. [0D4-1] Bt phương trình nào sau đây không tương đương vi bất phương trình
5 0
x
?
A.
2
5 0
x x
. B.
5 5 0
x x
. C.
2
1 5 0
x x
. D.
5 5 0
x x
.
Câu 459. [0D4-1] Giá tr nào ca
m
t phương trình
2
3 3 1 0
m x m x m
1
hai
nghim phân bit?
A.
\ 3
m
. B.
3
; 1; \ 3
5
m

.
C.
3
;1
5
m
. D.
3
;
5
m
.
Câu 460. [0D4-1] Min nghim ca bất phương trình
3 2 6
x y
là
A. . B. . C. . D. .
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 46
Câu 461. [0D4-1] Tìm tập xác đnh ca hàm s
2
2 5 2
y x x
.
A.
1
; 2;
2

. B.
2;
. C.
1
;
2

. D.
1
;2
2
.
Câu 462. [0D4-1] Trong các tính cht sau, tính cht o sai?
A.
0
0
a b
c d
a b
d c
. B.
a b
c d
a c b d
.
C.
a b
c d
a c b d
. D.
0
0
a b
c d
ac bd
.
Câu 463. [0D4-1] Gi
S
tp nghim ca bất phương trình
2
8 7 0
x x
. Trong các tp hp sau, tp
o không là tp con ca
S
?
A.
8;

. B.
; 1

. C.
;0
 . D.
6;

.
Câu 464. [0D4-1] Bt phương trình
2
5 1 3
5
x
x
nghim
A.
2
x
. B.
5
2
x
. C.
x
. D.
20
23
x .
Câu 465. [0D4-1] Nếu
2 2
a c b c
t bt đẳng thức nào sau đây đúng?
A.
3 3
a b
. B.
2 2
a b
. C.
2 2
a b
. D.
1 1
a b
.
Câu 466. [0D4-1] Khng định nào sau đây đúng?
A.
0
x x x x
. B.
2
3 3
x x x
. C.
2
1
0
x
x
. D.
1
0 1
x
x
.
Câu 467. [0D4-1] Suy luận nào sau đây đúng?
A.
0
0
a b
ac bd
c d
. B.
a b
a c b d
c d
.
C.
a b
ac bd
c d
. D.
a b
a b
c d
c d
.
Câu 468. [0D4-1] Cho
a
là s thực dương. Mệnh đề nào dưới đây đúng?
A.
x a a x a
. B.
x a x a
.
C.
x a x a
. D.
x a
x a
x a
.
Câu 469. [0D4-1] Bng xét du sau là ca biu thc nào?
x

2

f x
0
A.
2
f x x
. B.
2 4
f x x
. C.
16 8
f x x
. D.
2
f x x
.
Câu 470. [0D4-1] Tp nghim ca bt phương trình
2 1 0
x
là
A.
1
;
2

. B.
1
;
2

. C.
1
;
2
. D.
1
;
2
.
Câu 471. [0D4-1] Cp s
1; 1
là nghim ca bất phương trình
A.
4 1
x y
. B.
2 0
x y
. C.
0
x y
. D.
3 1 0
x y
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 47
Câu 472. [0D4-1] Nh thc
2 3
x
nhn g tr dương khi chỉ khi
A.
3
2
x
. B.
2
3
x
. C.
3
2
x
. D.
2
3
x
.
Câu 473. [0D4-1] Cp s
( ; )
2;3
x y là nghim ca bất phương trình nào sau đây?
A.
4 3
x y
. B.
3 7 0
x y
. C.
2 3 1 0
x y
. D.
0
x y
.
Câu 474. [0D4-1] Bt đẳng thức nào sau đây đúng với mi s thc
a
?
A.
6 3
a a
. B.
3 6
a a
. C.
6 3 3 6
a a
. D.
6 3
a a
.
Câu 475. [0D4-1] Mệnh đề nào sau đây sai?
A.
a x
a b x y
b y
. B.
1
2 0
a a
a
.
C.
2 , 0
a b ab a b
. D.
1 1
, 0
a b a b
a b
.
Câu 476. [0D4-1] Snào dưới đây là nghiệm của bất phương trình
2 1 3
x
?
A.
2
x
. B.
3
x
. C.
0
x
. D.
1
x
.
Câu 477. [0D4-1] Tìm nghiệm của nhị thức bậc nhất
3 6
f x x
.
A.
2
x
. B.
2
x
. C.
3
x
. D.
3
x
.
Câu 478. [0D4-1] Tìm nghiệm của tam thức bậc hai
2
4 5
f x x x
.
A.
5
x
;
1
x
. B.
5
x
;
1
x
. C.
5
x
;
1
x
. D.
5
x
;
1
x
.
Câu 479. [0D4-1] Cho tam thức bậc hai
2
4 5
f x x x
. Tìm tất cả giá trị của
x
để
0
f x
.
A.
; 1 5;x

. B.
1;5
x .
C.
5;1
x . D.
5;1
x .
Câu 480. [0D4-1] Cặp số
0 0
;
x y
nào là nghiệm của bất phương trình
3 3 4
x y
.
A.
0 0
; 2;2
x y . B.
0 0
; 5;1
x y . C.
0 0
; 4;0
x y . D.
0 0
; 2;1
x y .
Câu 481. [0D4-1] Tìm tp nghim
S
ca bất phương trình
2
4 0
x
.
A.
; 2 2;S

. B.
2;2
S .
C.
; 2 2;S
 
. D.
;0 4;S
 
.
Câu 482. [0D4-1] Tìm tp nghim
S
ca bất phương trình
2
4 4 0
x x
.
A.
\ 2
S
. B.
S
. C.
2;S

. D.
\ 2
S
.
Câu 483. [0D4-1] Tìm khẳng định đúng trong các khẳng định sau?
A.
2
3 2 5
f x x x
là tam thc bc hai. B.
2 4
f x x
là tam thc bc hai.
C.
3
3 2 1
f x x x
là tam thc bc hai. D.
4 2
1
f x x x
là tam thc bc hai.
Câu 484. [0D4-1] Cho
2
f x ax bx c
,
0
a
2
4
b ac
. Cho biết du ca
khi
f x
ln
cùng du vi h s
a
vi mi
x
.
A.
0
. B.
0
. C.
0
. D.
0
.
Câu 485. [0D4-1] Điu kin ca bất phương trình
2
1
2
4
x
x
là
A.
2
x
. B.
2
x
. C.
2
x
. D.
0
x
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 48
Câu 486. [0D4-1] Nghim ca bất phương trình
2 10 0
x
là
A.
5
x
. B.
5
x
. C.
5
x
. D.
8
x
.
Câu 487. [0D4-1] Tìm tp nghim
S
ca bất phương trình
4 16 0
x
?
A.
4;S
. B.
4;S
. C.
;4
S  . D.
; 4
S

.
Câu 488. [0D4-1] Nh thc
2 6
f x x
dương trong
A.
3;
. B.
;3
 . C.
3;
. D.
;3

.
Câu 489. [0D4-1] Bt phương trình nào sau đây là bậc nht mt n
A.
3 1 2
x x
. B.
2
3
x
x
. C.
2 1
x y
. D.
2 1 0
x
.
Câu 490. [0D4-1] Tìm điều kin ca bất phương trình
2 3
1
2 3
x
x
x
.
A.
3
2
x
. B.
3
2
x
. C.
2
3
x
. D.
2
3
x
.
Câu 491. [0D4-1] Tìm điều kin ca bất phương trình
2 3
2
6 3
x
x
x
.
A.
2
x
. B.
2
x
. C.
2
x
. D.
2
x
.
Câu 492. [0D4-1] Tp nghim ca bt phương trình
2 3 6
x x
.
A.
1;

. B.
; 1

. C.
;1

. D.
1;

.
Câu 493. [0D4-1] Cho
2 4
f x x
, khẳng định nào sau đây là đúng?
A.
0
f x
2;x

. B.
0
f x
x

C.
0
f x
2;x
. D.
0
f x
2
x
.
Câu 494. [0D4-1] Tìm
m
để
2 2 1
f x m x m
là nh thc bc nht.
A.
2
m
. B.
2
1
2
m
m
. C.
2
m
. D.
2
m
.
Câu 495. [0D4-2] H bất phương trình sau
2 1 3 3
2
3
2
3 2
x x
x
x
x
có tp nghim là
A.
7;

. B.
. C.
7;8
. D.
8
;8
3
.
Câu 496. [0D4-2] Cho hàm s
1
1
y x
xác đnh trên
1;

. Gi
m
là giá tr nh nht ca hàm s,
giá tr ca
m
nm trong khoảng nào sau đây?
A.
4;7
. B.
2;3
. C.
5;
. D.
2;8
.
Câu 497. [0D4-2] H bất phương trình
2
2
4 0
1 5 4 0
x
x x x
có s nghim nguyên là
A.
2
. B.
1
. C. s. D.
3
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 49
Câu 498. [0D4-2] Bt phương trình
5 4
x
bao nhiêu nghim nguyên?
A.
10
. B.
8
. C.
9
. D.
7
.
Câu 499. [0D4-2] Tập nghim của bất phương trình
1 1
1 1
x x
là
A.
1;1
. B.
; 1 1;

.
C.
; 1 1;

. D.
1;
.
Câu 500. [0D4-2]. Tất cả các giá tr của tham số
m
để bất phương trình
4 0
mx
nghiệm đúng với mi
8
x
A.
1 1
;
2 2
m
. B.
1
;
2
m
.
C.
1
;
2
m

. D.
1 1
;0 0;
2 2
m
.
Câu 501. [0D4-2] Bất phương trình
0
ax b
tập nghim là
khi và ch khi
A.
0
0
a
b
. B.
0
0
a
b
. C.
0
0
a
b
. D.
0
.
0
a
b
Câu 502. [0D4-2] Tp nghim ca bt phương trình 2017 2017
x x
là
A.
2017,

. B.
,2017
 . C.
2017
. D.
.
Câu 503. [0D4-2] Tập xác định ca bất phương trình
3
1
2 3 2 3
x x x
x
là
A.
2;

. B.
3;

. C.
3; \ 0
 . D.
2; \ 0
 .
Câu 504. [0D4-2] Cho các mệnh đề sau
2
a b
I
b a
;
3
a b c
II
b c a
;
1 1 1 9
III
a b c a b c
Vi mi giá tr ca
a
,
b
,
c
dương ta có
A.
I
đúng và
II
,
III
sai. B.
II
đúng và
I
,
III
sai.
C.
III
đúng và
I
,
II
sai. D.
I
,
II
,
III
đúng.
Câu 505. [0D4-2] Tp nghim ca h bất phương trình
2 1
1
3
4 3
3
2
x
x
x
x
là
A.
4
2;
5
. B.
4
2;
5
. C.
3
2;
5
. D.
1
1;
3
.
Câu 506. [0D4-2] Tng tt c các nghim nguyên ca h bất phương trình
2
2
5 2 4 5
2
x x
x x
bng
A.
21
. B.
28
. C.
27
. D.
29
.
Câu 507. [0D4-2] Du ca tam thc bc hai
2
5 6
f x x x
được xác đnh như sau
A.
0
f x
vi
2 3
x
0
f x
vi
2
x
hoc
3
x
.
B.
0
f x
vi
3 2
x
0
f x
vi
3
x
hoc
2
x
.
C.
0
f x
vi
2 3
x
0
f x
vi
2
x
hoc
3
x
.
D.
0
f x
vi
3 2
x
0
f x
vi
3
x
hoc
2
x
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 50
Câu 508. [0D4-2] S nghim nguyên dương của bất phương trình
2 1 3 0
x x x
là
A.
1
. B.
4
. C.
2
. D.
3
.
Câu 509. [0D4-2] Tp nghim ca h bất phương trình
4 5
3
6
7 4
2 3
3
x
x
x
x
là
A.
23
;13
2
. B.
;13
 . C.
13;
. D.
23
;
2

.
Câu 510. [0D4-2] S nghim nguyên ca bất phương trình
2
2 3 15 0
x x
A.
6
. B.
5
. C.
8
. D.
7
.
Câu 511. [0D4-2] Gi
S
là tp nghim ca bất phương trình
2
2
3
1
4
x x
x
. Khi đó
2;2
S là tp nào
sau đây?
A.
2; 1
. B.
1;2
. C.
. D.
2; 1
.
Câu 512. [0D4-2] Đ bất phương trình
2
5 0
x x m
vô nghim thì
m
tha mãn điu kiện nào sau đây?
A.
1
5
m
. B.
1
20
m . C.
1
20
m . D.
1
5
m
.
Câu 513. [0D4-2] bao nhiêu giá tr nguyên ca tham s
m
để hàm s
2
2 2 3
y x mx m
có tp
c đnh
.
A.
4
. B.
6
. C.
3
. D.
5
.
Câu 514. [0D4-2] Tp nghim ca bt phương trình
2 1 1
x
là
A.
0;1
S . B.
0;1
S .
C.
0;1
S . D.
;0 1;S
 
.
Câu 515. [0D4-2] Tp nghim ca bt phương trình
8 2
x x
là
A.
4,S
. B.
; 1 4;8
S  .
C.
4;8
S . D.
; 1 4;S

.
Câu 516. [0D4-2] Cho hàm s
2
2
f x x x m
. Vi giá tr nào ca tham s
m
t
0,f x x
.
A.
1
m
. B.
1
m
. C.
0
m
. D.
2
m
.
Câu 517. [0D4-2] Gi
S
là tp nghim ca bất phương trình
5 1 1 2 4
x x x . Tp nào sau
đây là phn bù ca
S
?
A.
;0 10;
 
. B.
;2 10;
 
.
C.
;2 10;
 
. D.
0;10
.
Câu 518. [0D4-2] Điu kin ca bất phương trình
1
2
2
x
x
là
A.
2
x
. B.
2
x
. C.
2
x
. D.
2
x
.
Câu 519. [0D4-2] Vi
x
thuc tập nào dưới đây thì biu thc
2
2 1
x
f x
x
không âm?
A.
1
;2
2
S
. B.
1
;2
2
S
.
C.
1
; 2;
2
S
. D.
1
; 2;
2
S

.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 51
Câu 520. [0D4-2] Min nghim ca h bất phương trình
3 9
3
2 8
6
x y
x y
y x
y
là phn mt phng chứa điểm
A.
1;2
. B.
0;0
. C.
2;1
. D.
8;4
.
Câu 521. [0D4-2] Để bất phương trình
2
5 3 2
x x x x a
nghiệm đúng
5;3
x , tham s
a
phi tha mãn điu kin:
A.
3
a
. B.
4
a
. C.
5
a
. D.
6
a
.
Câu 522. [0D4-2] Giá tr ln nht ca hàm s
2
2
5 9
f x
x x
bng
A.
8
11
. B.
11
4
. C.
11
8
. D.
4
11
.
Câu 523. [0D4-2] Vi giá tr nào ca
m
thì phương trình
2
1 2 2 3 0
m x m x m
hai
nghim
1
x
,
2
x
tha mãn
1 2 1 2
1
x x x x
?
A.
1 3
m
. B.
1 2
m
. C.
2
m
. D.
3
m
.
Câu 524. [0D4-2] Vi
x
thuc tập nào dưới đây thì nh thc bc nht
2 5 3
f x x
không dương?
A.
1
x
. B.
5
2
x
. C.
0
x
. D.
1 4
x
.
Câu 525. [0D4-2] Cho phương trình
2
5 2 1 0
m x m x m
1
. Vi giá tr nào ca
m
thì
1
2
nghim
1
x
,
2
x
tha
1 2
2
x x
?
A.
5
m
. B.
8
3
m
. C.
8
5
3
m
. D.
8
5
3
m
.
Câu 526. [0D4-2] Min tam gc
ABC
k c ba cạnh sau đây miền nghim
ca h bất phương trình o trong bn h bất phương trình dưới đây?
A.
0
5 4 10
5 4 10
y
x y
x y
. B.
0
5 4 10
4 5 10
x
x y
x y
.
C.
0
4 5 10
5 4 10
x
x y
x y
. D.
0
5 4 10
4 5 10
x
x y
x y
.
Câu 527. [0D4-2] Giá tr nh nht ca hàm s
2
2 1
x
f x
x
vi
1
x
là
A.
2
. B.
5
2
. C.
2 2
. D.
3
.
Câu 528. [0D4-2] Tp nghim ca h bất phương trình
2 1
1
3
4 3
3
2
x
x
x
x
là
A.
3
2;
5
. B.
4
2;
5
. C.
1
1;
3
. D.
4
2;
5
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 52
Câu 529. [0D4-2] Khng định nào sau đây là khẳng định sai?
A. Bất phương trình
0
ax b
có tp nghim là
khi
0
a
0
b
.
B. Bất phương trình bc nht mt n ln có nghim.
C. Bất phương trình
0
ax b
vô nghim khi
0
a
0
b
.
D. Bất phương trình
0
ax b
nghim khi
0
a
.
Câu 530. [0D4-2] Nghim ca bất phương trình
2
2
x x
x
là
A.
0 1
. B.
0 1
. C.
0
1
x
x
. D.
1
x
,
2
x
.
Câu 531. [0D4-2] Tìm tt c giá tr thc ca tham s
m
để h bt phương trình
3 0
1
x
m x
vô nghim.
A.
4
m
. B.
4
m
. C.
4
m
. D.
4
m
.
Câu 532. [0D4-2] Tìm tt c cách giá tr thc ca tham s
m
để bất phương trình
2
1 0
m x mx m
đúng vơi mọi
x
thuc
.
A.
4
3
m
. B.
1
m
. C.
4
3
m
. D.
1
m
.
Câu 533. [0D4-2] Tp nghim ca bt phương trình 2018 2018
x x
là
A.
2018
. B.
2018;

. C.
. D.
;2018
 .
Câu 534. [0D4-2] Cho
0
a b
2
1
1
a
x
a a
,
2
1
1
b
y
b b
. Mệnh đề nào sau đây đúng?
A.
x y
. B.
x y
. C.
x y
. D. Không so sánh đưc.
Câu 535. [0D4-2] Trong các hình ch nht có cùng chu vi t
A. Hình vuông có din tích nh nht.
B. Không xác định được hình ch nht có din tích ln nht.
C. Hình vuông có din tích ln nht.
D. C A, B, C đều sai.
Câu 536. [0D4-2] Tp nghim ca h bất phương trình
2
4 3 0
6 12 0
x x
x
là
A.
1;2
. B.
1; 4
. C.
;1 3;
 
. D.
; 2 3;
 
.
Câu 537. [0D4-2] H bt phương trình
3 4 0
1
x x
x m
nghim khi
A.
2
m
. B.
2
m
. C.
1
m
. D.
0
m
.
Câu 538. [0D4-2] Tập xác định ca hàm s
6 2
y x m x
là một đoạn trên trc s khi và ch khi:
A.
3
m
. B.
3
m
. C.
3
m
. D.
1
3
m
.
Câu 539. [0D4-2] Tìm tp nghim ca bất phương trình:
2
4 0
x x
.
A.
. B.
. C.
0; 4
. D.
; 0 4;
 
.
Câu 540. [0D4-2] Tp nghim ca h bất phương trình
2 0
2 1 2
x
x x
là
A.
3; 2
. B.
; 3
 . C.
2;
. D.
3;
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 53
Câu 541. [0D4-2] Tìm
m
để
2
1 0
m x mx m
vi mi
x
.
A.
4
3
m
. B.
1
m
. C.
4
3
m
. D.
1
m
.
Câu 542. [0D4-2] Tp nghim ca bt phương trình:
2
9 6
x x
là
A.
3;

. B.
\ 3
. C.
. D.
;3
.
Câu 543. [0D4-2] Phương trình
2
4 1 3
x x x
có nghim
A.
1
x
hoc
3
x
. B. Vô nghim. C.
1
x
. D.
3
x
.
Câu 544. [0D4-2] Phát biểu nào sau đây là đúng?
A.
2
2 2
x y x y
. B.
0
x y
t
0
x
hoc
0
y
.
C.
x y
2 2
x y
. D.
0
x y
thì
. 0
x y
.
Câu 545. [0D4-2] Tp nghim ca bt phương trình
2
1 1
2 3
4 4
x x
x x
là
A.
3;1
. B.
4; 3
.
C.
1; ; 3
 
. D.
1; 4; 3

.
Câu 546. [0D4-2] Giá tr nh nht ca biu thc
2
16
, 0
P x x
x
bng
A.
4
. B.
24
. C.
8
. D.
12
.
Câu 547. [0D4-2] Tp nghim ca bt phương trình
3
1
1
x
x
là
A.
1;1
. B.
1;1
. C.
3;1
. D.
2;1
.
Câu 548. [0D4-2] Cho biu thc
2
4 12
4
x
f x
x x
. Tp hp tt c các giá tr ca
x
tha mãn
f x
không
dương là
A.
0;3 4;x
. B.
;0 3;4
x .
C.
;0 3;4
x . D.
;0 3;4
x .
Câu 549. [0D4-2] Cho
0.
a b
Mệnh đề nào dưới đây sai?
A.
1 1
a b
a b
. B.
1 1
a b
. C.
2 2
1 1
a b
a b
. D.
2 2
a b
.
Câu 550. [0D4-2] Trong các tam thc sau, tam thc nào ln âm vi mi
x
?
A.
2
3 4
f x x x
. B.
2
3 4
f x x x
.
C.
2
3 4
f x x x
. D.
2
4 4
f x x x
.
Câu 551. [0D4-2] Tìm tp nghim
S
ca bt phương trình
2
2 3 2 0
x x
?
A.
1
; 2;
2
S
 
. B.
1
; 2 ;
2
S
 
.
C.
1
2;
2
S
. D.
1
;2
2
S
.
Câu 552. [0D4-2] Tp nghim ca bt phương trình
4 3
1
1 2
x
x
là
A.
1
;1
2
. B.
1
;1
2
. C.
1
;1
2
. D.
;1
2
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 54
Câu 553. [0D4-2] Tìm tp nghim ca h bt phương trình
2
4 3 0
2 5 0
x x
x x
.
A.
1;3
. B.
2;5
. C.
2;1 3;5
. D.
3;5
.
Câu 554. [0D4-2] Tìm điều kin ca bất phương trình
12
2
2
x
x
x
A.
2 0
2 0
x
x
. B.
2 0
2 0
x
x
. C.
2 0
2 0
x
x
. D.
2 0
2 0
x
x
.
Câu 555. [0D4-2] Tp nghim ca bt phương trình
2
2
2 3 4
2
3
x x
x
là
A.
3 23 3 23
;
4 4 4 4
. B.
3 23 3 23
; ;
4 4 4 4

.
C.
2
;
3
. D.
2
;
3

.
Câu 556. [0D4-2] Tp nghim ca bt phương trình 3 2 2 2
x x x x
là
A.
1;2
. B.
1;2
. C.
;1

. D.
1;

.
Câu 557. [0D4-2] Tp nghim ca bt phương trình
1
0
1
x
x
là
A.
; 1 1;
 
. B.
; 1 1;
 
.
C.
1;1
. D.
; 1 1;
 
.
Câu 558. [0D4-2] Giá tr nh nht ca hàm s
3
2f x x
x
vi
0
x
là
A.
4 3
. B.
6
. C.
2 6
. D.
2 3
.
Câu 559. [0D4-2] Tìm g tr nhỏ nhất của biểu thức 2 4
A x x
.
A.
2
. B.
2
. C.
2 2
. D.
0
.
Câu 560. [0D4-2] Người ta dùng
100m
o để rào một mảnh vườn hình chnhật để thả gia súc. Biết một
cạnh của hình chnhật là bức tường (không phải rào). Tính diện tích lớn nhất của mnh để
thể rào được?
A.
2
1350m
. B.
2
1250m
. C.
2
625m
. D.
2
1150m
.
Câu 561. [0D4-2] Tìm tất cả giá trị của tham số
m
để bất phương trình
2
2 1 0
x x m
nghiệm:
A.
0
m
. B.
0
m
. C.
0
m
. D.
0
m
.
Câu 562. [0D4-2] Tìm tất cả các giá trị của tham số
m
để bất phương trình
2
m x mx m
nghiệm.
A.
0;1
m . B.
0;1
m .
C.
0
m
. D.
;0 1;m
 
.
Câu 563. [0D4-2] Tìm tập nghiệm
S
của bất phương trình
2
2 15 2 5
x x x
.
A.
; 3
S

. B.
;3
S  . C.
;3
S

. D.
S

.
Câu 564. [0D4-2] Gii hệ bất phương trình
5 6 0
2 1 3
x x
x
.
A.
5 1
x
. B.
1
x
. C.
5
x
. D.
5
x
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 55
Câu 565. [0D4-2] Bất phương trình
2 7
1
4
x
x
bao nhiêu nghiệm nguyên dương?
A.
14
. B.
3
. C.
0
. D.
4
.
Câu 566. [0D4-2] Tp nghim ca h bất phương trình
3 2 2 3
1 0
x x
x
là
A.
;1
5
. B.
;1

. C.
1;

. D.
.
Câu 567. [0D4-2] Tính tng các nghim nguyên thuc
5;5
ca bất phương trình:
2 2
3 1
9 9
5
x
x x x
x
?
A.
5
. B.
0
. C.
2
. D.
12
.
Câu 568. [0D4-2] Giá tr nh nht ca hàm s
4 2
2
4 3 9
x x
y
x
;
0
x
A.
9
. B.
3
. C.
12
. D.
10
.
Câu 569. [0D4-2] Biết
2 1
0
1
m
m
, bất phương trình:
1 3 2 1
m x m x m
có tập nghim là
A.
2;
. B.
; 2

. C.
2;
. D.
;2
 .
Câu 570. [0D4-2] Cho hàm s
2
y f x ax bx c
đồ th
như hình v. Đặt
2
4
b ac
, tìm du ca
a
.
A.
0
a
,
0
. B.
0
a
,
0
.
C.
0
a
,
0
. D.
0
a
,
, 0
.
Câu 571. [0D4-2] Tìm g tr ca tham s
m
để phương trình
2 2
2 4 0
x m x m m
có hai nghim trái du.
A.
0 4
m
. B.
0
m
hoc
4
m
. C.
2
m
. D.
2
m
.
Câu 572. [0D4-2] Tìm các giá tr ca tham s
m
để phương trình
2
4 0
x mx m
nghim.
A.
0 16
m
. B.
4 4
m
. C.
0 4
m
. D.
0 16
m
.
Câu 573. [0D4-2] Tìm tt c các giá tr ca
a
để
2
a a
.
A.
0
a
hoc
1
a
. B.
0 1
a
. C.
1
a
. D.
a
.
Câu 574. [0D4-2] Giá tr
x
tha mãn bất phương trình
2 6 0
x
là
A.
2
x
. B.
3
x
. C.
4
x
. D.
5
x
.
Câu 575. [0D4-2] Tp nghim ca bt phương trình
1 3 0
x x
A.
; 3 1;

. B.
. C.
3;1
. D.
1;
.
Câu 576. [0D4-2] Tp nghim ca bt phương trình
4
0
3 6
x
x
là
A.
2;4
. B.
;2 4;

. C.
. D.
2;4
.
Câu 577. [0D4-2] Tp nghim ca bt phương trình
1
1
3
x
x
là
A.
3;
. B.
. C.
;3 3;

. D.
;3
 .
O
x
y
4
4
1
y f x
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 56
Câu 578. [0D4-2] Giá tr
2
x
là nghim ca h bất phương trình nào sau đây?
A.
2 3 1
3 4 6
x
x
. B.
2 5 3
4 1 0
x x
x
. C.
2 4 3
1 2 5
x
x
. D.
2 3 3 5
2 3 1
x x
x
.
Câu 579. [0D4-2] Tp nghim ca bt phương trình
3
2 4 1
5
x
x x
.
A.
8
;
11
S

. B.
8
11

. C.
4
;
11
S

. D.
2
11

.
Câu 580. [0D4-2] Tp nghim ca bt phương trình
2 3 5 0
x x
.
A.
3
;5
2
. B.
3
; 5;
2
 
. C.
3
5;
2
. D.
3
; 5;
2
 
.
Câu 581. [0D4-2] Tp nghim ca bt phương trình
4 2
0
6 2
x
x
.
A.
2;3
S . B.
2;3
S . C.
;2 3;
 
. D.
;2 3;
 
.
Câu 582. [0D4-2] Tp nghim ca bt phương trình
2 1 1
x
.
A.
0;1
S . B.
1
;1
2
S
.
C.
;1
S

. D.
;1 1;S
 
.
Câu 583. [0D4-2] Tp nghim ca bt phương trình
3 1 2
x
.
A.
1
; 1 ;
3
S
 
. B.
S
.
C.
1
1;
3
S
. D.
1
;
3
S

.
Câu 584. [0D4-2] Tp nghim ca bt phương trình
2
2 1
x x
.
A.
S
. B.
1
;
2
S
. C.
1;

. D.
1
;
2
.
Câu 585. [0D4-3] Tìm tt c các giá tr ca tham s
m
để bất phương trình
2
0
x x m
nghim.
A.
1
4
m
. B.
m
. C.
1
4
m
. D.
1
4
m
.
Câu 586. [0D4-3] Tìm c giá tr thc ca tham s
m
để phương trình
2
1 2 0
m x mx m
mt
nghim lớn hơn
1
và mt nghim nh hơn
1
?
A.
0 1
m
. B.
1
m
. C.
m
. D.
0
1
m
m
.
Câu 587. [0D4-3] Cho bất phương trình
2
4 1 3 2 3
x x x x m
. Xác định
m
để bt phương
tnh nghim vi
1;3
x .
A.
0 12
m
. B.
12
m
. C.
0
m
. D.
12
m
.
Câu 588. [0D4-3] H sau có nghim duy nht
3
3 9
mx m
m x m
khi và ch khi
A.
2
m
. B.
2
m
. C.
1
m
. D.
1
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 57
Câu 589. [0D4-3] Biu thc
a b c
P
b c c a a b
, vi mi gtr ca
a
,
b
,
0
c
. Mệnh đề nào sau
đây đúng?
A.
3
0
2
P
. B.
3
2
P
. C.
2
P
. D.
3
2
P
.
Câu 590. [0D4-3] S giá tr nguyên
x
trong
2017;2017
tha mãn bất phương trình
2 1 3
x x
là
A.
2016
. B.
2017
. C.
4032
. D.
4034
.
Câu 591. [0D4-3] The solution set of inequation
1
1
2
x
x
is
A.
1; S
. B.
1
; 2 ;
2
S

.
C.
1
;
2
S
. D.
; 2
S

.
Câu 592. [0D4-3] Cho bất phương trình
2 8
13 9
x
. S nghim nguyên nh hơn
13
ca bất phương
tnh
A.
0
. B.
1
. C.
2
. D.
3
.
Câu 593. [0D4-3] Cho hàm s
1 5
f x m x m
, vi
m
là tham s thc. Tp hp các giá tr ca
m
để bất phương trình
0
f x
đúng với mi
0;3
x là
A.
4;5 .
B.
; 4 .

