❙❯❻ ❚❍➮◆● ❑➊
!♥ ❤➜% &
◆➤♥❣✱ ✷✵✶✾
!♥ ❤➜% & ✶✴✸✽
❤"#♥❣ ✻✿ ❑✐➸♠ ✤-♥❤ ❣✐↔ /❤✉②➳/ /❤3♥❣
✶✳ ❈→❝ ❦❤→✐ ♥✐➺♠
✶✳✶ ●✐↔ 6❤✉②➳6 6❤:♥❣
✐↔ #❤✉②# #❤(♥❣
❧➔ ❝→❝ ❦❤➥♥❣ ✤+♥❤ ✈➲ ♣❤➙♥ ♣❤0✐ ❝2❛ 45♥❣ 4❤➸ ♥❣❤✐➯♥ ❝8✉✳ ❈< 4❤➸✱
✤> ❧➔ ❝→❝ ❦❤➥♥❣ ✤+♥❤ ✈➲ ❣✐→ 4?+ ❝❤@❛ ❜✐➳4 ❝2❛ 4❤❛♠ D0 ✤0✐ ✈E✐ ♣❤➙♥ ♣❤0✐ ✤➣ ❜✐➳4✱
❦❤➥♥❣ ✤+♥❤ ✈➲ ❞↕♥❣ ♣❤➙♥ ❤0 ❝❤@❛ ❜✐➳4 ❤❛ ✈➲ ♠0✐ J✉❛♥ ❤➺ ❣✐L❛ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳
❱➼ ❞?
.✐
µ
❧➔ #✉1✐ #❤. #2✉♥❣ ❜➻♥❤ ❝6❛ ♥❣89✐ ❱✐➺# ◆❛♠✳ ✐↔ #❤✉②➳# #❤(♥❣ ❝? #❤➸ ❧➔✿
µ = 60
✭#✉1✐✮ ❤♦➦❝
µ > 60
❤♦➦❝
µ = 60
✳✳✳
.✐
p
❧➔ #➾ ❧➺ ♣❤➳ ♣❤➞♠ ❝6❛ ♥❤➔ ♠→ ❆✳ ✐↔ #❤✉②➳# #❤(♥❣ ❝? #❤➸ ❧➔✿
p < 0, 1
❤♦➦❝
p = 0, 1
❤♦➦❝
p = 0, 1
✳✳✳
❑❤✐ ♥❣❤✐➯♥ ❝8✉ 4❛ ❝> 4❤➸ @ ?❛ ♥❤✐➲✉ ❣✐↔ 4❤✉②➳4 ❦❤→❝ ♥❤❛✉✳ ?♦♥❣ ❝❤@R♥❣ ♥➔ ❝❤S♥❣
4❛ ❝❤➾ ❦❤↔♦ D→4 ❜➔✐ 4♦→♥ ✐➸♠ ✤+♥❤ ✈E✐
❤❛✐ ❣✐↔ 6❤✉②➳6
♠➔ 4❤U✐✳
!♥ ❤➜% & ✷✴✸✽
❇➔✐ #♦→♥ ❦✐➸♠ ✤O♥❤ ❣✐↔ #❤✉②➳#
❧➔ ❜➔✐ 4♦→♥ ❣V♠ ♠W4 ❝➦♣ ❣✐↔ 4❤✉②➳4 4❤0♥❣ ♠➙✉ 4❤✉➝♥
♥❤❛✉ ✤@Y ✤@❛ ?❛ ①❡♠ ①➨4 ✤➸ ❝❤]♥ ♠W4 ❣✐↔ 4❤✉②➳4 ✤S♥❣✳ ▼W4 4?♦♥❣ ❤❛✐ ❣✐↔ 4❤✉②➳4 ✤>
✤@Y ❣✐↔ ✤+♥❤ ❜❛♥ ✤➛✉ ❧➔ ❣✐↔ 4❤✉②➳4 ✤S♥❣✱ ❣]✐ ❧➔
❣✐↔ #❤✉②➳# ❣(
✈➔ ✤@Y ❦➼ ❤✐➺✉ ❧➔
H
0
●✐↔ 4❤✉②4 ❝b♥ ❧↕✐ ❣]✐ ❧➔
✤(✐ #❤✉②➳#
✤@Y ❦➼ ❤✐➺✉ ❧➔
H
1
(
H
0
:
❣✐↔ 4❤✉②4 ❣0
H
1
:
✤0✐ 4❤✉②4
❑✐➸♠ ✤O♥❤ ❣✐↔ #❤✉②➳#
❧➔ ♣❤@R♥❣ ♣❤→♣ Dc ❞<♥❣ ♠➝✉ ❞L ❧✐➺✉ 4❤✉ ✤@Y ✤➸ ✤@❛ ?❛ J✉②➳4
✤+♥❤ ❜→❝ d
H
0
❤❛ ❝❤➜♣ ♥❤➟♥
H
0
!♥ ❤➜% & ✸✴✸✽
✳✷ ◆❣✉②➯♥ ❧* ①→❝ .✉➜0 ♥❤2 ✈➔ .✉➜0 ❧5♥
❣✉②➯♥ ❧➼ ①→❝ +✉➜- ♥❤/
▼#$ ❜✐➳ ❝* ❝+ ①→❝ .✉➜$ 1➜$ ♥❤3 ❣➛♥ ❜➡♥❣ $❤➻ ❜✐➳♥ ❝* ✤+
❤➛✉ ♥❤: ❦❤< ①↔ 1❛ ❦❤✐ $❤@❝ ❤✐➺♥ ♣❤➨♣ $❤D ♠#$ ❧➛♥✳
❣✉②➯♥ ①→❝ +✉➜- ❧0♥
▼#$ ❜✐➳ ❝* ❝+ ①→❝ .✉➜$ ❣➛♥ ❜➡♥❣ $❤➻ ❜✐➳♥ ❝* ✤+ ❤➛✉ ♥❤: .➩
①↔ 1❛ ❦❤✐ $❤@❝ ❤✐➺♥ ♣❤➨♣ $❤D✳
✳✸ ❚❤8♥❣ ❦✐➸♠ ✤>♥❤
●K✐
{X
1
, X
2
, ..., X
n
}
❧➔ ♠#$ ♠➝✉ ♥❣➝✉ ❤✐➯ $O② P ①➙ ❞@♥❣ ♠#$ $❤*♥❣
T =
T (X
1
, X
2
, ..., X
n
)
✈➔ .➩ .D ❞U♥❣ ♥+ ✤➸ ✤:❛ 1❛ W✉②➳$ ✤X♥❤ ❜→❝ 3 ❤❛ ❝❤➜♣ ♥❤➟♥ ❣✐↔
$❤✉②➳$
H
0
▲[❝ ♥➔
T
✤:] ❣K✐ ❧➔
-❤1♥❣ ❦✐➸♠ ✤7♥❤
✭❤❛
-✐➯✉ ❝❤✉➞♥ ✐➸♠ ✤7♥❤
✮✳
a✐
α (0, 1)
❝❤♦ $1:a❝✱ $❛ ❝+ $❤➸ ①➙ ❞@♥❣ ♠✐➲♥
W
α
.❛♦ ❝❤♦✿
P (T W
α
|H
0
✤[♥❣
) = α
▲[❝ ✤+✱ ♠✐➲♥
W
α
✤:] ❣K✐
♠✐➲♥ ❜→❝ / ✈0✐ ♠<❝ = ♥❣❤➽❛
α
!♥ ❤➜% & ✹✴✸✽
✳✸ ❈→❝ ❜A5 0✐➳♥ ❤➔♥❤
❑❤✐ ❝❤♦ $1:a ♠e❝ P ♥❣❤➽❛
α
$❛ ❝+ $❤➸ .D ❞U♥❣ ❝→❝ ❜:a ❣]✐ P .❛✉ ✤➙ ✤➸ $✐➳♥ ❤➔♥❤
❣✐↔✐ ❜➔✐ $♦→♥ ❦✐➸♠ ✤X♥❤✿
❳→❝ ✤X♥❤ ❣✐↔ $❤✉②➳$
H
0
, H
1
✈➔ ♣❤→$ ❜✐➸✉ ❜➔✐ $♦→♥✳
❈❤K♥ $❤* ❦✐➸ ✤X♥❤
T
✈➔ $➼♥❤ ❣✐→ $1X ❝j❛ ♥+ $1➯♥ ♠➝✉ ❞k ❧✐➺✉ $❤✉ ✤:] ✭❦➼
❤✐➺✉ ❧➔
T
s
✮✳
❳→❝ ✤X♥❤ ♠✐➲♥ ❜→❝ 3
W
α
✈a✐ ♠e❝ P ♥❣❤➽❛
α
❝❤♦ $1:a❝✳
❑➳$ ❧✉➟♥✿ ◆➳✉
T
s
W
α
$❤➻ ❜→❝ 3 ❣✐↔ $❤✉②➳$
H
0
◆❣:] ❧↕✐✱ $❛ ❝❤:❛ ❝+ ❝n .o ❜→❝
3
H
0
♥➯♥ $↕♠ $❤p ❝❤➜♣ ♥❤➟♥ ❣✐↔ $❤✉②➳$ ♥➔
!♥ ❤➜% & ✺✴✸✽
✳✹ ❙❛✐ ❧➛♠ ❦❤✐ ❦✐➸♠ ✤>♥❤
❙❛✐ ❧➛♠ ❧♦↕✐ ■✿ ❙❛✐ ♠➢❝ ♣❤↔✐ ❦❤✐ ❜→❝ 3
H
0
♥❤:♥❣ $1♦ ❦❤✐ $❤@❝ $➳ ❧➔
H
0
❧➔ ❣✐↔
$❤✉②➳$ ✤[♥❣ ❑➼ ❤✐➺✉✿
α
❙❛✐ ❧➛♠ ❧♦↕✐ ❙❛✐ ❧➛♠ ♠➢❝ ♣❤↔✐ ❦❤✐ ❝❤➜♣ ♥❤➟♥
H
0
$1♦♥❣ ❦❤✐ $❤@ $➳ ❧➔
H
0
❧➔ ❣✐↔
$❤✉②➳$ .❛ ❑➼ ❤✐➺✉✿
β
❇↔♥❣ ❞:a✐ ✤➙ $u♥❣ ❤]♣ ❧↕✐ ❝→❝ $1:p♥❣ ❤]
◗✉②➳$ ✤X♥❤
❚❤@❝ $➳
H
0
✤[♥❣
H
0
.❛✐
❇→❝ 3
H
0
.❛✐ ❧➛♠ ♦↕✐ W✉②➳$ ✤X♥❤ ✤[♥❣
❈❤➜♣ ♥❤➟♥
H
0
W✉②➳$ ✤X♥❤ ✤[♥❣ .❛✐ ❧➛♠ ❧♦↕✐
◆❤: ✈➟
α = P (
❜→❝ 3
H
0
H
0
✤[♥❣
), β = P (
❝❤➜♣ ♥❤➟♥
H
0
H
0
.❛✐
)
!♥ ❤➜% & ✻✴✸✽
❑✐➸♠ ✤'♥❤ ❣✐↔ ,❤✉②➳, ✈➲ ❦➻ ✈4♥❣ ❝6❛ ♣❤➙♥ ♣❤:✐ ❝❤✉➞♥
✳✶ ❑❤✐ ♣❤=>♥❣ ?❛✐ ✤➣ ❜✐➳,
❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥
X
❝,❛ ♠/0 01♥❣ 0❤➸ ❝3 ♣❤➙♥ ♣❤6✐ ❝❤✉➞♥
N(µ; σ
2
)
✈9✐ ❦➻ ✈<♥❣
µ
❝❤=❛ ❜✐➳0 ✈➔ ♣❤=?♥❣ @❛✐
σ
2
✤➣ ❜✐➳0✳
❳➨0 ❜➔✐ 0♦→♥ ❦✐➸♠ ✤G♥❤ ❣✐↔ 0❤✉②➳0✿
(
H
0
µ = µ
0
,
H
1
µ = µ
0
,
(I)
0K♦♥❣ ✤3
µ
0
❧➔ ♠/0 @6 0❤M❝ ✤➣ ❝❤♦✳
●✐↔ @P K➡♥❣
H
0
✤R♥❣✱ 0❤➻
Z =
(
X µ
0
)
n
σ
N(0, 1)
▼✐➲♥ ❜→❝ V ✈9✐ ♠W❝ X ♥❣❤➽❛
α
W
α
= (−∞; z
α/2
] [z
α/2
; +)
!♥ ❤➜% & ✼✴✸✽
!♥ ❤➜% & ✽✴✸✽
✣6✐ ✈9✐ ❜➔✐ 0♦→♥ ❦✐➸♠ G ❣✐↔ 0❤✉②➳0✿
(
H
0
µ = µ
0
H
1
µ > µ
0
.
(II)
▼✐➲♥ ❜→❝ V
H
0
❧➔
W
α
= [z
α
; +)
✣6✐ ✈9✐ ❜➔✐ 0♦→♥ ❦✐➸♠ ✤G♥❤ ❣✐↔ 0❤✉②➳0✿
(
H
0
µ = µ
0
H
1
µ < µ
0
.
