Bài giảng điện tử môn Toán 7 Bài 33: Quan hệ giữa ba cạnh của một tam giác | Kết nối tri thức với cuộc sống

Bài giảng điện tử môn Toán 7 Bài 33: Quan hệ giữa ba cạnh của một tam giác | Kết nối tri thức với cuộc sống được VietJack sưu tầm và soạn thảo để gửi tới các bạn học sinh cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!

CHÀO MỪNG CÁC EM
ĐẾN VỚI BUỔI HỌC
NGÀY HÔM NAY!
KHỞI ĐỘNG
Một trạm biến áp và một khu dân hai
bên bờ sông (H.9.14). Trên bờ sông phía
khu dân cư, hãy tìm một địa điểm C để dựng
một cột điện kéo điện từ cột điện A của trạm
biến áp đến cột điện B của khu dân sao
cho tổng độ i y dẫn điện cần sử dụng là
ngắn nhất.
BÀI 33: QUAN HỆ GIỮA BA
CẠNH CỦA MỘT TAM GIÁC
CHƯƠNG IX. QUAN HỆ
GIỮA CÁC YẾU TỐ TRONG
MỘT TAM GIÁC
Quan hệ giữa ba cạnh
của một tam giác
Bất đẳng thức tam gc.
Cho hai bộ ba thanh tre nhỏ có độ dài như sau
Bộ th nhất: 10 cm, 20cm, 25cm
Bộ th hai: 5cm, 15cm, 25cm
Em y ghép cho biết bộ nào ghép được
thành một tam giác
HĐ 1:
Bộ thứ nhất là ghép được thành hình tam giác.
Bất đẳng thức tam gc.
Với bộ ba thanh tre ghép lại được thành một tam giác
trong 1, em y so sánh độ i cả thanh bất kỳ với tổng
độ dài của hai thanh còn lại
HĐ 2:
Có: 20 + 25 = 50 > 10
10 + 20 = 30 > 25
10 + 25 = 35 > 20
Giải
Em hiểu thế nào là
bất đẳng thức?
Khi số a hơn số b, người ta viết a < b gọi đó
một bất đẳng thức
Khi đó ta cũng có thể viết b > a và nói b lớn hơn a.
KẾT LUẬN
Định lí:
Trong một tam giác, độ i của một cạnh bất kì
luôn nhỏ hơn tổng độ dài hai cạnh còn lại
GT 𝛥𝐴𝐵𝐶
KL
AB
< AC + BC
AC
< AB + BC
BC
< AB + AC
CHÚ Ý
Nếu ba độ dài a, b, c không thỏa n
một bất đẳng thức tam giác t
chúng không phải độ dài ba cạnh
của một tam giác.
Trong một tam giác, độ dài của môt cạnh
bất luôn lớn hơn hiệu độ dài hai cạnh
còn lại.
TÍNH CHẤT
Nhận xét:
Nếu hiệu a, b, c là độ dài ba cạnh tùy ý của một
tam giác thì:
b c < a < b + c
TRANH LUẬN
Ý kiến của em thì sao?
TRAO ĐỔI CẶP ĐÔI
Trả lời
Bạn Vng sai.
theo định lí độ dài của một cạnh bất luôn nhỏ hơn tổng độ dài
hai cạnh còn lại.
4 > 2 + 1 không thoả mãn điều kiện định
Ba đoạn thẳng 1 cm, 2cm, 4 cm không thể ghép được thành
một tam giác.
CHÚ Ý
Để kiểm tra ba độ dài độ dài ba cạnh của một
tam giác hay không, ta chỉ cần so sánh độ dài lớn nhất
nhỏ n tổng hai độ dài còn lại hoặc độ dài nhỏ
nhất lớn n hiệu hai độ dài còn lại hay không.
dụ (SGK tr67)
y kiểm tra ba độ dài nào sau đây không th độ dài ba cạnh
của một tam giác. Với ba bộ còn lại, y vẽ tam giác nhận ba độ
dài đó làm độ dài ba cạnh.
a) 2 cm, 4 cm, 7 cm b) 2 cm, 3 cm, 4 cm.