C.
4;5 .
D.
5; .

Câu 594. [0D4-3] Tìm g tr ca tham s
m
để h bt phương trình
3 6 3
5
7
2
x
x m
có nghim
A.
11
m
. B.
11
m
. C.
11
m
. D.
11
m
.
Câu 595. [0D4-3] Gii bt phương trình
3
3 2 3 3 1
x x x x
(vi
x
), ta được tp nghim
;
a
S c
b
vi
*
, ,a b c
, phân s
a
b
ti giản. Khi đó
a b c
bng
A.
7
. B.
5
. C.
6
. D.
9
.
Câu 596. [0D4-3] Hàm s
4 9
1
y
x x
vi
0 1
, đạt giá tr nh nht ti
a
x
b
(
a
,
b
nguyên
dương, phân số
a
b
ti gin). Khi đó
a b
bng
A.
4
. B.
139
. C.
141
. D.
7
.
Câu 597. [0D4-3] Tìm tt c các giá tr ca tham s
m
để phương trình
2
2 0
x x m
hai nghim
1
x
,
2
x
tha mãn:
2 2
1 1 2 2
2 1
3 3
2
x x m x x m
x x
.
A.
1 2
m
. B.
2
m
. C.
0 1
m
. D.
1
m
.
Câu 598. [0D4-3] Tìm tt c các giá tr ca tham s
m
để phương trình
2
2 2 0
x mx m
hai
nghim
1
x
,
2
x
tha mãn
3 3
1 2
16
x x
.
A. Không có giá tr ca
m
. B.
2
m
.
C.
1
m
. D.
1
m
hoc
2
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 58
Câu 599. [0D4-3] H phương trình
2 2
2 1
1
x y xy
x y
có my nghim?
A.
1
. B.
3
. C.
2
. D.
4
.
Câu 600. [0D4-3] Bt phương trình
2
1 2 1 3 0
m x m x m vi mi
x
khi
A.
1;
m . B.
2;

m . C.
1;

m . D.
2;7
m .
Câu 601. [0D4-3] Cho bất phương trình
2 2
6 6 8 1 0
x x x x m . Xác định
m
để bất phương
tnh nghiệm đúng với
x
.
A.
35
4
m . B.
9
m
. C.
35
4
m . D.
9
m
.
Câu 602. [0D4-3] Tp nghim ca bt phương trình
2 2
3 2 3 2 0
x x x x là
A.
3
2
1
2
x
x
x
. B.
3
0
x
x
. C.
2
1
2
x
x
. D.
1
;0;2;3
2
x .
Câu 603. [0D4-3] Giá tr ln nht và giá tr nh nht ca hàm s
4 3 2
4 10 3
y x x x x
trên đon
1;4
A.
min
37
4
y ,
max
21
y
. B.
max
37
4
y ,
min
21
y
.
C.
min
37
4
y ,
max
21
y
. D.
max
5
y
,
min
37
4
y .
Câu 604. [0D4-3] Gii bất phương trình
2
6 5 8 2
x x x
có nghiệm là
A.
5 3
x
. B.
3 5
x
. C.
2 3
x
. D.
3 2
x
.
Câu 605. [0D4-3] Giá tr nh nht ca biu thc
F y x
trên min xác định bi h
2 2
2 4
5
y x
y x
x y
là
A.
min 1
F
khi
2
x
,
3
y
. B.
min 2
F
khi
0
x
,
2
y
.
C.
min 3
F
khi
1
x
,
4
y
. D.
min 0
F
khi
0
x
,
0
y
.
Câu 606. [0D4-3] Cho bt phương trình:
2 2
2 2 3 3 1 0
x x m mx m m
. Để bất phương trình
nghim, các giá tr tch hp ca tham s
m
là
A.
1
1
2
m
. B.
1
1
2
m
. C.
1
1
2
m
. D.
1
1
2
m
.
Câu 607. [0D4-3] Xác định
m
để phương trình
2
1 2 3 4 12 0
x x m x m
có ba nghim phân
bit lớn hơn
1
.
A.
7
3
2
m
19
6
m
. B.
7
2
m
.
C.
7
1
2
m
16
9
m
. D.
7
3
2
m
19
6
m
.
Câu 608. [0D4-3] S nghim của phương trình
8 2 7 2 1 7
x x x x
A.
2
. B.
3
. C.
0
. D.
1
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 59
Câu 609. [0D4-3] H bất phương trình
2
1 0
0
x
x m
có nghim khi
A.
1
m
. B.
1
m
. C.
1
m
. D.
1
m
.
Câu 610. [0D4-3] Tìm
m
để
2
1 0;m x mx m x
?
A.
4
3
m
. B.
1
m
. C.
4
3
m
. D.
1
m
.
Câu 611. [0D4-3] Tp nghim ca bất phương trình
2 2
2 4 3 3 2 1
x x x x
là
A.
3;1
. B.
C.
3;1
. D.
3;1
.
Câu 612. [0D4-3] Cho
a
là s thc bt kì,
2
2
1
a
P
a
. Bất đẳng thc nào sau đây đúng với mi
a
.
A.
1
P
. B.
1
P
. C.
1
P
. D.
1
P
.
Câu 613. [0D4-3] Tp xác đnh ca m s:
2 2
2 1 5 2 4
y x x x x
dng
;
a b
. Tìm
a b
.
A.
3
. B.
1
. C.
0
. D.
3
.
Câu 614. [0D4-3] Cho nh thc bc nht
0
f x ax b a
. Trong các mệnh đề sau, mệnh đề o đúng?
A. Nh thc
f x
giá tr cùng du vi h s
a
khi
x
ly các giá tr trong khong ;
b
a

.
B. Nh thc
f x
có giá tr cùng du vi h s
a
khi
x
ly các giá tr trong khong ;
b
a
.
C. Nh thc
f x
có giá tr trái du vi h s
a
khi
x
ly các giá tr trong khong
;
b
a

.
D. Nh thc
f x
có giá tr cùng du vi h s
a
khi
x
ly các giá tr trong khong ;
b
a
.
Câu 615. [0D4-3] Biết tp nghim ca bất phương trình
2 7 4
x x
là
;
a b
. Khi đó
2
a b
bng
A.
2
. B.
4
. C.
5
. D.
17
.
Câu 616. [0D4-3] Tập nghim của bất phương trình
1 1
1 5
3 3
x x
x x
là
A.
1;5
S . B.
1;5 \ 3
S . C.
3;5
S . D.
1;5 \ 3
S .
Câu 617. [0D4-3] Biết bất phương trình
2
3 2 1 2
m x m x
mt nghiệm là
1
, điều kiện cần và
đủ của
m
là
A.
1
m
. B.
1
m
. C.
1
m
. D.
1
m
.
Câu 618. [0D4-3] Gii bất phương trình:
2 5 7 4
x x
.
A.
1
;6
3
x
. B.
1
;
3
x