(III)
▼✐➲♥ ❜→❝ V
H
0
❧➔
W
α
= (−∞; z
α
]
!♥ ❤➜% & ✾✴✸✽
➔✐ #♦→♥ ➔✐ #♦→♥
!♥ ❤➜% & ✶✵✴✸✽
❞#
❣✉#♥ ❝➜♣ ✤✐➺♥ ♠→ 0➼♥❤ ✤↕0 0✐➯✉ ❝❤✉➞♥ ❧➔ ✶✾ ✈♦❧0✳ ✣♦ ♥❣✉#♥ ❝➜♣ ✤✐➺♥ ❝<❛ ♠>0 ♠➝✉
✷✺ B↕❝ ♣✐♥ ✤CD ❝❤E♥ ♥❣ ♥❤✐➯♥ < ❤➣♥❣ B↔♥ ①✉➜0 ♥❣CJ✐ 0❛ 0➼♥❤ ✤CD
x = 19, 25
✈♦❧0✳ ●✐↔ BL ♥❣✉#♥ ❝➜♣ ✤✐➺♥ ♥➔ ❝M ♣❤➙♥ ♣❤O✐ ❝❤✉➞♥ ✈P✐ ✤> ❧➺❝❤ ❝❤✉➞♥
σ = 0, 5
✈♦❧0✳ P✐
♠R❝ S ♥❣❤➽❛
α = 0, 05
❤➣ ❦✐➸♠ ✤W♥❤ ❣✐↔ 0❤✉②➳0 ❣O
H
0
µ = 19
✭✈♦❧0✮ ✈P✐ ✤O✐ 0❤✉②➳0
H
1
µ > 19
✭✈♦❧0✮✱ 0]♦♥❣ ✤M
µ
❧➔ ♥❣✉#♥ ❝➜♣ ✤✐➺♥ 0]✉♥❣ ❜➻♥❤ ❝<❛ ❧♦↕✐ B↕❝ ♣✐♥ 0]➯♥✳
❈❤♦ ❜✐➳0
z
0.1
= 1.282; z
0.05
= 1.645; z
0.025
= 1.96; z
0.02
= 2.054, z
0.01
= 2.326
●✐↔✐✳
➔✐ #♦→♥ ❦✐➸♠ ✤,♥❤✿
(
H
0
:
µ = 19
H
1
:
µ > 19
❈→❝ 12 ✤➦ #45♥❣ ♠➝✉✿
n = 25; ¯x = 19, 25
●✐→ #4, ❝;❛ #❤2♥❣ ❦✐➸♠ ✤,♥❤✿
z =
(¯x µ
0
)
n
σ
=
(19, 25 19)
25
0, 5
= 2, 5
▼?❝ @ ♥❣❤➽❛✿
α = 0, 05 z
α
= z
0,05
= 1, 645
▼✐➲♥ ❜→❝ D✿
W
α
= [1, 645; +)
❱➻
z W
α
♥➯♥ #❛ ❜→❝ D ❣✐↔ #❤✉②➳#
H
0
✈➔ ❝❤➜♣ ♥❤➟♥
H
1
!♥ ❤➜% & ✶✶✴✸✽
❞#
]♦♥❣ ♥➠♠ 0]CP ❦❤O✐ ❧CD♥❣ 0]✉♥❣ ❜➻♥❤ ❝<❛ c ①✉➜0 ❝❤✉#♥❣ d ♠>0 0]❛♥❣ 0]↕✐ ❧➔ ✸✽✵❦❣✳
➠♠ ♥❛ ♥❣CJ✐ 0❛ →♣ ❞i♥❣ 0❤L ♠>0 ❝❤➳ ✤> ➠♥ P✐ ✈P✐ ❤② ✈E♥❣ ❧➔ c B➩ 0➠♥❣ 0]E♥❣
♥❤❛♥❤ ❤k♥✳ ❙❛✉ 0❤J✐ ❣✐❛♥ →♣ ❞i♥❣ 0❤L✱ ♥❣CJ✐ 0❛ ❝❤E♥ ♥❣➝✉ ♥❤✐➯♥ ✺✵ ❝♦♥ c ①✉➜0 ❝❤✉#♥❣
✤❡♠ ❝➙♥ ✈➔ 0➼♥❤ ✤CD ❦❤O✐ ❧CD♥❣ 0]✉♥❣ ❜➻♥❤ ❝<❛ ❝❤n♥❣ ❧➔
x = 390
❦❣✳ P✐ ♠R❝ S ♥❣❤➽❛
α = 0, 02
❝M 0❤➸ ❝❤♦ ]➡♥❣ ❤O✐ ❧CD♥❣ 0]✉♥❣ ❜➻♥❤ ❝<❛ c ①✉➜0 ❝❤✉#♥❣ ✤➣ 0➠♥❣ ❧➯♥ ❦❤p♥❣❄
●✐↔ BL ]➡♥ ❦❤O✐ ❧CD♥❣ ❝<❛ c ❝M ♣❤➙♥ ♣❤O✐ ❝❤✉➞♥ ✈P✐ ✤> ❧➺❝❤ ❝❤✉➞♥
σ = 25, 2
❦❣✳
❈❤♦ ❜✐➳0
z
0.1
= 1.282; z
0.05
= 1.645; z
0.025
= 1.96; z
0.02
= 2.054, z
0.01
= 2.326
●✐↔✐✳
●N✐
µ
✭❦❣✮ ❧➔ ❦❤2✐ ❧5R♥❣ #4✉♥❣ ❜➻♥❤ ❝;❛ S ①✉➜# ❝❤✉U♥❣✳ ❚❤❡♦ ❣✐↔ #❤✐➳#✱ #❛ ❝Y ❜➔✐
#♦→♥ ❦✐➸♠ ✤,♥❤✿
(
H
0
:
µ = 380
H
1
:
µ > 380
●✐→ #4, ❝;❛ #❤2♥❣ ❦✐➸♠ ✤,♥❤✿
z =
(¯x µ
0
)
n
σ
=
(390 380)
50
25, 2
= 2, 806
▼?❝ @ ♥❣❤➽❛✿
α = 0, 02 z
α
= z
0,02
= 2, 054
▼✐➲♥ ❜→❝ D✿
W
α
= [2, 054; +)
❱➻
z W
α
♥➯♥ #❛ ❜→❝ D ❣✐↔ #❤✉②➳#
H
0
✈Z✐ ♠?❝ @ ♥❣❤➽❛ ✷✪ ❦❤2✐ ❧5R♥❣ #4✉♥❣ ❜➻♥❤
S ①✉➜# ❝❤✉U♥❣ ✤➣ #➠♥❣ ❧➯♥✳
!♥ ❤➜% & ✶✷✴✸✽
❤→✐ ♥✐➺♠ ♣✲❣✐→ *+,
✲❣✐→ %&' %()♥❣ +♥❣ ✈- ♠/% %❤1♥❣ ❦✐➸♠ ✤'♥❤ ❧➔ ♠+❝ ①→❝ :✉➜% %❤➜♣ ♥❤➜% ✭✤(? %➼♥❤
❞B❛ %&➯♥ ❣✐→ %&' %❤B❝ ♥❣❤✐➺ ❝E❛ %❤1♥❣ ♥➔②✮ ♠➔ %❛ ❝❤➜♣ ♥❤➟♥ ❣✐↔ %❤✉②➳%
H
0
◗✉② %➢❝ ❦✐➸♠ ✤'♥❤✿
◆➳✉ ♣✲❣✐→ %&'
α
%❤➻ ❜→❝ R ❣✐↔ %❤✉②➳%
H
0
◆➳✉ ♣✲❣✐→ %&'
> α
%❤➻ ❝❤(❛ ❝S ❝) :T →❝ R ❣✐↔ %❤✉②➳%
H
0
❑❤✐ ♠+❝ V ♥❣❤➽❛
α
❦❤X♥❣ ✤(? ❤➾ &❛ %❤➻ %❛ %❤(Z♥❣ :♦ :→♥❤ ♥S ✈-✐ ♠+❝ ✺✪✳
✣1✐ ✈-✐ ❜➔✐ %♦→♥ T %&➯♥✿
❇➔✐ %♦→♥ ✭■✮ ✭■■✮ ✭■■✮
♣✲❣✐→ %&'
2(1 Φ(|z|)) 1 Φ(z) Φ(z)
!♥ ❤➜% & ✶✸✴✸✽
✷✳✷ ❤✐ ♣❤/0♥❣ 1❛✐ ❝❤/❛ ❜✐➳*
❈❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥
X
❝E❛ ♠/% %d♥❣ %❤➸ ❝S ♣❤➙♥ ♣❤1✐ ❝❤✉➞♥
N(µ; σ
2
)
✈-✐ ❦➻ ✈g♥❣
µ
❝❤(❛ ❜✐➳% ✈➔ ♣❤()♥❣ :❛✐
σ
2
❝❤(❛ ❜✐➳%✳
❳➨% ❜➔✐ %♦→♥ ❦✐➸♠ ✤'♥❤ ✈-✐
H
0
µ = µ
0
✈➔ ✤1✐ %❤✉②➳%
H
1
:
µ = µ
0
(µ > µ
0
, µ < µ
0
)
❑❤✐ ❣✐↔ %❤✉②➳%
H
0
µ = µ
0
✤j♥❣✱ %❤1♥❣ ➯✿
T =
X µ
0
S/
n
❝S ♣❤➙♥ ♣❤1 ❙%✉❞❡♥%
n 1
❜➟❝ %B
!♥ ❤➜% & ✶✹✴✸✽
!♥ ❤➜% & ✶✺✴✸✽
❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥
X N(µ; σ
2
)
✈,✐
σ
2
❝❤.❛ ❜✐➳0✳
●✐↔ 0❤✉②➳0 ❣5
H
0
µ = µ
0
●✐→ 089 0❤5♥❣ ❦✐➸♠ ✤9♥❤✿
t =
x µ
0
s
n
✣5✐ 0❤✉②➳0 ▼✐➲♥ ❜→❝ A
H
0
♣✲❣✐→ 089
H
1
µ = µ
0
(−∞; t
n1;α/2
] [t
n1;α/2
; +) 2P(T
n1
> |t|)
H
1
µ > µ
0
[t
n1;α
; +) P (T
n1
> t)
H
1
µ < µ
0
(−∞; t
n1;α
] P (T
n1
< t)
8♦♥❣ 08.E♥❣ ❤F♣
n > 30
t
n1;α
z
α
!♥ ❤➜% & ✶✻✴✸✽
❞#
✉"✐ $❤& $'✉♥❣ ❜➻♥❤ ❝-❛ ♠0$ ❧♦↕✐ 4♥❣ ✤➧♥ ❞♦ ♥❤➔ ♠→ <↔♥ ①✉➜$ ❦❤✐ ❝❤A❛ ❝↔✐ $✐➳♥ ❦➽
$❤✉➟$ ❧➔ ✵✵✵ ❣✐G✳ ❙❛✉ $❤G✐ ❣✐❛♥ ❝↔✐ $✐➳♥ ❦➽ $❤✉➟$ ♥❣AG✐ $❛ ❝❤&♥ ♥❣➝✉ ♥❤✐➯♥ ✷✺ 4♥❣ ✤➧♥
❝❤♦ ❧➢♣ $❤O ♥❣❤✐➺♠✳ ❑➳$ R✉↔ $❤S❝ ♥❣❤✐➺♠ $❤✉ ✤AT $✉"✐ $❤& $'✉♥❣ ❜➻♥❤ ♠➝✉
x = 2102
❣✐G ✈➔ ✤0 ❧➺❝❤ ❝❤✉➞♥ ♠➝✉
s = 15
❣✐G✳ X ♠Y❝ Z ♥❣❤➽❛
0, 025
❝4 $❤➸ ➳$ ❧✉➟ <❛✉ ❦❤✐
❝↔✐ $✐➳♥ ❦➽ $❤✉➟$✱ $✉"✐ $❤& 4♥❣ ✤➧♥ ❝4 $➠♥❣ ❧➯♥✑ ❦❤`♥❣❄ ❇✐➳$ $✉"✐ $❤& 4♥❣ ✤➧♥ ❝4 ♣❤➙♥
♣❤d✐ ❝❤✉➞♥✳ ❈❤♦ ❜✐➳$
t
24;0,025
= 2, 063
●✐↔✐✳
●G✐
µ
✭❣✐E✮ ❧➔ 0✉L✐ 0❤G 08✉♥ ❜➻♥❤ ❝N❛ ❧♦↕✐ P♥❣ ✤➧♥ R❛✉ ❝↔✐ 0✐➳♥✳ ❝P ❜➔✐ 0♦→♥
❦✐➸♠ ✤9♥❤✿
(
H
0
:
µ = 2000
H
1
:
µ > 2000
→❝ R5 ✤➦❝ 08.♥❣ ♠➝✉✿
n = 25; ¯x = 2102; s = 15
!♥ ❤➜% & ✶✼✴✸✽
❚❤5♥❣ ❦✐➸♠ ✤9♥❤✿
t =
(¯x µ
0
)
n
s
=
(2102 2000)
25
15
= 34
▼T❝ U ♥❣❤➽❛✿
α = 0, 025; t
n1;α
= t
24;0,025
= 2, 063
▼✐➲♥ ❜→❝ A
W
α
= [2, 063; +)
❱➻
t W
α
♥➯♥ 0❛ ❜→❝ A
H
0
✈➔ ❝❤➜♣ ♥❤➟♥
H
1
R❛✉ ❝↔✐ 0✐➳♥ ❦[ 0❤✉➟0 0✉L✐ 0❤G P♥❣
✤➧♥ ✤➣ 0➠♥❣ ❧➯♥✳
!♥ ❤➜% & ✶✽✴✸✽
❞#
!" ①➼ ♥❣❤✐➺♣ ❝, ✺✵✵✵ ❝/♥❣ ♥❤➙♥ ❝1♥❣ 2↔♥ ①✉➜" ♠!" ❧♦↕✐ 2↔♥ ♣❤➞♠✳ ❚❤❡♦ ❞?✐ "❤@✐ ❣✐❛♥
❤♦➔♥ "❤➔♥❤ 2↔♥ ♣❤➞♠ ❝C❛ ✶✵✵ ❝/♥❣ ♥❤➙♥✱ "❛ ✤GH ❜↔♥❣ 2J ❧✐➺✉ 2❛✉✿
❚❤@✐ ❣✐❛♥ ✭♣❤✮ ✷✽✲✸✵ ✸✵✲✸✷ ✸✷✲✸✹ ✸✹✲✸✻ ✸✻✲✸✽ ✸✽✲✹✵
❙J ❝/♥❣ ♥❤➙♥ ✶✺ ✷✺ ✸✵ ✷✵
❛✮ ❚➻♠ ❦❤♦↔♥❣ "✐♥ ❝➟ ✤J✐ ①Y♥❣ ❝❤♦ "❤@✐ ❣✐❛♥ "❤➔♥❤ "Z✉♥❣ ❜➻♥❤ ✈\✐ ✤! "✐♥ ❝➟ ✾✵✪✳
❜✮ ❈/♥❣ ♥❤➙♥ ❝, "❛ ♥❣❤➲ ❝❛♦ ♥➳✉ "❤@✐ ❣✐❛♥ ❤♦➔♥ "❤➔♥❤ 2↔♥ ♣❤➞♠ ❞G\✐ ✸✷♣❤✳ \✐
✤! "✐♥ ❝➟ ✾✺✪✱ "➻♠ ❦❤♦↔♥❣ "✐♥ ❝➟ ✤J✐ ①Y♥❣ 2J ❝/♥❣ ♥❤➙♥ ❝, "❛ ♥❣ ❝❛♦ ❝C❛ ①➼