Giải
a) Ta có: 2 + 4 = 6 < 7, ba độ i 2 cm, 4 cm, 7 cm không thoả mãn
một bất đẳng thức tam giác nên kng độ dài ba cạnh của một
tam giác.
Giải
b) Ta có: 2 > 4 - 3 = 1
Ba độ dài 2 cm, 3 cm, 4 cm thoả mãn điều kiện trong c ý trên nên
đây thể độ dài ba cạnh của một tam giác.
Ta dùng thước compa vẽ được tam
giác ABC có độ dài ba cạnh là 2 cm, 3
cm,4 cm như Hình 9.16 nên ba độ i 2
cm, 3 cm, 4 cm đúng là độ dài ba cạnh
của một tam giác.
LUYỆN TẬP
Giải
Hỏi ba độ dài nào sau đây không thể là độ dài của ba cạnh trong tam giác?
Vì sao? Hãy vẽ tam giác nhận ba độ dài còn lại làm ba cạnh
a) 5 cm, 4 cm, 6 cm b) 3 cm, 6 cm, 10 cm
a) Có 6 < 5 + 4 = 9
Ba đội 5 cm, 4 cm, 6 cm là độ dài
ba cạnh của một tam giác.
LUYỆN TẬP
Giải
Hỏi ba độ dài nào sau đây không thể là độ dài của ba cạnh trong tam giác?
Vì sao? Hãy vẽ tam giác nhận ba độ dài còn lại làm ba cạnh
a) 5 cm, 4 cm, 6 cm b) 3 cm, 6 cm, 10 cm
b) Ba cạnh 3 cm, 6 cm, 10 cm kng th ba cạnh của tam giác
vì 10 > 3 + 6 = 9.
VẬN DỤNG
Trở lại tình huống mở đầu, em hãy giải thích
sao nếu dựng cột điện vị trí C trên đoạn
thẳng AB thì tổng độ dài y dẫn điện cần
sử dụng ngắn nhất.
Giải
- C nằm giữa A B
- C thuộc đường thẳng AB nhưng không thuộc đoạn thẳng AB
CA + CB = AB (không xét khi C trùng với A hoặc B).
CA + CB > AB
- Khi C không thuộc đường thẳng AB thì theo Định lí 1, CA + CB > AB.
LUYỆN TẬP
Cho các bộ ba đoạn thẳng có độ dài như sau:
a) 2 cm, 3 cm, 5 cm; b) 3 cm, 4 cm, 6 cm; c) 2 cm,4 cm, 5 cm;
Hỏi bộ ba o là không thể độ dài ba cạnh của một tam giác?
sao ? Với mỗi bộ ba còn li, y vẽ một tam giác độ i
ba cạnh được cho trong bộ ba đó
Bài 9.10: (SGK tr.69)
a) Không thể, 5 = 2 + 3
Giải
b) th, vì 6 < 3 + 4
c) thể, 5 < 2 + 4.
4
5
Giải
Bài 9.11: (SGK tr.69)
a) Cho tam giác ABC có AB= 1 cm BC = 7 cm. y tìm độ dài cnh
CA biết rằng đómột số nguyên (cm)
b) Cho tam giác ABC có AB= 2 cm, BC = 6 cm và BC là cạnh lớn nhất.
Hãy tìm độ dài CA, biết rằng đómột số nguyên (cm)
a) Cạnh nhất phải có độ dài 1 (cm). Đặt CA = b (cm)
Theo tính chất thì b số nguyên thỏa mãn 7 1 < b < 7 + 1
hay 6 < b < 8
chỉ có b = 7
Vậy CA = 7 cm.
Giải
Bài 9.11: (SGK tr.69)
a) Cho tam giác ABC có AB= 1 cm BC = 7 cm. y tìm độ dài cnh
CA biết rằng đómột số nguyên (cm)
b) Cho tam giác ABC có AB= 2 cm, BC = 6 cm và BC là cạnh lớn nhất.