.
C.
1
; 9;
3
x
 
. D.
1
;6
3
x
.
Câu 619. [0D4-3] m giá tr lớn nhất của
m
đ bt phương trình
2
3 5
x m m x
thỏa với mọi
5
x
.
A.
5
m
. B.
1
5
m
. C.
5
m
. D.
1
5
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 60
Câu 620. [0D4-3] Cho các s thc
x
,
y
tha mãn:
2 2
2 1
x y xy
. Giá tr ln nht giá tr nh
nht ca biu thc
4 4 2 2
7 4
P x y x y
có tng là
A.
136
33
. B.
68
25
. C. Một đáp án khác. D.
2344
825
.
Câu 621. [0D4-3] Một hình chnhật
ABCD
8
AB
6
AD
. Trên đoạn
AB
lấy điểm
E
thỏa
2
BE
trên
CD
lấy điểm
G
thỏa
6
CG
. Người ta cần tìm một điểm
F
trên đoạn
BC
sao cho
ABCD
được chia làm hai phần màu trắng màu xám như hình vẽ. Và diện tích phần
màu xám hơn ba lần diện tích phần màu trắng. Điều kiện cần và đủ của điểm
F
là
A.
F
cách
C
một đoạn bé hơn
3
. B.
F
cách
C
một đoạn không quá
3
.
C.
F
cách
B
một đoạn bé hơn
3
. D.
F
cách
B
một đoạn không quá
3
.
Câu 622. [0D4-4] Một xưởng khí hai công nhân là Chiến Bình. Xưởng sn xut loi sn phm
I
II
. Mi sn phm
I
bán lãi
500
nghìn đồng, mi sn phm
II
bán lãi
400
nghìn đồng.
Để sn xuất được mt sn phm
I
thì Chiến phi làm vic trong
3
gi, Bình phi làm vic
trong
1
giờ. Để sn xut được mt sn phm
II
t Chiến phi làm vic trong
2
gi, Bình phi
làm vic trong
6
gi. Một người không th làm được đồng thi hai sn phm. Biết rng trong
mt tháng Chiến không th làm vic quá
180
gi và Bình không th làm vic quá
220
gi. S
tin lãi ln nht trong mt tháng của xưởng là.
A.
32
triu đồng. B.
35
triu đồng. C.
14
triu đồng. D.
30
triu đồng.
Câu 623. [0D4-4] Cho các s thực dương
x
,
y
,
z
. Giá tr nh nht ca biu thc
2 2 2
2
x y z
P
xy yz zx
là
A.
. B.
3 1
. C.
3
4
. D.
1
2
.
Câu 624. [0D4-4] Cho các s dương
x
,
y
,
z
tha mãn
1
xyz
. Khi đó giá trị nh nht ca biu
thc
3 3 3 3
3 3
1 1
1
x y y z
z x
P
xy yz zx
là
A.
3
3 3
. B.
3 3
. C.
3
3 3
2
. D.
3 3
2
.
Câu 625. [0D4-4] Các giá tr ca
m
để bt phương trình
2 2
2 2 2 2
x m x x mx
tha mãn vi mi
x
A.
2
m
. B.
2
m
. C.
2 2
m
. D.
m
.
Câu 626. [0D4-4] Cho 0
.
, 1; 4
x y x y xy
Giá tr nh nht, giá tr ln nht ca
2 2
A x y xy
ln
lượt là
A.
1
4
;
4
3
. B.
1
4
;
7
9
. C.
1
4
;
9
7
. D.
1
4
;
7
8
.
Câu 627. [0D4-4] Một gia đình cần ít nhất
900
đơn vị protein và
400
đơn vị lipit trong thức ăn mi
ngày. Mi kiogam thịt bò chứa
800
đơn vị protein
200
đơn vị lipit. Mỗi kilogam thịt lợn
chứa
600
đơn vị protein và
400
đơn vị lipit. Biết rằng gia đình này chmua nhiều nhất
1,6
kg
tht bò
1,1
kg tht lợn. Giá tiền mt kg thịt bò là
160
nghìn đồng, một kg thịt lợn là
110
nghìn đồng. Gọi
x
,
y
lần lượt là skg thịt bò tht lợn gia đình đó cần mua. Tìm
x
,
y
để tổng số tin hphải trả là ít nhất mà vẫn đảm bảo lượng protein và lipit trong thức ăn?
A.
0,3
x
1,1
y
. B.
0,3
x
0,7
y
. C.
0,6
x
0,7
y
. D.
1,6
x
0,2
y
.
Câu 628. [0D4-4] Cho hàm s
2
2 1 2 1
f x x m x m
. Tìm tt c các giá tr ca tham s
m
để
0
f x
,
0;1
x .
A.
1
m
. B.
1
2
m
. C.
1
m
. D.
1
2
m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 61
Chủ đề 5. GÓC VÀ CUNG LƯỢNG GIÁC
Câu 629. [0D6-1] Cung có s đo
250
thì số đo theo đơn vị là radian
A.
25
12
. B.
25
18
. C.
25
9
. D.
35
18
.
Câu 630. [0D6-1] Gi
M
là điểm cuối khi biểu diễn cung lượng giác
trên đường tròn lượng giác.
Trong các phát biểu sau đây, phát biểu nào đúng?
A. Nếu
M
nằm bên phải trục tung thì
cos 0
.
B. Nếu
M
thuộc góc phần tư thứ tư thì
sin 0
cos 0
.
C. Nếu
M
thuộc góc phần tư thứ hai thì
sin 0
cos 0
.
D. Nếu
M
nằm phía trên trục hoành t
sin 0
.
Câu 631. [0D6-1] Với mọic
a
và số nguyên
k
, chọn đẳng thức sai?
A.
sin 2 sin
a k a
. B.
cos cos
a k a
.
C.
tan tan
a k a
. D.
cot cot
a k a
.
Câu 632. [0D6-1] Chn khẳng định đúng?
A.
tan tan
.
B.
sin sin
.
C.
cot cot
. D.
cos cos
.
Câu 633. [0D6-1] Chn khẳng định đúng?
A.
2
2
1
1 tan
cos
x
x
. B.
2 2
sin cos 1
x x
. C.
1
tan
cot
x
x
. D.
sin cos 1
x x
.
Câu 634. [0D6-1] Cho góc lượng giác
. Mệnh đề nào sau đây sai?
A.
tan tan
. B.
sin sin
.
C.
sin cos
2
. D.
sin sin
.
Câu 635. [0D6-1] Với điều kin xác định. Tìm đẳng thức đúng.
A.
2
2
1
1 cot
cos
x
x
. B.
2
2
1
1 tan
sin
x
x
.
C.
tan cot 1
x x
. D.
2 2
sin cos 1
x x
.
Câu 636. [0D6-1] Cho
là haic khác nhau và bù nhau. Mệnh đề nào sau đây sai?
A.
cot cot
. B.
sin sin
.
C.
tan tan
. D.
cos cos
.
Câu 637. [0D6-1] Cho biết
1
tan
2
. Tính
cot
.
A.
1
cot
2
. B.
cot 2
. C.
cot 2
. D.
1
cot
4
.
Câu 638. [0D6-1] Trong các công thc sau, công thức nào đúng?
A.
sin 2 2sin cos
a a a
. B.
sin 2 2sin
a a
.
C.
sin 2 sin cos
a a a
. D.
2 2
sin2 cos sin
a a a
.
Câu 639. [0D6-1] Mt cung tròn có độ dài bằng bán kính. Khi đó số đo bằng rađian của cung tròn đó là
A.
1
. B.
. C.
2
. D.
3
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 62
Câu 640. [0D6-1] Hãy chn kết qu sai trong các kết qu sau đây:
A.
cos cos
. B.
sin sin
.
C.
tan tan
. D.
cot tan
2
.
Câu 641. [0D6-1] Nếu mt cung tròn có s đo bng radian là
5
4
thì s đo bằng độ ca cung tròn đó là
A.
172
. B.
15
. C.
225
. D.
5
.
Câu 642. [0D6-1] Trên đường tròn lượng giác, cung lượng giác đim đu là
A
và điểm cui
M
s
A. mt s đo duy nhất. B. hai s đo, sao cho tổng ca chúng là
2
.
C. hai s đo hơn kém nhau
2
. D. s s đo sai khác nhau mt bi ca
2
.
Câu 643. [0D6-1] Tìm đẳng thức sai trong các đẳng thức sau (gisử rằng tất cả các biểu thức lượng gc
đều có nghĩa).
A.
tan tan
a a
. B. sin sin 2sin .sin
2 2
a b a b
a b
.
C.
sin tan .cos
a a a
. D.
cos sin sin cos cos
a b a b a b
.
Câu 644. [0D6-1] Nếu
1
sin cos
2
x x
t
sin 2
x
bằng
A.
3
4
. B.
2
2
. C.
3
8
. D.
3
4
.
Câu 645. [0D6-1] Trong hệ trục toạ độ
Oxy
, cho điểm
M
nằm trên đường tròn lượng giác. Đim
M
tung độ và hoành độ đều âm,c
,
Ox OM
có thlà
A.
90
. B.
200
. C.
60
. D.
180
.
Câu 646. [0D6-1] Cho
5
cos
13
a
3
2
2
a
. Tính
tan
a
.
A.
12
13
. B.
5
12
. C.
12
5
. D.
12
5
.
Câu 647. [0D6-1] Tính
2 2 2 2 2
sin 5 sin 10 sin 15 ... sin 80 sin 85
S
.
A.
19
2
. B.
8
. C.
17
2
. D.
9
.
Câu 648. [0D6-1] Trong tam giác
ABC
, đẳng thức nào dưới đây luôn đúng?
A.
sin cos
A B C
. B.
cos sin
A B
.
C. tan cot
2
A B
. D.
cos sin
2 2
A B C
.
Câu 649. [0D6-1] Trên đường tròn bán kính bằng
4
, cung có số đo
8
t độ dài
A.
4
. B.
3
. C.
16
. D.
2
.
Câu 650. [0D6-1] Trên đường tròn bán kính
6
R
, cung
60
có độ dài bng bao nhiêu?
A.
2
l
. B.
4
l
. C.
2
l
. D.
l
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 63
Câu 651. [0D6-1] Khng định nào dưới đây sai? (giả thiết các biểu thức có nghĩa).
A.
tan tan
a a
. B.
cos cos
a a
. C.
cot cot
a a
. D.
sin sin
a a
.
Câu 652. [0D6-1] Cho góc
thỏa mãn
5
2
2
. Khẳng định nào sau đây sai?
A.
tan 0
. B.
cot 0
. C.
sin 0
. D.
cos 0
.
Câu 653. [0D6-1] Cho góc lượng giác
a
k
. Với điều kiện các biểu thức dưới đây nghĩa, hỏi
khẳng định nào sai?
A.
cos 4 cos
a k a
. B.
cot 2 cot
a k a
.
C.
sin 2 1 sin
a k a
. D.
tan 2 1 tan
a k a
.
Câu 654. [0D6-1] Khng định nào dưới đây sai?
A.
cos2 2cos 1
a a
. B.
2
2sin 1 cos2
a a
.
C.
sin sin cos sin cos
a b a b b a
. D.
sin 2 2sin cos
a a a
.
Câu 655. [0D6-1] Trên đường tròn lượng giác, điểm
M
thỏa mãn
, 500
Ox OM
t nằm c phần
tư thứ
A.
I
. B.
II
. C.
III
. D.
IV
.
Câu 656. [0D6-1] Nếu
là góc nhn và
sin 2
a
t
sin cos
bng
A.
( 2 1) 1
a
. B.
2
1
a a a
. C.
1
a
. D.
2
1
a a a
.
Câu 657. [0D6-1] Giá tr ca biu thc
sin cos sin cos
10 15 15 10
2 2
cos cos sin sin
5 15 15 5
bng
A.
1
. B.
3
. C.
1
. D.
1
2
.
Câu 658. [0D6-1] Cho
3
sin
4
. Khi đó,
cos2
bng
A.
1
8
. B.
7
4
. C.
7
4
. D.
1
8
.
Câu 659. [0D6-1] Giá tr biu thc
sin .cos sin .cos
15 10 10 15
2 2
cos .cos sin .sin
15 5 15 5
là
A.
1
. B.
1
. C.
3
2
. D.
3
2
.
Câu 660. [0D6-1] Tìm khẳng đnh sai trong các khng định sau đây?
A.
tan 45° tan 60°
. B.
cos45 sin 4
. C.
sin 60° sin80°
. D.
cos35 cos10
.
Câu 661. [0D6-1] Trong các đẳng thức sau, đẳng thức nào đúng?
A.
3
cos150
2
. B.
cot150 3
. C.
1
tan150
3
. D.
3
sin150°
2
.
Câu 662. [0D6-2] Đổi sang radian góc có s đó
108
ta được
A.
4
. B.
10
. C.
3
2
. D.
3
5
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 64
Câu 663. [0D6-2] Biết
sin cos
m
. Tính cos
4
P
theo
m
.
A.
2
P m
. B.
2
m
P
. C.
2
m
P . D.
2
P m .
Câu 664. [0D6-2] Cho
tan 2
. Tính tan
4
?
A.
1
3
. B.
2
3
. C.
1
. D.
1
3
.
Câu 665. [0D6-2] Bánh xe của người đi xe đạp quay được
2
vòng trong
5
giây. Hi trong
1
giây, bánh
xe quay được mt góc bao nhiêu độ?
A.
144
. B.
288
. C.
36
. D.
72
.
Câu 666. [0D6-2] Cho
A
,
B
,
C
là
3
c ca mt tam giác. Đặt
cos 2
M A B C
t:
A.
cos
M A
. B.
cos
M A
. C.
sin
M A
. D.
sin
M A
.
Câu 667. [0D6-2] Nếu biết
sin
m
,
1 1
m
thì giá tr ca
sin2
là
A.
sin2 2
m
. B.
2
sin 2 2 1
m m
.
C.
2
sin 2 2 1
m m
. D.
2
sin 2 1
m m
.
Câu 668. [0D6-2] Cho
4
sin
5
,
90 180
. Tính
cos
.
A.
4
cos
5
. B.
3
cos
5
. C.
5
cos
3
. D.
3
cos
5
.
Câu 669. [0D6-2] Rút gn biu thc
4 4
sin cos
P x x
ta được
A.
2 2
1 2sin .cos
P x x
. B.
3 1
cos4
4 4
P x
.
C.
1 3
cos4
4 4
P x
. D.
3 1
cos4
4 4
P x
.
Câu 670. [0D6-2] Tính giá tr ca biu thc
2sin 3cos
4sin 5cos
P
biết
cot 3
.
A.
1
. B.
7
9
. C.
9
7
. D.
1
.
Câu 671. [0D6-2] Cho
ABC
. Mệnh đề nào sau đây đúng?
A.
sin sin
A B C
. B.
sin cos
2 2
A B C
.
C.
cos cos
A B C
. D.
tan tan
A B C
.
Câu 672. [0D6-2] Cho các c
,
tha mãn
2
,
,
1
sin
3
,
2
cos
3
. Tính
sin
.
A.
2 2 10
sin
9
. B.
2 10 2
sin
9
.
C.
5 4 2
sin
9
. D.
5 4 2
sin
9
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 65
Câu 673. [0D6-2] Rút gn biu thc
2
2017
sin 2sin cos 2019 cos2
2
S x x x x
ta đưc:
A.
cos 2
S x
. B.
1
S
. C.
1
S
. D.
sin cos
S x x
.
Câu 674. [0D6-2] Cho
3
sin
5
và (
90 180
). Tính
cos
.
A.
5
cos
4
. B.
4
cos
5
. C.
4
cos
5
. D.
5
cos
4
.
Câu 675. [0D6-2] Cho
1
sin
3
, vi
90 180
. Tính
cos
.
A.
2
cos
3
. B.
2
cos
3
. C.
2 2
cos
3
. D.
2 2
cos
3
.
Câu 676. [0D6-2] Biu thc sin
6
a
được viết li
A.
1
sin sin
6 2
a a
. B.
1 3
sin sin - cos
6 2 2
a a a
.
C.
3 1
sin sin - cos
6 2 2
a a a
. D.
3 1
sin sin cos
6 2 2
a a a
.
Câu 677. [0D6-2] Đơn gin biu thc
sin
cot
1 cos
a
E a
a
ta được
A.
1
sin
. B.
cos
. C.
sin
. D.
1
cos
.
Câu 678. [0D6-2] Cho
12
cos
13
3
2
. Giá tr ca
sin
A.
5
13
. B.
5
13
. C.
5
13
. D.
5
13
.
Câu 679. [0D6-2] Cho
2
. Hãy chn kết qu đúng trong các kết qu sau đây:
A.
sin 0
;
cos 0
. B.
sin 0
;
cos 0
.
C.
sin 0
;
cos 0
. D.
sin 0
;
cos 0
Câu 680. [0D6-2] Cho tam giác
ABC
không tam giác vuông. Hãy chn kết qu sai trong các kết qu
sau đây.
A.
sin .sin .sin 0
A B C
. B.
cos .cos .cos 0
2 2 2
A B C
.
C.
tan tan tan 0
2 2 2
A B C
. D.
sin sin sin 0
A B C
.
Câu 681. [0D6-2] Đơn gin biu thc cos
2
A
, ta được:
A.
cos
. B.
sin
. C.
cos
. D.
sin
.
Câu 682. [0D6-2] Giá tr
89
cot
6
bng
A.
3
. B.
3
. C.
3
3
. D.
3
3
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 66
Câu 683. [0D6-2] bao nhiêu đẳng thức đúng trong các đẳng thức sau đây (gisử rằng tất cả các biểu
thức lượng giác đều có nghĩa)?
i)
2
2
1
cos
tan 1
. iii)
2 cos cos sin
4
.
ii)
sin cos
2
. iv)
2
cot2 2cot 1
.
A.
3
. B.
2
. C.
4
. D.
1
.
Câu 684. [0D6-2] t gọn biểu thức
2 2
85 5
sin cos 2017 sin 33 sin
2 2
A x x x x
ta được:
A.
sin
A x
. B.
1
A
. C.
2
A
. D.
0
A
.
Câu 685. [0D6-2] Cho
cot 4 tan
;
2
. Khi đó
sin
bằng
A.
5
5
. B.
1
2
. C.
5
. D.
5
5
.
Câu 686. [0D6-2] Tính
cos14 cos134 cos106
K
.
A.
1
2
. B.
0
. C.
1
. D.
1
.
Câu 687. [0D6-2] Cho
tan
x
. Tính
sin 2
theo
x
.
A.
2
2 1
x x
. B.
2
2
1
1
x
x
. C.
2
2
1
x
x
. D.
2
2
1
x
x
.
Câu 688. [0D6-2]nh
3
sin sin
8 8
.
A.
1 2
1
2 2
. B.
2
4
. C.
35
99
. D.
1 2
1
2 2
.
Câu 689. [0D6-2] Với mọi
thì
3
sin
2
bằng
A.
sin
. B.
cos
. C.
cos
. D.
sin
.
Câu 690. [0D6-2] Biểu thức 2sin sin
4 4
đồng nhất với biểu thức nào dưới đây?
A.
sin 2
. B.
cos2
. C.
sin
. D.
cos
.
Câu 691. [0D6-2] Với mi c
, biu thức
2 9
cos cos cos ... cos
5 5 5
nhận giá tr bằng
A.
10
. B.
10
. C.
1
. D.
0
.
Câu 692. [0D6-2] Khi biu diễn cung lượng giác trên đường tròn lượng gc, khẳng định nào dưới đây
sai?
A. Điểm biểu diễn cung
và cung
đối xứng nhau qua trục tung.
B. Điểm biểu diễn cung
và cung
đối xứng nhau qua gốc tọa độ.
C. Mi cung lượng giác được biểu diễn bởi một điểm duy nhất.
D. Cung
và cung
2
k
k
có cùng đim biểu din.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 67
Câu 693. [0D6-2] Tính
sin
, biết
5
cos
3
3
2
2
.
A.
1
3
. B.
1
3
. C.
2
3
. D.
2
3
.
Câu 694. [0D6-2] Nếu
2
1
sin
3
t
2
1 tan
bng
A.
9
8
. B.
4
. C.
3
2
. D.
8
9
.
Câu 695. [0D6-2] Giá tr ca biu thc
2 2 2
3 sin 90 2cos 60 3tan 45
S
bng
A.
1
2
. B.
1
2
. C.
1
. D.
3
Câu 696. [0D6-2] Cho
2
cos 0
2
5
x x
t
sin
x
có giá tr bng
A.
3
5
. B.
3
5
. C.
1
5
. D.
1
5
Câu 697. [0D6-2] Gi s
4 4
1
3sin cos
2
x x
t
4 4
sin 3cos
x x
có giá tr bng
A.
1
. B.
2
. C.
3
. D.
4
Câu 698. [0D6-2] Tính
cot1 .cot 2 .cot3 ...cot89
P
.
A.
0
. B.
1
. C.
3
. D.
4
.
Câu 699. [0D6-2] Cho cos
4
5
vi
2
. Tính giá tr ca biu thc
10si
c s
n
5 o
M
.
A.
10
. B.
2
. C.
1
. D.
1
4
.
Câu 700. [0D6-2] Cho cos
1
3
7
4
2
. Khng định nào sau đây đúng?
A.
2 2
sin
3
. B.
2 2
sin
3
. C.
2
sin
3
. D.
2
sin
3
.
Câu 701. [0D6-2] Nếu
tan cot 2
t
2 2
tan cot
bng bao nhiêu?
A.
1
. B.
4
. C.
2
. D.
3
.
Câu 702. [0D6-2] Tính
2 2 2 2
2 5
sin sin ... sin sin
6 6 6
F
.
A.
3
. B.
2
. C.
1
. D.
4
.
Câu 703. [0D6-2] Đơn gin biu thc
5
sin cos 13 3sin 5
2
D
.
A.
3sin 2cos
. B.
3sin
. C.
3sin
. D.
2cos 3sin
.
Câu 704. [0D6-2] Gi s tan tan tan
3 3
A x x x
được rút gn thành
tan
A nx
khi đó
n
bng
A.
2
. B.
1
. C.
4
. D.
3
.
Câu 705. [0D6-2] Nếu
sin 3cos
x x
t
sin cos
x x
bng
A.
3
10
. B.
2
9
. C.
1
4
. D.
1
6
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 68
Câu 706. [0D6-2] Giá tr ca biu thc
tan110 tan340 sin160 cos110 sin 250 cos340
bng
A.
0
. B.
1
. C.
1
. D.
2
.
Câu 707. [0D6-2] Cho
5
sin
3
a . Tính
cos2 sin
a a
.
A.
17 5
27
. B.
5
9
. C.
5
27
. D.
5
27
.
Câu 708. [0D6-2] Biết
sin
cot cot
4
sin sin
4
x kx
x
x
x
vi mọi x để các biu thc nghĩa. Lúc đó giá trị ca
k là
A.
5
4
. B.
3
4
. C.
5
8
. D.
3
8
.
Câu 709. [0D6-2] Nếu cos sin 2 0
2
t
bng
A.
6
. B.
3
. C.
4
. D.
8
.
Câu 710. [0D6-2] Giá tr ca tan
3
bng bao nhiêu khi
3
sin
5 2
.
A.
48 25 3
11
. B.
8 5 3
11
. C.
8 3
11
. D.
48 25 3
11
.
Câu 711. [0D6-2] Giá tr biu thc
tan 30 tan 40 tan 50 tan 60
là
A.
3
4 1
3
. B.
8 3
cos20
3
. C.
2
. D.
4 3
sin 70
3
.
Câu 712. [0D6-2] Giá tr ca biu thc
cos80 cos20
sin40 cos10 sin10 cos40
bng
A.
3
2
. B.
1
. C.
1
. D.
3
2
.
Câu 713. [0D6-2] Cho
60
. Tính
tan tan
4
E
.
A.
1
. B.
2
. C.
3
. D.
1
2
.
Câu 714. [0D6-2] Đơn gin biu thc
1 3
sin10 cos10
C
.
A.
8cos20
. B.
4cos20
. C.
4sin 20
. D.
8sin 20
.
Câu 715. [0D6-2] Đẳng thức nào trong các đẳng thức sau là đồng nht thc?
1)
sin 2 2sin cos
x x x
2)
2
1 sin 2 sin cos
x x x
3)
sin2 sin cos 1 sin cos 1
x x x x x
4) sin2 2cos cos
2
x x x
A. Tt c. B.
1
2
.
C. Tt c tr
3
. D. Ch
1
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 69
Câu 716. [0D6-2] Biết
5
sin
13
a
,
3
cos
5
b
,0
2 2
a b
. Hãy tính
sin
a b
.
A.
33
65
. B.
63
65
. C.
56
65
. D.
0
.
Câu 717. [0D6-2] Cho
1
2
a
1 1 2
a b
; đặt
tan
x a
tan
y b
vi
, 0;
2
x y
, thế thì
x y
bng
A.
3
. B.
4
. C.
6
. D.
2
.
Câu 718. [0D6-2] Cho
1
cos2
4
a
. Tính
sin 2 cos
a a
A.
3 10
8
. B.
5 6
16
. C.
3 10
16
. D.
5 6
8
.
Câu 719. [0D6-2] Biu thc thu gn ca biu thc
1
1 .tan
cos2
B x
x
A.
tan 2
x
. B.
cot 2
x
. C.
cos2
x
. D.
sin
x
.
Câu 720. [0D6-2] Biu thc
sin10 sin20
cos10 cos20
bng
A.
tan10 tan 20
. B.
tan 30
. C.
cot10 cot 20
. D.
tan15
.
Câu 721. [0D6-2] Giá tr ca biu thc
2 2 2
3 sin 90 2cos 60 3tan 45
S
bng
A.
1
2
. B.
1
2
. C.
1
. D.
3
Câu 722. [0D6-2] Cho
2
cos 0
2
5
x x
t
sin
x
có giá tr bng
A.
3
5
. B.
3
5
. C.
1
5
. D.
1
5
Câu 723. [0D6-2] Gi s
4 4
1
3sin cos
2
x x
t
4 4
sin 3cos
x x
có giá tr bng
A.
1
. B.
2
. C.
3
. D.
4
Câu 724. [0D6-2] Tính
cot1 .cot 2 .cot3 ...cot89
P
.
A.
0
. B.
1
. C.
3
. D.
4
.
Câu 725. [0D6-2] Cho cos
4
5
vi
2
. Tính giá tr ca biu thc
10si
c s
n
5 o
M
.
A.
10
. B.
2
. C.
1
. D.
1
4
.
Câu 726. [0D6-2] Cho cos
1
3
7
4
2
. Khng định nào sau đây đúng?
A.
2 2
sin
3
. B.
2 2
sin
3
. C.
2
sin
3
. D.
2
sin
3
.
Câu 727. [0D6-2] Nếu
tan cot 2
t
2 2
tan cot
bng bao nhiêu?
A.
1
. B.
4
. C.
2
. D.
3
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 70
Câu 728. [0D6-2] Tính
2 2 2 2
2 5
sin sin ... sin sin
6 6 6
F
.
A.
3
. B.
2
. C.
1
. D.
4
.
Câu 729. [0D6-2] Đơn gin biu thc
5
sin cos 13 3sin 5
2
D
.
A.
3sin 2cos
. B.
3sin
. C.
3sin
. D.
2cos 3sin
.
Câu 730. [0D6-2] Gi s tan tan tan
3 3
A x x x
được rút gn thành
tan
A nx
khi đó
n
bng
A.
2
. B.
1
. C.
4
. D.
3
.
Câu 731. [0D6-2] Nếu
sin 3cos
x x
t
sin cos
x x
bng
A.
3
10
. B.
2
9
. C.
1
4
. D.
1
6
.
Câu 732. [0D6-2] Giá tr ca biu thc
tan110 tan340 sin160 cos110 sin 250 cos340
bng
A.
0
. B.
1
. C.
1
. D.
2
.
Câu 733. [0D6-2] Cho
5
sin
3
a . Tính
cos2 sin
a a
.
A.
17 5
27
. B.
5
9
. C.
5
27
. D.
5
27
.
Câu 734. [0D6-2] Biết
sin
cot cot
4
sin sin
4
x kx
x
x
x
vi mọi x để các biu thc nghĩa. Lúc đó giá trị ca
k là
A.
5
4
. B.
3
4
. C.
5
8
. D.
3
8
.
Câu 735. [0D6-2] Nếu cos sin 2 0
2
t
bng
A.
6
. B.
3
. C.
4
. D.
8
.
Câu 736. [0D6-2] Giá tr ca tan
3
bng bao nhiêu khi
3
sin
5 2
.
A.
48 25 3
11
. B.
8 5 3
11
. C.
8 3
11
. D.
48 25 3
11
.
Câu 737. [0D6-2] Giá tr biu thc
tan 30 tan 40 tan 50 tan 60
là
A.
3
4 1
3
. B.
8 3
cos20
3
. C.
2
. D.
4 3
sin 70
3
.
Câu 738. [0D6-2] Giá tr ca biu thc
cos80 cos20
sin40 cos10 sin10 cos40
bng
A.
3
2
. B.
1
. C.
1
. D.
3
2
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 71
Câu 739. [0D6-2] Cho
60
. Tính
tan tan
4
E
.
A.
1
. B.
2
. C.
3
. D.
1
2
.
Câu 740. [0D6-2] Đơn gin biu thc
1 3
sin10 cos10
C
.
A.
8cos20
. B.
4cos20
. C.
4sin 20
. D.
8sin 20
.
Câu 741. [0D6-2] Đẳng thức nào trong các đẳng thức sau là đồng nht thc?
1)
sin 2 2sin cos
x x x
2)
2
1 sin 2 sin cos
x x x
3)
sin2 sin cos 1 sin cos 1
x x x x x
4) sin2 2cos cos
2
x x x
A. Tt c. B.
1
2
. C. Tt c tr
3
. D. Ch
1
.
Câu 742. [0D6-2] Biết
5
sin
13
a
,
3
cos
5
b
,0
2 2
a b
. Hãy tính
sin
a b
.
A.
33
65
. B.
63
65
. C.
56
65
. D.
0
.
Câu 743. [0D6-2] Cho
1
2
a
1 1 2
a b
; đặt
tan
x a
tan
y b
vi
, 0;
2
x y
, thế thì
x y
bng
A.
3
. B.
4
. C.
6
. D.
2
.
Câu 744. [0D6-2] Cho
1
cos2
4
a
. Tính
sin 2 cos
a a
A.
3 10
8
. B.
5 6
16
. C.
3 10
16
. D.
5 6
8
.
Câu 745. [0D6-2] Biu thc thu gn ca biu thc
1
1 .tan
cos2
B x
x
A.
tan 2
x
. B.
cot 2
x
. C.
cos2
x
. D.
sin
x
.
Câu 746. [0D6-2] Biu thc
sin10 sin20
cos10 cos20
bng
A.
tan10 tan 20
. B.
tan 30
. C.
cot10 cot 20
. D.
tan15
.
Câu 747. [0D6-2] Giá tr ca biu thc
tan 20° tan 40° 3 tan 20°.tan40°
bng
A.
3
3
. B.
3
3
. C.
3
. D.
3
.
Câu 748. [0D6-2] Tính
tan.tan 2°.tan 3°...tan89°
M
A.
1
. B.
2
. C.
1
. D.
1
2
.
Câu 749. [0D6-2] Gi s
1 1
1 tan 1 tan 2tan
cos cos
n
x x x
x x
cos 0
x
. Khi đó
n
có giá tr bng
A.
4
. B.
3
. C.
3
. D.
1
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 72
Câu 750. [0D6-2] Tính giá tr biu thc
2 2 2 2
9
sin sin sin sin tan cot
6 3 4 4 6 6
P
.
A.
2
. B.
4
. C.
3
. D.
1
.
Câu 751. [0D6-2] Biu thc
2 2 2
sin 10° sin 2 ... sin 180°
A có giá tr bng
A.
6
A
. B.
8
A
. C.
3
A
. D.
9
A
.
Câu 752. [0D6-2] Cho
sin cos
x x m
. Tính theo
m
giá tr ca
sin .cos
M x x
.
A.
2
1
m
. B.
2
1
2
m
. C.
2
1
2
m
. D.
2
1
m
.
Câu 753. [0D6-2] Biu thc
2 2 2
cos 10° cos 20° ... cos 180°
A có giá tr bng
A.
9
A
. B.
3
A
. C.
12
A
. D.
6
A
.
Câu 754. [0D6-2] Cho
1
cot
2
3
2
thì
2
sin .cos
có giá tr bng
A.
2
5
. B.
4
5 5
. C.
4
5 5
. D.
2
5
.
Câu 755. [0D6-3] Cho
tan 2
. Giá tr ca biu thc
3 3
sin
sin 2cos
C
A.
10
11
. B.
1
. C.
5
12
. D.
8
11
.
Câu 756. [0D6-3] Biến đổi thành tích biu thc
sin7 sin5
sin7 sin5
ta được
A.
tan 5 .tan
. B.
cos2 .sin3
. C.
cot 6 .tan
. D.
cos .sin
.
Câu 757. [0D6-3] Biu thc
2 2 2 2
sin .tan 4sin tan 3cos
x x x x x
không ph thuc vào
x
giá tr
bng
A.
6
. B.
5
. C.
3
. D.
4
.
Câu 758. [0D6-3] Bt đẳng thức nào dưới đây là đúng?
A.
cos90 30 cos100
. B.
sin90 sin150
.
C.
sin90 15 sin 90 30
. D.
sin90 15 sin 90 30
.
Câu 759. [0D6-3] Cho
co
tan
t
m
. Tính giá tr biu thc
3 3
t n
t
a co
.
A.
3
3
m m
. B.
3
3
m m
. C.
3
3
m m
. D.
3
3
m m
.
Câu 760. [0D6-3] Cho
5
cossin
4
. Khi đó
.in
s
s
co
giá tr bng
A.
1
. B.
9
32
. C.
3
16
. D.
5
4
.
Câu 761. [0D6-3] Cho
cot 3
. Khi đó
3 3
3sin 2cos
12sin 4cos
giá tr bng
A.
1
4
. B.
5
4
. C.
3
4
. D.
1
4
.
Câu 762. [0D6-3] Kết qu đơn gin ca biu thc
2
sin tan
1
cos 1
bng
A.
2
1
cos
. B.
1 tan
. C.
2
. D.
2
1
sin
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 73
Câu 763. [0D6-3] Nếu
20
a
25
b
t giá tr ca
1 tan 1 tan
a b
là
A.
2
. B.
2
. C.
3
. D.
1 2
.
Câu 764. [0D6-3] Tính
1 5cos
3 2cos
B
biết
tan 2
2
.
A.
2
21
. B.
20
9
. C.
2
21
. D.
10
21
.
Câu 765. [0D6-3] Giá tr ca biu thc
1 1
sin18 sin54
bng
A.
1 2
2
. B.
2
. C.
2
. D.
1 2
2
.
Câu 766. [0D6-3] Nếu
là góc nhn và
1
sin
2 2
x
x
t
tan
bng
A.
1
1
x
x
. B.
2
1
x
. C.
1
x
. D.
2
1
x
x
.
Câu 767. [0D6-3] Giá tr ca biu thc
2 2
tan cot
24 24
A
bng
A.
12 2 3
2 3
. B.
12 2 3
2 3
. C.
12 2 3
2 3
. D.
12 2 3
2 3
.
Câu 768. [0D6-3] Vi giá tr nào ca
n
thì đẳng thức sau ln đúng
1 1 1 1 1 1
cos cos
2 2 2 2 2 2
x
x
n
, 0
2
x
.
A.
4
. B.
2
. C.
8
. D.
6
.
Câu 769. [0D6-3] Ta có
4
1
sin cos2 cos4
8 2 8
a b
x x x
vi ,a b
. Khi đó tổng
a b
bng
A.
2
. B.
1
. C.
3
. D.
4
.
Câu 770. [0D6-3] Ta có
8 8
sin cos cos4 cos8
64 16 64
a b c
x x x x
vi ,a b
. Khi đó
5
a b c
bng
A.
1
. B.
2
. C.
3
. D.
4
.
Câu 771. [0D6-3] Nếu
là góc nhn và
1
sin
2 2
x
x
t
cot
bng
A.
2
1
x
x
. B.
1
1
x
x
. C.
2
2
1
1
x
x
. D.
2
1
1
x
.
Câu 772. [0D6-3] Cho
ABC
các cnh
BC a
,
AC b
,
AB c
tha mãn h thc
1 cos 2
1 cos 2
B a c
B a c
là tam giác
A. cân ti
C
. B. vuông ti
B
. C. cân ti
A
. D. đều.
Câu 773. [0D6-3] Tính giá tr của biểu thức
1 2cos2 2 3cos2
P
biết
2
sin
3
.
A.
49
27
P . B.
50
27
P . C.
48
27
P . D.
47
27
P .
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 74
Câu 774. [0D6-3] Cho
3
sin cos
4
a a
. Tính
sin 2
a
.
A.
5
sin2
4
a
. B.
7
sin2
16
a . C.
7
sin2
16
a
. D.
5
sin2
4
a
.
Câu 775. [0D6-3] Cho
1
sin
3
a
vi
2
a
. Tính
cos
a
.
A.
2 2
cos
3
a . B.
2 2
cos
3
a . C.
8
cos
9
a
. D.
8
cos
9
a
.
Câu 776. [0D6-3] Giá tr lớn nhất của biểu thức
4 7
sin cos
x x
A.
2
. B.
2
. C.
1
2
. D.
1
.
Câu 777. [0D6-3] Tìm giá tr nh nht ca biu thc
sin 3cos
a a
.
A.
2
. B.
1 3
. C.
2
. D.
0
.
Câu 778. [0D6-3] Khng định nào sau dưới đây đúng?
A.
4 4
sin cos cos2
a a a
. B.
4 4 2
2 sin cos 2 sin 2
a a a
.
C.
2
sin cos 1 2sin 2
a a a
. D.
3
2 2 4 4
sin cos 1 2sin .cos
a a a a
.
Câu 779. [0D6-3] Tính
sin cos 3 2 cot
2
P
, biết
1
sin
2
0
2
.
A.
3 3 1
2
. B.
3 3 3
. C.
3 3 3
. D.
3 3 1
.
Câu 780. [0D6-4] Tính giá tr ca
2 2 2 2
2 5
cos cos ... cos cos
6 6 6
G
A.
3
. B.
2
. C.
0
. D.
1
.
Câu 781. [0D6-4] Biu thc
cos 20 cos 40 cos60 ... cos160 cos180
A
có giá tr bng
A.
1
. B.
1
. C.
2
. D.
2
.
Câu 782. [0D6-4] Kết qu rút gn ca biu thc
2
sin tan
1
cos 1
bng
A.
2
. B.
1 tan
. C.
2
1
cos
. D.
2
1
sin
.
Câu 783. [0D6-4] Tính
2 9
sin sin ... sin
5 5 5
E
.
A.
0
. B.
1
. C.
1
. D.
2
.
Câu 784. [0D6-4] Biu thc
3
sin cos cot 2 tan
2 2
A x x x x
biu thc rút
gn là
A.
2sin
x
. B.
2sin
x
. C.
0
. D.
2cot
x
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 75
Chủ đề 6. VÉCTƠ. TỌA ĐỘ
Câu 785. [0H1-1] Véctơ có đim đầu là
A
, điểm cui
B
được kí hiu
A.
AB
. B.
AB
. C.
BA
. D.
AB
.
Câu 786. [0H1-1] Trong mt phng ta độ
Oxy
, cho hai điểm
4; 0
A và
0; 3
B . Xác định ta độ
của vectơ
2
u AB
.
A.
8; 6
u
. B.
8; 6
u
. C.
4; 3
u
. D.
4; 3
u
.
Câu 787. [0H1-1] Trong mt phng ta đ
Oxy
, cho
3; 1
A
,
1;2
B
1; 1
I
. Tìm ta đ đim
C
để
I
là trng tâm tam giác
ABC
.
A.
1; 4
C
. B.
1;0
C . C.
1;4
C . D.
9; 4
C
.
Câu 788. [0H1-1]t các mnh đề sau
(I): Véc không là véc tơ có đ dài bng
0
.
(II): Véc tơ không là véc tơ có nhiều phương.
A. Ch (I) đúng. B. Ch (II) đúng. C. (I) và (II) đúng. D. (I) và (II) sai.
Câu 789. [0H1-1] Cho hình vuông
ABCD
có cnh bng
a
. Độ dài
AD AB
bng
A.
2
a
B.
2
2
a
. C.
3
2
a
. D.
2
a
.
Câu 790. [0H1-1] Trong mt phng vi h tọa đ
Oxy
, cho hai đim
2; 5
A
4;1
B . Ta độ trung
điểm
I
của đon thng
AB
A.
1;3
I . B.
1; 3
I
. C.
3;2
I . D.
3; 2
I
.
Câu 791. [0H1-1] Cho tam giác
ABC
vi
2;3
A ,
4; 1
B
, trng tâm ca tam giác
2; 1
G
. Ta
độ đỉnh
C
là
A.
6; 4
. B.
6; 3
. C.
4; 5
. D.
2;1
.
Câu 792. [0H1-1] Cho các đim
A
,
B
,
C
,
D
và s thc
k
. Mệnh đề nào sau đây đúng?
A.
AB k CD AB kCD

. B.
AB kCD AB kCD
.
C.
AB kCD AB k CD

. D.
AB kCD AB kCD
.
Câu 793. [0H1-1] Trong mt phng vi h tọa đ
Oxy
cho các đim
1;2
A ,
3; 1
B
,
0;1
C . Tọa độ
của véctơ 2
u AB BC
A.
2;2
u
. B.
4;1
u
.
C.
1; 4
u
. D.
1;4
u
.
Câu 794. [0H1-1] Mệnh đề nào sau đây sai?
A.
G
là trng tâm
ABC
thì
0
GA GB GC
.
B. Ba đim
A
,
B
,
C
bt kì thì
AC AB BC
.
C.
I
là trung đim
AB
thì
MI MA MB
vi mi điểm
M
.
D.
ABCD
là hình bình hành thì
AC AB AD
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 76
Câu 795. [0H1-1] Cho
ABC
có trng tâm
G
. Khẳng định nào sau đây đúng?
A.
AG AB AC

. B.
2
AG AB AC
.
C.
1
3
AG AB AC
. D.
2
3
AG AB AC

.
Câu 796. [0H1-1] Cho hai điểm
3;1
A
1; 3
B
. Ta độ của vectơ
AB
là
A.
2; 2
. B.
1; 1
. C.
4; 4
. D.
4; 4
.
Câu 797. [0H1-1] Trong h ta đ
,
Oxy
cho
3; 4
a
,
1;2
b
. Tìm ta độ ca
a b
.
A.
4; 6
a b
. B.
2; 2
a b
. C.
4;6
a b
. D.
3; 8
a b
.
Câu 798. [0H1-1] Cho
5
đim phân bit
M
,
N
,
P
,
Q
,
R
. Mệnh đề nào sau đây đúng?
A.
MN PQ RN NP QR MP

. B.
MN PQ RN NP QR PR
 
.
C.
MN PQ RN NP QR MR

. D.
MN PQ RN NP QR MN
.
Câu 799. [0H1-1] Cho hình bình hành
ABCD
, đẳng thức véctơ nào sau đây đúng?
A.
CD CB CA
. B.
AB AC AD
. C.
BA BD BC
. D.
CD AD AC
.
Câu 800. [0H1-1] Cho tam giác đều
ABC
cnh
a
, mệnh đề nào sau đây đúng?
A.
AC BC
. B.
AC a
. C.
AB AC
. D.
AB a
.
Câu 801. [0H1-1] Cho hình bình hành
ABCD
vi
I
là giao đim của hai đường chéo. Khẳng đnh nào
sau đây là khẳng định sai?
A.
0
IA IC
. B.
AB AD AC
. C.
AB DC
. D.
AC BD

.
Câu 802. [0H1-1] Cho lục giác đều
ABCDEF
tâm
O
. Ba vectơ bằng vectơ
BA
là
A.
OF
,
DE
,
OC
. B.
CA
,
OF
,
DE
. C.
OF
,
DE
,
CO
. D.
OF
,
ED
,
OC
.
Câu 803. [0H1-1] Cho hình bình hành
ABCD
có tâm
O
. Khẳng định nào sau đây là đúng:
A.
AB AC DA
. B.
AO AC BO