♥❣❤✐➺♣✳
❝✮ ❳➼ ♥❣❤✐➺♣ d✉② ✤e♥❤ ✤e♥❤ ♠Y❝ ❤♦➔♥ "❤➔♥❤ "Z✉♥❣ ❜➻♥❤ 2↔♥ ♣❤➞ ❧➔ ✸✹ ♣❤f"✳ ❈, g
❦✐➳♥ ❝❤♦ Z➡♥❣ ✤e♥❤ ♠Y❝ ♥➔ ❝, ❤↕✐ ❝❤♦ ❝/♥❣ ♥❤➙♥✳ \✐ ♠Y❝ g ♥❣❤➽❛ ✷✪ ❤➣ ♥❤➟♥ ①➨"
✈➲ g ❦✐➳♥ ✤,✳
❈❤♦ ❜✐➳"
z
0.1
= 1.282; z
0.05
= 1.645; z
0.025
= 1.96; z
0.02
= 2.054, z
0.01
= 2.326
!♥ ❤➜% & ✶✾✴✸✽
●✐↔✐✳
❉↕♥❣ &❤✉ ❣)♥✿
❚❤,✐ ❣✐❛ ✭♣❤✮ ✷✾ ✸✶ ✸✸ ✸✺ ✸✼ ✸✾
❙8 ❝:♥❣ ♥❤➙♥ ✶✺ ✷✺ ✸✵ ✷✵
❈→❝ ?8 ✤➦ &BC♥❣ ♠➝✉✿
n = 100; ¯x = 34, 2; s = 2, 494
✣G &✐♥ ❝➟②✿
1 α = 0, 9 α = 0, 1; t
n1;α/2
= t
99;0,05
z
0,05
= 1, 645
❙❛ ?8✿
ε = t
n1;α/2
s
n
= 1, 645
2, 494
100
= 0, 41
❑❤♦↔♥❣ &✐♥ ❝❤♦ &❤,✐ ❣✐❛ ❤♦➔♥ &❤➔♥❤ &B✉♥❣ ❜➻♥❤✿
¯x ε < µ < ¯x + ε 33, 79 < µ < 34, 61
!♥ ❤➜% & ✷✵✴✸✽
❜✳ ●)✐ ❧➔ ?8 ❝:♥❣ ♥❤➙♥ ❝R &❛ ♥❣❤➲ ❝❛♦✳ ❚➾ ❧➺ ❝:♥❣ ♥❤➙♥ ❝R &❛ ♥❣❤➲ ❝❛♦✿
p = K/5000
❚➾ ❧➺ ♠➝✉ ❝:♥❣ ♥❤➙♥ ❝R &❛ ♥❣❤➲
ˆp = k/n = (5 + 15)/100 = 0, 2
✣G &✐♥ ❝➟②✿
1 α = 0, 95 α = 0, 05; z
α/2
= z
0,025
= 1, 96
❙❛ ?8✿
ε = z
α/2
r
ˆp(1 ˆp)
n
= 1, 96
r
0, 2 0, 8
100
= 0, 0784
❑❤♦↔♥❣ &✐♥ ❝❤♦ &➾ ❧➺ ❝:♥❣ ♥❤➙♥ ❝R &❛ ♥❣❤➲ ❝❛♦✿
ˆp ε < p < ˆp + ε 0, 1216 < p < 0, 2784
❙✉② B❛
0, 1216 < K/5000 < 0, 2784 608 < K < 1392
!♥ ❤➜% & ✷✶✴✸✽
#✐
µ
✭♣❤✮ ❧➔ +❤,✐ ❣✐❛♥ ❤♦➔♥ +❤➔♥❤ +1✉♥❣ ❜➻♥❤ 6↔♥ ♣❤➙♠ :❛ ;♥❣ ♥❤➙♥✳ = ❜➔✐
+♦→♥ ❦✐➸♠ ✤B♥❤✿
(
H
0
:
µ = 34
H
1
:
µ > 34
❚❤E♥❣ ❦✐➸♠ ✤B♥❤✿
t =
(¯x µ
0
)
n
s
=
(34, 2 34)
100
2, 494
= 0, 802
▼H❝ I ♥❣❤➽❛✿
α = 0, 02; t
n1;α
= t
99;0,02
z
0,02
= 2, 054
▼✐➲♥ ❜→❝ L✿
W
α
= [2, 054; +)
❱➻
t / W
α
♥➯♥ +❛ ❤N❛ = O 6P ❜→❝ L
H
0
✤B♥❤ ♠H❝ T✉② ✤B♥❤ ❦❤;♥❣ ❣➙ ❤↕✐ ❤♦
;♥❣ ♥❤➙♥✳
!♥ ❤➜% & ✷✷✴✸✽
❙♦ $→♥❤ ❤❛✐ ❦+ ✈-♥❣ ❝0❛ ❤❛✐ ♠➝✉ ✤5 ❧➟♣
❈❤♦
X
✈➔
Y
❜✐➳♥ 6E ♥❣➝✉ ♥❤✐➯♥ :❛ ❤❛✐ +Z♥❣ +❤➸ ✤[ ❧➟♣ ♥❤❛✉ ✈➔ ❧➛♥ ❧N]+ = ♣❤➙♥ ♣❤E✐
❤✉➞♥
N(µ
x
; σ
2
x
)
✈➔
N(µ
y
; σ
2
y
)
✈_✐ ♣❤NO♥❣ 6❛✐
σ
2
x
, σ
2
y
❤N❛ ❜✐➳+✳
❳➨+ ❜➔✐ +♦→♥ ❦✐➸♠ ✤B♥❤ ✈_✐
H
0
:
µ
x
µ
y
=
0
✈➔ ✤E✐ +❤✉➳+
H
1
:
µ
x
µ
y
=
0
(µ
x
µ
y
>
0
, µ
x
µ
y
<
0
)
●✐↔ 6b
(x
1
, ..., x
m
)
✈➔
(y
1
, ..., y
n
)
❧➔ →❝ ♠➝✉ +❤✉ ✤N] +c
X
✈➔
Y
+NO♥❣ H♥❣✳
❈❤➾ ①➨= =>?@♥❣ ❤A♣ ❦❤✐ ❝B ♠➝✉ ❧C♥ ✭♠✱♥❃✸✵✮✳
❑❤✐ ✤=✱ →♣ ❞f♥❣ ✣B♥❤ ❧➼ ❣✐_ ❤↕♥ +1✉♥❣ +➙♠ +❛ =✿
Z =
(
X Y ) (µ
x
µ
y
)
r
S
2
x
m
+
S
2
y
n
= ♣❤➙♥ ♣❤E ①➜♣ ①➾ ♣❤➙♥ ♣❤E✐ ❤✉➞♥ +➢❝
N(0; 1)
!♥ ❤➜% & ✷✸✴✸✽
X N(µ
x
; σ
2
x
)
✈➔
Y N(µ
y
; σ
2
y
)
+1♦♥❣ ✤=
σ
2
x
✈➔
σ
2
y
✤➲✉ ❤N❛ ❜✐➳+❀
m > 30
✈➔
n > 30
●✐↔ +❤✉②➳+ +❤E♥❣
H
0
µ
x
µ
y
=
0
●✐→ +1B +❤E♥❣ ❦✐➸♠ ✤B♥❤✿
z =
x y
0
r
s
2
x
m
+
s
2
y
n
✣E✐ +❤✉②➳+ ▼✐➲♥ ❜→❝ L
H
0
♣✲❣✐→ +1B
H
1
µ
x
µ
y
=
0
(−∞; z
α/2
] [z
α/2
; +) 2(1 Φ(|z|))
H
1
µ
x
µ
y
>
0
[z
α
; +) 1 Φ(z)
H
1
µ
x
µ
y
<
0
(−∞; z
α
] Φ(z)
!♥ ❤➜% & ✷✹✴✸✽
❤➟♥ ①➨&✿
❤✐
0
= 0
❝→❝ ❜➔✐ (♦→♥ ❦✐➸♠ ✤/♥❤ (0➯♥ (❤23♥❣ ✤25 ✈✐➳( ❧↕✐ ❞2;✐ ❞↕♥❣✿
(I)
(
H
0
:
µ
x
= µ
y
H
1
:
µ
x
= µ
y
(II)
(
H
0
:
µ
x
= µ
y
H
1
:
µ
x
< µ
y
(III)
(
H
0
:
µ
x
= µ
y
H
1
:
µ
x
> µ
y
❚❤>♥❣ ❦✐➸♠ ✤/♥❤ (0? (❤➔♥❤✿
z =
x y
r
s
2
x
m
+
s
2
y
n
!♥ ❤➜% & ✷✺✴✸✽
❱➼ ❞+
❣"#✐ %❛ ❝➙♥ %*➫ ,- ,✐♥❤ / ❤❛✐ ❦❤✉ ✈3❝ %❤➔♥❤ %❤5 ✈➔ ♥6♥❣ %❤6♥✱ ➳% 9✉↔ %❤ ✤"<
❑❤✉ ✈3❝ ❙@ %*➫ *✉♥❣ ❜➻♥❤ ♠➝✉ F❤"-♥❣ ,❛✐ ♠➝✉
6♥❣ %❤6♥
m = 60 x = 3, 0
❦❣
s
2
x
= 0, 4
❦❣
2
❚❤➔♥❤ %❤5
n = 50 y = 3, 1
❦❣
s
2
y
= 0, 5
❦❣
2
H✐ ♠I❝ J ♥❣❤➽❛
0, 05
❝L %❤➸ ❝♦✐ ❦❤@✐ ❧"<♥❣ %*✉♥❣ ❜➻♥❤ ❝P❛ %*➫ ,- ,✐♥❤ / ❤❛✐ ❦❤✉ ✈3❝
❦❤→❝ ♥❤❛ ❦❤6♥❣❄ ❇✐➳% ❦❤@✐ ❧"<♥❣ %*➫ ,- ,✐♥❤ / ❤❛ ❦❤✉ ✈3❝ ❝L ♣❤➙♥ ♣❤@✐ ❝❤✉➞♥✳ ❈❤♦
❜✐➳%
z
0.025
= 1.96
●✐↔✐✳
●A✐
µ
x
, µ
y
✭❦❣✮ ❧➔ ❦❤>✐ ❧25♥❣ (0✉♥❣ ❜➻♥❤ ❝F❛ (0 IJ I✐♥❤ ? ♥K♥❣ (❤K♥ (❤➔♥❤ (❤/✳
❝M ❜➔✐ (♦→♥ ❦✐➸♠ ✤/♥❤✿
(
H
0
:
µ
x
= µ
y
H
1
:
µ
x
= µ
y
❚❤>♥❣ ❦✐➸♠ ✤/♥❤✿
z =
¯x ¯y
q
s
2
x
/m + s
2
y
/n
=
3, 0 3, 1
p
0, 4/60 + 0, 5/50
= 0, 774
!♥ ❤➜% & ✷✻✴✸✽
▼O❝ P ♥❣❤➽❛✿
α = 0, 05; z
α/2
= z
0,025
= 1, 96
▼✐➲♥ ❜→❝ S✿
W
α
= (−∞; 1, 96] [1, 96; +)
❱➻
z / W
α
♥➯♥ (❛ ❝❤2❛ ❝M ❝J I? ❜→❝ S ❣✐ (❤✉②➳(
H
0
❦❤K♥❣ M IX →❝ ❜✐➺( ✈➲
❦❤>✐ ❧25♥❣ (0✉♥❣ ❜➻♥❤ ❝F❛ (0➫ IJ I✐♥❤ ? ❤❛ ✈Z♥❣ (0➯♥✳
❱➼ ❞+
❣"#✐ %❛ %✐➳♥ ❤➔♥❤ ♠X% ❝✉X ♥❣❤✐➯♥ ❝I✉ ✤➸ ,♦ ,→♥❤ I ❧"-♥❣ %*✉♥❣ ❜➻♥❤ P❛ ♣❤Z ♥[
,♦ ✈H✐ ♠I❝ ❧"<♥❣ %*✉♥❣ ❜➻♥❤ ❝P❛ ♥❛♠ ❣✐H✐ %*♦♥❣ ♠X% ❝6♥❣ % ❧H♥✳ ▼X% ♠➝✉ ❣^♠ ✶✵✵ ♣❤Z
♥[ L ♠I❝ ❧"-♥❣ %*✉♥❣ ❜➻♥❤ ✼✱✷✸ ✤6❧❛✴❣✐# ✈H✐ ✤X ❧➺❝❤ ❝❤✉➞♥ ✤6❧❛✴❣✐#✳ ▼X% ♠➝✉
❣^♠ ✼✺ ♥❛♠ ❣✐H✐ ❝L ♠I❝ ❧"<♥❣ %*✉♥❣ ❜➻♥❤ ❧➔ ✽✱✵✻ ✤6❧❛✴❣✐# ✈H✐ ✤X ❧➺❝❤ ❝❤✉➞♥ ❧➔
✤6❧❛✴❣✐#✳ H✐ ♠I❝ J ♥❣❤➽❛ ✶✪ ,@ ❧✐➺✉ ♥➔ ❝L ❝❤I♥❣ ♠✐♥❤ ✤"< ♠I❝ ❧"-♥❣ %*✉♥❣ ❜➻♥❤
❝P❛ ♣❤Z ♥[ %*♦♥❣ ❝6♥❣ % ❧➔ %❤➜♣ ❤-♥ ♥❛♠ ❣✐H✐ ❤❛ ❦❤6♥❣ ❈❤♦ ❜✐➳%
z
0,01
= 2, 326
!♥ ❤➜% & ✷✼✴✸✽
✐↔✐✳
!✐
µ
x
, µ
y
✭✤%❧❛✴❣✐*✮ ❧➔ ♠. ❧01♥❣ 34✉♥❣ ❜➻♥❤ ❝9❛ ♥: ✈➔ ♥❛♠ ❣✐<✐✳ ❝? ❜➔✐ 3♦→♥
❦✐➸♠ ✤D♥❤✿
(
H
0
:
µ
x
= µ
y
H
1
:
µ
x
< µ
y
❚❤F♥❣ ❦✐➸♠ ✤D♥❤✿
z =
¯x ¯y
q
s
2
x
/m + s
2
y
/n
=
7, 23 8, 06
p
1, 64
2
/100 + 1, 85
2
/75
= 3, 08
▼.❝ I ♥❣❤➽❛✿
α = 0, 01; z
α
= z
0,01
= 2, 326
▼✐➲♥ ❜→❝ L✿
W
α
= (−∞; 2, 326]
❱➻
z W
α
♥➯♥ 3❛ ❜→❝ L ❣✐↔ 3❤✉②➳3
H
0
❧01♥❣ 34✉♥ ❜➻♥❤ ❝9❛ ♥: ❣✐<✐ 3❤➜♣ ❤1♥ U♦
✈<✐ ♥❛♠ ❣✐<✐ 34♦♥❣ ❝%♥❣ 3
!♥ ❤➜% & ✷✽✴✸✽