Hãy tìm độ dài CA, biết rằng đómột số nguyên (cm)
b) Đặt CA = b số nguyên, b 6
Theo Định lí, b thỏa mãn 6 < 2 + b (tức b > 4)
b = 6 hoặc b = 5.
Vậy CA = 6 cm hoặc CA = 5 cm
Câu 1. Cho ΔABC, em hãy chọn đáp án sai trong các đáp án sau:
I TẬP TRẮC NGHIỆM
A. AB + BC > AC B. BC AB < AC
C. BC - AB < AC < BC + AB D. AB - AC > BC
I TẬP TRẮC NGHIỆM
Câu 2. Dựa vào bất đẳng thứ tam giác, kiểm tra xem bộ ba nào
trong các bộ ba đoạn thẳng độ dài cho sau đây không thể
là ba cạnh của một tam giác
A. 3 cm, 5 cm, 7 cm B. 4 cm, 5 cm, 6cm
C. 2cm, 5 cm, 7 cm D. 3 cm, 5 cm, 6 cm
I TẬP TRẮC NGHIỆM
Câu 3. Cho ΔABC cạnh AB = 10cm và cạnh BC = 7cm.
Tính độ dài cạnh AC biết AC một số nguyên tố lớn hơn 11
A. 17 cm B. 15 cm
C. 19 cm D. 13 cm
I TẬP TRẮC NGHIỆM
Câu 4. Cho tam giác ABC biết AB = 2cm; BC = 7cm cạnh AC
một số tự nhiên lẻ. Chu vi ABC
A. 17 cm B. 18 cm
C. 19 cm D. 16 cm
I TẬP TRẮC NGHIỆM
Câu 5. bao nhiêu tam giác có độ dài hai cạnh 9 cm và
3 cm còn độ dài cạnh thứ ba một số nguyên (đơn vị cm)?
A. 6 B. 4
C. 5 D. 7
VẬN DỤNG
Hoạt động nhóm đôi để hoàn thành bài tập
Cho điểm M nằm trong tam giác ABC. Gọi N là giao điểm của
đường thẳng AM cạnh BC (H.9.18).
a) So sánh MB với MN + NB, từ đó suy ra MA + MB < NA + NB
b) So sánh NA với CA + CN, từ đó suy ra NA + NB < CA + CB
c) Chúng minh MA + MB < CA + CB
Bài 9.12: (SGK tr.69)
Giải
a) Xét MNB ta có:
MB < MN + NB (BĐT tam giác)
MB + MA < MN + NB + MA
Hay MB + MA < NB + NA ( vì M thuộc NA)
b) Xét NCA có:
NA < CN + CA (BĐT tam giác)
NA + NB < CN + NB + CA
Hay NA + NB < CB + CA (vì N thuộc CB)
Giải
c) Ta có MB + MA < NB +NA
NA + NB < CA + CB
MB + MA < NA + NB < CA + CB
MB+ MA < CA + CB
Bài 9.13: (SGK tr.69)
Cho tam giác ABC, điểm D nằm giữa B C. Chứng minh rằng AD
nhỏ hơn nủa chu vi tam giác ABC
Giải
Xét ABD ta :
AD < AB + BD (BĐT tam giác) (1)
Xét ACD ta có:
AD < AC + CD (BĐT tam giác) (2)
Bài 9.13: (SGK tr.69)
Cho tam giác ABC, điểm D nằm giữa B C. Chứng minh rằng AD
nhỏ hơn nủa chu vi tam giác ABC
Giải
Cộng 2 vế của (1) với (2) ta :
2 AD < AB + AC + BD + CD = AB + AC + BC (Vì D nằm giữa B và C)
𝐴𝐷
<
𝐴𝐵
+
𝐴𝐶
+
𝐵𝐶
2
Vậy AD nhỏ hơn nửa chu vi của tam giác ABC
HƯỚNG DẪN VỀ NHÀ
* Ghi nhớ
kiến thức trong bài.
* Hoàn thành các
bài tập trong SBT.