. C.
AO BO CD
. D.
AO BO BD

.
Câu 804. [0H1-1] Cho
1;2
a
3;4
b
. Vectơ
2 3
m a b
có to độ là
A.
10; 12
m
. B.
11; 16
m
. C.
12; 15
m
. D.
13; 14
m
.
Câu 805. [0H1-1] Cho ba đim
A
,
B
,
C
phân bit. tt c bao nhiêu véctơ khác véctơ không
điểm đầu, đim cui là hai điểm trong ba đim
A
,
B
,
C
?
A.
3
. B.
4
. C.
5
. D.
6
.
Câu 806. [0H1-1] Trong mt phng tọa độ vi h ta độ
Oxy
, cho hai điểm
( 2;3)
A
,
(1; 6)
B
. Tọa độ
của véctơ
AB
bng
A.
3;9
AB
. B.
1; 3
AB
. C.
3; 9
AB
. D.
1; 9
AB
.
Câu 807. [0H1-1] Trên mt phng ta độ
Oxy
cho hai vectơ
2 3
a i j
,
2
b i j
. Khi đó tọa độ vectơ
a b
A.
2; 1
. B.
1;2
. C.
1; 5
. D.
2; 3
.
Câu 808. [0H1-1] Trên mt phng ta độ
Oxy
cho tam gc
ABC
1;3
A ,
2;1
B
0; 3
C
.
Vectơ
AB AC

có tọa độ là
A.
4;8
. B.
1;1
. C.
1; 1
. D.
4; 8
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 77
Câu 809. [0H1-1] Trên mt phng to độ
Oxy
, cho
2;5
A ,
1; 1
B
. Tìm to độ
M
sao cho
2
MA MB
.
A.
1;0
M . B.
0; 1
M
. C.
1;0
M . D.
0;1
M .
Câu 810. [0H1-1] Trên mt phng ta đ
Oxy
, cho đim
5; 3
N
,
1;0
P và
M
tùy ý. Khi đó
MN MP
có tọa độ là
A.
4;3
. B.
4;1
. C.
4; 3
. D.
4;3
.
Câu 811. [0H1-1] Véctơ tng
MN PQ RN NP QR

bng
A.
MR
. B.
MN
. C.
PR
. D.
MP
.
Câu 812. [0H1-1] Cho tam giác
ABC
trng m
G
. Khi đó:
A.
1 1
2 2
AG AB AC
. B.
1 1
3 3
AG AB AC

.
C.
1 1
3 2
AG AB AC

. D.
2 2
3 3
AG AB AC
.
Câu 813. [0H1-1] Trong mt phng tọa độ
Oxy
cho hai điểm
3; 5
A
,
1;7
B . Trung đim
I
của đon
thng
AB
có tọa độ là:
A.
2; 1
I
. B.
2;12
I . C.
I . D.
2;1
I .
Câu 814. [0H1-1] Cho
u DC AB BD
vi
4
đim bt
A
,
B
,
C
,
D
. Chn khẳng định đúng?
A.
0
u
. B.
2
u DC
. C.
u AC
. D.
u BC
.
Câu 815. [0H1-1] Trong mt phng to độ
Oxy
cho hình bình hành
ABCD
có
2;3
A ,
0;4
B ,
5; 4
C
. To đ đỉnh
D
là:
A.
3; 5
. B.
3;7
. C.
3; 2
. D.
7;2
.
Câu 816. [0H1-1] Cho trc tọa độ
,
O e
. Khẳng định nào sau đây luôn đúng?
A.
AB AB
.
B.
.
AB ABe
.
C. Đim
M
có tọa độ là
a
đối vi trc ta độ
,
O e
t
OM a
.
D.
AB AB
.
Câu 817. [0H1-1] Trong mt phng ta độ
Oxy
, cho tam giác
ABC
1; 5
A
,
3;0
B ,
3;4
C .
Gi
M
,
N
ln lượt là trung đim ca
AB
,
AC
. Tìm ta độ vectơ
MN
.
A.
3;2
MN
. B.
3; 2
MN
. C.
6;4
MN
. D.
1;0
MN
.
Câu 818. [0H1-1] Trong mt phng
Oxy
, cho
1 1
;
A x y
2 2
;
B x y
. Ta độ trung đim
I
của đoạn
thng
AB
là
A.
1 1 2 2
;
2 2
x y x y
I
. B.
1 2 1 2
;
3 3
x x y y
I
. C.
2 1 2 1
;
2 2
x x y y
I
. D.
1 2 1 2
;
2 2
x x y y
I
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 78
Câu 819. [0H1-1] Cho
AB
khác
0
và cho đim
C
. Có bao nhiêu điểm
D
tha
AB CD
?
A. s. B.
1
đim. C.
2
điểm. D. Không có đim nào.
Câu 820. [0H1-1] Hai vectơ cùng độ dài và ngược hướng gi
A. Hai vectơ cùng hướng. B. Hai vectơ cùng phương.
C. Hai vectơ đối nhau. D. Hai vectơ bng nhau.
Câu 821. [0H1-1] Cho ba đim
M
,
N
,
P
thẳng hàng, trong đó đim
N
nm giữa hai điểm
M
P
.
Khi đó các cặp vectơ nào sau đâyng hướng?
A.
MP
PN

. B.
MN
PN

. C.
NM
NP
. D.
MN
MP
.
Câu 822. [0H1-1] Cho tam giác
ABC
. Điểm
M
tha mãn
2
AB AC AM

. Chn khẳng đnh đúng.
A.
M
là trng tâm tam giác. B.
M
là trung đim ca
BC
.
C.
M
trùng vi
B
hoc
C
. D.
M
trùng vi
A
.
Câu 823. [0H1-1] Tng
MN PQ RN NP QR
 
bng
A.
MR
. B.
MN
. C.
MP
. D.
MQ
.
Câu 824. [0H1-1] Cho 4 đim bt kì
A
,
B
,
C
,
O
. Đẳng thức nào sau đây đúng?
A.
OA OB BA
. B.
OA CA CO
.
C.
AB AC BC
. D.
AB OB OA
 
.
Câu 825. [0H1-1] Trong mt phng tọa độ
Oxy
, cho hai điểm
1;0
A
0; 2
B
. Tọa đ trung đim
của đon thng
AB
A.
1
; 1
2
. B.
1
1;
2
. C.
1
; 2
2
. D.
1; 1
.
Câu 826. [0H1-1] Chn mnh đề sai trong các mnh đề sau đây:
A.
0
cùng hướng với mi vectơ. B.
0
cùng phương với mi vectơ.
C.
0
AA
. D.
0
AB

.
Câu 827. [0H1-1] Trong mt phng
Oxy
cho
2;3
A ,
4; 1
B
. Ta độ ca
OA OB
là
A.
2; 4
. B.
2; 4
. C.
3;1
. D.
6; 2
.
Câu 828. [0H3-1] Cho
3; 2
A
,
5; 4
B
1
; 0
3
C
. Ta có
AB xAC

t giá tr
x
là
A.
3
x
. B.
3
x
. C.
2
x
. D.
2
x
.
Câu 829. [0H1-1] Cho
I
là trung đim của đoạn
MN
? Mệnh đề nào là mnh đề sai?
A.
0
IM IN
. B.
2
MN NI

.
C.
MI NI IM IN
. D.
2
AM AN AI

.
Câu 830. [0H1-2] Cho
4
điểm
A
,
B
,
C
,
D
. Gọi
I
,
J
lần lượt là trung điểm của
AB
CD
;
O
trung đim của
IJ
. Mệnh đề nào sau đây sai?
A.
1
2
IJ AD BC

. B.
AB CD AD CB
.
C.
1
2
IJ AC BD

. D.
0
OA OB OC OD
 
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 79
Câu 831. [0H1-2] Cho hình bình hành
ABCD
tâm
I
;
G
là trng tâm tam giác
BCD
. Đẳng thc o
sau đây sai?
A.
BA DA BA DC
 
. B. 3
AB AC AD AG
.
C.
BA BC DA DC

. D.
0
IA IB IC ID
.
Câu 832. [0H1-2] Cho tam giác
ABC
đều có cạnh
5
AB
,
H
là trung điểm của
BC
. Tính
CA HC
.
A.
5 3
2
CA HC
. B.
5
CA HC
. C.
5 7
4
CA HC
. D.
5 7
2
CA HC
.
Câu 833. [0H1-2] Gi
O
là giao điểm của hai đưng chéo hình nh hành
ABCD
. Đẳng thc nào sau
đây sai?
A.
BA CD
. B.
AB CD
. C.
OA OC
. D.
AO OC
.
Câu 834. [0H1-2] Cho tam giác
ABC
đim
I
tha mãn
2
IA IB
. Biu din
IC
theo các vectơ
AB
,
AC
.
A. 2
IC AB AC
. B. 2
IC AB AC
.
C.
2
3
IC AB AC
. D.
2
3
IC AB AC
.
Câu 835. [0H1-2] Cho tam giác
OAB
vuông cân ti
O
, cnh
4
OA
. Tính 2
OA OB
.
A.
2 4
OA OB
. B. Đáp án khác.
C.
2 12
OA OB
. D.
2 4 5
OA OB
.
Câu 836. [0H1-2] hai lc
1
F
,
2
F
cùng tác động vào mt vật đứng tại điểm
O
, biết hai lc
1
F
,
2
F
đều cường độ
50 N
và chúng hp vi nhau mt c
60
. Hi vt đó phải chu mt lc
tng hợp có cường độ bng bao nhiêu?
A.
100 N
. B.
50 3 N
. C.
100 3 N
. D. Đáp án khác.
Câu 837. [0H1-2] Trong h trục tọa độ
; ;
O i j
cho hai véc tơ
2 4
a i j
;
5 3
b i j
. Tọa độ của
vectơ 2
u a b
là
A.
9; 5
u
. B.
1; 5
u
. C.
7; 7
u
. D.
9; 11
u
.
Câu 838. [0H1-2] Cho 4 đim
A
,
B
,
C
,
D
. Khẳng định nào sau đây sai?
A. Điều kiện cần và đủ để
NA MA
N M
.
B. Điều kiện cần và đủ để
AB CD

là tgiác
ABDC
là hình bình hành.
C. Điều kiện cần và đủ để
0
AB
A B
.
D. Điều kiện cần và đủ để
AB
CD
là hai vectơ đối nhau là
0
AB CD
.
Câu 839. [0H1-2] Trong mt phng ta độ
Oxy
cho hai đim
2; 2
A
;
5; 4
B
. Tìm ta đ trng
tâm
G
ca
OAB
.
A.
7
;1
2
G
. B.
7 2
;
3 3
G
. C.
1; 2
G
. D.
3
; 3
2
G
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 80
Câu 840. [0H1-2] Trong mt phng ta độ
Oxy
, cho đim
1; 3
M
. Khẳng định nào sau đây sai?
A. Hình chiếu vuông góc ca
M
trên trc hoành là
1;0
H .
B. Điểm đối xng vi
M
qua gc ta độ
3; 1
P
.
C. Điểm đối xng vi
M
qua trc hoành là
1;3
N .
D. Hình chiếu vuông góc ca
M
trên trc tung là
0; 3
K
.
Câu 841. [0H1-2] Cho t giác
ABCD
AB DC
AB BC
. Khẳng định nào sau đây sai?
A.
AD BC
. B.
ABCD
là hình thoi.
C.
CD BC
. D.
ABCD
là hình thang cân.
Câu 842. [0H1-2] Trong mt phng to độ
Oxy
, cho ba đim
2;5
A ,
2;2
B ,
10; 5
C
. Tìm điểm
;1
E m
sao cho t giác
ABCE
là hình thang có mt đáy là
CE
.
A.
2;1
E . B.
0;1
E . C.
2;1
E . D.
1;1
E .
Câu 843. [0H1-2] Cho hình vng
ABCD
tâm
O
cnh
a
. Biết rng tp hợp các đim
M
tha mãn
2 2 2 2 2
2 2 9
MA MB MC MD a
là mt đường tròn. Bán kính của đường tròn đó là
A.
2
R a
. B.
3
R a
. C.
R a
. D.
2
R a
.
Câu 844. [0H1-2] Cho hình ch nht
ABCD
tâm
O
. Gi
M
,
N
ln lượt là trung đim ca
OA
CD
.
Biết
. .
MN a AB b AD
. Tính
a b
.
A.
1
a b
. B.
1
2
a b
. C.
3
4
a b
. D.
1
4
a b
.
Câu 845. [0H1-2] Cho tam giác
ABC
. Gi
I
,
J
là hai điểm xác định bi
2

IA IB
,
3 2 0
JA JC . H
thức nào đúng?
A.
5
2
2
IJ AC AB
. B.
5
2
2
IJ AB AC
. C.
2
2
5
IJ AB AC
. D.
2
2
5
IJ AC AB
.
Câu 846. [0H1-2] Trong mt phng
Oxy
, cho hình bình hành
ABCD
2; 3
A
,
4;5
B
13
0;
3
G
là trng tâm tam giác
ADC
. Tọa độ đỉnh
D
là
A.
2;1
D . B.
1;2
D . C.
2; 9
D
. D.
2;9
D .
Câu 847. [0H1-2] Trong các h thc sau, h thức nào đúng?
A.
2
a a
. B.
a a
. C.
2
a a
. D.
. .
a b a b
.
Câu 848. [0H1-2] Cho tam giác
.
ABC
Khẳng định nào sau đây đúng?
A.
AB AC BC

. B.
AB CA CB
. C.
CA BA CB
.
D.
AA BB AB
.
Câu 849. [0H1-2] Trong h ta độ
Oxy
, cho
2; 3
A
,
4;7
B . Tìm ta độ trung đim
I
của đoạn
thng
AB
.
A.
2;10
I . B.
6;4
I . C.
8; 21
I
. D.
3;2
I .
Câu 850. [0H1-2] Cho hình bình hành
ABCD
. Gi
G
là trng tâm ca tam giác
ABC
. Mệnh đề nào sau
đây đúng?
A.
GA GC GD CD
. B.
GA GC GD BD
.
C.
0
GA GC GD
. D.
GA GC GD DB
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 81
Câu 851. [0H1-2] Cho tam giác
ABC
vuông cân ti
A
AB a
. Tính
AB AC
.
A.
2
AB AC a
. B.
2
2
a
AB AC
. C.
2
AB AC a
. D.
AB AC a
.
Câu 852. [0H1-2] Cho tam giác
ABC
đều cnh
a
, có
AH
là đường trung tuyến. Tính
AC AH
.
A.
3
2
. B.
2
a
. C.
13
2
a
. D.
3
a
.
Câu 853. [0H1-2] Cho
0;3
A ,
4;2
B . Đim
D
tha
2 2 0
OD DA DB
, ta độ
D
là
A.
3;3
. B.
. C.
8; 2
. D.
5
2;
2
.
Câu 854. [0H1-2] Cho tam giác
ABC
, biết
AB AC AB AC
. Mệnh đề nào sau đây đúng?
A. Tam giác
ABC
vuông ti
A
. B. Tam giác
ABC
vuông ti
B
.
C. Tam giác
ABC
vuông ti
C
. D. Tam giác
ABC
cân ti
A
.
Câu 855. [0H1-2] Cho tam giác
ABC
I
trung đim ca cnh
BC
. Điểm
G
tính cht o sau
đây là điu kin cần và đủ để
G
là trng tâm ca tam giác
ABC
?
A.
0
AG BG CG

. B.
2
GB GC GI
.
C.
3
AI GI
. D.
2
GA GI
.
Câu 856. [0H1-2] Cho hình bình hành
ABCD
,m
O
, gi
G
là trngm tam giác
ABD
. m mệnh đề sai:
A.
AB AD AC

. B.
3
AB AD AG

. C.
2
AB AD BO

. D.
1
3
GO OC
.
Câu 857. [0H1-2] Cho tam giác
ABC
, trng tâm
G
, gi
I
là trung đim
BC
,
M
là điểm tho mãn:
2 3
MA MB MC MB MC
. Khi đó, tập hợp điểm
M
là
A. Đường trung trc ca
BC
. B. Đường tròn tâm
G
, bán kính
BC
.
C. Đường trung trc ca
IG
. D. Đường tròn tâm
I
, bán kính
BC
.
Câu 858. [0H1-2] Cho tam giác
ABC
trung tuyến
AM
trng tâm
G
. Khẳng định nào sau đây
khẳng định đúng.
A.
2
AM AB AC
 
. B.
3
AM GM
.
C.
2 3 0
AM GA

. D.
3
MG MA MB MC

.
Câu 859. [0H1-2] Trên mt phng tọa độ
Oxy
, cho
2; 4
a
,
5;3
b
. Véc tơ
2
a b
có tọa độ là
A.
7; 7
. B.
9; 5
. C.
1;5
. D.
9; 11
.
Câu 860. [0H1-2] Trên mt phng ta đ
Oxy
, cho
1; 2
I
trung điểm ca
AB
, vi
A Ox
,
B Oy
. Khi đó:
A.
0;2
A . B.
0;4
B . C.
4;0
B . D.
2;0
A .
Câu 861. [0H1-2] Cho ba điểm
A
,
B
,
C
. Tìm khẳng đnh sai khi nêu điều kin cn đủ để ba điểm
thng hàng?
A.
:
k AB k AC
. B.
:
k AB k BC
.
C.
: 0
M MA MB MC
. D.
:
k BC k BA

.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 82
Câu 862. [0H1-2] Cho hình bình hành
ABCD
tâm
O
. Tìm khng định sai trong các khẳng định sau:
A.
AB AD AC

. B.
AB AD DB

. C.
OA OB AD
. D.
OA OB CB
.
Câu 863. [0H1-2] Cho tam giác
ABC
. V trí của điểm
M
sao cho
0
MA MB MC
A.
M
trùng
C
. B.
M
là đỉnh th tư của hình bình hành
CBAM
.
C.
M
trùng
B
. D.
M
là đỉnh th tư của hình bình hành
CABM
.
Câu 864. [0H1-2] Cho ba lc
1
F MA
,
2
F MB
,
3
F MC
cùng tác đng vào
mt vt tại điểm
M
vật đứng yên.
Cho biết cường độ ca
1
F
,
2
F
đều
bng
25
N
c
60
AMB
. Khi đó
cường độ lc ca
3
F
A.
25 3 N
. B.
50 3 N
. C.
50 2 N
. D.
100 3 N
.
Câu 865. [0H1-2] Cho tam giác
ABC
. Gi
M
là điểm trên cnh
BC
sao cho
2
MB MC
. Khi đó:
A.
1 2
3 3
AM AB AC

. B.
2 1
3 3
AM AB AC

.
C.
AM AB AC
 
. D.
2 3
5 5
AM AB AC

.
Câu 866. [0H1-2] Trong mt phng
Oxy
, cho
1;2
A ,
1; 3
B
. Gi
D
đối xng vi
A
qua
B
. Khi
đó tọa độ đim
D
A.
3, 8
D
. B.
3;8
D . C.
1;4
D . D.
3; 4
D
.
Câu 867. [0H1-2] Trong mt phng ta đ
Oxy
, cho
ABC
vi trng tâm
G
. Biết rng
1;4
A ,
2;5
B ,
0;7
G . Hi tọa độ đỉnh
C
là cp s o?
A.
2;12
. B.
1;12
. C.
3;1
. D.
1;12
.
Câu 868. [0H1-2] Trong mt phng ta độ
Oxy
, cho
1; 1
M
,
3;2
N ,
0; 5
P
ln lượt trung đim
các cnh
BC
,
CA
AB
ca tam giác
ABC
. Tọa độ đim
A
là
A.
2; 2
. B.
5;1
. C.
5;0
. D.
2; 2
.
Câu 869. [0H1-2] Trong mt phng tọa độ
Oxy
, cho ba đim
1;3
A ,
1; 2
B
,
1;5
C . Tọa độ
D
trên trc
Ox
sao cho
ABCD
là hình thang có hai đáy
AB
CD
là
A.
1;0
. B.
0; 1
. C.
1;0
. D. Không tn tại điểm
D
.
Câu 870. [0H1-2] Cho hình vuông
ABCD
cnh
a
. Tính
AB AC AD

.
A.
3
a
. B.
2 2
a
. C.
2
a
. D.
2 2
a
.
Câu 871. [0H1-2] Trong mt phng ta độ
Oxy
, cho
2; 3
B ,
1; 2
C
. Đim
M
tha mãn
2 3 0
MB MC
. Ta đ đim
M
là
A.
1
; 0
5
M
. B.
1
; 0
5
M
. C.
1
0;
5
M
. D.
1
0;
5
M
.
2
F
B
A
M
1
F
3
F
60
C
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 83
Câu 872. [0H1-2] Trong mt phng tọa độ
Oxy
, cho các vectơ
2; 4
u
,
1; 2
a
,
1; 3
b
.
Biết
u ma nb
, tính
m n
.
A.
5
. B.
2
. C.
5
. D.
2
.
Câu 873. [0H1-2] Cho tam giác
ABC
G
là trng tâm,
I
là trung đim
BC
. Tìm khẳng định sai.
A.
IB IC IA IA
. B.
IB IC BC
. C.
2
AB AC AI
. D.
3
AB AC GA

.
Câu 874. [0H1-2] Cho hình bình nh
ABCD
N
là trung đim
AB
G
là trng tâm
ABC
. Phân
tích
GA
theo
BD
NC

A.
1 2
3 3
GA BD NC
. B.
1 4
3 3
GA BD NC
.
C.
1 2
3 3
GA BD NC
. D.
1 2
3 3
GA BD NC
.
Câu 875. [0H1-2] Cho
ABC
M
,
Q
,
N
lần ợt trung điểm ca
AB
,
BC
,
CA
. Khi đó vectơ
AB BM NA BQ
 
là vectơ nào sau đây?
A.
0
. B.
BC
. C.
AQ

. D.
CB
.
Câu 876. [0H1-2] Cho
ABC
I
tha mãn
3
IA IB
. Pn tích
CI
theo
CA
CB
.
A.
1
3
2
CI CA CB
. B.
3
CI CA CB
. C.
1
3
2
CI CB CA
. D. 3
CI CB CA

.
Câu 877. [0H1-2] Trong mt phng ta độ
Oxy
, cho các vectơ
2;1
u
3
v i m j
. Tìm
m
để
hai vectơ
u
,
v
cùng phương.
A.
2
3
. B.
2
3
. C.
3
2
. D.
3
2
.
Câu 878. [0H1-2] Trong mt phng
Oxy
, cho
2;4
A
4; 1
B
. Khi đó, tọa độ ca
AB
là
A.
2;5
AB
. B.
6;3
AB
. C.
2;5
AB
. D.
2; 5
AB
.
Câu 879. [0H1-2] Cho
2; 1
a
,
3; 4
b
,
4; 9
c
. Hai s thc
m
,
n
tha mãn
ma nb c
.
Tính
2 2
m n
.
A.
5
. B.
3
. C.
4
. D.
1
.
Câu 880. [0H1-2] Trong mt phng ta độ
Oxy
, cho tam giác
ABC
có
5
; 1
2
M
,
3 7
;
2 2
N
,
1
0;
2
P
lần lượt trung điểm các cnh
BC
,
CA
,
AB
. Tọa đ trng tâm
G
ca tam giác
ABC
A.
4 4
;
3 3
G
. B.
4; 4
G
. C.
4 4
;
3 3
G
. D.
4; 4
G
.
Câu 881. [0H1-2] Trong mt phng ta độ
Oxy
, cho tam giác
ABC
trng tâm gc tọa độ
,
O
hai
đỉnh
–2;2
A
3;5 .
B Tọa đ đỉnh
C
là
A.
1; 7
. B.
2; 2
. C.
3; 5
. D.
1; 7
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 84
Câu 882. [0H1-2] Cho hình bình hành
ABCD
. Đẳng thức nào sau đây sai.
A.
AC BD

. B.
BC DA
. C.
AD BC
. D.
AB CD
.
Câu 883. [0H1-2] Cho tam giác
ABC
có
I
,
D
lần lượt là trung đim
AB
,
CI
. Đẳng thức nào sau đây đúng?
A.
1 3
2 4
BD AB AC
. B.
3 1
4 2
BD AB AC

.
C.
1 3
4 2
BD AB AC

. D.
3 1
4 2
BD AB AC
.
Câu 884. [0H1-2] Trong mặt phẳng tođ
Oxy
. Cho tam giác
ABC
với
1; 2
A
,
3; 4
B
,
5;2
C .
Tìm ta độ giao điểm
I
của đường thẳng
BC
với đường phân giác ngoài của góc
A
.
A.
11
; 2
3
I
. B.
4; 1
I
. C.
1; 10
I . D.
13
;0
3
I
.
Câu 885. [0H1-2] Cho hình vuông
ABCD
cạnh
2
a
. Tính
AB AC AD

?
A.
4 2
a
. B.
4
a
. C.
2 2
a
. D.
2
a
.
Câu 886. [0H1-2] Cho tam giác
ABC
, có
AM
là trung tuyến;
I
là trung điểm của
AM
. Ta có:
A.
0
IA IB IC
 
. B.
0
IA IB IC
 
.
C.
2 4
IA IB IC IA
 
. D.
2 0
IA IB IC

.
Câu 887. [0H1-2] Trong mặt phẳng tođộ
Oxy
, cho tam giác
ABC
3;4
A ,
2;1
B ,
1; 2
C
.
Cho
;
M x y
trên đoạn thẳng
BC
sao cho 4
ABC ABM
S S . Khi đó
2 2
x y
bằng
A.
13
8
. B.
3
2
. C.
3
2
. D.
5
2
.
Câu 888. [0H1-3] Trong mt phng ta đ
Oxy
, cho hình bình hành
ABCD
2; 3
A tâm
1; 1
I . Biết đim
4; 9
M nằm trên đường thng
AD
điểm
D
tung độ gấp đôi
hoành độ. Tìm các đnh n li ca hình bình hành?
A. Ta đ các đỉnh
4; 1
C
,
5; 4
B
,
3; 6
D .
B. Ta độ các đỉnh
4; 1
C
,
4; 2
B
,
2; 4
D .
C. Ta đ các đỉnh
4; 1
C
,
1; 4
B ,
1; 2
D
.
D. Ta đ các đỉnh
4; 1
C ,
5; 4
B
,
3; 6
D .
Câu 889. [0H1-3] Cho t giác
ABCD
trên cnh
AB
,
CD
ln lưt ly c đim
M
,
N
sao cho
3 2
AM AB
3 2
DN DC
. Tính vectơ
MN
theo hai vectơ
AD
,
BC
.
A.
1 2
3 3
MN AD BC

.
B.
1 1
3 3
MN AD BC
.
C.
1 2
3 3
MN AD BC
. D.
2 1
3 3
MN AD BC
.
Câu 890. [0H1-3] Cho
ABC
. Gi
M
,
N
các đim tha mãn:
0
MA MB
,
2 3 0
NA NC
BC kBP