✹✳ ❑✐➸♠ ✤)♥❤ ❣✐↔ -❤✉②➳- ✈➲ -➾ ❧➺
❈❤♦ 3➼♥❤ ➜3
A
❝? 3➾ ❧➺ ❧➔
p
✭❝❤0❛ ❜✐➳3✮ 34♦♥❣ 3Z♥❣ 3❤➸✳ ❳➨3 ❜➔✐ 3♦→♥ ❦✐➸♠ ✤D♥❤ ❣✐↔
3❤✉②➳3✿
H
0
:
p = p
0
✈➔ ✤F✐ 3❤✉➳3
H
1
:
p = p
0
(p > p
0
, p < p
0
)
❈❤!♥ ♠]3 ♠➝✉ ♥❣➝✉ ♥❤✐➯♥ ❦➼❝❤ 3❤0<
n
✤➦3
X
i
=
(
1,
♣❤➛♥ 3a
i
❝? 3➼♥❤ ❝❤➜3
0,
♣❤➛♥ 3a
i
❦❤%♥❣ ❝? 3➼♥❤ ❝❤➜3
✈➔
ˆ
P =
X
1
+ X
2
+ ... + X
n
n
3➾ ♣❤➛♥ 3a ❝? 3➼♥❤ ❝❤➜3
A
❑❤✐
H
0
✤%♥❣✱ ✈*✐
n
✤+ ❧*♥✱ -❤❡♦ ✣1♥❤ ❧➼ ❣✐*✐ ❤↕♥ -4✉♥❣ -➙♠✿
Z =
ˆ
P p
0
p
p
0
(1 p
0
)/n
❝: ♣❤➙♥ ♣❤< ①➜♣ ①➾ ♣❤➙♥ ♣❤<✐ ❝❤✉➞♥ -➢❝
N(0; 1)
!♥ ❤➜% & ✷✾✴✸✽
❈❤♦
ˆp = k/n
❧➔ ♠D- E* ❧EF♥❣ ❝+❛ - ❧➺
p
-J ♠D- ♠➝✉ ❦➼❝❤ -❤E*
n
●✐↔ -❤✉②➳- ❣<
H
0
p = p
0
●✐→ -41 -❤<♥❣ ❦✐➸♠ ✤1♥❤✿
z =
(ˆp p
0
)
n
p
p
0
(1 p
0
)
✣<✐ -❤✉②➳- ▼✐➲♥ ❜→❝ W
H
0
♣✲❣✐→ -41
H
1
:
p = p
0
(−∞; z
α/2
] [z
α/2
; +) 2(1 Φ(|z|))
H
1
p > p
0
[z
α
; +) 1 Φ(z)
H
1
p < p
0
(−∞; z
α
] Φ(z)
!♥ ❤➜% & ✸✵✴✸✽
❞#
✐→♠ ✤% '( ❝)♥❣ ( (✉② % ✾✵✪ 3↔♥ ♣❤➞♠ ❝8❛ ❝)♥❣ ( ✤↕( (✐➯✉ ❤✉➞♥ ;✉% ❣✐❛✳
▼'( ❝)♥❣ ( ❦✐➸♠ ✤@♥❤ ✤' ❧➟♣ ✤➣ (✐➳♥ ❤➔♥❤ ❦✐➸♠ (F❛ ✷✵✵ 3↔♥ ❤➞♠ ❝8❛ ❝)♥❣ ( ✤H (❤
(❤➜ H ✶✻✽ 3↔♥ ♣❤➞♠ ✤↕( ➯✉ ❝➛✉✳ P✐ ♠Q❝ R ♥❣❤➽❛
α = 0, 1
❝H (❤➸ ❝❤♦ F➡♥❣ ( ❧➺ 3↔♥
♣❤➞♠ ✤↕( (✐➯ ❝❤✉➞♥ ;✉% ❣✐❛ (❤➜♣ ❤X♥ ✾✵✪ ❦❤)♥❣❄ ❈❤♦ ❜✐➳(
z
0,1
= 1, 282
●✐↔✐✳
!✐
p
❧➔ %➾ ❧➺ (↔♥ ♣❤➞♠ ✤↕% %✐➯✉ ❝❤✉➞♥ 4✉5 ❣✐❛ ❝8❛ ❝9♥❣ % ❇➔✐ %♦→♥ ❦✐➸♠ ✤A♥❤
(
H
0
:
p = 0, 9
H
1
:
p < 0, 9
❚➾ ❧➺ ♠➝✉✿
ˆp = k/n = 168/200 = 0, 84
❚❤5♥❣ ❦✐➸♠ ✤A♥❤✿
z =
(ˆp p
0
)
n
p
p
0
(1 p
0
)
=
(0, 84 0, 9)
200
0, 9 0, 1
= 2, 83
▼F❝ G ♥❣❤➽❛✿
α = 0, 1 z
α
= z
0.1
= 1.282
▼✐➲♥ ❜→❝ K✿
W
α
= (−∞; 1, 282]
❱➻
z W
α
♥➯♥ ❜→❝ K
H
0
% ❧➺ (↔♥ ♣❤➞♠ ✤↕% %✐➯✉ ❝❤✉➞♥ 4✉5 ❣✐❛ %❤➜♣ ❤R♥ ✾✵✪✳
!♥ ❤➜% & ✸✶✴✸✽
❞#
▼'( ❦❤✉ ✈\❝ ❝H ✶✵✵✵✵ ❤' ❣✐❛ ✤➻♥❤ 3✐♥❤ 3%♥❣ ✈➔ ❤' ] ✤➙ ❝❤➾ 3` ❞b♥❣ ❣❛ ❝8❛ ❝)♥❣
( ✈➔ ❇✳ ✣✐➲✉ (F❛ ✽✵✵ ❤' (❤➻ ❝H ✻✵✵ ❤' ❞g♥❣ (F♦♥❣ ✤H ✸✻✵ ❤' ❞g♥❣ ❣❛ 8❛ ❝)♥❣
( ❆✳
❛✮ P✐ ✤' (✐♥ ❝➟ ✾✺✪✱ (➻♠ ❦❤♦↔♥❣ (✐♥ ❝➟ ✤%✐ ①Q♥❣ ❝❤♦ 3% ❧mn♥❣ ❤' ❞g♥❣ ❣❛ ] ❦❤✉ ✈\❝
♥➔
❜✮ ❈H R ❦✐➳♥ ❝❤♦ F➡♥❣ ❣❛ ❝8❛ ❝)♥❣ ( ✤mn ❝→❝ ❤' (❤➼❝❤ ❞g♥❣ ❤X♥✳ P✐ ♠Q❝ R ♥❣❤➽❛
✷✪ ❤➣ ♥❤➟♥ ①➨( ✈➲ R ❦✐➳♥
●✐↔✐✳
❛✳ !✐ ❧➔ (5 ❧WX♥❣ ❤Y ❞[♥❣ ❣❛ \ ❦❤✉ ✈^❝ ♥➔ ❝_ %➾ ❧➺ ❤Y ❞[♥❣ ❣❛✿
p = K/10000
❚➾ ❧➺ ♠➝✉✿
ˆp = k/n = 600/800 = 0, 75
✣Y %✐♥ ❝➟②✿
1 α = 0, 95 α = 0, 05; z
α/2
= z
0,025
= 1, 96
❙❛✐ (5✿
ε = z
α/2
r
ˆp(1 ˆp)
n
= 1, 96
r
0, 75 0, 25
800
= 0, 03
❑❤♦↔♥❣ %✐♥ ❝❤♦ %➾ ❧➺ ❤Y ❞[♥❣ ❣❛✿
ˆp ε < p < ˆp + ε 0, 72 < p < 0, 78
❙✉② b❛✿
0, 72 < K/10000 < 0, 78 7200 < K < 7500
!♥ ❤➜% & ✸✷✴✸✽
❜✳ !✐
p
❧➔ %➾ ❧➺ ❤Y ❞[♥❣ ❣❛ ❝8❛ ❝9♥❣ % ❆✳ ❇➔✐ %♦→♥ ❦✐➸♠ ✤A♥❤✿
(
H
0
:
p = 0, 5
H
1
:
p > 0, 5
❚➾ ❧➺ ♠➝✉✿
ˆp = k/n = 360/600 = 0, 6
✐→ %bA ❝8❛ %❤5♥❣ ❦✐➸♠ ✤A♥❤✿
z =
(ˆp p
0
)
n
p
p
0
(1 p
0
)
=
(0, 6 0, 5)
600
0, 5 0, 5
= 4, 9
▼F❝ G ♥❣❤➽❛✿
α = 0, 02 z
α
= z
0.02
= 2, 054
▼✐➲♥ ❜→❝ K✿
W
α
= [2, 054; +)
❱➻
z W
α
♥➯♥ ❜→❝ K
H
0
(↔ ♣❤➞♠ ❣❛ ❝8❛ ❝9♥❣ % ✤WX W❛ %❤➼❝❤ ❤R♥✳
!♥ ❤➜% & ✸✸✴✸✽
❙♦ $→♥❤ ❤❛✐ *➾ ❧➺
➨" "➼♥❤ ❝❤➜"
A
❝( "➾ ❧➺ ❧➔
p
1
✈➔
p
2
❝❤.❛ ❜✐➳" "3♦♥❣ ❤❛✐ "6♥❣ "❤➸ ✤9 ❧➟♣ ♥❤❛✉✳ ➨" ❜➔✐
"♦→♥ ❦✐➸♠ ✤A♥❤ ✈B✐ ❣✐↔ "❤✉②➳" ❣E❝✿
H
0
:
p
1
= p
2
✈➔ ✤E✐ "❤✉➳"
H
1
:
p
1
= p
2
(p
1
> p
2
, p
1
< p
2
)
●✐↔ HI
ˆp
1
= k
1
/n
1
✈➔
ˆp
2
= k
2
/n
2
❧➛♥ ❧.K" ❧➔ .B ❧.K♥❣ ❝L❛
p
1
✈➔
p
2
"M ❤❛✐ ♠➝✉ ♥❣➝✉
♥❤✐➯♥ ✤9 ❧➟♣ ❦➼❝❤ "❤.B
n
1
✈➔
n
2
".P♥❣ Q♥❣✳
❑❤✐ ❣✐↔ "❤✉②➳"
H
0
✤S♥❣✱ "❤E♥❣
Z =
ˆp
1
ˆp
2
s
ˆp(1 ˆp)
1
n
1
+
1
n
2
✈B✐
ˆp =
k
1
+ k
2
n
1
+ n
2
❝( ♣❤➙♥ ♣❤E ①➜♣ ①➾ ♣❤➙♥ ♣❤E✐ ❝❤✉➞♥ "➢❝
N(0, 1)
!♥ ❤➜% & ✸✹✴✸✽
●✐↔ HI
ˆp
1
= k
1
/n
1
✈➔
ˆp
2
= k
2
/n
2
❧➛♥ ❧.K" .B ❧.K♥❣ ❝L❛
p
1
✈➔
p
2
"M ❤❛✐ ♠➝✉
♥❣➝✉ ♥❤✐➯♥ ✤9 ❧➟♣✳
●✐↔ "❤✉②➳" ❣E
H
0
p
1
= p
2
●✐→ "3A "❤E♥❣ ❦✐➸♠ ✤A♥❤✿
z =
ˆp
1
ˆp
2
s
ˆp(1 ˆp)
1
n
1
+
1
n
2
✈B✐
ˆp =
k
1
+ k
2
n
1
+ n
2
✣E✐ "❤✉②➳" ▼✐➲♥ ❜→❝ ]
H
0
♣✲❣✐→ "3A
H
1
:
p
1
= p
2
(−∞; z
α/2
] [z
α/2
; +) 2(1 Φ(|z|))
H
1
:
p
1
> p
2
[z
α
; +) 1 Φ(z)
H
1
:
p
1
< p
2
(−∞; z
α
] Φ(z)
!♥ ❤➜% & ✸✺✴✸✽
❱➼ ❞1 ✶✵
✐➸♠ $%❛ ♥❣➝✉ ♥❤✐➯♥ ❝→❝ /↔♥ ♣❤➞♠ ❝3♥❣ ❧♦↕✐ ❞♦ ❤❛✐ ♥❤➔ ♠→ /↔♥ ①✉➜$ $❤✉ ✤=> ❞? ❧✐➺✉✿
◆❤➔ ♠→ ❙D /↔♥ ♣❤➞♠ ✤=> ❦✐➸♠ $%❛ ❙D ♣❤➳ ♣❤➞
✶✵✵✵ ✷✺
✾✻✵ ✸✵
Q✐ ♠R❝ S ♥❣❤➽❛
α = 0, 05
❝U $❤➸ ❝♦✐ $ ❧➺ ♣❤➳ ♣❤➞♠ ❝W❛ ❤❛✐ ♥❤➔ ♠→ $%➯♥ ❜➡♥❣ ♥❤❛✉
❦❤Z♥❣❄ ❈❤♦ ❜✐➳$
z
0.025
= 1.96
●✐↔✐✳
●^✐
p
1
, p
2
❧➔ "➾ ♣❤➳ ♣❤➞♠ ❝L❛ ♥❤➔ ♠→ ❆✱ ".P♥❣ Q♥❣✳ ❝( ❜➔ "♦→♥ ❦✐➸♠
✤A♥❤✿
(
H
0
:
p
1
= p
2
H
1
:
p
1
= p
2
!♥ ❤➜% & ✸✻✴✸✽
→❝ #➾ ❧➺ ♠➝✉✿
ˆp
1
= k
1
/n
1
= 25/1000 = 0, 025; ˆp
2
= k
2
/n
2
= 30/960 = 0, 03125
ˆp = (k
1
+ k
2
)/(n
1
+ n
2
) = (25 + 30)/(1000 + 960) = 0, 028
●✐→ #-. ❝/❛ #❤2♥❣ ❦✐➸♠ ✤.♥❤✿
z =
ˆp
1
ˆp
2
s
ˆp(1 ˆp)
1
n
1
+
1
n
2
=
0, 025 0, 03125
p
0, 028 (1 0, 028) ( 1/1000 + 1/960)
= 0, 838
▼:❝ ; ♥❣❤➽❛✿
α = 0, 05 z
α/2
= z
0.025
= 1, 96
▼✐➲♥ ❜→❝ @✿
W
α
= (−∞; 1, 96] [ 1, 96; +)
❱➻
z / W
α
♥➯♥ ❝❤C❛ ❝D ❝E FG ❜→❝ @
H
0
#➾ ❧➺ ♣❤➳ ♣❤➞♠ ❝/❛ ❤❛ ♥❤➔ ♠→ ❦❤O♥❣
❝D FP ❦❤→❝ ❜✐➺#✳
!♥ ❤➜% & ✸✼✴✸✽
❞# ✶✶
!♥❣ $ ♥&' ❣✐↔✐ ❦❤→$ ✤❛♥❣ ♥❣❤✐➯♥ ❝1✉ ✈✐➺ ✤&❛ ✈➔♦ ♠8$ ❝!♥❣ $❤1❝ ♠'✐ ✤➸ ❝↔✐ $✐➳♥ ;↔♥