* Chuẩn bị trước
Bài 4 Định lí và
chứng minh một định lí
CẢM ƠN CÁC EM
ĐÃ CHÚ Ý LẮNG NGHE!
| 1/35

Preview text:

CHÀO MỪNG CÁC EM
ĐẾN VỚI BUỔI HỌC NGÀY HÔM NAY! KHỞI ĐỘNG
• Một trạm biến áp và một khu dân cư ở hai
bên bờ sông (H.9.14). Trên bờ sông phía
khu dân cư, hãy tìm một địa điểm C để dựng
một cột điện kéo điện từ cột điện A của trạm
biến áp đến cột điện B của khu dân cư sao
cho tổng độ dài dây dẫn điện cần sử dụng là ngắn nhất. CHƯƠNG IX. QUAN HỆ
GIỮA CÁC YẾU TỐ TRONG MỘT TAM GIÁC
BÀI 33: QUAN HỆ GIỮA BA
CẠNH CỦA MỘT TAM GIÁC
Quan hệ giữa ba cạnh của một tam giác
Bất đẳng thức tam giác.
HĐ 1: Cho hai bộ ba thanh tre nhỏ có độ dài như sau
Bộ thứ nhất: 10 cm, 20cm, 25cm
Bộ thứ hai: 5cm, 15cm, 25cm
Em hãy ghép và cho biết bộ nào ghép được thành một tam giác
Bộ thứ nhất là ghép được thành hình tam giác.
Bất đẳng thức tam giác.
HĐ 2: Với bộ ba thanh tre ghép lại được thành một tam giác
trong HĐ1, em hãy so sánh độ dài cả thanh bất kỳ với tổng
độ dài của hai thanh còn lại Giải Có: 20 + 25 = 50 > 10 10 + 20 = 30 > 25 10 + 25 = 35 > 20 Em hiểu thế nào là bất đẳng thức?
→ Khi số a bé hơn số b, người ta viết a < b và gọi đó là một bất đẳng thức
Khi đó ta cũng có thể viết b > a và nói b lớn hơn a. KẾT LUẬNĐịnh lí:
Trong một tam giác, độ dài của một cạnh bất kì

luôn nhỏ hơn tổng độ dài hai cạnh còn lại GT 𝛥𝐴𝐵𝐶 KL AB < AC + BC AC < AB + BC BC < AB + AC CHÚ Ý
Nếu ba độ dài a, b, c không thỏa mãn
một bất đẳng thức tam giác thì
chúng không phải là độ dài ba cạnh của một tam giác.
TÍNH CHẤT
Trong một tam giác, độ dài của môt cạnh
bất kì luôn lớn hơn hiệu độ dài hai cạnh còn lại.
Nhận xét:
Nếu kí hiệu a, b, c là độ dài ba cạnh tùy ý của một tam giác thì: b – c < a < b + c TRANH LUẬN TRAO ĐỔI CẶP ĐÔI Ý kiến của em thì sao? Trả lời Bạn Vuông sai.
Vì theo định lí độ dài của một cạnh bất kì luôn nhỏ hơn tổng độ dài hai cạnh còn lại.
Vì 4 > 2 + 1 không thoả mãn điều kiện định lí
⇒ Ba đoạn thẳng 1 cm, 2cm, 4 cm không thể ghép được thành một tam giác. CHÚ Ý
Để kiểm tra ba độ dài có là độ dài ba cạnh của một
tam giác hay không, ta chỉ cần so sánh độ dài lớn nhất
có nhỏ hơn tổng hai độ dài còn lại hoặc độ dài nhỏ
nhất có lớn hơn hiệu hai độ dài còn lại hay không. Ví dụ (SGK – tr67)
Hãy kiểm tra ba độ dài nào sau đây không thể là độ dài ba cạnh
của một tam giác. Với ba bộ còn lại, hãy vẽ tam giác nhận ba độ
dài đó làm độ dài ba cạnh. a) 2 cm, 4 cm, 7 cm b) 2 cm, 3 cm, 4 cm. Giải
a) Ta có: 2 + 4 = 6 < 7, ba độ dài 2 cm, 4 cm, 7 cm không thoả mãn
một bất đẳng thức tam giác nên không là độ dài ba cạnh của một tam giác. Giải b) Ta có: 2 > 4 - 3 = 1
Ba độ dài 2 cm, 3 cm, 4 cm thoả mãn điều kiện trong chú ý trên nên
đây có thể là độ dài ba cạnh của một tam giác.