. Tìm
k
để ba đim
M
,
N
,
P
thng hàng.
A.
1
3
k
. B.
3
k
. C.
2
3
k
. D.
3
5
k
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 85
Câu 891. [0H1-3] Cho hai véc
a
và
b
tha mãn các điều kin
1
1
2
a b
,
2 15
a b
. Đặt
u a b
2
v ka b
,
k
. Tìm tt c các giá tr ca
k
sao cho
, 60
u v
A.
3 5
4
2
k . B.
3 5
4
2
k . C.
17
5
2
k . D.
17
5
2
k .
Câu 892. [0H1-3] Cho t giác
ABCD
, trên cnh
AB
,
CD
ly ln lượt các đim
M
,
N
sao cho
3 2
AM AB
3 2
DN DC
. Tính vectơ
MN
theo hai vectơ
AD
,
BC
.
A.
1 1
3 3
MN AD BC
. B.
1 2
3 3
MN AD BC

.
C.
1 2
3 3
MN AD BC
. D.
2 1
3 3
MN AD BC
.
Câu 893. [0H1-3] Trong h ta độ
Oxy
, cho hai điểm
2; 3
A
,
3; 4
B
. Tìm ta độ đim
M
trên trc
hoành sao cho chu vi tam giác
AMB
nh nht.
A.
18
;0
7
M
. B.
4;0
M . C.
3;0
M . D.
17
;0
7
M
.
Câu 894. [0H1-3] Cho
1; 2
M
,
3;2
N ,
4; 1
P
. Tìm
E
trên
Ox
sao cho
EM EN EP

nh
nht.
A.
4;0
E . B.
3;0
E . C.
1;0
E . D.
2;0
E .
Câu 895. [0H1-3] Gi
G
là trng tâm tam giác vuông
ABC
vi cnh huyn
12
BC
. Tổng hai véctơ
GB GC

độ dài bng bao nhiêu?
A.
2
. B.
4
. C.
8
. D.
2 3
.
Câu 896. [0H1-3] Cho tam giác
ABC
. Tp hp những đim
M
sao cho: 2 6
MA MB MA MB
là
A.
M
nằm trên đường tròn tâm
I
, bán kính
2
R AB
vi
I
nm trên cnh
AB
sao cho
2
IA IB
.
B.
M
nằm trên đường trung trc ca
BC
.
C.
M
nằm trên đường tròn tâm
I
, bán kính
2
R AC
vi
I
nm trên cnh
AB
sao cho
2
IA IB
.
D.
M
nm trên đường thẳng qua trung đim
AB
và song song vi
BC
.
Câu 897. [0H1-3] Cho tam giác
ABC
. Gi
M
là điểm được xác đnh:
4 3 0
BM BC

. Khi đó vectơ
AM

bng
A.
AB AC
.
B.
1 1
2 3
AB AC

.
C.
1 2
3 3
AB AC
.
D.
1 3
4 4
AB AC
.
Câu 898. [0H1-3] Cho tam giác
ABC
đều, cnh
2
a
, trng tâm
G
. Độ i vectơ
AB GC

là
A.
2 3
3
a
. B.
2
3
a
. C.
4 3
3
a
. D.
3
3
.
Câu 899. [0H1-3] Tam giác
ABC
tha mãn:
AB AC AB AC
thì tam gc
ABC
là
A. Tam giác vuông
A
. B. Tam giác vuông
C
.
C. Tam giác vuông
B
. D. Tam giác cân ti
C
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 86
Câu 900. [0H1-3] Cho tam giác đều
ABC
cnh
2
a
G
là trng tâm. Khi đó
AB GC

A.
3
3
. B.
2 3
3
a
. C.
4 3
3
a
. D.
2
3
a
.
Câu 901. [0H1-3] Trong mt phng tọa độ
Oxy
, ta độ đim
N
trên cnh
BC
ca tam giác
ABC
1; 2
A
,
2;3
B ,
1; 2
C
sao cho
3
ABN ANC
S S
là
A.
1 3
;
4 4
. B.
1 3
;
4 4
. C.
1 1
;
3 3
. D.
1 1
;
3 3
.
Câu 902. [0H1-3] Cho hình thang
ABCD
có đáy
AB a
,
2
CD a
. Gi
M
,
N
ln lượt trung đim
AD
BC
. Tính độ dài của véctơ
MN BD CA
.
A.
5
2
a
. B.
7
2
a
. C.
3
2
a
. D.
2
a
.
Câu 903. [0H1-3] Trên mt phng ta độ
Oxy
, cho
ABC
vuông ti
A
1; 3
B
C . Tìm
ta độ đim
H
là chân đường cao k t đỉnh
A
ca
ABC
, biết
3
AB
,
4
AC
.
A.
24
1;
5
H
. B.
6
1;
5
H
. C.
24
1;
5
H
. D.
6
1;
5
H
.
Câu 904. [0H1-3] Trong mt phng
Oxy
, cho tam giác
MNP
1; 1
M
,
5; 3
N
P
điểm
thuc trc
Oy
, trng tâm
G
ca tam giác
MNP
nm trên trc
Ox
. Ta đ đim
P
là
A.
2; 4
. B.
0; 4
. C.
0; 2
. D.
2; 0
.
Câu 905. [0H1-3] Cho hai lc
1
F MA
,
2
F MB
cùng tác động vào mt vt tại đim
M
cường độ hai
lc
1
F
,
2
F
lần lượt là
300 N
400 N
.
90
AMB
. Tìm cường độ ca lc tng hp tác
động vào vt.
A.
0 N
. B.
700 N
. C.
100 N
. D.
500 N
.
Câu 906. [0H1-3] Cho tam giác
ABC
,
M
N
là hai điểm tha mãn:
2
BM BC AB

,
CN xAC BC

. Xác định
x
để
A
,
M
,
N
thng hàng.
A.
3.
B.
1
.
3
C.
2.
D.
1
.
2
Câu 907. [0H1-4] Cho
ABC
. Tìm tp hp c đim
M
sao cho:
3 2 2
MA MB MC MA MB MC
.
A. Tp hợp các đim
M
là mt đường tròn.
B. Tp hp của các đim
M
là mt đường thng.
C. Tp hp các đim
M
là tp rng.
D. Tp hợp các đim
M
ch mt điểm trùng vi
A
.
Câu 908. [0H1-4] Tam giác
ABC
là tam giác nhn
AA
đường cao. Khi đó véctơ
tan tan
u B A B C A C

A.
u BC
. B.
0
u
. C.
u AB
. D.
u AC

.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 87
Chủ đề 7. TÍCH VÔ HƯỚNG. HỆ THỨC LƯỢNG
Câu 909. [0H2-1] Cho hai véc tơ
1;1
a
;
2;0
b
. Góc giữa hai véc tơ
a
,
b
là
A.
45
. B.
60
. C.
90
. D.
135
.
Câu 910. [0H2-1] Cho tam giác
ABC
có
120
B
, cnh
2 3 cm
AC . Bán kính
R
của đường tn
ngoi tiếp tam giác
ABC
bng
A.
2 cm
R
. B.
4 cm
R
. C.
1cm
R
. D.
3cm
R
.
Câu 911. [0H2-1] Cho
ABC
BC a
,
CA b
,
AB c
. Mệnh đề nào sau đây đúng?
A.
2 2 2
.cos
a b c bc A
. B.
2 2 2
2
a b c bc
.
C.
.sin .sin .sin
a A b B c C
. D.
2 2 2
cos
2
b c a
A
bc
.
Câu 912. [0H2-1] Cho
ABC
đều cnh
a
. Góc giữa hai véctơ
AB
BC
A.
120
. B.
60
. C.
45
. D.
135
.
Câu 913. [0H2-1] Cho
ABC
BC a
,
120
BAC
. Bán kính đường tròn ngoi tiếp
ABC
là
A.
3
2
a
R . B.
2
a
R
. C.
3
3
a
R . D.
R a
.
Câu 914. [0H2-1] Cho
ABC
có các cnh
BC a
,
AC b
,
AB c
. Din tích ca
ABC
là
A.
1
sin
2
ABC
S ac C
. B.
1
sin
2
ABC
S bc B
.
C.
1
sin
2
ABC
S ac B
. D.
1
sin
2
ABC
S bc C
.
Câu 915. [0H2-1] Cho tam giác
ABC
bt k
BC a
,
AC b
,
AB c
. Đẳng thc nào sai?
A.
2 2 2
2 cos
b a c ac B
. B.
2 2 2
2 cos
a b c bc A
.
C.
2 2 2
2 cos
c b a ab C
. D.
2 2 2
2 cos
c b a ab C
.
Câu 916. [0H2-1] Cho tam giác
ABC
, chn công thức đúng trong các đáp án sau:
A.
2 2 2
2
2 4
a
b c a
m
. B.
2 2 2
2
2 4
a
a c b
m
.
C.
2 2 2
2
2 2
4
a
c b a
m
. D.
2 2 2
2
2 4
a
a b c
m
.
Câu 917. [0H2-1] Trong h ta đ
Oxy
, cho
2;5
a
,
3; 7
b
. Tính c giữa hai ctơ
a
b
.
A.
60
. B.
45
. C.
135
. D.
120
.
Câu 918. [0H2-1] Trong h ta độ
Oxy
, cho tam giác
ABC
3;5
A ,
1;2
B ,
5;2
C . Tìm ta đ
trng tâm
G
ca tam giác
ABC
.
A.
2;3
G . B.
3;3
G . C.
4;0
G . D.
3;4
G .
Câu 919. [0H2-1] Trong h ta đ
Oxy
, cho
3
u i j
2; 1
v
.Tính
.
u v
.
A.
. 1
u v
. B.
. 1
u v
.
C.
. 2; 3
u v
. D.
. 5 2
u v
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 88
Câu 920. [0H2-1] Trong tam giác
ABC
vi
BC a
,
AC b
,
AB c
. Mệnh đề nào dưới đây sai?
A.
sin
sin
b A
a
B
. B.
sin
sin
c A
C
a
. C.
2 sin
a R A
. D.
tan
b R B
.
Câu 921. [0H2-1] Cho
tan 1
x
. Tính giá tr ca biu thc
sin 2cos
cos 2sin
x x
P
x x
.
A.
1
. B.
1
. C.
2
. D.
2
.
Câu 922. [0H2-1] Cho
là góc tù. Điu khng định nào sau đây là đúng?
A.
sin 0
. B.
cos 0
. C.
tan 0
. D.
cot 0
.
Câu 923. [0H2-1] Cho haic nhn
trong đó
. Khẳng định nào sau đây sai?
A.
sin sin
. B.
cos cos
.
C.
cos sin 90
. D.
cot tan 0
.
Câu 924. [0H2-1] Cho
0 90
. Khẳng định nào sau đây đúng?
A.
cot 90 tan
. B.
cos 90 sin
.
C.
sin 90 cos
. D.
tan 90 cot
.
Câu 925. [0H2-1] Khẳng định nào sau đây là khẳng định đúng?
A.
cos cos 180
. B.
cot cot 180
.
C.
tan tan 180
. D.
sin sin 180
.
Câu 926. [0H2-1] Trong mt phng
Oxy
, cho các đim
4;2
A ,
2;4
B . Tính đội
AB
.
A.
2 10
AB . B.
4
AB
. C.
40
AB
. D.
2
AB
.
Câu 927. [0H2-1] Cho hình vuông
ABCD
cnh
a
. Khi đó
.
AB AC
bng
A.
2
a
. B.
2
2
a
. C.
2
2
2
a
. D.
2
1
2
a
.
Câu 928. [0H2-1] Cho hai vectơ
a
b
đều khác
0
. Khẳng định nào sau đây đúng?
A.
. .
a b a b
. B.
. . .cos ,
a b a b a b
.
C.
. . .cos ,
a b a b a b
. D.
. . .sin ,
a b a b a b
.
Câu 929. [0H2-1] Cho tam giác
ABC
10
BC
,
30
A
. Tính bán kính đường tròn ngoi tiếp tam
giác
ABC
.
A.
10
.
B.
10
3
. C.
10 3
. D.
5
.
Câu 930. [0H2-1] Tam giác
ABC
vuông cân ti
A
có
AB AC a
. Đường trung tuyến
BM
có đ dài là
A.
3
2
a
. B.
2
a
. C.
3
a
. D.
5
2
a
.
Câu 931. [0H2-1] Tam giác đều cnh
a
ni tiếp trong đường tròn bán kính
R
bng
A.
3
2
. B.
3
3
. C.
2
3
a
. D.
3
4
.
Câu 932. [0H2-1] Bán kính đường tròn ni tiếp tam giác đều cnh
a
bng
A.
3
6
. B.
2
5
a
. C.
2
4
a
. D.
5
7
a
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 89
Câu 933. [0H2-1] Nếu tam giác
ABC
2 2 2
a b c
thì:
A.
A
là góc tù. B.
A
là góc vuông. C.
A
là góc nhn. D.
A
là góc nh nht.
Câu 934. [0H2-1] Trong tam giác
ABC
:
A.
2 cos
a R A
. B.
2 sin
a R A
. C.
2 tan
a R A
. D.
sin
a R A
.
Câu 935. [0H2-2] Cho tam giác
ABC
đều. Giá tr
sin ,
BC AC

là
A.
1
2
. B.
1
2
. C.
3
2
. D.
3
2
.
Câu 936. [0H2-2] Trong mt phng
Oxy
cho
2;3
a
,
4; 1
b
Tích
.
a b
bng
A.
11
. B.
5
. C.
4
. D.
2
.
Câu 937. [0H2-2] Cho tam giác
ABC
2
AB
,
AC ,
2
cos( )
2
B C . Độ dài cnh
BC
là
A.
2
. B.
8
. C.
20
. D.
4
.
Câu 938. [1H2-2] Cho hình bình nh
ABCD
AB a
,
2
BC a
135
BAD
. Din tích ca
hình bình hành
ABCD
bng
A.
2
a
. B.
2
2
a . C.
2
3
a
. D.
2
2
a
.
Câu 939. [0H2-2] Cho hình thang vuông
ABCD
đáy lớn
4
AB a
, đáy nh
2
CD a
, đường cao
3
AD a
;
I
là trung đim ca
AD
. Khi đó
.
IA IB ID
bng
A.
2
9
2
a
. B.
2
9
2
a
. C.
0
. D.
2
9
a
.
Câu 940. [0H2-2] Cho nh bình hành
ABCD
ta độ tâm
3;2
I và hai đỉnh
1;3
B ;
8; 1
C
.
Tìm ta độ hai đỉnh
A
,
D
.
A.
7;1
A ,
2;5
D . B.
2;5
A ,
7;1
D . C.
7;5
A ,
2;1
D . D.
2;1
A ,
7;5
D .
Câu 941. [0H2-2] Trong mt phng to độ
Oxy
, cho ba điểm
2; 3
M
,
1;2
N ,
3; 2
P
. Gi
Q
điểm tho
4 0
QP QN MQ

. Tìm to độ đim
Q
.
A.
5
;2
3
Q
. B.
5
; 2
3
Q
. C.
3
;2
5
Q
. D.
3
; 2
5
Q
.
Câu 942. [0H2-2] Cho tam giác
ABC
vuông ti
A
AB a
,
3
AC a
AM
là trung tuyến. Tính
tích vô ng .
BA AM
.
A.
2
a
. B.
2
a
. C.
2
2
a
. D.
2
2
a
.
Câu 943. [0H2-2] Cho hình bình hành
ABCD
AB a
,
2
BC a
45
BAD
. Din tích ca hình
bình nh
ABCD
A.
2
2
a
. B.
2
2
a . C.
2
3
a
. D.
2
a
.
Câu 944. [0H2-2] Cho
ABC
đều cnh
a
. Giá tr của tích vô hướng
.
AB AC

A.
2
a
. B.
2
1
2
a
. C.
2
a
. D.
2
1
2
a
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 90
Câu 945. [0H2-2] Trong mt phng vi h ta độ
Oxy
cho đường tròn lượng giác tâm
O
. Đim
M
trên
đường tròn sao cho sđ
,Ox OM
. Ta độ của đim
M
là
A.
;0
M
. B.
cos ;sin
M
. C.
sin ;cos
M
. D.
1;0
M .
Câu 946. [0H2-2] Cho t giác li
ABCD
90
ABC ADC
,
120
BAD
3
BD a
. Tính
AC
.
A.
2
AC a
. B.
3
AC a
. C.
AC a
. D.
5
AC a
.
Câu 947. [0H2-2] Cho
ABC
vuông ti
A
, biết
. 4

AB CB
,
. 9
AC BC
. Khi đó
AB
,
AC
,
BC
độ
dài
A.
2
;
3
;
13
. B.
3
;
4
;
5
. C.
2
;
4
;
2 5
. D.
4
;
6
;
2 13
.
Câu 948. [0H2-2] Cho tam giác
ABC
tha mãn h thc
2
b c a
. Trong các mnh đề sau, mệnh đề
o đúng?
A.
cos cos 2 cos
B C A
. B.
sin sin 2sin
B C A
.
C.
1
sin sin sin
2
B C A
. D.
sin cos 2sin
B C A
.
Câu 949. [0H2-2] Cho tam giác
ABC
7
b
,
5
c
,
3
cos
5
A
. Đường cao
a
h
ca tam giác
ABC
là
A.
8
. B.
7 2
2
. C.
80 3
. D.
8 3
.
Câu 950. [0H2-2] Mt tam giác có ba cnh là
52
,
56
,
60
. Bán kính đường tròn ngoi tiếp tam giác đó là
A.
65
4
. B.
40
. C.
. D.
65,8
.
Câu 951. [0H2-2] Cho tam giác
ABC
. Đẳng thc nào sai?
A.
sin 2 sin3
A B C C
. B.
cos sin
2 2
B C A
.
C.
2
cos sin
2 2
A B C C
. D.
sin sin
A B C
.
Câu 952. [0H2-2] T hai điểm
A
B
trên mặt đất người ta nhìn thấy đnh
C
và chân
D
ca tháp
CD
dưới các c nhìn
72 12
34 26
so với phương nằm ngang. Biết tháp
CD
cao
80 m
.
Khong cách
AB
gần đúng bằng
A.
91 m
. B.
71 m
. C.
79 m
. D.
40 m
.
Câu 953. [0H2-2] Trong h ta đ
,
Oxy
cho 2
u i j
và
v i xj
.m
x
sao cho
u
v
cùng phương.
A.
1
2
x
. B.
1
4
x
. C.
2
x
. D.
1
x
.
Câu 954. [0H2-2] Cho tam giác đều
ABC
có cnh bng
a
. Tính
.
AB AC
.
A.
2
3
.
2
AB AC a
. B.
2
1
.
2
AB AC a
. C.
2
1
.
2
AB AC a

. D.
2
.
AB AC a
.
Câu 955. [0H2-2] Trong h ta đ
Oxy
, cho véc tơ
3; 4
a
. Đẳng thức nào sau đây đúng?
A.
5
a
. B.
3
a
. C.
4
a
. D.
7
a
.
Câu 956. [0H2-2] Tam giác
ABC
8
a
,
3
c
,
60
B
. Độ dài cnh
b
bng bao nhiêu?
A.
49
. B.
97
. C.
7
. D.
61
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 91
Câu 957. [0H2-2] Trong h trc ta độ
, ,
O i j
cho các véctơ sau:
4 3
a i j
,
2
b j
. Trong các
mệnh đề sau tìm mệnh đề sai:
A.
4; 3
a
. B.
2
b
. C.
0;2
b
. D.
5
a
.
Câu 958. [0H2-2] Khong cách t
A
đến
B
không th đo trực tiếp được phi qua một đầm ly.
Người ta xác đnh được mt đim
C
t đó th nhìn đưc
A
B
dưới mt góc
60
.
Biết
200 m
CA ,
180 m
CB . Khong cách
AB
bng bao nhiêu?
A.
228 m
. B.
20 91 m
. C.
112 m
. D.
168 m
.
Câu 959. [0H2-2] Cho
3;4
a
,
4;3
b
. Kết lun nào sau đây sai.
A.
a b
. B.
a
cùng phương
b
. C.
a b
. D.
. 0
a b
.
Câu 960. [0H2-2] Cho
1; 2
a
. Vi giá tr nào ca
y
t
3;
b y
vuông góc vi
a
?
A.
6
. B.
6
. C.
3
2
. D.
3
.
Câu 961. [0H2-2] Biết rằng hai vectơ
a
b
không cùng phương nhưng hai vectơ
2 3
a b
1
a x b
cùng phương. Khi đó giá trị ca
x
A.
1
2
. B.
3
2
. C.
1
2
. D.
3
2
.
Câu 962. [0H2-2] Cho
4
đim
1; 2
M
,
0; 3
N ,
P ,
1;8
Q . Ba đim nào trong
4
điểm đã
cho là thng hàng?
A.
M
,
P
,
Q
. B.
M
,
N
,
P
. C.
N
,
P
,
Q
. D.
M
,
N
,
Q
.
Câu 963. [0H2-2] Cho hai đim
8; 1
M
3; 2
N . Nếu
P
là điểm đối xng với điểm
M
qua đim
N
thì
P
có tọa độ là
A.
. B.
13; 3
. C.
11; 1
. D.
11 1
;
2 2
.
Câu 964. [0H2-2] Cho ba vectơ
a
,
b
,
c
tha mãn
1
a
,
2
b
,
3
a b
. Tính
2 . 2
a b a b
.
A.
6
. B.
8
. C.
4
. D.
0
.
Câu 965. [0H2-2] Cho tam giác
ABC
vuông ti
A
, s đo góc
B
là
60
AB a
.
Kết qu nào sau
đây sai?
A.
. 3 2.
AC CB a
. B.
2
.
AB BC a
.
C.
. 0
AB AC
. D.
2
. 3.
CACB a
.
Câu 966. [0H2-2] Cho tam giác
ABC
2
a
,
6
b
,
3 1
c
. Tính bán kính
R
của đường tròn
ngoi tiếp tam giác
ABC
.
A.
2
3
R . B.
2
2
R . C.
2
R . D.
3
R
.
Câu 967. [0H2-2] Tam gc
ABC
các cnh
a
,
b
,
c
tha mãn điu kin
3
a b c a b c ab
.
Tính s đo ca góc
C
.
A.
45
. B.
60
. C.
120
. D.
30
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 92
Câu 968. [0H2-2] Cho tam giác
ABC
đều cnh bng
a
, trng tâm
G
. ch vô ng của hai vectơ
.
BC CG
bng
A.
2
2
a
. B.
2
2
a
. C.
2
2
a
. D.
2
2
a
.
Câu 969. [0H2-2] Cho tam giác
ABC
, trng tâm
G
, gi
M
là trung đim
BC
. Tìm mệnh đề đúng?
A.
2
AB AC AG
 
. B.
AB AC AM

.
C.
GA GB CG
. D.
AB AC BC
.
Câu 970. [0H2-2] Cho hình vuông
ABCD
, tâm
O
, cnh bng
a
. Tìm mệnh đề sai:
A.
2
.
AB AC a
. B.
. 0
AC BD
. C.
2
.
2
a
AB AO
. D.
2
.
2
a
AB BO
.
Câu 971. [0H2-2] Trên mt phng to độ
Oxy
, cho tam giác
ABC
biết
1;3
A ,
2; 2
B
,
3;1
C .
Tính cosinc
A
ca tam giác.
A.
2
cos
17
A
. B.
1
cos
17
A
. C.
2
cos
17
A
. D.
1
cos
17
A
.
Câu 972. [0H2-2] Trên mt phng ta độ
Oxy
, cho
1;1
A ,
2; 2
B
,
M Oy
MA MB
. Khi đó
ta độ đim
M
là
A.
0;1
. B.
1;1
. C.
1; 1
. D.
0; 1
.
Câu 973. [0H2-2] Cho
a
,
b
2
a b
vuông góc với vectơ
5 4
a b
a b
. Khi đó:
A.
2
cos ,
2
a b
. B.
cos , 90
a b
. C.
3
cos ,
2
a b
. D.
1
cos ,
2
a b
.
Câu 974. [0H2-2] Cho tam giác
ABC
vuông ti
B
,
3
BC a
. Tính
.
AC CB
A.
2
3
a
. B.
2
3
2
a
. C.
2
3
2
a
D.
2
3
a
.
Câu 975. [0H2-2] Biết
2
sin ,
3
90 180
. Hi giá tr
tan
là bao nhiêu?
A. 2. B.
2
. C.
2 5
5
. D.
2 5
5
.
Câu 976. [0H2-2] Cho
tan 2
. Tính
3 3
sin cos
sin 3cos 2sin
B
A.
3 2 1
3 8 2
B
. B.
3 2 1
8 2 3
B
. C.
3 2 1
8 2 1
B
. D.
3 2 1
8 2 1
B
.
Câu 977. [0H2-2] Cho
ABC
4
a
,
5
c
,
150
B
. Tính din tích tam giác
ABC
.
A.
10
S
. B.
10 3
S
. C.
5
S
. D.
5 3
S
.
Câu 978. [0H2-2] Biết
1
sin
4
90 180
. Hi giá tr ca
cot
bng bao nhiêu?
A.
15
15
. B.
15
. C.
15
. D.
15
15
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 93
Câu 979. [0H2-2] Cho
cot 2
,
0 180
. Tính
sin
cos
.
A.
1
sin
3
,
6
cos
3
. B.
1
sin
3
,
6
cos
3
.
C.
6
sin
2
,
1
cos
3
. D.
6
sin
2
,
1
cos
3
.
Câu 980. [0H2-2] Cho
1
sin cos
5
x x
. Tính
sin cos
P x x
.
A.
3
4
P
. B.
4
5
P
. C.
5
6
P
. D.
7
5
P
.
Câu 981. [0H2-2] Cho tam giác
ABC
vuông ti
A
AB a
,
2
BC a
. Tính
. .
BC CA BA AC
theo
a
.
A.
. . 3
BCCA BA AC a
. B.
2
. . 3
BC CA BA AC a
 
.
C.
. . 3
BC CA BA AC a
. D.
2
. . 3
BC CA BA AC a
.
Câu 982. [0H2-2] Cho tam giác
ABC
5;3
A ,
2; 1
B
,
1;5
C . Tìm ta độ trc tâm
H
ca tam
giác
ABC
.
A.
3;2
H . B.
3; 2
H
. C.
3;2
H . D.
3; 2
H
.
Câu 983. [0H2-2] Trong mt phng tọa độ
,
Oxy
cho tam giác
ABC
3;0
A ,
3;0
B
2;6 .
C
Gi
;
H a b
là tọa độ trc tâm của tam giác đã cho. Tính
6 .
a b
A.
6 5
a b
. B.
6 6
a b
. C.
6 7
a b
. D.
6 8
a b
.
Câu 984. [0H2-2] Cho hai vectơ
a
b
. Đẳng thức nào sau đây sai?
A.
2 2
1
.
4
a b a b a b
. B.
2 2
1
.
2
a b a b a b
.
C.
2 2
2
1
.
2
a b a b a b
. D.
2 2
2
1
.
2
a b a b a b
.
Câu 985. [0H2-2] Tính giá tr biu thc
sin 30 cos60 sin 60 cos30
P
.
A.
1
P
. B.
0
P
. C.
3
P
. D.
3
P
.
Câu 986. [0H2-2] Cho tam giác
ABC
vi
60
A
. Tính tng
, ,
AB BC BC CA
   