♣❤➞♠ ❝>❛ ♠➻♥❤✳ '✐ ❝!♥❣ $❤1❝ ❝B ❦❤✐ ❝❤♦ ✵✵ ♥❣&E✐ ❞G♥❣ $❤H $❤➻ ❝I ✶✷✵ ♥❣&E✐ &❛ $❤➼❝❤
♥I✳ '✐ ❝!♥❣ $❤1❝ ♠'✐ ❦❤✐ ❝❤♦ ✶✵✵✵ ♥❣&E✐ ❦❤→❝ ❞G♥❣ $❤➻ ❝I ✸✵✵ ♥❣&E✐ ❜↔ &❛ $❤➼❝❤
❤&O♥❣ ✈P ♥➔ '✐ ♠1❝ Q ❤➽❛ ❤➣ ❦✐➸♠ ✤P♥❤ ①❡♠ ❝!♥❣ $❤1❝ ♠'✐ ✤&❛ ✈➔♦ ❝I ❧➔♠
$➠♥❣ $➾ ❧➺ ♥❣&E✐ &❛ $❤➼❝❤ $❤1❝ ✉Z♥❣ ❝>❛ ❝! $ ❤❛ ❦❤!♥❣ ❤♦ ❜✐➳$
z
0,02
= 2, 054
●✐↔✐✳
●Q✐
p
1
, p
2
❧➔ #➾ ❧➺ ♥❣CR✐ C❛ #❤➼❝❤ ♥CT ✉2♥❣ ✈T✐ O♥❣ #❤:❝ ❝V ✈➔ ♠T✐✳ ❝D ❜➔✐
#♦→♥ ❦✐➸♠ ✤.♥❤✿
(
H
0
:
p
1
= p
2
H
1
:
p
1
< p
2
→❝ #➾ ❧➺ ♠➝✉✿
ˆp
1
= 0, 24; ˆp
2
= 0, 3; ˆp = 0, 28
●✐→ #-. #❤2♥❣ ❦✐➸♠ ✤.♥❤✿
z = 2, 39
▼✐➲♥ ❜→❝ @✿
W
α
= (−∞; 2, 054]
❱➻
z W
α
♥➯♥ ❜→❝ @ ❣✐↔ #❤✉②➳#
H
0
❝O♥❣ #❤:❝ ♠T✐ ✤C❛ ✈➔♦ ✤➣ ❧➔♠ #➠♥❣ #➾ ❧➺ ♥❣CR✐ C #❤➼❝❤ #❤:❝ ✉2♥❣ ❝/❛ ❝O♥❣ #
!♥ ❤➜% & ✸✽✴✸✽

Preview text:

❳⑩❈ ❙❯❻❚ ❚❍➮◆● ❑➊ ❚!♥ ❚❤➜% ❚&
✣➔ ◆➤♥❣✱ ✷✵✶✾ ❚!♥ ❚❤➜% ❚& ✶✴✸✽
❈❤"#♥❣ ✻✿ ❑✐➸♠ ✤-♥❤ ❣✐↔ /❤✉②➳/ /❤3♥❣ ❦➯
✶✳ ❈→❝ ❦❤→✐ ♥✐➺♠
✶✳✶ ●✐↔ 6❤✉②➳6 6❤:♥❣ ❦➯
✲ ●✐↔ #❤✉②➳# #❤(♥❣ ❦➯ ❧➔ ❝→❝ ❦❤➥♥❣ ✤+♥❤ ✈➲ ♣❤➙♥ ♣❤0✐ ❝2❛ 45♥❣ 4❤➸ ♥❣❤✐➯♥ ❝8✉✳ ❈< 4❤➸✱
✤> ❧➔ ❝→❝ ❦❤➥♥❣ ✤+♥❤ ✈➲ ❣✐→ 4?+ ❝❤@❛ ❜✐➳4 ❝2❛ 4❤❛♠ D0 ✤0✐ ✈E✐ ♣❤➙♥ ♣❤0✐ ✤➣ ❜✐➳4✱ ❝→❝
❦❤➥♥❣ ✤+♥❤ ✈➲ ❞↕♥❣ ♣❤➙♥ ♣❤0✐ ❝❤@❛ ❜✐➳4 ❤❛② ✈➲ ♠0✐ J✉❛♥ ❤➺ ❣✐L❛ ❝→❝ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥✳ ❱➼ ❞? ✶
✰ ●.✐ µ ❧➔ #✉1✐ #❤. #2✉♥❣ ❜➻♥❤ ❝6❛ ♥❣89✐ ❱✐➺# ◆❛♠✳ ●✐↔ #❤✉②➳# #❤(♥❣ ❦➯ ❝? #❤➸ ❧➔✿
µ = 60 ✭#✉1✐✮ ❤♦➦❝ µ > 60✱ ❤♦➦❝ µ 6= 60✱ ✳✳✳
✰ ●.✐ p ❧➔ #➾ ❧➺ ♣❤➳ ♣❤➞♠ ❝6❛ ♥❤➔ ♠→② ❆✳ ●✐↔ #❤✉②➳# #❤(♥❣ ❦➯ ❝? #❤➸ ❧➔✿ p < 0, 1
❤♦➦❝ p = 0, 1 ❤♦➦❝ p 6= 0, 1❀ ✳✳✳
❑❤✐ ♥❣❤✐➯♥ ❝8✉ 4❛ ❝> 4❤➸ ✤@❛ ?❛ ♥❤✐➲✉ ❣✐↔ 4❤✉②➳4 ❦❤→❝ ♥❤❛✉✳ ❚?♦♥❣ ❝❤@R♥❣ ♥➔②✱ ❝❤S♥❣
4❛ ❝❤➾ ❦❤↔♦ D→4 ❜➔✐ 4♦→♥ ❦✐➸♠ ✤+♥❤ ✈E✐ ❤❛✐ ❣✐↔ 6❤✉②➳6 ♠➔ 4❤U✐✳ ❚!♥ ❚❤➜% ❚& ✷✴✸✽
✲ ❇➔✐ #♦→♥ ❦✐➸♠ ✤O♥❤ ❣✐↔ #❤✉②➳# ❧➔ ❜➔✐ 4♦→♥ ❣V♠ ♠W4 ❝➦♣ ❣✐↔ 4❤✉②➳4 4❤0♥❣ ❦➯ ♠➙✉ 4❤✉➝♥
♥❤❛✉ ✤@Y❝ ✤@❛ ?❛ ①❡♠ ①➨4 ✤➸ ❝❤]♥ ♠W4 ❣✐↔ 4❤✉②➳4 ✤S♥❣✳ ▼W4 4?♦♥❣ ❤❛✐ ❣✐↔ 4❤✉②➳4 ✤>
✤@Y❝ ❣✐↔ ✤+♥❤ ❜❛♥ ✤➛✉ ❧➔ ❣✐↔ 4❤✉②➳4 ✤S♥❣✱ ❣]✐ ❧➔ ❣✐↔ #❤✉②➳# ❣(❝ ✈➔ ✤@Y❝ ❦➼ ❤✐➺✉ ❧➔ H0✳
●✐↔ 4❤✉②➳4 ❝b♥ ❧↕✐ ❣]✐ ❧➔ ✤(✐ #❤✉②➳#✱ ✤@Y❝ ❦➼ ❤✐➺✉ ❧➔ H1✳
(H0 : ❣✐↔ 4❤✉②➳4 ❣0❝ H1 : ✤0✐ 4❤✉②➳4
✲ ❑✐➸♠ ✤O♥❤ ❣✐↔ #❤✉②➳# ❧➔ ♣❤@R♥❣ ♣❤→♣ Dc ❞<♥❣ ♠➝✉ ❞L ❧✐➺✉ 4❤✉ ✤@Y❝ ✤➸ ✤@❛ ?❛ J✉②➳4
✤+♥❤ ❜→❝ ❜d H0 ❤❛② ❝❤➜♣ ♥❤➟♥ H0✳ ❚!♥ ❚❤➜% ❚& ✸✴✸✽
✶✳✷ ◆❣✉②➯♥ ❧* ①→❝ .✉➜0 ♥❤2 ✈➔ ①→❝ .✉➜0 ❧5♥
✲ ◆❣✉②➯♥ ❧➼ ①→❝ +✉➜- ♥❤/✿ ▼#$ ❜✐➳♥ ❝* ❝+ ①→❝ .✉➜$ 1➜$ ♥❤3 ❣➛♥ ❜➡♥❣ ✵ $❤➻ ❜✐➳♥ ❝* ✤+
❤➛✉ ♥❤: ❦❤<♥❣ ①↔② 1❛ ❦❤✐ $❤@❝ ❤✐➺♥ ♣❤➨♣ $❤D ♠#$ ❧➛♥✳
✲ ◆❣✉②➯♥ ❧➼ ①→❝ +✉➜- ❧0♥✿ ▼#$ ❜✐➳♥ ❝* ❝+ ①→❝ .✉➜$ ❣➛♥ ❜➡♥❣ ✶ $❤➻ ❜✐➳♥ ❝* ✤+ ❤➛✉ ♥❤: .➩
①↔② 1❛ ❦❤✐ $❤@❝ ❤✐➺♥ ♣❤➨♣ $❤D✳
✶✳✸ ❚❤8♥❣ ❦➯ ❦✐➸♠ ✤>♥❤
●K✐ {X1, X2, ..., Xn} ❧➔ ♠#$ ♠➝✉ ♥❣➝✉ ♥❤✐➯♥ $O② P✳ ❚❛ ①➙② ❞@♥❣ ♠#$ $❤*♥❣ ❦➯ T =
T (X1, X2, ..., Xn) ✈➔ .➩ .D ❞U♥❣ ♥+ ✤➸ ✤:❛ 1❛ W✉②➳$ ✤X♥❤ ❜→❝ ❜3 ❤❛② ❝❤➜♣ ♥❤➟♥ ❣✐↔
$❤✉②➳$ H0✳ ▲[❝ ♥➔②✱ T ✤:]❝ ❣K✐ ❧➔ -❤1♥❣ ❦➯ ❦✐➸♠ ✤7♥❤ ✭❤❛② -✐➯✉ ❝❤✉➞♥ ❦✐➸♠ ✤7♥❤✮✳
❱a✐ α ∈ (0, 1) ❝❤♦ $1:a❝✱ $❛ ❝+ $❤➸ ①➙② ❞@♥❣ ♠✐➲♥ Wα .❛♦ ❝❤♦✿
P (T ∈ Wα|H0 ✤[♥❣) = α
▲[❝ ✤+✱ ♠✐➲♥ Wα ✤:]❝ ❣K✐ ❧➔ ♠✐➲♥ ❜→❝ ❜/ ✈0✐ ♠<❝ = ♥❣❤➽❛ α✳ ❚!♥ ❚❤➜% ❚& ✹✴✸✽
✶✳✸ ❈→❝ ❜A5❝ 0✐➳♥ ❤➔♥❤
❑❤✐ ❝❤♦ $1:a❝ ♠e❝ P ♥❣❤➽❛ α $❛ ❝+ $❤➸ .D ❞U♥❣ ❝→❝ ❜:a❝ ❣]✐ P .❛✉ ✤➙② ✤➸ $✐➳♥ ❤➔♥❤
❣✐↔✐ ❜➔✐ $♦→♥ ❦✐➸♠ ✤X♥❤✿
✲ ❳→❝ ✤X♥❤ ❣✐↔ $❤✉②➳$ H0, H1 ✈➔ ♣❤→$ ❜✐➸✉ ❜➔✐ $♦→♥✳
✲ ❈❤K♥ $❤*♥❣ ❦➯ ❦✐➸♠ ✤X♥❤ T ✈➔ $➼♥❤ ❣✐→ $1X ❝j❛ ♥+ $1➯♥ ♠➝✉ ❞k ❧✐➺✉ $❤✉ ✤:]❝ ✭❦➼ ❤✐➺✉ ❧➔ Ts✮✳
✲ ❳→❝ ✤X♥❤ ♠✐➲♥ ❜→❝ ❜3 Wα ✈a✐ ♠e❝ P ♥❣❤➽❛ α ❝❤♦ $1:a❝✳
✲ ❑➳$ ❧✉➟♥✿ ◆➳✉ Ts ∈ Wα $❤➻ ❜→❝ ❜3 ❣✐↔ $❤✉②➳$ H0✳ ◆❣:]❝ ❧↕✐✱ $❛ ❝❤:❛ ❝+ ❝n .o ❜→❝
❜3 H0 ♥➯♥ $↕♠ $❤p✐ ❝❤➜♣ ♥❤➟♥ ❣✐↔ $❤✉②➳$ ♥➔②✳ ❚!♥ ❚❤➜% ❚& ✺✴✸✽
✶✳✹ ❙❛✐ ❧➛♠ ❦❤✐ ❦✐➸♠ ✤>♥❤
✲ ❙❛✐ ❧➛♠ ❧♦↕✐ ■✿ ❙❛✐ ❧➛♠ ♠➢❝ ♣❤↔✐ ❦❤✐ ❜→❝ ❜3 H0 ♥❤:♥❣ $1♦♥❣ ❦❤✐ $❤@❝ $➳ ❧➔ H0 ❧➔ ❣✐↔
$❤✉②➳$ ✤[♥❣✳ ❑➼ ❤✐➺✉✿ α✳
✲ ❙❛✐ ❧➛♠ ❧♦↕✐ ■■✿ ❙❛✐ ❧➛♠ ♠➢❝ ♣❤↔✐ ❦❤✐ ❝❤➜♣ ♥❤➟♥ H0 $1♦♥❣ ❦❤✐ $❤@❝ $➳ ❧➔ H0 ❧➔ ❣✐↔
$❤✉②➳$ .❛✐✳ ❑➼ ❤✐➺✉✿ β✳
❇↔♥❣ ❞:a✐ ✤➙② $u♥❣ ❤]♣ ❧↕✐ ❝→❝ $1:p♥❣ ❤]♣✿ ❚❤@❝ $➳ H ◗✉②➳$ ✤X♥❤ 0 ✤[♥❣ H0 .❛✐ ❇→❝ ❜3 H0
.❛✐ ❧➛♠ ❧♦↕✐ ■
W✉②➳$ ✤X♥❤ ✤[♥❣ ❈❤➜♣ ♥❤➟♥ H0
W✉②➳$ ✤X♥❤ ✤[♥❣
.❛✐ ❧➛♠ ❧♦↕✐ ■■ ◆❤: ✈➟②✱
α = P (❜→❝ ❜3 H0 ⑤ H0 ✤[♥❣),
β = P (❝❤➜♣ ♥❤➟♥ H0 ⑤ H0 .❛✐) ❚!♥ ❚❤➜% ❚& ✻✴✸✽
✷✳ ❑✐➸♠ ✤'♥❤ ❣✐↔ ,❤✉②➳, ✈➲ ❦➻ ✈4♥❣ ❝6❛ ♣❤➙♥ ♣❤:✐ ❝❤✉➞♥
✷✳✶ ❑❤✐ ♣❤=>♥❣ ?❛✐ ✤➣ ❜✐➳,
❈❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ X ❝,❛ ♠/0 01♥❣ 0❤➸ ❝3 ♣❤➙♥ ♣❤6✐ ❝❤✉➞♥ N(µ; σ2) ✈9✐ ❦➻ ✈<♥❣ µ
❝❤=❛ ❜✐➳0 ✈➔ ♣❤=?♥❣ @❛✐ σ2 ✤➣ ❜✐➳0✳
• ❳➨0 ❜➔✐ 0♦→♥ ❦✐➸♠ ✤G♥❤ ❣✐↔ 0❤✉②➳0✿ (H0✿ µ = µ0, (I) H1✿ µ 6= µ0,
0K♦♥❣ ✤3 µ0 ❧➔ ♠/0 @6 0❤M❝ ✤➣ ❝❤♦✳
✲ ●✐↔ @P K➡♥❣ H0 ✤R♥❣✱ 0❤➻ √ (X − µ n Z = 0) ∼ N(0, 1) σ
✲ ▼✐➲♥ ❜→❝ ❜V ✈9✐ ♠W❝ X ♥❣❤➽❛ α✿ Wα = (−∞; −zα/2] ∪ [zα/2; +∞)✳ ❚!♥ ❚❤➜% ❚& ✼✴✸✽ ❚!♥ ❚❤➜% ❚& ✽✴✸✽
• ✣6✐ ✈9✐ ❜➔✐ 0♦→♥ ❦✐➸♠ ✤G♥❤ ❣✐↔ 0❤✉②➳0✿ (H0✿ µ = µ0 (II) H1✿ µ > µ0.
▼✐➲♥ ❜→❝ ❜V H0 ❧➔ Wα = [zα; +∞)
• ✣6✐ ✈9✐ ❜➔✐ 0♦→♥ ❦✐➸♠ ✤G♥❤ ❣✐↔ 0❤✉②➳0✿ (H0✿ µ = µ0 (III) H1✿ µ < µ0.