Ta dùng thước và compa vẽ được tam
giác ABC có độ dài ba cạnh là 2 cm, 3
cm,4 cm như Hình 9.16 nên ba độ dài 2
cm, 3 cm, 4 cm đúng là độ dài ba cạnh của một tam giác. LUYỆN TẬP
Hỏi ba độ dài nào sau đây không thể là độ dài của ba cạnh trong tam giác?
Vì sao? Hãy vẽ tam giác nhận ba độ dài còn lại làm ba cạnh a) 5 cm, 4 cm, 6 cm b) 3 cm, 6 cm, 10 cm Giải a) Có 6 < 5 + 4 = 9
⇒ Ba độ dài 5 cm, 4 cm, 6 cm là độ dài
ba cạnh của một tam giác. LUYỆN TẬP
Hỏi ba độ dài nào sau đây không thể là độ dài của ba cạnh trong tam giác?
Vì sao? Hãy vẽ tam giác nhận ba độ dài còn lại làm ba cạnh a) 5 cm, 4 cm, 6 cm b) 3 cm, 6 cm, 10 cm Giải
b) Ba cạnh 3 cm, 6 cm, 10 cm không thể là ba cạnh của tam giác vì 10 > 3 + 6 = 9. VẬN DỤNG
Trở lại tình huống mở đầu, em hãy giải thích
vì sao nếu dựng cột điện ở vị trí C trên đoạn
thẳng AB thì tổng độ dài dây dẫn điện cần
sử dụng là ngắn nhất. Giải
- C nằm giữa A và B ⇒ CA + CB = AB (không xét khi C trùng với A hoặc B).
- C thuộc đường thẳng AB nhưng không thuộc đoạn thẳng AB ⇒ CA + CB > AB
- Khi C không thuộc đường thẳng AB thì theo Định lí 1, CA + CB > AB. LUYỆN TẬP
Bài 9.10: (SGK – tr.69)
Cho các bộ ba đoạn thẳng có độ dài như sau:
a) 2 cm, 3 cm, 5 cm; b) 3 cm, 4 cm, 6 cm; c) 2 cm,4 cm, 5 cm;
Hỏi bộ ba nào là không thể là độ dài ba cạnh của một tam giác?
Vì sao ? Với mỗi bộ ba còn lại, hãy vẽ một tam giác có độ dài
ba cạnh được cho trong bộ ba đó Giải a) Không thể, vì 5 = 2 + 3 b) Có thể, vì 6 < 3 + 4 5
c) Có thể, vì 5 < 2 + 4. 4
Bài 9.11: (SGK – tr.69)
a) Cho tam giác ABC có AB= 1 cm và BC = 7 cm. Hãy tìm độ dài cạnh
CA biết rằng đó là một số nguyên (cm)
b) Cho tam giác ABC có AB= 2 cm, BC = 6 cm và BC là cạnh lớn nhất.
Hãy tìm độ dài CA, biết rằng đó là một số nguyên (cm) Giải
a) Cạnh bé nhất phải có độ dài 1 (cm). Đặt CA = b (cm)
Theo tính chất thì b là số nguyên thỏa mãn 7 – 1 < b < 7 + 1
hay 6 < b < 8 ⇒ chỉ có b = 7 Vậy CA = 7 cm.
Bài 9.11: (SGK – tr.69)
a) Cho tam giác ABC có AB= 1 cm và BC = 7 cm. Hãy tìm độ dài cạnh
CA biết rằng đó là một số nguyên (cm)
b) Cho tam giác ABC có AB= 2 cm, BC = 6 cm và BC là cạnh lớn nhất.