.
A.
120
. B.
360
. C.
270
. D.
240
.
Câu 987. [0H2-2] Cho tam giác
ABC
độ dài ba cạnh là
2
AB
,
3
BC
,
4
CA
. Tính góc
ABC
(chọn kết quả gần đúng nhất).
A.
60
. B.
104 29
. C.
75 31
. D.
120
.
Câu 988. [0H2-2] Cho tam gc
ABC
đdài ba cnh là
2
AB
,
5
BC
,
6
CA
. Tính độ i đường
trung tuyến
MA
, với
M
là trung điểm của
BC
.
A.
15
2
. B.
55
2
. C.
110
2
. D.
55
.
Câu 989. [0H2-2] Cho một hình bình hành
ABCD
AB a
,
BC b
. Công thức nào dưới đây là công
thức tính diện tích của hình bình hành đó?
A.
2 2
a b
. B.
sin
ab ABC
. C.
ab
. D.
2
a b
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 94
Câu 990. [0H2-2] Cho hai vectơ
4;3
a
,
( 1; 7)
b
. Tínhc gia hai vectơ đó.
A.
135
. B.
45
. C.
30
. D.
60
.
Câu 991. [0H2-2] Cho tam giác
ABC
vuông ti
A
. Khẳng định nào sau đây sai?
A.
. .
AB AC BA BC

. B.
. .
AC CB AC BC
 
.
C.
. .
AB BC CACB

. D.
. .
AC BC BC AB
.
Câu 992. [0H2-2] Trong mặt phng to độ
Oxy
; cho các véc
1; 3 ,
a
2;5
b
. Tính tích vô
hướng của
2
a a b
.
A.
26
. B.
16
. C.
16
. D.
36
.
Câu 993. [0H2-2] Cho tam giác đều
ABC
. Tính
cos , cos , cos ,
AB AC BA BC CB CA
   
.
A.
3
2
. B.
3 3
2
. C.
3
2
. D.
3
2
.
Câu 994. [0H2-2] Trong mặt phẳng to độ
Oxy
, cho
2; 1
OM

,
3; 1
ON
. Tính c
,
OM ON
 
.
A.
2
2
. B.
2
2
. C.
135
. D.
135
.
Câu 995. [0H2-2] Trong mặt phẳng to độ
Oxy
, cho hai điểm
2; 1
A
2;1
B . Tìm điểm
M
thuc tia
Ox
sao cho tam giác
ABM
vuông tại
M
.
A.
M
. B.
M
3;0
M
.
C.
5;0
M
. D.
5;0
M
M
.
Câu 996. [0H2-2] Cho hai vectơ
a
b
tạo với nhau góc
120
3
a
,
5
b
. Khi đó
2
a b
bằng
A.
79.
B.
109
C.
13.
D.
59
.
Câu 997. [0H2-2]
u
v
là 2 vectơ đều khác
0
. Khi đó
2
2
u v
bằng
A.
2 2
2 4 .
u v u v
. B.
2 2
4 4 .
u v u v
. C.
2 2
4
u v
. D.
4
u v u v
.
Câu 998. [0H2-2] Cho hai vectơ
a
b
5
a
,
12
b
13
a b
. Khi đó
cosin
của góc giữa hai
vectơ
a b
a b
bằng
A.
12
13
. B.
5
12
. C.
119
169
. D.
119
169
.
Câu 999. [0H2-2] Tam giác
ABC
8 cm
AB
,
10 cm
BC
,
6 cm
CA
. Đường trung tuyến
AM
của tam giác đó có đ dài bng
A.
4 cm
. B.
5 cm
. C.
6 cm
. D.
7 cm
.
Câu 1000. [0H2-2] Tam giác
ABC
vuông ti
A
6 cm
AC
,
10 cm
BC
. Đường tròn ni tiếp tam
giác đón kính
r
A.
1 cm
. B.
2 cm
. C.
2 cm
. D.
3 cm
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 95
Câu 1001. [0H2-2] Tam giác
ABC
có:
3 cm
a
,
2 cm
b ,
1 cm
c
. Đường trung tuyến
a
m
đ
dài
A.
1 cm
. B.
1.5 cm
. C.
5
cm
2
. D.
3
cm
2
.
Câu 1002. [0H2-2] Tam giác đều ni tiếp đường tròn bán kính
4 cm
R
din tích là
A.
2
12 3 cm
. B.
2
13 2 cm
. C.
2
13 cm
. D.
2
15 cm
.
Câu 1003. [0H2-2] Tam giác
ABC
vuông cân ti
A
AB a
. Đường tròn ni tiếp tam giác
ABC
có
bán kính
r
bng
A.
2
a
. B.
2
a
. C.
2 2
a
. D.
3
a
.
Câu 1004. [0H2-2] Tam giác
ABC
ba cnh tho mãn điu kin
3
a b c a b c ab
. Khi đó
s đo của
C
là
A.
120
. B.
30
. C.
45
. D.
60
.
Câu 1005. [0H2-2] nh bình hành
ABCD
có
AB a
,
2
BC a
45
BAD
. Khi đó hình bình
din tích là
A.
2
2
a
. B.
2
2
a . C.
2
a
. D.
2
3
a
.
A.
2 2 2
3
a b c bc
. B.
2 2 2
a b c bc
. C.
2 2 2
3
a b c bc
. D.
2 2 2
a b c bc
.
Câu 1006. [0H2-2] Tam giác
ABC
120
A
t câu nào sau đây đúng
A.
2 2 2
3
a b c bc
. B.
2 2 2
a b c bc
. C.
2 2 2
3
a b c bc
. D.
2 2 2
a b c bc
.
Câu 1007. [0H2-2] Tam giác
ABC
60
A
;
10
b
;
20
c
. Din tích ca tam giác
ABC
bng
A.
50 3
. B.
50
. C.
50 2
. D.
50 5
.
Câu 1008. [0H2-2] Cho tam giác
ABC
2
a
;
6
b
;
1 3
c
. Góc
A
A.
30
. B.
45
. C.
68
. D.
75
.
Câu 1009. [0H2-2] Cho tam giác
ABC
, các đường cao
a
h
,
b
h
,
c
h
tha mãn h thc 3 2
a b c
h h h
. Tìm
h thc gia
a
,
b
,
c
A.
3 2 1
a b c
. B. 3 2
a b c
. C. 3 2
a b c
. D.
3 2 1
a b c
.
Câu 1010. [0H2-2] Cho tam giác
ABC
, nếu 2
a b c
h h h
thì
A.
2 1 1
sin sin sin
A B C
. B.
2sin sin sin
A B C
.
C.
sin 2sin 2sin
A B C
.
D.
2 1 1
sin sin sin
A B C
.
Câu 1011. [0H2-2] Din tích
S
ca tam giác s tha mãn h thc nào trong hai h thức sau đây?
I.
2
S p p a p b p c
II.
2
16
S a b c a b c a b c b c a
A. Ch I. B. Ch II. C. C I và II. D. Không có.
Câu 1012. [0H2-2] Trong tam giác
ABC
có
2cm
AB
,
1cm
AC
,
60°
A
. Khi đó đ dài cnh
BC
là
A.
1cm
. B.
2cm
. C.
3cm
. D.
5 cm
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 96
Câu 1013. [0H2-2] Tam giác
ABC
:
5
a
;
3
b
;
5
c
. S đo của góc
BAC
là
A.
60°
A . B.
30°
A . C.
45°
A . D.
90°
A .
Câu 1014. [0H2-3] Tam giác
ABC
8
a
;
7
b
;
5
c
. Din tích ca tam giác
ABC
bng
A.
5 3
. B.
8 3
. C.
10 3
. D.
12 3
.
Câu 1015. [0H2-3] Cho tam giác
ABC
2
a
;
6
b
;
1 3
c
. Góc
B
bng
A.
115
. B.
75
. C.
60
. D.
53 32
.
Câu 1016. [0H2-3] Tam giác
ABC
vuông cân ti
A
ni tiếp trong đường tròn tâm
O
bán kính
R
.
Gi
r
là bán kính đường tròn ni tiếp tam giác
ABC
. Khi đó t s
R
r
bng
A.
1 2
. B.
2 2
2
. C.
2 1
2
. D.
2 1
2
.
Câu 1017. [0H2-3] Cho tam giác đều
ABC
cnh
18cm
. Tp hợp các đim
M
tha mãn đẳng thc
2 3 4
MA MB MC MA MB

A. Tp rng. B. Đường tròn c định bán kính
2cm
R
.
C. Đường tròn c định bán kính
3cm
R
. D. Một đường thng.
Câu 1018. [0H2-3] Muốn đo chiu cao ca tháp chàm Por Klong Garai Ninh Thuận người ta ly hai
điểm
A
B
trên mt đất khong cách
12m
AB
cùng thng hàng vi chân
C
ca tháp
để đặt hai giác kế. Chân ca giác kế chiu cao
1,3m
h
. Gi
D
là đỉnh tháp hai điểm
1
A
,
1
B
cùng thng hàng vi
1
C
thuc chiu cao
CD
của tp. Người ta đo được góc
1 1
49
DAC
1 1
35
DB C
. Tính chiu cao
CD
ca tháp.
A.
22,77m
. B.
21,47m
. C.
20,47m
. D.
21,77m
.
Câu 1019. [0H2-3] Trên c mt tòa nhà cột ăng-ten
cao
5m
. T v t quan sát
A
cao
7m
so vi
mt đất, có th nhìn thấy đnh
B
chân
C
ca cột ăng-ten dưới c
50
40
so vi
phương nằm ngang (như hình v bên). Chiu
cao ca a nhà (được làm tn đến hàng phn
mười)
A.
21,2m
. B.
14,2m
.
C.
11,9m
. D.
18,9m
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 97
Câu 1020. [0H2-3] Cho tam giác
ABC
5
a
cm
,
9
c
cm
,
1
cos
10
C
. Tính độ dài đường cao
a
h
h t
A
ca tam giác
ABC
.
A.
462
40
a
h
cm
. B.
462
10
a
h
cm
. C.
21 11
40
a
h
cm
. D.
21 11
10
a
h
cm
.
Câu 1021. [0H2-3] Cho đường tròn tâm
O
bán kính
R
điểm
M
tha mãn
3
MO R
. Một đường
kính
AB
thay đổi trên đường tròn. Giá tr nh nht ca biu thc
S MA MB
.
A.
min 6
S R
. B.
min 4
S R
.
C.
min 2
S R
. D.
min
S R
.
Câu 1022. [0H2-3] T mt miếng n hình dng nửa đường tròn bán
kính
1m
, người ta ct ra mt hình ch nht. Hi th cắt được
miếng tôn có din tích ln nht là bao nhiêu?
A.
2
1,6 m
. B.
2
2 m
.
C.
2
1 m
. D.
2
0,8 m
.
Câu 1023. [0H2-3] Cho
3
u a b
vuông góc vi
7 5
v a b
4
x a b
vuông góc vi
7 2
y a b
.
Khi đó c giữa hai vectơ
a
b
bng
A.
, 75
a b . B.
, 60
a b .
C.
, 120
a b . D.
, 45
a b .
Câu 1024. [0H2-3] Cho tam giác
ABC
vuông ti
A
,
3
BC a
,
M
trung đim ca
BC
2
.
2
a
AM BC

. Tính cnh
AB
,
AC
.
A.
AB a
,
2
AC a
. B.
2
AB a
,
2
AC a
.
C.
2
AB a
,
AC a
. D.
AB a
,
AC a
.
Câu 1025. [0H2-3] Đoạn thng
AB
có đi
2
a
,
I
là trung đim
AB
. Khi
2
. 3
MAMB a
. Đ dài
MI
là
A.
2
a
. B.
a
. C.
3
a
. D.
7
a
.
Câu 1026. [0H2-3] Cho tam gc
ABC
đều cnh bng
a
. Tp hợp các đim
M
tha mãn đẳng thc
2
2 2 2
5
4
2
a
MA MB MC nm trên mt đường tròn
C
có bán kính
R
. Tính
R
.
A.
3
a
R . B.
4
a
R
. C.
3
2
a
R . D.
6
a
R .
Câu 1027. [0H2-3] Trên mt phng ta độ
Oxy
, cho
2;3
A ,
2;1
B . Đim
C
thuc tia
Ox
sao cho
tam giác
ABC
vuông ti
C
có tọa độ là
A.
3;0
C . B.
3;0
C .
C.
1;0
C . D.
2;0
C .
Câu 1028. [0H2-3] Cho tam giác
ABC
vuông cân ti
A
,
1
AB
. Khẳng đnh nào sau đây sai.
A.
. 1
AB BC
. B.
. 1
CACB

.
C.
. 0
AB AC
. D.
. 1
AB CB

.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 98
Câu 1029. [0H2-3] Biết
2017 1
sin ,
2018
90 180
. nh giá tr ca biu thc
sin
cot
1 cos
M
.
A.
2017 1
2018
M
. B.
2017 1
2018
M
. C.
2018
2017 1
M
. D.
2018
2017 1
M
.
Câu 1030. [0H2-3] Trong h trục tọa đ
Oxy
, cho tam giác
ABC
1;3
A ,
1; 1
B
,
1;1
C .
Đường tròn ngoại tiếp tam giác
ABC
tâm
;
I a b
. Giá tr
a b
bằng
A.
1
. B.
0
. C.
2
. D.
3
.
Câu 1031. [0H2-3] Cho hình thang cân
ABCD
đáy nhỏ
AB
, đáy lớn
CD
. Biết
AB CD
3
tan
4
BDC
. Tính
cos
BAD
.
A.
17
25
. B.
7
25
. C.
5
25
. D.
17
25
.
Câu 1032. [0H2-3] Cho ba c-
a
,
b
,
c
thỏa mãn:
4
a
,
1
b
,
5
c
5 3 0
b a c
. Khi đó
biu thức
. . .
M a b b c c a
có giá tr là
A.
29
. B.
67
2
. C.
18,25
. D.
18,25
.
Câu 1033. [0H2-4] Cho nh vuông
ABCD
cnh bng
1
. Hai đim
M
,
N
thay đổi lần t trên
cnh
AB
,
AD
sao cho
0 1
AM x x
,
0 1
DN y y
. Tìm mi liên h gia
x
y
sao cho
CM BN
.
A.
0.
x y
B.
2 0.
x y
C.
1.
x y
D.
3 0.
x y
Câu 1034. [0H2-4] Trong tam giác
ABC
A.
2
a
b c
m
. B.
2
a
b c
m
. C.
2
a
b c
m
. D.
a
m b c
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 99
Chủ đề 8. PHƯƠNG PHÁP TỌA ĐỘ OXY
Câu 1035. [0H3-1] Trong mt phng
, khong cách t đim
3; 4
M
đến đường thng
:3 4 1 0
x y
A.
12
.
5
B.
8
5
. C.
24
5
. D.
24
5
.
Câu 1036. [0H3-1] Cho đường thng
:2 3 4 0
d x y
. Véctơ nào sau đây là véctơ chỉ phương của
d
?
A.
2;3
u
. B.
3;2
u
. C.
3; 2
u
. D.
3; 2
u
.
Câu 1037. [0H3-1] Đường thẳng
:3 2 7 0
x y
cắt đường thẳng o sau đây?
A.
1
:3 2 0
d x y
. B.
2
:3 2 0
d x y
.
C.
3
: 3 2 7 0
d x y
. D.
4
:6 4 14 0
d x y
.
Câu 1038. [0H3-1] Tìm mt vectơ chỉ phương của đường thng
1 2
:
3 5
x t
d
y t
.
A.
2; 5
u
. B.
5;2
u
. C.
1;3
u
. D.
3;1
u
.
Câu 1039. [0H3-1] Trong mt phng vi h tọa độ
Oxy
cho hai đim
0; 1
A
,
3;0
B . Phương trình
đường thng
AB
là
A.
3 1 0
x y
. B.
3 3 0
x y
. C.
3 3 0
x y
. D.
3 1 0
x y
.
Câu 1040. [0H3-1] Trong mt phng vi h tọa độ
Oxy
cho đường tn
C
có phương trình
2 2
2 4 4 0
x y x y
. Tâm
I
và bán kính
R
ca
C
lần t
A.
1;2
I ,
1
R
. B.
1; 2
I
,
3
R
. C.
1; 2
I
,
9
R
. D.
2; 4
I
,
9
R
.
Câu 1041. [0H3-1] Gi
là góc giữa hai đường thng
AB
CD
. Mệnh đề nào sau đây đúng?
A.
cos cos ,
AB CD
. B.
cos cos ,
AB CD