▼✐➲♥ ❜→❝ ❜V H0 ❧➔ Wα = (−∞; −zα] ❚!♥ ❚❤➜% ❚& ✾✴✸✽ ❇➔✐ #♦→♥ ■■ ❇➔✐ #♦→♥ ■■■ ❚!♥ ❚❤➜% ❚& ✶✵✴✸✽ ❱➼ ❞# ✷
◆❣✉#♥ ❝➜♣ ✤✐➺♥ ❝❤♦ ♠→② 0➼♥❤ ✤↕0 0✐➯✉ ❝❤✉➞♥ ❧➔ ✶✾ ✈♦❧0✳ ✣♦ ♥❣✉#♥ ❝➜♣ ✤✐➺♥ ❝<❛ ♠>0 ♠➝✉
✷✺ B↕❝ ♣✐♥ ✤CD❝ ❝❤E♥ ♥❣➝✉ ♥❤✐➯♥ ❝<❛ ❤➣♥❣ B↔♥ ①✉➜0 ❆ ♥❣CJ✐ 0❛ 0➼♥❤ ✤CD❝ x = 19, 25
✈♦❧0✳ ●✐↔ BL ♥❣✉#♥ ❝➜♣ ✤✐➺♥ ♥➔② ❝M ♣❤➙♥ ♣❤O✐ ❝❤✉➞♥ ✈P✐ ✤> ❧➺❝❤ ❝❤✉➞♥ σ = 0, 5 ✈♦❧0✳ ❱P✐
♠R❝ S ♥❣❤➽❛ α = 0, 05 ❤➣② ❦✐➸♠ ✤W♥❤ ❣✐↔ 0❤✉②➳0 ❣O❝ H0✿ µ = 19 ✭✈♦❧0✮ ✈P✐ ✤O✐ 0❤✉②➳0
H1✿ µ > 19 ✭✈♦❧0✮✱ 0]♦♥❣ ✤M µ ❧➔ ♥❣✉#♥ ❝➜♣ ✤✐➺♥ 0]✉♥❣ ❜➻♥❤ ❝<❛ ❧♦↕✐ B↕❝ ♣✐♥ 0]➯♥✳
❈❤♦ ❜✐➳0 z0.1 = 1.282; z0.05 = 1.645; z0.025 = 1.96; z0.02 = 2.054, z0.01 = 2.326
●✐↔✐✳ ❇➔✐ #♦→♥ ❦✐➸♠ ✤,♥❤✿ (H0 : µ = 19 H1 : µ > 19
❈→❝ 12 ✤➦❝ #45♥❣ ♠➝✉✿ n = 25; ¯x = 19, 25✳ √ √
●✐→ #4, ❝;❛ #❤2♥❣ ❦➯ ❦✐➸♠ ✤,♥❤✿ (¯ x − µ n (19, 25 − 19) 25 z = 0) = = 2, 5✳ σ 0, 5
▼?❝ @ ♥❣❤➽❛✿ α = 0, 05 ⇒ zα = z0,05 = 1, 645✳
▼✐➲♥ ❜→❝ ❜D✿ Wα = [1, 645; +∞)✳
❱➻ z ∈ Wα ♥➯♥ #❛ ❜→❝ ❜D ❣✐↔ #❤✉②➳# H0 ✈➔ ❝❤➜♣ ♥❤➟♥ H1✳ ❚!♥ ❚❤➜% ❚& ✶✶✴✸✽ ❱➼ ❞# ✸
❚]♦♥❣ ♥➠♠ 0]CP❝ ❦❤O✐ ❧CD♥❣ 0]✉♥❣ ❜➻♥❤ ❝<❛ ❜c ①✉➜0 ❝❤✉#♥❣ d ♠>0 0]❛♥❣ 0]↕✐ ❧➔ ✸✽✵❦❣✳
◆➠♠ ♥❛② ♥❣CJ✐ 0❛ →♣ ❞i♥❣ 0❤L ♠>0 ❝❤➳ ✤> ➠♥ ♠P✐ ✈P✐ ❤② ✈E♥❣ ❧➔ ❜c B➩ 0➠♥❣ 0]E♥❣
♥❤❛♥❤ ❤k♥✳ ❙❛✉ 0❤J✐ ❣✐❛♥ →♣ ❞i♥❣ 0❤L✱ ♥❣CJ✐ 0❛ ❝❤E♥ ♥❣➝✉ ♥❤✐➯♥ ✺✵ ❝♦♥ ❜c ①✉➜0 ❝❤✉#♥❣
✤❡♠ ❝➙♥ ✈➔ 0➼♥❤ ✤CD❝ ❦❤O✐ ❧CD♥❣ 0]✉♥❣ ❜➻♥❤ ❝<❛ ❝❤n♥❣ ❧➔ x = 390❦❣✳ ❱P✐ ♠R❝ S ♥❣❤➽❛
α = 0, 02 ❝M 0❤➸ ❝❤♦ ]➡♥❣ ❦❤O✐ ❧CD♥❣ 0]✉♥❣ ❜➻♥❤ ❝<❛ ❜c ①✉➜0 ❝❤✉#♥❣ ✤➣ 0➠♥❣ ❧➯♥ ❦❤p♥❣❄
●✐↔ BL ]➡♥❣ ❦❤O✐ ❧CD♥❣ ❝<❛ ❜c ❝M ♣❤➙♥ ♣❤O✐ ❝❤✉➞♥ ✈P✐ ✤> ❧➺❝❤ ❝❤✉➞♥ σ = 25, 2❦❣✳
❈❤♦ ❜✐➳0 z0.1 = 1.282; z0.05 = 1.645; z0.025 = 1.96; z0.02 = 2.054, z0.01 = 2.326
●✐↔✐✳ ●N✐ µ✭❦❣✮ ❧➔ ❦❤2✐ ❧5R♥❣ #4✉♥❣ ❜➻♥❤ ❝;❛ ❜S ①✉➜# ❝❤✉U♥❣✳ ❚❤❡♦ ❣✐↔ #❤✐➳#✱ #❛ ❝Y ❜➔✐
#♦→♥ ❦✐➸♠ ✤,♥❤✿ (H0 : µ = 380 H1 : µ > 380 √ √
●✐→ #4, ❝;❛ #❤2♥❣ ❦➯ ❦✐➸♠ ✤,♥❤✿ (¯ x − µ n (390 − 380) 50 z = 0) = = 2, 806✳ σ 25, 2
▼?❝ @ ♥❣❤➽❛✿ α = 0, 02 ⇒ zα = z0,02 = 2, 054✳ ▼✐➲♥ ❜→❝ ❜D✿ Wα = [2, 054; +∞)✳
❱➻ z ∈ Wα ♥➯♥ #❛ ❜→❝ ❜D ❣✐↔ #❤✉②➳# H0✳ ❱➟②✱ ✈Z✐ ♠?❝ @ ♥❣❤➽❛ ✷✪ ❦❤2✐ ❧5R♥❣ #4✉♥❣ ❜➻♥❤
❜S ①✉➜# ❝❤✉U♥❣ ✤➣ #➠♥❣ ❧➯♥✳ ❚!♥ ❚❤➜% ❚& ✶✷✴✸✽
❑❤→✐ ♥✐➺♠ ♣✲❣✐→ *+,
✲❣✐→ %&' %()♥❣ +♥❣ ✈-✐ ♠/% %❤1♥❣ ❦➯ ❦✐➸♠ ✤'♥❤ ❧➔ ♠+❝ ①→❝ :✉➜% %❤➜♣ ♥❤➜% ✭✤(?❝ %➼♥❤
❞B❛ %&➯♥ ❣✐→ %&' %❤B❝ ♥❣❤✐➺♠ ❝E❛ %❤1♥❣ ❦➯ ♥➔②✮ ♠➔ %❛ ❝❤➜♣ ♥❤➟♥ ❣✐↔ %❤✉②➳% H0✳
◗✉② %➢❝ ❦✐➸♠ ✤'♥❤✿
✲ ◆➳✉ ♣✲❣✐→ %&' ≤ α %❤➻ ❜→❝ ❜R ❣✐↔ %❤✉②➳% H0✳
✲ ◆➳✉ ♣✲❣✐→ %&' > α %❤➻ ❝❤(❛ ❝S ❝) :T ❜→❝ ❜R ❣✐↔ %❤✉②➳% H0✳
❑❤✐ ♠+❝ V ♥❣❤➽❛ α ❦❤X♥❣ ✤(?❝ ❝❤➾ &❛ %❤➻ %❛ %❤(Z♥❣ :♦ :→♥❤ ♥S ✈-✐ ♠+❝ ✺✪✳
✣1✐ ✈-✐ ✸ ❜➔✐ %♦→♥ T %&➯♥✿ ❇➔✐ %♦→♥ ✭■✮ ✭■■✮ ✭■■■✮
♣✲❣✐→ %&' 2(1 − Φ(|z|)) 1 − Φ(z) Φ(z) ❚!♥ ❚❤➜% ❚& ✶✸✴✸✽
✷✳✷ ❑❤✐ ♣❤/0♥❣ 1❛✐ ❝❤/❛ ❜✐➳*
❈❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ X ❝E❛ ♠/% %d♥❣ %❤➸ ❝S ♣❤➙♥ ♣❤1✐ ❝❤✉➞♥ N(µ; σ2) ✈-✐ ❦➻ ✈g♥❣ µ
❝❤(❛ ❜✐➳% ✈➔ ♣❤()♥❣ :❛✐ σ2 ❝❤(❛ ❜✐➳%✳
❳➨% ❜➔✐ %♦→♥ ❦✐➸♠ ✤'♥❤ ✈-✐ H0✿ µ = µ0 ✈➔ ✤1✐ %❤✉②➳% H1 : µ 6= µ0(µ > µ0, µ < µ0)✳
❑❤✐ ❣✐↔ %❤✉②➳% H0✿ µ = µ0 ✤j♥❣✱ %❤1♥❣ ❦➯✿ X − µ T = 0 √ S/ n
❝S ♣❤➙♥ ♣❤1✐ ❙%✉❞❡♥% n − 1 ❜➟❝ %B ❞♦✳ ❚!♥ ❚❤➜% ❚& ✶✹✴✸✽ ❚!♥ ❚❤➜% ❚& ✶✺✴✸✽
❈❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥ X ∼ N(µ; σ2) ✈,✐ σ2 ❝❤.❛ ❜✐➳0✳
●✐↔ 0❤✉②➳0 ❣5❝ H0✿ µ = µ0
●✐→ 089 0❤5♥❣ ❦➯ ❦✐➸♠ ✤9♥❤✿ x − µ √ t = 0 n s ✣5✐ 0❤✉②➳0 ▼✐➲♥ ❜→❝ ❜A H0 ♣✲❣✐→ 089 H1✿ µ 6= µ0
(−∞; −tn−1;α/2] ∪ [tn−1;α/2; +∞) 2P (Tn−1 > |t|) H1✿ µ > µ0 [tn−1;α; +∞) P (Tn−1 > t) H1✿ µ < µ0 (−∞; −tn−1;α] P (Tn−1 < t)
❚8♦♥❣ 08.E♥❣ ❤F♣ n > 30✿ tn−1;α ≈ zα✳ ❚!♥ ❚❤➜% ❚& ✶✻✴✸✽ ❱➼ ❞# ✹
❚✉"✐ $❤& $'✉♥❣ ❜➻♥❤ ❝-❛ ♠0$ ❧♦↕✐ ❜4♥❣ ✤➧♥ ❞♦ ♥❤➔ ♠→② ❆ <↔♥ ①✉➜$ ❦❤✐ ❝❤A❛ ❝↔✐ $✐➳♥ ❦➽
$❤✉➟$ ❧➔ ✷✵✵✵ ❣✐G✳ ❙❛✉ $❤G✐ ❣✐❛♥ ❝↔✐ $✐➳♥ ❦➽ $❤✉➟$ ♥❣AG✐ $❛ ❝❤&♥ ♥❣➝✉ ♥❤✐➯♥ ✷✺ ❜4♥❣ ✤➧♥
❝❤♦ ❧➢♣ $❤O ♥❣❤✐➺♠✳ ❑➳$ R✉↔ $❤S❝ ♥❣❤✐➺♠ $❤✉ ✤AT❝ $✉"✐ $❤& $'✉♥❣ ❜➻♥❤ ♠➝✉ x = 2102
❣✐G ✈➔ ✤0 ❧➺❝❤ ❝❤✉➞♥ ♠➝✉ s = 15 ❣✐G✳ ❱X✐ ♠Y❝ Z ♥❣❤➽❛ 0, 025 ❝4 $❤➸ ❦➳$ ❧✉➟♥ ✏<❛✉ ❦❤✐
❝↔✐ $✐➳♥ ❦➽ $❤✉➟$✱ $✉"✐ $❤& ❜4♥❣ ✤➧♥ ❝4 $➠♥❣ ❧➯♥✑ ❦❤`♥❣❄ ❇✐➳$ $✉"✐ $❤& ❜4♥❣ ✤➧♥ ❝4 ♣❤➙♥
♣❤d✐ ❝❤✉➞♥✳ ❈❤♦ ❜✐➳$ t24;0,025 = 2, 063✳
●✐↔✐✳ ●G✐ µ✭❣✐E✮ ❧➔ 0✉L✐ 0❤G 08✉♥❣ ❜➻♥❤ ❝N❛ ❧♦↕✐ ❜P♥❣ ✤➧♥ R❛✉ ❝↔✐ 0✐➳♥✳ ❚❛ ❝P ❜➔✐ 0♦→♥ ❦✐➸♠ ✤9♥❤✿ (H0 : µ = 2000 H1 : µ > 2000
✲ ❈→❝ R5 ✤➦❝ 08.♥❣ ♠➝✉✿ n = 25; ¯x = 2102; s = 15 ❚!♥ ❚❤➜% ❚& ✶✼✴✸✽
✲ ❚❤5♥❣ ❦➯ ❦✐➸♠ ✤9♥❤✿ √ √ (¯ x − µ n (2102 − 2000) 25 t = 0) = = 34 s 15
✲ ▼T❝ U ♥❣❤➽❛✿ α = 0, 025; tn−1;α = t24;0,025 = 2, 063
✲ ▼✐➲♥ ❜→❝ ❜A✿ Wα = [2, 063; +∞)
❱➻ t ∈ Wα ♥➯♥ 0❛ ❜→❝ ❜A H0 ✈➔ ❝❤➜♣ ♥❤➟♥ H1✳ ❱➟②✱ R❛✉ ❝↔✐ 0✐➳♥ ❦[ 0❤✉➟0 0✉L✐ 0❤G ❜P♥❣
✤➧♥ ✤➣ 0➠♥❣ ❧➯♥✳ ❚!♥ ❚❤➜% ❚& ✶✽✴✸✽ ❱➼ ❞# ✺
▼!" ①➼ ♥❣❤✐➺♣ ❝, ✺✵✵✵ ❝/♥❣ ♥❤➙♥ ❝1♥❣ 2↔♥ ①✉➜" ♠!" ❧♦↕✐ 2↔♥ ♣❤➞♠✳ ❚❤❡♦ ❞?✐ "❤@✐ ❣✐❛♥
❤♦➔♥ "❤➔♥❤ 2↔♥ ♣❤➞♠ ❝C❛ ✶✵✵ ❝/♥❣ ♥❤➙♥✱ "❛ ✤GH❝ ❜↔♥❣ 2J ❧✐➺✉ 2❛✉✿
❚❤@✐ ❣✐❛♥ ✭♣❤✮ ✷✽✲✸✵ ✸✵✲✸✷ ✸✷✲✸✹ ✸✹✲✸✻ ✸✻✲✸✽ ✸✽✲✹✵ ❙J ❝/♥❣ ♥❤➙♥ ✺ ✶✺ ✷✺ ✸✵ ✷✵ ✺
❛✮ ❚➻♠ ❦❤♦↔♥❣ "✐♥ ❝➟② ✤J✐ ①Y♥❣ ❝❤♦ "❤@✐ ❣✐❛♥ ❤♦➔♥ "❤➔♥❤ "Z✉♥❣ ❜➻♥❤ ✈\✐ ✤! "✐♥ ❝➟② ✾✵✪✳
❜✮ ❈/♥❣ ♥❤➙♥ ❝, "❛② ♥❣❤➲ ❝❛♦ ♥➳✉ "❤@✐ ❣✐❛♥ ❤♦➔♥ "❤➔♥❤ ✶ 2↔♥ ♣❤➞♠ ❞G\✐ ✸✷♣❤✳ ❱\✐
✤! "✐♥ ❝➟② ✾✺✪✱ "➻♠ ❦❤♦↔♥❣ "✐♥ ❝➟② ✤J✐ ①Y♥❣ ❝❤♦ 2J ❝/♥❣ ♥❤➙♥ ❝, "❛② ♥❣❤➲ ❝❛♦ ❝C❛ ①➼ ♥❣❤✐➺♣✳
❝✮ ❳➼ ♥❣❤✐➺♣ d✉② ✤e♥❤ ✤e♥❤ ♠Y❝ ❤♦➔♥ "❤➔♥❤ "Z✉♥❣ ❜➻♥❤ ✶ 2↔♥ ♣❤➞♠ ❧➔ ✸✹ ♣❤f"✳ ❈, g
❦✐➳♥ ❝❤♦ Z➡♥❣ ✤e♥❤ ♠Y❝ ♥➔② ❝, ❤↕✐ ❝❤♦ ❝/♥❣ ♥❤➙♥✳ ❱\✐ ♠Y❝ g ♥❣❤➽❛ ✷✪ ❤➣② ♥❤➟♥ ①➨" ✈➲ g ❦✐➳♥ ✤,✳