Hãy tìm độ dài CA, biết rằng đó là một số nguyên (cm) Giải
b) Đặt CA = b là số nguyên, b ≤ 6
Theo Định lí, b thỏa mãn 6 < 2 + b (tức b > 4) ⇒ b = 6 hoặc b = 5.
Vậy CA = 6 cm hoặc CA = 5 cm
BÀI TẬP TRẮC NGHIỆM
Câu 1. Cho ΔABC, em hãy chọn đáp án sai trong các đáp án sau: A. AB + BC > AC B. BC – AB < AC
C. BC - AB < AC < BC + AB D. AB - AC > BC
BÀI TẬP TRẮC NGHIỆM
Câu 2. Dựa vào bất đẳng thứ tam giác, kiểm tra xem bộ ba nào
trong các bộ ba đoạn thẳng có độ dài cho sau đây không thể
là ba cạnh của một tam giác A. 3 cm, 5 cm, 7 cm B. 4 cm, 5 cm, 6cm C. 2cm, 5 cm, 7 cm D. 3 cm, 5 cm, 6 cm
BÀI TẬP TRẮC NGHIỆM
Câu 3. Cho ΔABC có cạnh AB = 10cm và cạnh BC = 7cm.
Tính độ dài cạnh AC biết AC là một số nguyên tố lớn hơn 11 A. 17 cm B. 15 cm C. 19 cm D. 13 cm
BÀI TẬP TRẮC NGHIỆM
Câu 4. Cho tam giác ABC biết AB = 2cm; BC = 7cm và cạnh AC
là một số tự nhiên lẻ. Chu vi ABC là A. 17 cm B. 18 cm C. 19 cm D. 16 cm
BÀI TẬP TRẮC NGHIỆM
Câu 5. Có bao nhiêu tam giác có độ dài hai cạnh là 9 cm và
3 cm còn độ dài cạnh thứ ba là một số nguyên (đơn vị cm)? A. 6 B. 4 C. 5 D. 7 VẬN DỤNG
Hoạt động nhóm đôi để hoàn thành bài tập
Bài 9.12: (SGK – tr.69)
Cho điểm M nằm trong tam giác ABC. Gọi N là giao điểm của
đường thẳng AM và cạnh BC (H.9.18).
a) So sánh MB với MN + NB, từ đó suy ra MA + MB < NA + NB
b) So sánh NA với CA + CN, từ đó suy ra NA + NB < CA + CB
c) Chúng minh MA + MB < CA + CB Giải a) Xét ∆MNB ta có:
MB < MN + NB (BĐT tam giác) ⇒ MB + MA < MN + NB + MA
Hay MB + MA < NB + NA ( vì M thuộc NA) b) Xét ∆NCA có:
NA < CN + CA (BĐT tam giác) ⇒ NA + NB < CN + NB + CA
Hay NA + NB < CB + CA (vì N thuộc CB) Giải c) Ta có MB + MA < NB +NA NA + NB < CA + CB
⇒ MB + MA < NA + NB < CA + CB ⇒ MB+ MA < CA + CB
Bài 9.13: (SGK – tr.69)
Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng AD
nhỏ hơn nủa chu vi tam giác ABC Giải Xét ∆ABD ta có:
AD < AB + BD (BĐT tam giác) (1) Xét ∆ACD ta có:
AD < AC + CD (BĐT tam giác) (2)
Bài 9.13: (SGK – tr.69)
Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng AD
nhỏ hơn nủa chu vi tam giác ABC Giải
Cộng 2 vế của (1) với (2) ta có:
2 AD < AB + AC + BD + CD = AB + AC + BC (Vì D nằm giữa B và C) 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶 ⇒ 𝐴𝐷 < 2
Vậy AD nhỏ hơn nửa chu vi của tam giác ABC
HƯỚNG DẪN VỀ NHÀ * Chuẩn bị trước * Ghi nhớ * Hoàn thành các
Bài 4 – Định lí và kiến thức trong bài. bài tập trong SBT.
chứng minh một định lí CẢM ƠN CÁC EM
ĐÃ CHÚ Ý LẮNG NGHE!
Document Outline

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35