.
C.
cos sin ,
AB CD
. D.
cos cos ,
AB CD
.
Câu 1042. [0H3-1] Trong mt phng vi h ta độ
Oxy
, cho đường thng
1 2
:
2 4
x t
y t
,
t
. Mt
ctơ chỉ phương của đường thng
là
A.
u
. B.
1;2
u
. C.
4; 2
u
. D.
1; 2
u
.
Câu 1043. [0H3-1] Trong mt phng vi h ta độ
Oxy
cho đường thng
: 2 1 0
d x y
đim
2;3
M . Phương trình đường thng
đi qua đim
M
và vuông góc với đường thng
d
là
A.
2 8 0
x y
. B.
2 4 0
x y
. C.
2 1 0
x y
. D.
2 7 0
x y
.
Câu 1044. [0H3-1] Phương trình tham s của đường thẳng đi qua đim
2; 1
A và nhn
3;2
u
làm vectơ chỉ phương là
A.
3 2
2
x t
y t
. B.
2 3
1 2
x t
y t
. C.
2 3
1 2
x t
y t
. D.
2 3
1 2
x t
y t
.
Câu 1045. [0H3-1] Khong cách t điểm
0;0
O đến đường thng
3 4 5 0
x y
A.
1
5
. B.
1
5
. C.
0
. D.
1
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 100
Câu 1046. [0H3-1] Cho đường thng
:2 3 4 0
d x y . Véctơ nào sau đây là véctơ pháp tuyến ca
d
?
A.
2;3
n . B.
3;2
n . C.
3; 2
n . D.
3; 2
n .
Câu 1047. [0H3-1] Đường thẳng đi qua
1;2
A , nhn
2; 4
n
làm vectơ pháp tuyến phương
tnh
A.
2 4 0
x y
. B.
4 0
x y
. C.
2 5 0
x y
. D.
2 4 0
x y
.
Câu 1048. [0H3-1] Phương trình đường thẳng đi qua hai điểm
2;4
A ,
6;1
B là
A.
3 4 10 0
x y
. B.
3 4 22 0
x y
. C.
3 4 8 0
x y
. D.
3 4 22 0
x y
.
Câu 1049. [0H3-1] Đưng thng
d
qua
1;1
A và có véctơ ch pơng
2;3
u
có phương trình tham s là
A.
1
3
x t
y t
. B.
1 2
1 3
x t
y t
. C.
2
3
x t
y t
. D.
2
3
x t
y t
.
Câu 1050. [0H3-1] Cho đường thng
d
phương trình:
1 2
3
x t
y t
, tọa đ véctơ chỉ phương của
đường thng
d
là
A.
1; 3
. B.
1; 4
. C.
1;1
. D.
2; 1
.
Câu 1051. [0H3-1] Cho đường thẳng
d
:
2 5 6 0
x y
. Tìm ta đô một vectơ chỉ phương
u
của
d
.
A.
2;5
u
. B.
5;2
u
. C.
5; 2
u
. D.
5; 2
u
.
Câu 1052. [0H3-1] Cho đim
3;5
M và đưng thng
phương trình
2 3 6 0
x y
. nh khong
cách t
M
đến
.
A.
15
,
13
d M
. B.
15 13
,
13
d M . C.
9
,
13
d M
. D.
12 13
,
13
d M .
Câu 1053. [0H3-1] Cho đường tròn
2 2
: 2 3 16
T x y
. Tìm ta độ tâm
I
bán kính
R
ca
đường tròn
T
.
A.
2;3
I ,
4
R
. B.
2;3
I ,
16
R
. C.
2; 3
I
,
16
R
. D.
2; 3
I
,
4
R
.
Câu 1054. [0H3-1] Trong mt phng
, đưng tròn
2 2
10 11 0
x y x
có bán kính bng bao nhiêu?
A.
6
. B.
36
. C.
6
. D.
2
.
Câu 1055. [0H3-1] Trong mt phng
Oxy
, đường tròn nào sau đây đi qua điểm
4; 2
A
?
A.
2 2
2 20 0
x y x
. B.
2 2
4 7 8 0
x y x y
.
C.
2 2
6 2 9 0
x y x y
. D.
2 2
2 6 0
x y x y
.
Câu 1056. [0H3-1] Trong mt phng
Oxy
cho đường thng
:2 3 1 0
d x y
. Vectơ nào sau đây là
vectơ pháp tuyến ca
?
d
A.
3
2; 3
n
. B.
2
2;3
n
. C.
4
2;3
n
. D.
1
3;2
n
.
Câu 1057. [0H3-1] Phương trình nào dưới đây là phương trình của đường tròn?
A.
2 2
4 0
x y x y
. B.
2 2
4 6 2 0
x y x y
.
C.
2 2
2 2 4 1 0
x y x y
. D.
2 2
4 1 0
x y x
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 101
Câu 1058. [0H3-1] Cho đường tròn
2 2
: 4 2 7 0
C x y x y
tâm
I
n kính
R
. Khẳng định
o dưới đây là đúng?
A.
2;1
I ,
2 3
R . B.
2; 1
I
,
12
R
. C.
2; 1
I
,
2 3
R . D.
4; 2
I
,
3 3
R .
Câu 1059. [0H3-1] Đường thẳng đi qua hai điểm
1;1
A
3;5
B nhn vectơ nào sau đây làm vectơ
ch phương?
A.
3;1
d
. B.
1; 1
a
. C.
1;1
b
. D.
2;6
c
.
Câu 1060. [0H3-1] Cho đường thẳng
:2 1 0
x y
. Điểm nào sau đây nằm trên đường thẳng
?
A.
1;1
A . B.
1
;2
2
B
. C.
1
; 2
2
C
. D.
0; 1
D
Câu 1061. [0H3-1] Tìm mt vectơ pháp tuyến của đường thẳng
d
phương trình tng quát
2 3 4 0
x y
.
A.
2; 3
n
. B.
3; 2
n
. C.
3;2
n
. D.
2;3
n
.
Câu 1062. [0H3-1] Trong các phương trình được liệt kê các phương án A, B, C và D phương trình o
là phương trình đường tròn?
A.
2 2
1 2 1 4
x y
. B.
2 2
1 1 4 0
x y
.
C.
2 2
2 2 2 2 4
x y
. D.
2 2
1 1 4 0
x y
.
Câu 1063. [0H3-1] Đường thẳng đi qua đim
1; 2
A
nhn
2;4
n
làm véctơ pháp tuyến
phương trình
A.
2 4 0
x y
. B.
2 4 0
x y
. C.
2 5 0
x y
. D.
2 4 0
x y
.
Câu 1064. [0H3-1] Cho hai đưng thng
1
: 1 2 0
d mx m y m
và
2
: 2 1 0
d x y
. Nếu
1 2
//
d d
thì
A.
1
m
. B.
2
m
. C.
2
m
. D.
m
tùy ý.
Câu 1065. [0H3-1] To đ giao điểm của hai đường thng
4 3 26 0
x y
3 4 7 0
x y
.
A.
2; 6
. B.
5;2
.
C.
5; 2
. D. Không có giao điểm.
Câu 1066. [0H3-1] Tìm m
I
và bán kính
R
của đường tròn
2 2
: 1 0
C x y x y
.
A.
1;1
I ,
5
R
. B.
1 1
;
2 2
I
,
6
2
R .
C.
1;1
I ,
6
R
. D.
1 1
;
2 2
I
,
6
2
R .
Câu 1067. [0H3-1] Cho đưng tròn
2 2
: 2 4 1 0
C x y x y
. Ch ra mệnh đ sai trong c mệnh đề sau:
A.
C
có tâm
1; 2
I
. B.
C
đi qua
1;0
M .
C.
C
đi qua
1;1
A . D.
C
có bán kính
2
R
.
Câu 1068. [0H3-1] Cho phương trình:
2 2
2 2 0 1
x y ax by c . Điu kiện để
1
là phương trình
đường tròn là
A.
2 2
4 0
a b c
. B.
2 2
0
a b c
. C.
2 2
4 0
a b c
. D.
2 2
0
a b c
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 102
Câu 1069. [0H3-1] Phương trình nào sau đây là phương trình đường tròn?
I
2 2
4 15 12 0
x y x y
II
2 2
3 4 20 0
x y x y
III
2 2
2 2 4 6 1 0
x y x y
A. Ch
I
. B. Ch
II
. C. Ch
III
. D. Ch
I
III
.
Câu 1070. [0H3-1] Phương trình nào sau đây là phương trình đường tròn?
A.
2 2
4 8 1 0
x y x y
. B.
2 2
4 10 4 2 0
x y x y
.
C.
2 2
2 8 20 0
x y x y
. D.
2 2
2 4 6 1 0
x y x y
.
Câu 1071. [0H3-1] Cho đường tròn
2 2
: 2 4 20 0
C x y x y
. Hi mệnh đề nào sau đây là sai?
A.
C
có tâm
1; 2
I
. B.
C
bán kính
5
R
.
C.
C
có tâm
2;2
M . D.
C
không đi qua
1;1
A .
Câu 1072. [0H3-1] Phương trình chính tc ca
E
có độ dài trc ln bng
8
, trc nh bng
6
là
A.
2 2
1
64 36
x y
. B.
2 2
1
9 16
x y
. C.
2 2
9 16 1
x y
. D.
2 2
1
16 9
x y
.
Câu 1073. [0H3-1] Phương trình chính tc ca
E
có tâm sai
4
5
e
, đội trc nh bng
12
là
A.
2 2
1
25 36
x y
. B.
2 2
1
64 36
x y
. C.
2 2
1
100 36
x y
. D.
2 2
1
36 25
x y
.
Câu 1074. [0H3-1] Cho
2 2
9 25 225
x y . Hi din tích hình ch nhật cơ sở ngoi tiếp
E
A.
15
. B.
30
. C.
40
. D.
60
.
Câu 1075. [0H3-2] Trong mt phng ta độ
Oxy
, cho hai đim
6; 3
M ,
3; 6
N . Gi
;
P x y
là
điểm trên trục hoành sao cho ba đim
M
,
N
,
P
thẳng hàng, khi đó
x y
có giá tr
A.
15
. B.
5
. C.
3
. D.
15
.
Câu 1076. [0H3-2] Trong mt phng tọa độ
Oxy
cho hai điểm
4;1
M ,
1;2
N ,
;
M x y
là điểm
đối xng vi
M
qua
N
. Khi đó
x y
có giá tr
A.
3
. B.
3
. C.
9
. D.
9
.
Câu 1077. [0H3-2] Cho
2;3
A ,
4; 1
B
. Viết phương trình đường trung trc của đon
AB
.
A.
1 0
x y
. B.
2 3 5 0
x y
. C.
3 2 1 0
x y
. D.
2 3 1 0
x y
.
Câu 1078. [0H3-2] Cho
3
đường thng
1
d
:
3 2 5 0
x y
,
2
d
:
2 4 7 0
x y
,
3
d
:
3 4 1 0
x y
. Viết phương trình đường thng
d
đi qua giao đim ca
1
d
,
2
d
song
song vi
3
d
.
A.
24 32 53 0
x y
. B.
24 32 53 0
x y
.
C.
24 32 53 0
x y
. D.
24 32 53 0
x y
.
Câu 1079. [0H3-2] Trong mt phng ta đ
Oxy
, nh chiếu vng c của đim
2;1
A lên đường
thng
d
:
2 7 0
x y
có tọa độ là.
A.
14 7
;
5 5
. B.
14 7
;
5 5
. C.
3;1
. D.
5 3
;
3 2
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 103
Câu 1080. [0H3-2] Trong mt phng
Oxy
cho hai điểm
1; 3
A
,
2;5
B . Viết phương trình tng quát
của đường thẳng đi qua hai điểm
,
A B
.
A.
8 3 1 0
x y
. B.
8 3 1 0
x y
. C.
3 8 30 0
x y
. D.
3 8 30 0
x y
.
Câu 1081. [0H3-2] Trong mt phng vi h ta độ
Oxy
cho đường thng
: 2 1 0
x y
đim
2;3
M . Khong cách t đim
M
đến đường thng
là
A.
3 5
;
5
d M . B.
5
;
5
d M . C.
3
;
5
d M
. D.
; 5
d M .
Câu 1082. [0H3-2] Trong mt phng vi h ta độ
Oxy
cho
ABC
A ,
4; 2
B
,
3;5
C .
Một ctơ chỉ phương của đường phân giác trong ca góc
A
là
A.
2;1
u
. B.
1; 1
u
. C.
1;1
u
. D.
1; 2
u
.
Câu 1083. [0H3-2] Trong mt phng ta đ
Oxy
, cho điểm
2;1
A và đường thng
1 2
:
2
x t
y t
.
Tìm ta độ điểm
M
thuộc đường thng
sao cho
10
AM
.
A.
1; 2
M ,
4;3
M . B.
1; 2
M ,
M .
C.
1; 2
M ,
M . D.
2; 1
M ,
M .
Câu 1084. [0H3-2] Cho các đim
3
1;
2
A ,
3
3;
2
B ,
9; 6
C . Tọa độ trng tâm
G
là
A.
11
2;
3
G . B.
11
; 2
3
G . C.
11
; 2
3
G . D.
11
2;
3
G .
Câu 1085. [0H3-2] Phương trình tng quát của đường thẳng đi qua
1; 2
A nhn
1; 2
n làm
c-tơ pháp tuyến có phương trình
A.
2 0
x y . B.
2 4 0
x y . C.
2 5 0
x y . D.
2 4 0
x y .
Câu 1086. [0H3-2] Cho hai đim
1;2
A ,
3;1
B và đường thng
1
:
2
x t
y t
. Ta độ đim
C
thuc
để tam giác
ACB
cân ti
C
là
A.
7 13
;
6 6
. B.
7 13
;
6 6
. C.
13 7
;
6 6
. D.
7 13
;
6 6
.
Câu 1087. [0H3-2] Trong mt phng
Oxy
cho hai vectơ
a
b
biết
1; 2
a
,
1; 3
b
. Tính c
gia hai vectơ
a
b
.
A.
45
. B.
60
. C.
30
. D.
135
.
Câu 1088. [0H3-2] Gi
H
là trc tâm ca tam giác
ABC
. Phương trình các cnh và đường cao ca tam
giác là
AB
:
7 4 0
x y
;
BH
:
2 4 0
x y
;
AH
:
2 0
x y
. Phương trình đường cao
CH
ca tam giác
ABC
là
A.
7 0
x y
. B.
7 2 0
x y
. C.
7 2 0
x y
. D.
7 2 0
x y
.
Câu 1089. [0H3-2] Cho tam giác
ABC
biết trc tâm
1;1
H phương trình cnh
:5 2 6 0
AB x y
,
phương trình cnh
:4 7 21 0
AC x y
. Phương trình cnh
BC
là
A.
4 2 1 0
x y
. B.
2 14 0
x y
. C.
2 14 0
x y
. D.
2 14 0
x y
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 104
Câu 1090. [0H3-2] Cho tam giác
ABC
tha mãn:
2 2 2
3
b c a bc
. Khi đó:
A.
45
A
. B.
30
A
. C.
60
A
. D.
75
A
.
Câu 1091. [0H3-2] Trong mt phng ta độ
Oxy
, cho tam gc
ABC
1; 2
C
, đường cao
BH
:
2 0
x y
, đường phân giác trong
AN
:
2 5 0
x y
. Ta độ đim
A
.
A.
4 7
;
3 3
A
. B.
4 7
;
3 3
A
. C.
4 7
;
3 3
A
. D.
4 7
;
3 3
A
.
Câu 1092. [0H3-2] Đường thng
: 1
x y
d
a b
, vi
0
a
,
0
b
, đi qua điểm
1;6
M to vi c
tia
Ox
,
Oy
mt tam giác có din tích bng
4
. Tính
2
S a b
.
A.
10
S
. B.
6
S
. C.
5 7 7
3
S
. D.
74
3
S
.
Câu 1093. [0H3-2] Cho tam giác
ABC
2;7
A ;
3;5
B ;
1; 4
C
. Biết rng trc tâm ca tam giác
ABC
là điểm
;
a b
H
m n
, vi
a
,
b
,
m
,
n
là các s nguyên dương và
a
m
,
b
n
là các phân s ti
gin. Tính
.
a b
T
m n
A.
95
9
T . B.
43
4
T . C.
72
7
T . D.
54
5
T .
Câu 1094. [0H3-2] Phương trình tham s của đường thng qua
1; 1
M
,
4;3
N là
A.
3
4
x t
y t
. B.
1 3
1 4
x t
y t
. C.
3 3
4 3
x t
y t
. D.
1 3
1 4
x t
y t
.
Câu 1095. [0H3-2] Trong mt phng ta độ
Oxy
, cho tam giác
MNP
vuông ti
M
. Biết điểm
2;1
M ,
3; 2
N
P
là điểm nm trên trc
Oy
. Tính din tích tam giác
MNP
.
A.
10
3
. B.
5
3
. C.
16
3
. D.
20
3
.
Câu 1096. [0H3-2] Cho hai đường thng
d
d
biết
:2 8 0
d x y
1 2
:
3
x t
d
y t
. Biết
;
I a b
là tọa độ giao đim ca
d
d
. Khi đó tổng
a b
bng
A.
5
. B.
1
. C.
3
. D.
6
.
Câu 1097. [0H3-2] Cho đường thng
: 2 3 0
d x y
. Tìm ta độ nh chiếu vuông góc
H
của đim
0;1
M trên đường thng.
A.
1;2
H . B.
5;1
H . C.
3;0
H . D.
1; 1
H
.
Câu 1098. [0H3-2] Cho đường tròn
C
tâm thuộc đường thng
1 2
:
3
x t
d
y t
đi qua hai điểm
1;1
A
0; 2
B
. Tính bán kính đưng tròn
C
A.
565
R
. B.
10
R
.
C.
2
R
. D.
25
R
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 105
Câu 1099. [0H3-2] Viết phương trình tng quát của đường thẳng đi qua
2
đim
0; 5
A
3;0
B
A.
1
5 3
x y
. B.
1
3 5
x y
. C.
1
3 5
x y
. D.
1
5 3
x y
.
Câu 1100. [0H3-2] Viết phương trình tham s của đường thẳng đi qua
3;4
A vectơ chỉ phương
3; 2
u
.
A.
3 3
2 4
x t
y t
. B.
3 6
2 4
x t
y t
. C.
3 2
4 3
x t
y t
. D.
3 3
4 2
x t
y t
.
Câu 1101. [0H3-2] Trong mt phng
, đường tròn tâm
3; 1
I
bán kính
2
R
phương trình là
A.
2 2
3 1 4
x y
. B.
2 2
3 1 4
x y
.
C.
2 2
3 1 4
x y
. D.
2 2
3 1 4
x y
.
Câu 1102. [0H3-2] Trong mt phng
, đường tn tâm
1;2
I và đi qua điểm
2;1
M phương
tnh
A.
2 2
2 4 5 0
x y x y
. B.
2 2
2 4 5 0
x y x y
.
C.
2 2
2 4 5 0
x y x y
. D.
2 2
2 4 3 0
x y x y
.
Câu 1103. [0H3-2] Trong mt phng
, hai đường thng
1
: 4 3 18 0
d x y
;
2
:3 5 19 0
d x y
ct nhau tại điểm to độ
A.
3; 2
. B.
3;2
. C.
3;2
. D.
3; 2
.
Câu 1104. [0H3-2] Trong mt phng
, cho đưng tròn
2 2
: 3 1 10
C x y
. Phương trình tiếp
tuyến ca
C
ti đim
4;4
A là
A.
3 16 0
x y
. B.
3 4 0
x y
.
C.
3 5 0
x y
. D.
3 16 0
x y
.
Câu 1105. [0H3-2] Trong mt phng
Oxy
, đường thng
:3 2 7 0
x y
ct đưng thẳng nào sau đây?
A.
3
: 3 2 7 0
d x y
. B.
1
:3 2 0
d x y
.
C.
4
:6 4 14 0
d x y
. D.
2
:3 2 0
d x y
.
Câu 1106. [0H3-2] Trong mt phng
Oxy
, cho đường thng
: 2 1 0
d x y
. Nếu đường thng
qua
điểm
1; 1
M
song song vi
d
thì
có phương trình
A.
2 3 0
x y
. B.
2 3 0
x y
. C.
2 5 0
x y
. D.
2 1 0
x y
.
Câu 1107. [0H3-2] Cho đường thẳng
2 3
:
1
x t
y t
t
điểm
1; 6
M . Phương trình đường
thẳng đi qua
M
và vng góc với
là
A.
3 9 0
x y
. B.
3 17 0
x y
. C.
3 3 0
x y
. D.
3 19 0
x y
.
Câu 1108. [0H3-2] Cho đường tròn
2 2
: 1 3 10
C x y
và đường thẳng
: 1 0
x y
biết
đường thẳng
cắt
C
tại hai điểm phân biệt
A
,
B
. Độ dài đoạn thẳng
AB
bằng
A.
19
2
. B.
38
. C.
19
2
. D.
38
2
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 106
Câu 1109. [0H3-2] Trong hệ trục tọa độ
Oxy
, đường tròn nào có phương trình dưới đây tiếp xúc với hai
trục tọa độ?
A.
2 2
2 2 1
x y
. B.
2 2
2 2 2
x y
.
C.
2 2
2 2 4
x y
. D.
2 2
2 2 8
x y
.
Câu 1110. [0H3-2] Cho phương trình
2 2
2 0
x y ax by c
. Điều kiện nào của
, ,
a b c
để phương
tnh trên là phương trình của đường tròn?
A.
2 2
8 0
a b c
. B.
2 2
2 0
a b c
. C.
2 2
8 0
a b c
. D.
2 2
2 0
a b c
.
Câu 1111. [0H3-2] Cho tam giác
ABC
1;2
A ,
2;3
B ,
3; 4
C
. Diện tích tam giác
ABC
bằng
A.
1
. B.
2
. C.
1 2
. D.
3
2
.
Câu 1112. [0H3-2] Cho đường thẳng
1 3
:
2 1
x y
điểm
1; 4
N
. Khoảng cách tđiểm
N
đến
đường thẳng
bằng
A.
2
5
. B.
5
. C.
2
. D.
2
17
.
Câu 1113. [0H3-2] Cho hai đường thẳng
1
: 2 0
d x y
2
: 2 3 3 0
d x y
. Góc tạo bởi đường
thẳng
1
d
2
d
là ( chọn kết quả gần đúng nhất )
A.
11 19
. B.
78 41
. C.
101 19
. D.
78 31
.
Câu 1114. [0H3-2] Cho đường tròn
2 2
: 4 2 7 0
C x y x y
hai điểm
1;1
A
1;2
B .
Khẳng định nào dưới đây là đúng?
A.
A
nằm trong và
B
nằm ngoài
C
. B.
A
B
cùng nằm ngoài
C
.
C.
A
nằm ngoài
B
nằm trong
C
. D.
A
B
cùng nằm trong
C
.
Câu 1115. [0H3-2] Din tích ca t giác to nên bởi các đỉnh ca elip
2
2
: 1
4
x
E y
là
A.
8
. B.
4
. C.
2
. D.
6
.
Câu 1116. [0H3-2] Đường thẳng
vuông c với đưng thẳng
AB
, với
2;1
A và
4;3
B . Đường
thẳng
có mt vectơ chỉ phương là
A.
1; 3
c
. B.
3;1
a
. C.
1;3
d
. D.
3; 1
b
.
Câu 1117. [0H3-2] Phương trình đường tròn
C
tâm
1; 2
I
tiếp xúc với đường thẳng
2 5 0
x y
A.
2 2
1 2 1
x y
. B.
2 2
1 2 5
x y
.
C.
2 2
1 2 25
x y
. D.
2 2
1 2 5
x y
.
Câu 1118. [0H3-2] Xét trong mặt phẳng tọa độ
Oxy
, cặp đim nào dưới đây nm cùng phía so vi
đường thẳng
2 3 0
x y
?
A.
0; 1
M
0; 2
P . B.
0; 2
P
1; 1
N .
C.
0; 1
M
2; 1
Q
. D.
0; 1
M
1; 5
N .
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 107
Câu 1119. [0H3-2] Cho tam giác
ABC
có
9
AB
,
12
AC
,
15
BC
. Khi đó đường trung tuyến
AM
của tam giác độ dài bằng bao nhiêu?
A.
9
. B.
10
. C.
7,5
. D.
8
.
Câu 1120. [0H3-2] Cho tam giác
ABC
diện tích bằng
S
. Gọi
M
,
N
hai điểm tha mãn
2
AM AB
,
2
CN AC
. Tính diện tích
AMN
theo
S
.
A.
2
S
. B.
8
S
. C.
4
S
. D.
6
S
.
Câu 1121. [0H3-2] Lập phương tnh tng quát đường thẳng đi qua đim
2;1
A song song vi
đường thẳng
2 3 2 0
x y
.
A.
3 2 8 0
x y
. B.
2 3 7 0
x y
. C.
3 2 4 0
x y
. D.
2 3 7 0
x y
.
Câu 1122. [0H3-2] Cho đường thng
1
:2 15 0
d x y
và
2
: 2 3 0
d x y
. Khẳng đnh nào sau đây đúng?
A.
1
d
2
d
vuông góc với nhau. B.
1
d
2
d
song song với nhau.
C.
1
d
2
d
trùng nhau với nhau. D.
1
d
2
d
cắt nhau và không vng góc với nhau.
Câu 1123. [0H3-2] Xác định
m
để
2
đường thẳng
:2 3 4 0
d x y
2 3
:
1 4
x t
d
y mt
vuông góc
A.
9
8
m
. B.
1
2
m
. C.
9
8
m
. D.
1
2
m
.
Câu 1124. [0H3-2] Viết phương trình đường tròn tâm
3; 2
I
và đi qua điểm
1;1
M là.
A.
2 2
3 2 5
x y
. B.
2 2
3 2 25
x y
.
C.
2 2
3 2 5
x y
. D.
2 2
3 2 25
x y
.
Câu 1125. [0H3-2] Đường tròn
2 2
2
:
C x a y b R
cắt đường thẳng
2 2 0
x y a b
theo
dây cung có đdài bằng bao nhiêu? (ở đây
0
R
).
A.
2
R
. B.
2
2
R
. C.
R
. D.
2
R
.
Câu 1126. [0H3-2] Trong mặt phẳng
Oxy
cho ba điểm
3;6
A ,
; 2
B x
,
2;
C y
. Tính
.
OA BC
theo
x
;
y
.
A.
. 3 6 12
OA BC x y