❈❤♦ ❜✐➳" z0.1 = 1.282; z0.05 = 1.645; z0.025 = 1.96; z0.02 = 2.054, z0.01 = 2.326 ❚!♥ ❚❤➜% ❚& ✶✾✴✸✽
●✐↔✐✳ ❛✳ ❉↕♥❣ &❤✉ ❣)♥✿
❚❤,✐ ❣✐❛♥ ✭♣❤✮ ✷✾ ✸✶ ✸✸ ✸✺ ✸✼ ✸✾ ❙8 ❝:♥❣ ♥❤➙♥ ✺ ✶✺ ✷✺ ✸✵ ✷✵ ✺
❈→❝ ?8 ✤➦❝ &BC♥❣ ♠➝✉✿ n = 100; ¯x = 34, 2; s = 2, 494
✣G &✐♥ ❝➟②✿ 1 − α = 0, 9 ⇒ α = 0, 1; tn−1;α/2 = t99;0,05 ≈ z0,05 = 1, 645 ❙❛✐ ?8✿ s 2, 494 ε = tn √ = 1, 645 ∗ √ = 0, 41 −1;α/2 n 100
❑❤♦↔♥❣ &✐♥ ❝➟② ❝❤♦ &❤,✐ ❣✐❛♥ ❤♦➔♥ &❤➔♥❤ &B✉♥❣ ❜➻♥❤✿ ¯
x − ε < µ < ¯x + ε ⇔ 33, 79 < µ < 34, 61 ❚!♥ ❚❤➜% ❚& ✷✵✴✸✽
❜✳ ●)✐ ❑ ❧➔ ?8 ❝:♥❣ ♥❤➙♥ ❝R &❛② ♥❣❤➲ ❝❛♦✳ ❚➾ ❧➺ ❝:♥❣ ♥❤➙♥ ❝R &❛② ♥❣❤➲ ❝❛♦✿ p = K/5000✳
❚➾ ❧➺ ♠➝✉ ❝:♥❣ ♥❤➙♥ ❝R &❛② ♥❣❤➲ ❝❛♦✿ ˆ p = k/n = (5 + 15)/100 = 0, 2
✣G &✐♥ ❝➟②✿ 1 − α = 0, 95 ⇒ α = 0, 05; zα/2 = z0,025 = 1, 96 ❙❛✐ ?8✿ r ˆp(1 − ˆp) r 0, 2 ∗ 0, 8 ε = zα/2 = 1, 96 ∗ = 0, 0784 n 100
❑❤♦↔♥❣ &✐♥ ❝➟② ❝❤♦ &➾ ❧➺ ❝:♥❣ ♥❤➙♥ ❝R &❛② ♥❣❤➲ ❝❛♦✿ ˆ p − ε < p < ˆ
p + ε ⇔ 0, 1216 < p < 0, 2784
❙✉② B❛✿ 0, 1216 < K/5000 < 0, 2784 ⇔ 608 < K < 1392✳ ❚!♥ ❚❤➜% ❚& ✷✶✴✸✽
❝✳ ●#✐ µ ✭♣❤✮ ❧➔ +❤,✐ ❣✐❛♥ ❤♦➔♥ +❤➔♥❤ +1✉♥❣ ❜➻♥❤ ✶ 6↔♥ ♣❤➙♠ ❝:❛ ❝;♥❣ ♥❤➙♥✳ ❚❛ ❝= ❜➔✐
+♦→♥ ❦✐➸♠ ✤B♥❤✿ (H0 : µ = 34 H1 : µ > 34
✲ ❚❤E♥❣ ❦➯ ❦✐➸♠ ✤B♥❤✿ √ √ (¯ x − µ n (34, 2 − 34) 100 t = 0) = = 0, 802 s 2, 494
✲ ▼H❝ I ♥❣❤➽❛✿ α = 0, 02; tn−1;α = t99;0,02 ≈ z0,02 = 2, 054
✲ ▼✐➲♥ ❜→❝ ❜L✿ Wα = [2, 054; +∞)
❱➻ t /∈ Wα ♥➯♥ +❛ ❝❤N❛ ❝= ❝O 6P ❜→❝ ❜L H0✳ ❱➟②✱ ✤B♥❤ ♠H❝ T✉② ✤B♥❤ ❦❤;♥❣ ❣➙② ❤↕✐ ❝❤♦ ❝;♥❣ ♥❤➙♥✳ ❚!♥ ❚❤➜% ❚& ✷✷✴✸✽
✸✳ ❙♦ $→♥❤ ❤❛✐ ❦+ ✈-♥❣ ❝0❛ ❤❛✐ ♠➝✉ ✤5❝ ❧➟♣
❈❤♦ X ✈➔ Y ❜✐➳♥ 6E ♥❣➝✉ ♥❤✐➯♥ ❝:❛ ❤❛✐ +Z♥❣ +❤➸ ✤[❝ ❧➟♣ ♥❤❛✉ ✈➔ ❧➛♥ ❧N]+ ❝= ♣❤➙♥ ♣❤E✐
❝❤✉➞♥ N(µx; σ2x) ✈➔ N(µy; σ2y) ✈_✐ ♣❤NO♥❣ 6❛✐ σ2x, σ2y ❝❤N❛ ❜✐➳+✳
❳➨+ ❜➔✐ +♦→♥ ❦✐➸♠ ✤B♥❤ ✈_✐ H0 : µx − µy = ∆0
✈➔ ✤E✐ +❤✉②➳+ H1 : µx − µy 6= ∆0(µx − µy > ∆0, µx − µy < ∆0)✳
●✐↔ 6b (x1, ..., xm) ✈➔ (y1, ..., yn) ❧➔ ❝→❝ ♠➝✉ +❤✉ ✤N]❝ +c X ✈➔ Y +NO♥❣ H♥❣✳
❈❤➾ ①➨= =>?@♥❣ ❤A♣ ❦❤✐ ❝B ♠➝✉ ❧C♥ ✭♠✱♥❃✸✵✮✳
❑❤✐ ✤=✱ →♣ ❞f♥❣ ✣B♥❤ ❧➼ ❣✐_✐ ❤↕♥ +1✉♥❣ +➙♠ +❛ ❝=✿ (X − Y ) − (µ Z = x − µy) r S2 S2 x + y m n
❝= ♣❤➙♥ ♣❤E✐ ①➜♣ ①➾ ♣❤➙♥ ♣❤E✐ ❝❤✉➞♥ +➢❝ N(0; 1)✳ ❚!♥ ❚❤➜% ❚& ✷✸✴✸✽
X ∼ N(µx; σ2x) ✈➔ Y ∼ N(µy; σ2y) +1♦♥❣ ✤= σ2x ✈➔ σ2y ✤➲✉ ❝❤N❛ ❜✐➳+❀ m > 30 ✈➔ n > 30✳
●✐↔ +❤✉②➳+ +❤E♥❣ ❦➯ H0✿ µx − µy = ∆0
●✐→ +1B +❤E♥❣ ❦➯ ❦✐➸♠ ✤B♥❤✿ x − y − ∆ z = 0 r s2 s2 x + y m n ✣E✐ +❤✉②➳+ ▼✐➲♥ ❜→❝ ❜L H0 ♣✲❣✐→ +1B H1✿ µx − µy 6= ∆0
(−∞; −zα/2] ∪ [zα/2; +∞) 2(1 − Φ(|z|)) H1✿ µx − µy > ∆0 [zα; +∞) 1 − Φ(z) H1✿ µx − µy < ∆0 (−∞; −zα] Φ(z) ❚!♥ ❚❤➜% ❚& ✷✹✴✸✽
◆❤➟♥ ①➨&✿ ❑❤✐ ∆0 = 0✱ ❝→❝ ❜➔✐ (♦→♥ ❦✐➸♠ ✤/♥❤ (0➯♥ (❤23♥❣ ✤25❝ ✈✐➳( ❧↕✐ ❞2;✐ ❞↕♥❣✿ (H (I) 0 : µx = µy H1 : µx 6= µy (H (II) 0 : µx = µy H1 : µx < µy (H (III) 0 : µx = µy H1 : µx > µy
❚❤>♥❣ ❦➯ ❦✐➸♠ ✤/♥❤ (0? (❤➔♥❤✿ x − y z = rs2 s2 x + y m n ❚!♥ ❚❤➜% ❚& ✷✺✴✸✽ ❱➼ ❞+ ✻
◆❣"#✐ %❛ ❝➙♥ %*➫ ,- ,✐♥❤ / ❤❛✐ ❦❤✉ ✈3❝ %❤➔♥❤ %❤5 ✈➔ ♥6♥❣ %❤6♥✱ ❦➳% 9✉↔ %❤✉ ✤"<❝✿ ❑❤✉ ✈3❝ ❙@ %*➫
❚*✉♥❣ ❜➻♥❤ ♠➝✉ F❤"-♥❣ ,❛✐ ♠➝✉ ◆6♥❣ %❤6♥ m = 60 x = 3, 0 ❦❣ s2x = 0, 4 ❦❣2 ❚❤➔♥❤ %❤5 n = 50 y = 3, 1 ❦❣ s2y = 0, 5 ❦❣2
❱H✐ ♠I❝ J ♥❣❤➽❛ 0, 05 ❝L %❤➸ ❝♦✐ ❦❤@✐ ❧"<♥❣ %*✉♥❣ ❜➻♥❤ ❝P❛ %*➫ ,- ,✐♥❤ / ❤❛✐ ❦❤✉ ✈3❝
❦❤→❝ ♥❤❛✉ ❦❤6♥❣❄ ❇✐➳% ❦❤@✐ ❧"<♥❣ %*➫ ,- ,✐♥❤ / ❤❛✐ ❦❤✉ ✈3❝ ❝L ♣❤➙♥ ♣❤@✐ ❝❤✉➞♥✳ ❈❤♦ ❜✐➳% z0.025 = 1.96
●✐↔✐✳ ●A✐ µx, µy ✭❦❣✮ ❧➔ ❦❤>✐ ❧25♥❣ (0✉♥❣ ❜➻♥❤ ❝F❛ (0➫ IJ I✐♥❤ ? ♥K♥❣ (❤K♥ ✈➔ (❤➔♥❤ (❤/✳
❚❛ ❝M ❜➔✐ (♦→♥ ❦✐➸♠ ✤/♥❤✿ (H0 : µx = µy H1 : µx 6= µy
❚❤>♥❣ ❦➯ ❦✐➸♠ ✤/♥❤✿ ¯ x − ¯y 3, 0 − 3, 1 z = = = −0, 774 q p s2 0, 4/60 + 0, 5/50 x/m + s2 y/n ❚!♥ ❚❤➜% ❚& ✷✻✴✸✽
▼O❝ P ♥❣❤➽❛✿ α = 0, 05; zα/2 = z0,025 = 1, 96✳
▼✐➲♥ ❜→❝ ❜S✿ Wα = (−∞; −1, 96] ∪ [1, 96; +∞)
❱➻ z /∈ Wα ♥➯♥ (❛ ❝❤2❛ ❝M ❝J I? ❜→❝ ❜S ❣✐↔ (❤✉②➳( H0✳ ❱➟②✱ ❦❤K♥❣ ❝M IX ❦❤→❝ ❜✐➺( ✈➲
❦❤>✐ ❧25♥❣ (0✉♥❣ ❜➻♥❤ ❝F❛ (0➫ IJ I✐♥❤ ? ❤❛✐ ✈Z♥❣ (0➯♥✳ ❱➼ ❞+ ✼
◆❣"#✐ %❛ %✐➳♥ ❤➔♥❤ ♠X% ❝✉X❝ ♥❣❤✐➯♥ ❝I✉ ✤➸ ,♦ ,→♥❤ ♠I❝ ❧"-♥❣ %*✉♥❣ ❜➻♥❤ ❝P❛ ♣❤Z ♥[
,♦ ✈H✐ ♠I❝ ❧"<♥❣ %*✉♥❣ ❜➻♥❤ ❝P❛ ♥❛♠ ❣✐H✐ %*♦♥❣ ♠X% ❝6♥❣ %② ❧H♥✳ ▼X% ♠➝✉ ❣^♠ ✶✵✵ ♣❤Z
♥[ ❝L ♠I❝ ❧"-♥❣ %*✉♥❣ ❜➻♥❤ ✼✱✷✸ ✤6❧❛✴❣✐# ✈H✐ ✤X ❧➺❝❤ ❝❤✉➞♥ ✶✱✻✹ ✤6❧❛✴❣✐#✳ ▼X% ♠➝✉
❣^♠ ✼✺ ♥❛♠ ❣✐H✐ ❝L ♠I❝ ❧"<♥❣ %*✉♥❣ ❜➻♥❤ ❧➔ ✽✱✵✻ ✤6❧❛✴❣✐# ✈H✐ ✤X ❧➺❝❤ ❝❤✉➞♥ ❧➔ ✶✱✽✺
✤6❧❛✴❣✐#✳ ❱H✐ ♠I❝ J ♥❣❤➽❛ ✶✪ ,@ ❧✐➺✉ ♥➔② ❝L ❝❤I♥❣ ♠✐♥❤ ✤"<❝ ♠I❝ ❧"-♥❣ %*✉♥❣ ❜➻♥❤
❝P❛ ♣❤Z ♥[ %*♦♥❣ ❝6♥❣ %② ❧➔ %❤➜♣ ❤-♥ ♥❛♠ ❣✐H✐ ❤❛② ❦❤6♥❣ ❄ ❈❤♦ ❜✐➳% z0,01 = 2, 326✳ ❚!♥ ❚❤➜% ❚& ✷✼✴✸✽
●✐↔✐✳ ●!✐ µx, µy ✭✤%❧❛✴❣✐*✮ ❧➔ ♠.❝ ❧01♥❣ 34✉♥❣ ❜➻♥❤ ❝9❛ ♥: ✈➔ ♥❛♠ ❣✐<✐✳ ❚❛ ❝? ❜➔✐ 3♦→♥ ❦✐➸♠ ✤D♥❤✿ (H0 : µx = µy H1 : µx < µy
❚❤F♥❣ ❦➯ ❦✐➸♠ ✤D♥❤✿ ¯ x − ¯y 7, 23 − 8, 06 z = = = −3, 08 q p s2 1, 642/100 + 1, 852/75 x/m + s2 y/n
▼.❝ I ♥❣❤➽❛✿ α = 0, 01; zα = z0,01 = 2, 326✳
▼✐➲♥ ❜→❝ ❜L✿ Wα = (−∞; −2, 326]
❱➻ z ∈ Wα ♥➯♥ 3❛ ❜→❝ ❜L ❣✐↔ 3❤✉②➳3 H0✳ ❱➟②✱ ❧01♥❣ 34✉♥❣ ❜➻♥❤ ❝9❛ ♥: ❣✐<✐ 3❤➜♣ ❤1♥ U♦
✈<✐ ♥❛♠ ❣✐<✐ 34♦♥❣ ❝%♥❣ 3②✳ ❚!♥ ❚❤➜% ❚& ✷✽✴✸✽
✹✳ ❑✐➸♠ ✤)♥❤ ❣✐↔ -❤✉②➳- ✈➲ -➾ ❧➺
❈❤♦ 3➼♥❤ ❝❤➜3 A ❝? 3➾ ❧➺ ❧➔ p ✭❝❤0❛ ❜✐➳3✮ 34♦♥❣ 3Z♥❣ 3❤➸✳ ❳➨3 ❜➔✐ 3♦→♥ ❦✐➸♠ ✤D♥❤ ❣✐↔ 3❤✉②➳3✿ H0 : p = p0
✈➔ ✤F✐ 3❤✉②➳3 H1 : p 6= p0(p > p0, p < p0)✳
❈❤!♥ ♠]3 ♠➝✉ ♥❣➝✉ ♥❤✐➯♥ ❦➼❝❤ 3❤0<❝ n✱ ✤➦3 (1,
♣❤➛♥ 3a i ❝? 3➼♥❤ ❝❤➜3 ❆ Xi = 0,
♣❤➛♥ 3a i ❦❤%♥❣ ❝? 3➼♥❤ ❝❤➜3 ❆ ✈➔ ˆ X P =
1 + X2 + ... + Xn ✲ 3➾ ❧➺ ♣❤➛♥ 3a ❝? 3➼♥❤ ❝❤➜3 A✳ n
❑❤✐ H0 ✤%♥❣✱ ✈*✐ n ✤+ ❧*♥✱ -❤❡♦ ✣1♥❤ ❧➼ ❣✐*✐ ❤↕♥ -4✉♥❣ -➙♠✿ ˆ P − p Z = 0 pp0(1 − p0)/n
❝: ♣❤➙♥ ♣❤<✐ ①➜♣ ①➾ ♣❤➙♥ ♣❤<✐ ❝❤✉➞♥ -➢❝ N(0; 1)✳ ❚!♥ ❚❤➜% ❚& ✷✾✴✸✽
❈❤♦ ˆp = k/n ❧➔ ♠D- E*❝ ❧EF♥❣ ❝+❛ -✛ ❧➺ p -J ♠D- ♠➝✉ ❦➼❝❤ -❤E*❝ n✳
●✐↔ -❤✉②➳- ❣<❝ H0✿ p = p0 √
●✐→ -41 -❤<♥❣ ❦➯ ❦✐➸♠ ✤1♥❤✿ (ˆ p − p n z = 0) pp0(1 − p0) ✣<✐ -❤✉②➳- ▼✐➲♥ ❜→❝ ❜W H0 ♣✲❣✐→ -41 H1 : p 6= p0
(−∞; −zα/2] ∪ [zα/2; +∞) 2(1 − Φ(|z|)) H1✿ p > p0 [zα; +∞) 1 − Φ(z) H1✿ p < p0 (−∞; −zα] Φ(z) ❚!♥ ❚❤➜% ❚& ✸✵✴✸✽ ❱➼ ❞# ✽
●✐→♠ ✤%❝ ♠'( ❝)♥❣ (② (✉②➯♥ ❜% ✾✵✪ 3↔♥ ♣❤➞♠ ❝8❛ ❝)♥❣ (② ✤↕( (✐➯✉ ❝❤✉➞♥ ;✉%❝ ❣✐❛✳
▼'( ❝)♥❣ (② ❦✐➸♠ ✤@♥❤ ✤'❝ ❧➟♣ ✤➣ (✐➳♥ ❤➔♥❤ ❦✐➸♠ (F❛ ✷✵✵ 3↔♥ ♣❤➞♠ ❝8❛ ❝)♥❣ (② ✤H (❤➻
(❤➜② ❝H ✶✻✽ 3↔♥ ♣❤➞♠ ✤↕( ②➯✉ ❝➛✉✳ ❱P✐ ♠Q❝ R ♥❣❤➽❛ α = 0, 1 ❝H (❤➸ ❝❤♦ F➡♥❣ (✛ ❧➺ 3↔♥
♣❤➞♠ ✤↕( (✐➯✉ ❝❤✉➞♥ ;✉%❝ ❣✐❛ (❤➜♣ ❤X♥ ✾✵✪ ❦❤)♥❣❄ ❈❤♦ ❜✐➳( z0,1 = 1, 282✳
●✐↔✐✳ ●!✐ p ❧➔ %➾ ❧➺ (↔♥ ♣❤➞♠ ✤↕% %✐➯✉ ❝❤✉➞♥ 4✉5❝ ❣✐❛ ❝8❛ ❝9♥❣ %②✳ ❇➔✐ %♦→♥ ❦✐➸♠ ✤A♥❤✿ (H0 : p = 0, 9 H1 : p < 0, 9
❚➾ ❧➺ ♠➝✉✿ ˆp = k/n = 168/200 = 0, 84
❚❤5♥❣ ❦➯ ❦✐➸♠ ✤A♥❤✿ √ √ (ˆ p − p n (0, 84 − 0, 9) 200 z = 0) = √ = −2, 83 pp 0, 9 0(1 − p0) ∗ 0, 1
▼F❝ G ♥❣❤➽❛✿ α = 0, 1 ⇒ zα = z0.1 = 1.282✳
▼✐➲♥ ❜→❝ ❜K✿ Wα = (−∞; −1, 282]✳
❱➻ z ∈ Wα ♥➯♥ ❜→❝ ❜K H0✳ ❱➟②✱ %✛ ❧➺ (↔♥ ♣❤➞♠ ✤↕% %✐➯✉ ❝❤✉➞♥ 4✉5❝ ❣✐❛ %❤➜♣ ❤R♥ ✾✵✪✳ ❚!♥ ❚❤➜% ❚& ✸✶✴✸✽ ❱➼ ❞# ✾
▼'( ❦❤✉ ✈\❝ ❝H ✶✵✵✵✵ ❤' ❣✐❛ ✤➻♥❤ 3✐♥❤ 3%♥❣ ✈➔ ❝→❝ ❤' ] ✤➙② ❝❤➾ 3` ❞b♥❣ ❣❛ ❝8❛ ✷ ❝)♥❣
(② ❆ ✈➔ ❇✳ ✣✐➲✉ (F❛ ✽✵✵ ❤' (❤➻ ❝H ✻✵✵ ❤' ❞g♥❣ ❣❛✱ (F♦♥❣ ✤H ✸✻✵ ❤' ❞g♥❣ ❣❛ ❝8❛ ❝)♥❣ (② ❆✳
❛✮ ❱P✐ ✤' (✐♥ ❝➟② ✾✺✪✱ (➻♠ ❦❤♦↔♥❣ (✐♥ ❝➟② ✤%✐ ①Q♥❣ ❝❤♦ 3% ❧mn♥❣ ❤' ❞g♥❣ ❣❛ ] ❦❤✉ ✈\❝ ♥➔②✳
❜✮ ❈H R ❦✐➳♥ ❝❤♦ F➡♥❣ ❣❛ ❝8❛ ❝)♥❣ (② ❆ ✤mn❝ ❝→❝ ❤' (❤➼❝❤ ❞g♥❣ ❤X♥✳ ❱P✐ ♠Q❝ R ♥❣❤➽❛
✷✪ ❤➣② ♥❤➟♥ ①➨( ✈➲ R ❦✐➳♥ ➜②✳
●✐↔✐✳ ❛✳ ●!✐ ❑ ❧➔ (5 ❧WX♥❣ ❤Y ❞[♥❣ ❣❛ \ ❦❤✉ ✈^❝ ♥➔②✳ ❚❛ ❝_ %➾ ❧➺ ❤Y ❞[♥❣ ❣❛✿ p = K/10000✳
❚➾ ❧➺ ♠➝✉✿ ˆp = k/n = 600/800 = 0, 75✳
✣Y %✐♥ ❝➟②✿ 1 − α = 0, 95 ⇒ α = 0, 05; zα/2 = z0,025 = 1, 96✳ ❙❛✐ (5✿ r ˆp(1 − ˆp) r 0, 75 ∗ 0, 25 ε = zα/2 = 1, 96 ∗ = 0, 03 n 800
❑❤♦↔♥❣ %✐♥ ❝➟② ❝❤♦ %➾ ❧➺ ❤Y ❞[♥❣ ❣❛✿ ˆp − ε < p < ˆp + ε ⇔ 0, 72 < p < 0, 78
❙✉② b❛✿ 0, 72 < K/10000 < 0, 78 ⇔ 7200 < K < 7500✳ ❚!♥ ❚❤➜% ❚& ✸✷✴✸✽
❜✳ ●!✐ p ❧➔ %➾ ❧➺ ❤Y ❞[♥❣ ❣❛ ❝8❛ ❝9♥❣ %② ❆✳ ❇➔✐ %♦→♥ ❦✐➸♠ ✤A♥❤✿ (H0 : p = 0, 5 H1 : p > 0, 5
❚➾ ❧➺ ♠➝✉✿ ˆp = k/n = 360/600 = 0, 6
●✐→ %bA ❝8❛ %❤5♥❣ ❦➯ ❦✐➸♠ ✤A♥❤✿ √ √ (ˆ p − p n (0, 6 − 0, 5) 600 z = 0) = √ = 4, 9 pp 0, 5 0(1 − p0) ∗ 0, 5
▼F❝ G ♥❣❤➽❛✿ α = 0, 02 ⇒ zα = z0.02 = 2, 054✳
▼✐➲♥ ❜→❝ ❜K✿ Wα = [2, 054; +∞)✳
❱➻ z ∈ Wα ♥➯♥ ❜→❝ ❜K H0✳ ❱➟②✱ (↔♥ ♣❤➞♠ ❣❛ ❝8❛ ❝9♥❣ %② ❆ ✤WX❝ W❛ %❤➼❝❤ ❤R♥✳ ❚!♥ ❚❤➜% ❚& ✸✸✴✸✽
✺✳ ❙♦ $→♥❤ ❤❛✐ *➾ ❧➺
❳➨" "➼♥❤ ❝❤➜" A ❝( "➾ ❧➺ ❧➔ p1 ✈➔ p2 ❝❤.❛ ❜✐➳" "3♦♥❣ ❤❛✐ "6♥❣ "❤➸ ✤9❝ ❧➟♣ ♥❤❛✉✳ ❳➨" ❜➔✐
"♦→♥ ❦✐➸♠ ✤A♥❤ ✈B✐ ❣✐↔ "❤✉②➳" ❣E❝✿ H0 : p1 = p2
✈➔ ✤E✐ "❤✉②➳" H1 : p1 6= p2(p1 > p2, p1 < p2)✳
●✐↔ HI ˆp1 = k1/n1 ✈➔ ˆp2 = k2/n2 ❧➛♥ ❧.K" ❧➔ .B❝ ❧.K♥❣ ❝L❛ p1 ✈➔ p2 "M ❤❛✐ ♠➝✉ ♥❣➝✉
♥❤✐➯♥ ✤9❝ ❧➟♣ ❦➼❝❤ "❤.B❝ n1 ✈➔ n2 ".P♥❣ Q♥❣✳
❑❤✐ ❣✐↔ "❤✉②➳" H0 ✤S♥❣✱ "❤E♥❣ ❦➯ ˆ p k Z = 1 − ˆ p2 ✈B✐ ˆp = 1 + k2 s 1 1 n1 + n2 ˆ p(1 − ˆ p) + n1 n2
❝( ♣❤➙♥ ♣❤E✐ ①➜♣ ①➾ ♣❤➙♥ ♣❤E✐ ❝❤✉➞♥ "➢❝ N(0, 1)✳ ❚!♥ ❚❤➜% ❚& ✸✹✴✸✽
●✐↔ HI ˆp1 = k1/n1 ✈➔ ˆp2 = k2/n2 ❧➛♥ ❧.K" ❧➔ .B❝ ❧.K♥❣ ❝L❛ p1 ✈➔ p2 "M ❤❛✐ ♠➝✉
♥❣➝✉ ♥❤✐➯♥ ✤9❝ ❧➟♣✳
✲ ●✐↔ "❤✉②➳" ❣E❝ H0✿ p1 = p2
✲ ●✐→ "3A "❤E♥❣ ❦➯ ❦✐➸♠ ✤A♥❤✿ ˆ p k z = 1 − ˆ p2 ✈B✐ ˆp = 1 + k2 s 1 1 n1 + n2 ˆ p(1 − ˆ p) + n1 n2 ✣E✐ "❤✉②➳" ▼✐➲♥ ❜→❝ ❜] H0 ♣✲❣✐→ "3A H1 : p1 6= p2
(−∞; −zα/2] ∪ [zα/2; +∞) 2(1 − Φ(|z|)) H1 : p1 > p2 [zα; +∞) 1 − Φ(z) H1 : p1 < p2 (−∞; −zα] Φ(z) ❚!♥ ❚❤➜% ❚& ✸✺✴✸✽ ❱➼ ❞1 ✶✵
❑✐➸♠ $%❛ ♥❣➝✉ ♥❤✐➯♥ ❝→❝ /↔♥ ♣❤➞♠ ❝3♥❣ ❧♦↕✐ ❞♦ ❤❛✐ ♥❤➔ ♠→② /↔♥ ①✉➜$ $❤✉ ✤=>❝ ❞? ❧✐➺✉✿
◆❤➔ ♠→② ❙D /↔♥ ♣❤➞♠ ✤=>❝ ❦✐➸♠ $%❛ ❙D ♣❤➳ ♣❤➞♠ ❆ ✶✵✵✵ ✷✺ ❇ ✾✻✵ ✸✵
❱Q✐ ♠R❝ S ♥❣❤➽❛ α = 0, 05 ❝U $❤➸ ❝♦✐ $✛ ❧➺ ♣❤➳ ♣❤➞♠ ❝W❛ ❤❛✐ ♥❤➔ ♠→② $%➯♥ ❜➡♥❣ ♥❤❛✉
❦❤Z♥❣❄ ❈❤♦ ❜✐➳$ z0.025 = 1.96
●✐↔✐✳ ●^✐ p1, p2 ❧➔ "➾ ❧➺ ♣❤➳ ♣❤➞♠ ❝L❛ ♥❤➔ ♠→② ❆✱ ❇ ".P♥❣ Q♥❣✳ ❚❛ ❝( ❜➔✐ "♦→♥ ❦✐➸♠ ✤A♥❤✿ (H0 : p1 = p2 H1 : p1 6= p2 ❚!♥ ❚❤➜% ❚& ✸✻✴✸✽
❈→❝ #➾ ❧➺ ♠➝✉✿ ˆ
p1 = k1/n1 = 25/1000 = 0, 025; ˆ p2 = k2/n2 = 30/960 = 0, 03125 ˆ
p = (k1 + k2)/(n1 + n2) = (25 + 30)/(1000 + 960) = 0, 028
●✐→ #-. ❝/❛ #❤2♥❣ ❦➯ ❦✐➸♠ ✤.♥❤✿ ˆ p 0, 025 − 0, 03125 z = 1 − ˆ p2 = = −0, 838 s p 1 1
0, 028 ∗ (1 − 0, 028)(1/1000 + 1/960) ˆ p(1 − ˆ p) + n1 n2
▼:❝ ; ♥❣❤➽❛✿ α = 0, 05 ⇒ zα/2 = z0.025 = 1, 96✳
▼✐➲♥ ❜→❝ ❜@✿ Wα = (−∞; 1, 96] ∪ [1, 96; +∞)✳
❱➻ z /∈ Wα ♥➯♥ ❝❤C❛ ❝D ❝E FG ❜→❝ ❜@ H0✳ ❱➟②✱ #➾ ❧➺ ♣❤➳ ♣❤➞♠ ❝/❛ ❤❛✐ ♥❤➔ ♠→② ❦❤O♥❣
❝D FP ❦❤→❝ ❜✐➺#✳ ❚!♥ ❚❤➜% ❚& ✸✼✴✸✽ ❱➼ ❞# ✶✶
❈!♥❣ $② ♥&'❝ ❣✐↔✐ ❦❤→$ ✤❛♥❣ ♥❣❤✐➯♥ ❝1✉ ✈✐➺❝ ✤&❛ ✈➔♦ ♠8$ ❝!♥❣ $❤1❝ ♠'✐ ✤➸ ❝↔✐ $✐➳♥ ;↔♥
♣❤➞♠ ❝>❛ ♠➻♥❤✳ ❱'✐ ❝!♥❣ $❤1❝ ❝B ❦❤✐ ❝❤♦ ✺✵✵ ♥❣&E✐ ❞G♥❣ $❤H $❤➻ ❝I ✶✷✵ ♥❣&E✐ &❛ $❤➼❝❤
♥I✳ ❱'✐ ❝!♥❣ $❤1❝ ♠'✐ ❦❤✐ ❝❤♦ ✶✵✵✵ ♥❣&E✐ ❦❤→❝ ❞G♥❣ $❤➻ ❝I ✸✵✵ ♥❣&E✐ ❜↔♦ &❛ $❤➼❝❤
❤&O♥❣ ✈P ♥➔②✳ ❱'✐ ♠1❝ Q ♥❣❤➽❛ ✷✪ ❤➣② ❦✐➸♠ ✤P♥❤ ①❡♠ ❝!♥❣ $❤1❝ ♠'✐ ✤&❛ ✈➔♦ ❝I ❧➔♠
$➠♥❣ $➾ ❧➺ ♥❣&E✐ &❛ $❤➼❝❤ $❤1❝ ✉Z♥❣ ❝>❛ ❝!♥❣ $② ❤❛② ❦❤!♥❣ ❄ ❈❤♦ ❜✐➳$ z0,02 = 2, 054✳
●✐↔✐✳ ●Q✐ p1, p2 ❧➔ #➾ ❧➺ ♥❣CR✐ C❛ #❤➼❝❤ ♥CT❝ ✉2♥❣ ✈T✐ ❝O♥❣ #❤:❝ ❝V ✈➔ ♠T✐✳ ❚❛ ❝D ❜➔✐
#♦→♥ ❦✐➸♠ ✤.♥❤✿ (H0 : p1 = p2 H1 : p1 < p2
❈→❝ #➾ ❧➺ ♠➝✉✿ ˆp1 = 0, 24; ˆp2 = 0, 3; ˆp = 0, 28✳
●✐→ #-. #❤2♥❣ ❦➯ ❦✐➸♠ ✤.♥❤✿ z = −2, 39
▼✐➲♥ ❜→❝ ❜@✿ Wα = (−∞; −2, 054]✳
❱➻ z ∈ Wα ♥➯♥ ❜→❝ ❜@ ❣✐↔ #❤✉②➳# H0✳
❱➟②✱ ❝O♥❣ #❤:❝ ♠T✐ ✤C❛ ✈➔♦ ✤➣ ❧➔♠ #➠♥❣ #➾ ❧➺ ♥❣CR✐ C❛ #❤➼❝❤ #❤:❝ ✉2♥❣ ❝/❛ ❝O♥❣ #②✳ ❚!♥ ❚❤➜% ❚& ✸✽✴✸✽