. B.
. 0
OABC
.
C.
. 3 6 18
OA BC x y

. D.
. 3 6 12
OA BC x y

.
Câu 1127. [0H3-2] Trên mặt phẳng tọa đ
Oxy
, cho tam giác
ABC
biết
1;3
A ,
2; 2
B
,
3;1
C .
Tính cosinc
A
của tam giác
ABC
.
A.
1
cos
17
BAC
. B.
2
cos
17
BAC
.
C.
2
cos
17
BAC
D.
1
cos
17
BAC
.
Câu 1128. [0H3-2] Cho tam giác
ABC
vi
2;4
A ;
2;1
B ;
5;0
C . Trung tuyến
CM
đi qua điểm
o dưới đây?
A.
9
14;
2
. B.
5
10;
2
. C.
7; 6
. D.
1;5
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 108
Câu 1129. [0H3-2] Các đỉnh ca Elip
E
phương trình
2 2
2 2
1
x y
a b
;
0
a b
to thành nh thoi
mt góc đỉnh
60
, tiêu c ca
E
là
8
, thế thì
2 2
a b
?
A.
16
. B.
32
. C.
64
. D.
128
.
Câu 1130. [0H3-2] Đường thẳng
d
đi qua
3;2
I cắt
Ox
;
Oy
tại
M
,
N
sao cho
I
là trung điểm
của
MN
. Khi đó độ dài
MN
bằng
A.
52
. B.
13
. C.
10
. D.
2 13
.
Câu 1131. [0H3-2] Cho bốn đim
1;2
A ,
1;4
B ,
2;2
C ,
3;2
D . To độ giao đim ca hai
đường thng
AB
CD
là
A.
1;2
A . B.
3; 2
B
. C.
0; 1
. D.
5; 5
.
Câu 1132. [0H3-2] Cho bốn đim
1;2
A ,
4;0
B ,
1; 3
C
,
7; 7
D
. V t tương đối của hai đường
thng
AB
CD
là
A. Song song. B. Cắt nhau nhưng không vng góc với nhau.
C. Trùng nhau. D. Vuông góc vi nhau.
Câu 1133. [0H3-2] V t tương đối của hai đường thng lần lượt phương trình
2
2 3
x y
6 2 8 0
x y
A. Song song. B. Cắt nhau nhưng không vng góc với nhau.
C. Trùng nhau. D. Vuông góc vi nhau.
Câu 1134. [0H3-2] Khong cách t điểm
1; 1
M
đến đường thng
:3 4 17 0
x y
A.
2
. B.
18
5
. C.
2
5
. D.
10
5
.
Câu 1135. [0H3-2] Din tích tam gc
ABC
vi
3; 4
A
,
1;5
B ,
3;1
C
A.
26
. B.
2 5
. C.
10
. D.
5
.
Câu 1136. [0H3-2] Cho đường thẳng đi qua hai điểm
3,0
A ,
0;4
B . Tìm ta độ đim
M
nm trên
Oy
sao cho din tích tam giác
MAB
bng
6
A.
0;1
. B.
0;8
. C.
1;0
. D.
0;0
0;8
.
Câu 1137. [0H3-2] Cho tam giác
ABC
vi
1;3
A ,
2;4
B ,
1;5
C đường thng
:2 3 6 0
d x y
. Đường thng
d
ct cnh nào ca tam gc
ABC
A. Cnh
AB
. B. Cnh
BC
. C. Cnh
AC
. D. Không ct cnh nào.
Câu 1138. [0H3-2] Cho tam giác
ABC
vi
2; 1
A
,
4;5
B ,
3;2
C . Phương trình tng quát ca
đường cao đi qua đim
A
ca tam giác
ABC
A.
3 7 1 0
x y
. B.
3 7 13 0
x y
. C.
7 3 13 0
x y
. D.
7 3 11 0
x y
.
Câu 1139. [0H3-2] Đường thng
5 3 15
x y
to vi các trc to đ mt tam giác có din tích bng
A.
15
. B.
7,5
. C.
3
. D.
5
.
Câu 1140. [0H3-2] Đường thẳng đi qua điểm
2;1
B và nhn
1; 1
u
làm véctơ chỉ phương
phương trình
A.
1 0
x y
. B.
3 0
x y
. C.
5 0
x y
. D.
1 0
x y
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 109
Câu 1141. [0H3-2] Đường thẳng đi qua đim
3; 2
C
và có h s góc
2
3
k
phương trình
A.
2 3 0
x y
. B.
2 3 9 0
x y
. C.
3 2 13 0
x y
. D.
2 3 12 0
x y
.
Câu 1142. [0H3-2] Cho đường thng
d
phương trình tham s là
1 3
2
x t
y t
. Phương trình tng quát
ca
d
:
A.
3 5 0
x y
. B.
3 0
x y
. C.
3 5 0
x y
. D.
3 2 0
x y
.
Câu 1143. [0H3-2] Đường thng
d
có phương trình tng quát
4 5 8 0
x y
. Phương trình tham s ca
d
A.
5
4
x t
y t
. B.
2 4
5
x t
y t
. C.
2 5
4
x t
y t
. D.
2 5
4
x t
y t
.
Câu 1144. [0H3-2] Cho hai điểm
5;6
A ,
3;2
B Phương trình chính tc ca
AB
là
A.
5 6
2 1
x y
. B.
5 6
2 1
x y
. C.
5 6
2 1
x y
. D.
3 2
2 1
x y
.
Câu 1145. [0H3-2] Cho đường thng
: 3 3 0
d x y
đim
2;4
N . Tọa đ hình chiếu vuông
góc ca
N
trên
d
là
A.
3; 6
. B.
1 11
;
3 3
. C.
2 21
;
5 5
. D.
1 33
;
10 10
.
Câu 1146. [0H3-2] Cho hai đường thng
1
: 2 4 3 0
d x y
2
:3 17 0
d x y
. S đo góc gia
1
d
2
d
A.
4
. B.
2
. C.
3
4
. D.
4
.
Câu 1147. [0H3-2] Cho đường thng
:4 3 13 0.
d x y
Phương trình các đường phân giác ca góc to
bi
d
và trc
Ox
là
A.
4 3 13 0
x y
4 13 0
x y
. B.
4 8 13 0
x y
4 2 13 0
x y
.
C.
3 13 0
x y
3 13 0
x y
. D.
3 13 0
x y
3 13 0
x y
.
Câu 1148. [0H3-2] Cho hai đường thng song
1
:5 7 4 0
d x y
2
:5 7 6 0.
d x y Phương trình
đường thẳng song song và cách đều
1
d
2
d
A.
5 7 2 0
x y
. B.
5 7 3 0
x y
.
C.
5 7 4 0
x y
. D.
5 7 5 0
x y
.
Câu 1149. [0H3-2] Cho hai đường thng song
1
:5 7 4 0
d x y
2
:5 7 6 0.
d x y Khong cách
gia
1
d
2
d
là
A.
4
74
. B.
6
74
. C.
2
74
. D.
10
74
.
Câu 1150. [0H3-2] Cho ba đim
1;4
A ,
3;2
B ,
5;4
C . Tọa độ tâm đường tròn ngoi tiếp tam giác
ABC
A.
2;5
. B.
3
;2
2
. C.
9;10
. D.
3;4
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 110
Câu 1151. [0H3-2] Đường thẳng đi qua đim
1;2
M song song với đường thng
:4 2 1 0
d x y
phương trình tng quát là
A.
4 2 3 0
x y
. B.
2 4 0
x y
. C.
2 4 0
x y
. D.
2 3 0
x y
.
Câu 1152. [0H3-2] Đường thẳng đi qua điểm
1;2
M vng c với đường thng
:4 2 1 0
d x y
phương trình tng quát là
A.
4 2 3 0
x y
. B.
2 4 4 0
x y
. C.
2 4 6 0
x y
. D.
2 3 0
x y
.
Câu 1153. [0H3-2] Lập phương trình đường thng
song song với đường thng
:3 2 12 0
d x y
ct
Ox
,
Oy
lần t ti
A
,
B
sao cho
13
AB
. Phương trình đường thng
là
A.
3 2 12 0
x y
. B.
3 2 12 0
x y
. C.
6 4 12 0
x y
. D.
3 4 6 0
x y
.
Câu 1154. [0H3-2] Cho hai đim
1; 4
A
,
3;2
B . Viết phương trình tng quát của đường thng trung
trc của đoạn thng
AB
.
A.
3 1 0
x y
. B.
3 1 0
x y
. C.
3 4 0
x y
. D.
1 0
x y
.
Câu 1155. [0H3-2] Cho hai đim
1;1
A ,
0; 2
B
,
4;2
C . Phương trình tng quát của đường trung
tuyến đi qua điểm
A
ca tam giác
ABC
là
A.
2 3 0
x y
. B.
2 3 0
x y
. C.
2 0
x y
. D.
0
x y
.
Câu 1156. [0H3-2] Cho tam giác
ABC
vi
1;1
A ,
0; 2
B
,
4;2
C . Phương trình tng quát ca
đường trung tuyến đi qua điểm
B
ca tam giác
ABC
là
A.
7 7 14 0
x y
. B.
5 3 1 0
x y
.
C.
3 2 0
x y
. D.
7 5 10 0
x y
.
Câu 1157. [0H3-2] Cho tam gc
ABC
vi
2; 1
A
,
4;5
B ,
3;2
C . Phương trình tng quát ca
đường cao đi qua đim
A
ca tam giác
ABC
A.
3 7 1 0
x y
. B.
3 7 13 0
x y
.
C.
7 3 13 0
x y
. D.
7 3 11 0
x y
.
Câu 1158. [0H3-2] Đường thng
5 3 15
x y
to vi các trc to đ mt tam giác có din tích bng
A.
15
. B.
7,5
. C.
3
. D.
5
.
Câu 1159. [0H3-2] Cho bốn điểm
1;2
A ,
1;4
B ,
2;2
C ,
3;2
D . To độ giao đim ca hai
đường thng
AB
CD
là
A.
1;2
A . B.
3; 2
B
. C.
0; 1
. D.
5; 5
.
Câu 1160. [0H3-2] Cho bn đim
1;2
A ,
4;0
B ,
1; 3
C
,
7; 7
D
. V t tương đối của hai đường
thng
AB
CD
là
A. Song song. B. Cắt nhau nhưng không vng góc với nhau.
C. Trùng nhau. D. Vuông góc vi nhau.
Câu 1161. [0H3-2] V t tương đối của hai đường thng lần lượt phương trình
2
2 3
x y
6 2 8 0
x y
A. Song song. B. Cắt nhau nhưng không vng góc với nhau.
C. Trùng nhau. D. Vuông góc vi nhau.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 111
Câu 1162. [0H3-2] Khong cách t điểm
1; 1
M
đến đường thng
:3 4 17 0
x y
A.
2
. B.
18
5
. C.
2
5
. D.
10
5
.
Câu 1163. [0H3-2] Din tích tam gc
ABC
vi
3; 4
A
,
1;5
B ,
3;1
C
A.
26
. B.
2 5
. C.
10
. D.
5
.
Câu 1164. [0H3-2] Cho đường thẳng đi qua hai điểm
3,0
A ,
B . Tìm ta đ điểm
M
nm trên
Oy
sao cho din tích tam giác
MAB
bng
6
A.
0;1
. B.
0;8
. C.
1;0
. D.
0;0
0;8
.
Câu 1165. [0H3-2] Cho tam giác
ABC
vi
1;3
A ,
2;4
B ,
1;5
C đường thng
:2 3 6 0
d x y
. Đường thng
d
ct cnh nào ca tam gc
ABC
A. Cnh
AB
. B. Cnh
BC
.
C. Cnh
AC
. D. Không ct cnh nào.
Câu 1166. [0H3-2] Cho
2
đim
5; 1
A
,
3;7
B . Phương trình đường tròn đường kính
AB
là
A.
2 2
2 6 22 0
x y x y
. B.
2 2
2 6 22 0
x y x y
.
C.
2 2
2 6 22 0
x y x y
. D. Đáp án khác.
Câu 1167. [0H3-2] Cho
2
đim
1;1
A ,
7;5
B . Pơng trình đường tròn đường kính
AB
là
A.
2 2
8 6 12 0
x y x y
. B.
2 2
8 6 12 0
x y x y
.
C.
2 2
8 6 12 0
x y x y
. D.
2 2
8 6 12 0
x y x y
.
Câu 1168. [0H3-2] Cho đường tròn
2 2
: 4 3 0
C x y x
. Hi mệnh đề nào sau đây sai?
A.
C
có tâm
2;0
I . B.
C
bán kính
1
R
.
C.
C
ct trc
Ox
ti
2
đim phân bit. D.
C
ct trc
Oy
ti
2
đim phân bit.
Câu 1169. [0H3-2] Phương trình đường tròn tâm
1;2
I và đi qua điểm
2;1
M là
A.
2 2
2 4 5 0
x y x y
. B.
2 2
4 2 4 3 0
x y x y
.
C.
2 2
2 4 5 0
x y x y
. D. Đáp án khác.
Câu 1170. [0H3-2] Vi g tr nào ca
m
t phương trình
2 2
2 1 4 8 0
x y m x y
phương
tnh đường tròn.
A.
0
m
. B.
3
m
. C.
1
m
. D.
3
m
hoc
1
m
.
Câu 1171. [0H3-2] Vi giá tr nào ca
m
t phương trình
2 2
2 2 4 19 6 0
x y m x my m
phương trình đường tròn.
A.
1 2
m
. B.
1
m
hoc
2
m
.
C.
2 1
m
. D.
2
m
hoc
1
m
.
Câu 1172. [0H3-2] Tính bán kính đưng tn tâm
1; 2
I
tiếp xúc với đường thng
:3 4 26 0
d x y
.
A.
3
R
. B.
5
R
. C.
15
R
. D.
3
5
R
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 112
Câu 1173. [0H3-2] Đường tròn nào sau đây đi qua ba điểm
3; 4
A ,
1; 2
B ,
5; 2
C
A.
22
3 2 4
x y
. B.
22
3 2 4
x y
.
C.
22
3 2 4
x y
. D.
2 2
6 4 9 0
x y x y
.
Câu 1174. [0H3-2] Cho đường tròn
2 2
: 4 2 0
C x y x y
đường thng
: 2 1 0
d x y
. Trong
các mnh đề sau, tìm mệnh đề đúng?
A.
d
đi qua tâm của đường tròn
C
. B.
d
ct
C
tại hai điểm phân bit.
C.
d
tiếp xúc
C
. D.
d
không có đim chung vi
C
.
Câu 1175. [0H3-2] Cho đường tròn
2 2
: 4 3 5
C x y
đường thng
: 2 5 0
d x y
. Ta
độ tiếp điểm của đường thng
d
và đường tròn
C
A.
3;1
. B.
6;4
. C.
5;0
. D.
1;2
.
Câu 1176. [0H3-2] Cho hai đường tròn
2 2
1
: 2 6 6 0
C x y x y
,
2 2
2
: 4 2 4 0
C x y x y
.
Trong các mnh đề sau, tìm mệnh đề đúng:
A.
1
C
ct
2
C
. B.
1
C
không có đim chung vi
2
C
.
C.
1
C
tiếp xúc trong vi
2
C
. D.
1
C
tiếp xúc ngoài vi
2
C
.
Câu 1177. [0H3-2] Cho hai đim
2;1
A ,
3;5
B . Tp hợp đim
;
M x y
nhìn
AB
dưới mt góc
vuông nằm trên đường tròn có phương trình
A.
2 2
6 1 0
x y x y
. B.
2 2
6 1 0
x y x y
.
C.
2 2
5 4 11 0
x y x y
. D. Đáp án khác.
Câu 1178. [0H3-2] Phương trình
2 4sin
3 4cos
x t
t
y t
là phương trình đường tròn:
A. Tâm
2;3
I và bán kính
4
R
. B. Tâm
2; 3
I
và bán kính
4
R
.
C. Tâm
2;3
I và bán kính
16
R
. D. Tâm
2; 3
I
và bán kính
16
R
.
Câu 1179. [0H3-2] Đường tròn
C
tâm
4;3
I , tiếp xúc trc
Oy
phương trình
A.
2 2
4 3 9 0
x y x y
. B.
2 2
4 3 16
x y
.
C.
2 2
4 3 16
x y
. D.
2 2
8 6 12 0
x y x y
.
Câu 1180. [0H3-2] Đường tn
C
đi qua
1;3
A ,
3;1
B có tâm nằm trên đường thng
:2 7 0
d x y
có phương trình
A.
2 2
7 7 102
x y . B.
2 2
7 7 164
x y .
C.
2 2
3 5 25
x y
. D.
2 2
3 5 25
x y
.
Câu 1181. [0H3-2] Cho đường tròn
2 2
: 3 1 10
C x y
. Phương trình tiếp tuyến ca
C
ti
4;4
A
A.
3 5 0
x y
. B.
3 4 0
x y
.
C.
3 16 0
x y
. D.
3 16 0
x y
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 113
Câu 1182. [0H3-2] Cho đường tròn
2 2
: 2 6 5 0
C x y x y
. Tiếp tuyến ca
C
song song vi
đường thng
: 2 15 0
d x y
có phương trình
A.
2 0
2 10 0
x y
x y
. B.
2 0
2 10 0
x y
x y
. C.
2 1 0
2 3 0
x y
x y
. D.
2 1 0
2 3 0
x y
x y
.
Câu 1183. [0H3-2] Cho đường tn
2 2
: 2 2 9
C x y
. Tiếp tuyến ca
C
qua
5; 1
A
phương trình
A.
4 0
2 0
x y
x y
. B.
5
1
x
y
. C.
2 3 0
3 2 2 0
x y
x y
. D.
3 2 2 0
2 3 5 0
x y
x y
.
Câu 1184. [0H3-2] Cho đường tn
2 2
: 6 2 5 0
C x y x y
đường thng
:2 2 7 0
d x m y m
. Vi giá tr nào ca
m
thì
d
tiếp xúc vi
C
?
A.
3
m
. B.
15
m
.
C.
13
m
. D.
3
m
hoc
13
m
.
Câu 1185. [0H3-2] Cho
E
có độ dài trc ln bng
26
, tâm sai
12
.
13
e Đi trc nh ca
E
bng
A.
5
. B.
10
. C.
12
D.
24
.
Câu 1186. [0H3-2] Cho
2 2
:16 25 100
E x y và điểm
M
thuc
E
hoành độ bng
2
. Tng
khong cách t
M
đến
2
tiêu đim ca
E
bng
A.
5
. B.
2 2
. C.
4 3
. D.
3
.
Câu 1187. [0H3-2] Phương trình chính tc ca
E
độ dài trc ln bng
6
, t s gia tiêu c độ
dài trc ln bng
1
3
là
A.
2 2
1
9 3
x y
. B.
2 2
1
9 8
x y
. C.
2 2
1
19 5
x y
. D.
2 2
1
6 5
x y
.
Câu 1188. [0H3-2] Phương trình chính tc ca
E
có độ dài trc ln gp
2
ln độ dài trc nh tiêu
c bng
4 3
là
A.
2 2
1
36 9
x y
. B.
2 2
1
36 24
x y
. C.
2 2
1
24 6
x y
. D.
2 2
1
16 4
x y
.
Câu 1189. [0H3-2] Phương trình chính tc ca
E
có đường chun
4 0
x
và tiêu đim
1;0
F
A.
2 2
1
4 3
x y
. B.
2 2
1
16 15
x y
. C.
2 2
1
16 9
x y
. D.
2 2
1
9 8
x y
.
Câu 1190. [0H3-2] Phương trình chính tc ca
E
có tiêu c bng
6
và đi qua điểm
5;0
A
A.
2 2
1
100 81
x y
. B.
2 2
1
15 16
x y
. C.
2 2
1
25 9
x y
. D.
2 2
1
25 16
x y
.
Câu 1191. [0H3-2] Cho elip
2 2
: 1
5 4
x y
E
. T s gia tiêu c và độ dài trc ln bng
A.
5
4
. B.
5
5
. C.
3 5
5
. D.
5
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 114
Câu 1192. [0H3-2] Phương trình chính tc ca
E
đ i trc ln gp
2
lần độ dài trc nh và đi
qua đim
2; 2
A
là
A.
2 2
1
24 16
x y
. B.
2 2
1
36 9
x y
. C.
2 2
1
16 4
x y
. D.
2 2
1
20 5
x y
Câu 1193. [0H3-2] Phương trình chính tc ca
E
nhận đim
4;3
M là mt đỉnh ca hình ch nht
cơ sở
A.
2 2
1
16 9
x y
. B.
2 2
1
16 4
x y
. C.
2 2
1
16 3
x y
. D.
2 2
1
9 4
x y
Câu 1194. [0H3-2] Phương trình chính tc ca
E
khong cách giữa các đường chun bng
50
3
tiêu c bng
6
là
A.
2 2
1
64 25
x y
. B.
2 2
1
89 64
x y
. C.
2 2
1
25 16
x y
. D.
2 2
1
16 7
x y
Câu 1195. [0H3-2] Cho
E
:
2 2
1
16 9
x y
và đim
M
thuc
E
. Khi đó đ dài
OM
tha mãn
A.
3
OM
B.
3 4
OM
.
C.
4 5
OM
. D.
5
OM
.
Câu 1196. [0H3-2] Cho
2 2
: 1.
25 9
x y
E
Đường thng
: 4
d x
ct
E
tại hai điểm
M
,
N
. Khi đó,
độ i đoạn
MN
bng
A.
9
5
. B.
9
25
. C.
18
5
. D.
18
25
.
Câu 1197. [0H3-2] Đường thng
y kx
ct
E
:
2 2
2 2
1
x y
a b
ti hai đim
M
,
N
phân bit. Khi đó
M
,
N
A. Đối xng nhau qua
0;0
O . B. Đối xng nhau qua
Oy
.
C. Đối xng nhau qua
Ox
. D. Đối xng nhau qua
0;1
I .
Câu 1198. [0H3-2] Trong mt phng
Oxy
, cho hình bình hành
ABCD
biết
2;1
A ,
2; 1
B
,
2; 3
C
. Ta đ giao điểm hai đường chéo ca hình bình hành
ABCD
là
A.
2;0
. B.
2;2
. C.
0; 2
. D.
0; 1
.
Câu 1199. [0H3-2] Trong mt phng
Oxy
cho tam giác
ABC
vi
3; 2
A
;
4;7
B ;
1;1
C phương
tnh tham s đường trung tuyến
AM
A.
3
4 2
x t
y t
. B.
3
2 4
x t
y t
. C.
3 3
2 4
x t
y t
. D.
3
2 4
x t
y t
.
Câu 1200. [0H3-2] Elip hai đnh
3;0
;
3;0
hai tiêu đim
1;0
1;0
phương trình
chính tc là
A.
2 2
1
8 9
x y
. B.
2 2
1
9 8
x y
. C.
2 2
1
9 4
x y
. D.
2 2
1
9 2
x y
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 115
Câu 1201. [0H3-3] Trong mt phng ta độ
Oxy
, cho tam giác
ABC
3;4
A ,
2;1
B ,
1; 2
C
.
Gi
;
M x y
là điểm trên đường thng
BC
sao cho 4
ABC ABM
S S
. Tính
.
P x y
.
A.
5
16
7
16
P
P
. B.
77
16
7
16
P
P
. C.
5
16
77
16
P
P
. D. Đáp án khác.
Câu 1202. [0H3-3] Cho hai điểm
1;6
P
3; 4
Q
đường thng
:
2 1 0
x y
. Tọa độ đim
N
thuc
sao cho
NP NQ
ln nht.
A.
3;5
N . B.
1;1
N . C.
1; 3
N
. D.
9; 19
N .
Câu 1203. [0H3-3] Cho tam giác
ABC
ni tiếp đường tn tâm
2;1
I , trng tâm
7 4
;
3 3
G
, phương
tnh đường thng
: 1 0
AB x y
. Gi s đim
0 0
;
C x y
, tính
0 0
2
x y
.
A.
18
. B.
10
. C.
9
. D.
12
.
Câu 1204. [0H3-3] Trong mặt phẳng tọa độ
Oxy
, cho đim
4; 1
M , đường thẳng
d
qua
M
,
d
ct tia
Ox
,
Oy
lần lượt tại
; 0
A a ,
0;
B b
sao cho tam giác
ABO
(
O
gc tọa độ) din tích
nhỏ nhất. Giá trị
4
a b
bằng
A.
14
. B.
0
. C.
8
. D.
2
Câu 1205. [0H3-3] Trong mt phng ta độ
Oxy
, tam giác
ABC
đỉnh
1;2
A , trc tâm
3; 12
H , trung đim ca cnh
BC
4;3
M . Gi
I
,
R
lần lượt là tâm, bán kính đưng
tròn ngoi tiếp tam giác
ABC
. Chn khẳng định đúng trong các khẳng định sau
A.
17
3;
2
I
,
4 13
R
. B.
6;8
I ,
85
R
. C.
2; 2
I
,
5
R
. D.
5;10
I ,
10
R
.
Câu 1206. [0H3-3] Trong mt phng vi h trc
Oxy
, cho hình vuông
ABCD
tâm điểm
I
. Gi
1; 2
G
3;1
K lần lượt là trng tâm các tam gc
ACD
ABI
. Biết
;
A a b
vi
0
b
.
Khi đó
2 2
a b
bng
A.
37
. B.
5
. C.
9
. D.
3
.
Câu 1207. [0H3-3] Trong mt phng ta đ
Oxy
, cho ba đim
1;0
A ,
0;5
B
3; 5
C
. Tìm ta
độ điểm
M
thuc trc
Oy
sao cho 3 2 4
MA MB MC
đạt giá tr nh nht?
A.
0;5
M . B.
M . C.
0; 6
M
. D.
0; 5
M
.
Câu 1208. [0H3-3] Trong mt phng vi h ta đ
Oxy
cho đường thng
: 2 5 0
x y
các điểm
1;2
A ,
2;3
B ,
2;1
C . Viết phương trình đường thng
d
, biết đường thng
d
đi qua
gc ta đ cắt đường thng
tại điểm
M
sao cho:
MA MB MC
nh nht.
A.
0
x y
. B.
3 0
x y
. C.
2 3 0
x y
. D.
2 0
x y
.
Câu 1209. [0H3-3] Trong mt phng vi h tọa đ
Oxy
cho nh ch nht
ABCD
biết
2
AD AB
, đưng
thng
AC
có phương trình
2 2 0
x y
,
1;1
D và
; , , 0
A a b a b a
.nh
a b
.
A.
4
a b
. B.
3
a b
. C.
4
a b
. D.
1
a b
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 116
Câu 1210. [0H3-3] Trong mt phng tọa độ
Oxy
, nh chiếu vuông c của đim
2;1
A trên đường
thng
:2 7 0
d x y có tọa đ là
A.
14 7
;
5 5
. B.
5 3
;
2 2
. C.
3;1
. D.
14 7
;
5 5
.
Câu 1211. [0H3-3] Cho tam giác
ABC
có din tích bng
3
2
S , hai đỉnh
2; 3
A
3; 2
B . Trng
tâm
G
nằm trên đường thng
3 8 0
x y . Tìm ta đ đỉnh
C
?
A.
10; 2
C hoc
1; 1
C . B.
2; 10
C hoc
1; 1
C .
C.
2;10
C hoc
1; 1
C . D.
2; 10
C hoc
1; 1
C .
Câu 1212. [0H3-3] Trong mt phng
Oxy
, cho tam giác
ABC
4; 1
A
, hai đường cao
BH
CK
phương trình lần lượt là
2 3 0
x y
3 2 6 0
x y . Viết phương trình đường
thng
BC
và tính din tích tam giác
ABC
.
A.
: 0
BC x y ;
35
2
S . B.
: 0
BC x y ;
25
2
S .
C.
: 0
BC x y ;
25
2
S . D.
: 0
BC x y ;
35
2
S .
Câu 1213. [0H3-3] Cho
1; 1
A
,
3;2
B . Tìm
M
trên trc
Oy
sao cho
2 2
MA MB
nh nht.
A.
0;1
M . B.
0; 1
M
. C.
1
0;
2
M
. D.
1
0;
2
M
.
Câu 1214. [0H3-3] Cho đường thẳng
:2 5 0
d x y
. Viết được phương trình tng quát đường thẳng
đi qua điểm
2;4
M và vuông góc với đường thẳng
d
.
A.
2 10 0
x y
. B.
2 10 0
x y
. C.
2 8 0
x y
. D.
2 8 0
x y
.
Câu 1215. [0H3-3] Một elip
E
phương trình
2 2
2 2
1
x y
a b
, trong đó
0
a b
. Biết
E
đi qua điểm
2; 2
A
2 2;0
B
t
E
có độ dài trục bé là
A.
4.
B.
2 2.
C.
2.
D.
6.
Câu 1216. [0H3-3] Cho đường tròn
2 2
: 1 3 10
C x y
đường thẳng
: 3 1 0
x y m
.
Đường thẳng
tiếp xúc với đưng tròn
C
khi và ch khi
A.
1
m
hoặc
19
m
. B.
3
m
hoặc
17
m
.
C.
1
m
hoặc
19
m
. D.
3
m
hoặc
17
m
.
Câu 1217. [0H3-3] Trong hệ trục tọa độ
Oxy
, mt elip có độ dài trục ln là
8
, độ dài trục là
6
t
phương tnh chính tắc là.
A.
2 2
1
9 16
x y
. B.
2 2
1
64 36
x y
. C.
2 2
1
16 9
x y
. D.
2 2
1
16 7
x y
.
Câu 1218. [0H3-3] Điểm
;
A a b
thuộc đường thẳng
3
:
2
x t
d
y t
cách đường thẳng
:2 3 0
x y
một khoảng bằng
2 5
0
a
. Tính
.
P a b
.
A.
72
P
. B.
132
P
. C.
132
P
. D.
72
P
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 117
Câu 1219. [0H3-3] Cho tam giác
ABC
4 7
;
5 5
A
hai trong ba đường phân giác trong phương
tnh lần lượt là
2 1 0
x y
,
3 1 0
x y
. Viết phương trình đường thẳng chứa cạnh
BC
.
A.
1 0
y
. B.
1 0
y
. C.
4 3 1 0
x y
. D.
3 4 8 0
x y
.
Câu 1220. [0H3-3] Cho đường tròn
2 2
: 2 2 7 0
C x y x y
đường thẳng
: 1 0
d x y
. Tìm
tt cả các đường thẳng song song với đường thẳng
d
cắt đường tròn
C
theo dây cung
độ dài bằng
2
.
A.
4 0
x y
4 0
x y
. B.
2 0
x y
.
C.
4 0
x y
. D.
2 0
x y
2 0
x y
.
Câu 1221. [0H3-3] Trong mp
Oxy
, cho tam giác
ABC
với
2;6
A ,
3; 4
B
5;1
C . Tìm ta độ
trực tâm
H
của tam giác
ABC
.
A.
57 10
;
11 11
H
. B.
57 10
;
11 11
H
.
C.
57 10
;
11 11
H
. D.
57 10
;
11 11
H
.
Câu 1222. [0H3-3] Cho đim
1;2
M đường thng
:2 5 0
d x y
. Ta đ của điểm đối xng vi
điểm
M
qua
d
là
A.
9 12
;
5 5
. B.
. C.
3
0;
2
. D.
3; 5
.
Câu 1223. [0H3-3] Cho ba đim
3; 5
A ,
2; 3
B ,
6; 2
C . Đường tn ngoi tiếp tam giác
ABC
phương trình
A.
2 2
25 19 68 0
x y x y
. B.
2 2
3 3 25 19 68 0
x y x y
.
C.
2 2
25 19 68 0
x y x y
. D.
2 2
3 3 25 19 68 0
x y x y
.
Câu 1224. [0H3-3] Đường thng nào tiếp xúc với đường tròn
2
2
: 2 4
C x y
ti
M
hoành độ
3
M
x
?
A.
3 6 0
x y
. B.
3 6 0
x y
.
C.
3 6 0
x y
. D.
3 6 0
x y
.
Câu 1225. [0H3-3] Đường tròn đi qua
2;4
A , tiếp xúc vi các trc tọa độ có phương trình
A.
2 2
2 2 4
x y
,
2 2
10 10 100
x y .
B.
2 2
2 2 4
x y
,
2 2
10 10 100
x y .
C.
2 2
2 2 4
x y
,
2 2
10 10 100
x y .
D.
2 2
2 2 4
x y
,
2 2
10 10 100
x y .
Câu 1226. [0H3-3] Đường tròn tâm
1;3
I , tiếp xúc vi đường thng
:3 4 5 0
d x y
phương
tnh
A.
2 2
1 3 4
x y
. B.
2 2
1 3 2
x y
.
C.
2 2
1 3 10
x y
. D.
2 2
1 3 2
x y
.
TÀI LIU ÔN THI THPT QUỐC GIA NĂM 2018 1234 CÂU TRC NGHIM TOÁN 10
TOÁN HC BCTRUNGNAM sưu tầm và biên tp Trang 118
Câu 1227. [0H3-3] Cho đường tn
2 2
: 6 2 5 0
C x y x y
đim
4;2
A . Đường thng
d
qua
A
ct
C
ti
2
đim
M
,
N
sao cho
A
là trung đim ca
MN
có phương trình
A.
6 0
x y
. B.
7 3 34 0
x y
.
C.
7 30 0
x y
. D.
7 35 0
x y
.
Câu 1228. [0H3-3] Cho elip
2 2
: 1
169 144
x y
E
đim
M
thuc
E
hoành độ
13
M
x
. Khong
cách t
M
đến hai tiêu đim ca
E
lần lượt là
A.
10
6
. B.
8
18
.
C.
13
5
. D.
13
10
Câu 1229. [0H3-3] Cho
E
hai tiêu điểm
1
4;0
F ,
2
4;0
F điểm
M
thuc
E
. Biết chu vi
tam giác
1 2
MF F
bng
18
. Khi đó tâm sai của
E
bng
A.
4
18
. B.
4
5
. C.
4
5
. D.
4
9
.
Câu 1230. [0H3-3] Cho
E
hai tu đim
1
7;0
F ,
2
7;0
F điểm
9
7;
4
M
thuc
E
.
Gi
N
là điểm đối xng vi
M
qua gc ta độ
.
O
Khi đó
A.
1 2
9
2
NF MF
. B.
2 1
9
2
NF MF
.
C.
2 1
7
2
NF NF
D.
1 2
8
NF MF
.
Câu 1231. [0H3-3] Đường tròn tâm
1;1
I và tiếp xúc vi đường thng
5 4
:
3 3
x t
y t
phương
tnh:
A.
2 2
2 2 6 0
x y x y
. B.
2 2
2 2 0
x y x y
.
C.
2 2
2 2 2 0
x y x y
. D.
2 2
2 2 2 0
x y x y
.
Câu 1232. [0H3-3] Đường thng
: 2 5 0
x y
tiếp xúc với đưng tn
2 2
: 4 3 5
C x y
tại điểm
M
có tọa độ là
A.
3;1
. B.
3;2
. C.
6;3
. D.
5;2
.
Câu 1233. [0H3-3] Đưng tròn có m
1;1
I và tiếp xúc với đưng thng
5 4
:
3 3
x t
y t
có phương trình:
A.
2 2
2 2 6 0
x y x y
. B.
2 2
2 2 0
x y x y
.
C.
2 2
2 2 2 0
x y x y
. D.
2 2
2 2 2 0
x y x y
.
Câu 1234. [0H3-4] Mt miếng giy hình tam giác
ABC
din tích
S
I
là trung đim
BC
O
là
trung đim ca
AI
. Ct miếng giy theo một đường thng qua
O
, đường thẳng này đi qua
M
,
N
lần lưt trên các cnh
AB
,
AC
. Khi đó din tích miếng giy chứa đim
A
din tích
thuc đoạn.
A.
;
4 3
S S
. B.
;
3 2
S S
. C.
3
;
8 2
S S
. D.
3
;
4 8
S S
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
B D B D D B A C C D D A B D D B B C B D
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
B D A D B C B B B A D A B C C B D A D C
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
D A D D D D A C C A D C B D C B C A C C
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
C D C B D A C B B D A D A A D A B C B D
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
C A C D A B A A C C C C B A B D C B C C
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
B D D C A C D C C D C C B D D D D D A B
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
A C A A C C D B D C C A C A A B D B B C
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
B D B A C D B C B D A C B B C A B C D A
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
D C A D C C A A D D B C C B B C C A A D
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
C A A D B B D D B B A C A D B B A B B D
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
B C B B B A C B A B A A B A A B D C B A
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
B A C B A C A D D D C D D C B B A A D C
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
A C A C B B C B D D B A D B D B B D D A
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
C B D C A C B A C B A B D A A C B C D B
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
D D B C D A B B B A D C A D A C B C C D
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
D A B D A B D C A D C A B B B D C D D A
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
D C A D C A A C B B D A C D A D A D B B
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
D A D C B D C D C C C C C D D A B B C B
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
C A D D C B D D C D B B A A C C B C B C
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
D C A B C B C B B D B A B D D D B B B B
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
D B A B B A C A D C B B D B D B C D A A
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
D C C B C B B C B D A B D D A A C C A D
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
A C D B C B B A D B B B C B B C C D B C
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
A B D D C A A D C D A A D D D C B D C B
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
A A A A A A A A A A A A A A C D A C B A
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
A D C D A A C C A A C B D C C A C C B D
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
C A A D C D B D D C A C C B C A A B A A
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
A B B B D D A C A B C D C D D B A C B B
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
D C A A B D A A C A A A A A A A A A A A
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
A A A A A B D D D B B C C B C D C D D A
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
D A A B A D A D B C D D A B A D A D C D
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
C A B B C B A D A D B D A B D A C A A B
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
C D B A B C C D D C A A D A B C B A A D
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
C D C A A A B B B A B A B B D D A C C A
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
B B B B D B D A B B D B D C B C A B B A
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
C A B D A A D A C D B C B A A A B B A D
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
B C A B B A C A B D A A D A C D B C B A
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
A A B B A D D A D C D B A B B C C A B B
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
A A B D B B A C D A C A A A B D C B A A
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
B C A B D B A C D D C C C C C C B D A D
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
D C A B D C C D D C B B D C A C A D A C
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
D B B B A D A A B A A D C C D B D B C B
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
D C C A D C C B D B A C C A A C C C D D
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
C C D A A A B A C D A B B D A C D D A A
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
A A B C A D B A C A A C D D B A D C A C
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
B C B B D D A B D A D A D C C C C B A D
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
A C B B A A A B A D B A C B D B A A B A
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
B C D B B A A B B C C A A B A C B B B C
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
C D A D A C B D C D B D D D C A C B B D
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
B C C B A D B B B A D B A D A A B C B C
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
D A C D C B A B D A A C A C C A B A D D
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
A C B A A D C D D A B A A C D C A A C B
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
A D D B D A C B B D C B D A D B D C B B
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
D C C C C B C B D A C B C D A A C A A A
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
A C B C C C A C D B B A C D A A D A C D
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
C A C A B B C B C A A B B A B A B C C A
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
B A C B D C A D D D A A B A D D D D B B
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
D C D D D A B D C D C C C B C D D B A A
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
B A D D D B B D A D B A B C A D A B B B
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
D A B D B A B D A D B D A C B C A D D B
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
C D B B D C C D D D B D C B A B C C A A
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
C A B A A A A B B B C A C A
| 1/122