






Preview text:
Học để lập nghiệp
____________________________________________________________________________________________________________________________________________________________________________________________
KHÓA HỌC: TOÁN CAO CẤP
– GIẢI TÍCH 1 BÀI 1: GI I H Ớ
ẠN CỦA HÀM S - Ố ÁP ÁN BTTL Đ 5x 3 − x 5x 3x − 2 − − . . 2sin .sin − 1. cos x cos 4x
2 2 15 2 2 lim = lim = lim = 2 2 2 x→ 0 x→ 0 x→ 0 x x x 2 5x 5x −3x −3x
(do khi x →0 ta có sin ). 2 2 2 2 3 3 ( x + arcsin x arcsin x 3 ) ln( ) ln(1+ + − ) ln x arcsin x ln x 2. x x lim = lim = lim = L + 2 + 2 + 2 x→ 0 x x→ 0 x x→ 0 x 3 3 arcsin x arcsin x 3 3 arcsin x x
Khi x →0, ln(1+ ) L = lim = lim = 1. x x + 3 + 3 x→ 0 x→ 0 x x 1 2 3.
4x + 1 − 1
(1+ 4x) − 1 lim = lim = L
x→ 0 ln(1+ 3x) x→0 ln(1+ 3x) 1 1 Khi x → 0 , 2
(1+ 4x) − 1 2 2x 2 L = lim = . x→ 0 3x 3 1 −1 + − − − − 4. ln(1 x) x + x 1 x 1 1 lim =lim
(L' Hospital) =lim = lim = . 2 x→ 0 x→ 0 x→ 0 x 2x 2x(1+ x) x 0 → 2(1+ x) 2
Chú ý: nếu thay tương đương ln(1+ x) y nhé . là sai luôn đấ 3 3 − − − − 5. cos x cos x ( cos x 1) ( cos x 1) lim = lim ( do khi 2 x → 0,sin x ) 2 2 x→ 0 x→ 0 sin x x 3 cosx −1 cos x −1 cos x −1 cos x −1 = lim − = lim − = L 2 2 → → 2 2 x 0 x 0 x x 2 3 3 x ( cos x 1 + )
x ( cos x + cos x 1 + ) 2 2 − x
Khi x → 0 ta có : cos x −1 , 2 2 2 x − / 2 x − / 2 1 − L = lim − = . 2 2
x→ 0 2x 3x 12
____________________________________________________________________________________________________________________________________________________________________________________________ www.edemy.vn 1
Học để lập nghiệp
____________________________________________________________________________________________________________________________________________________________________________________________ x − 6. e 1 x 1 lim = lim =
(thay thế tương đương khi x
x → 0: e −1 ).
x→ 0 arctan( 2x) x→ 0 2x 2 − 7. x sinx lim
x →+ x − arctan x −π π
Khi x → + ta có : −1 sinx 1;
arctanx , hay nói cách khác là đại lượng x r t ấ lớn so với 2 2
đại lượng sinx và arctanx . (x − sinx) x− sinx x lim = lim = 1. x →+ x x − arctanx →+ x ln(cos 3x) ln 1
+(cos 3x −1) − 8. cos 3x 1 L = lim = lim = lim α α α x 0 → x→0 x 0 ax ax → ax 2 2 ( − 3x) / 2 9 − x = lim = lim . . α α x 0 → x 0 ax → 2a x −9
Vậy dễ thấy để L = 1 thì a = và α = 2. 2 9. − 3 lnx 1/ x 1 3 limx .ln x =lim =lim
(L' Hospital) =lim x = 0 . 3 4 x→0 x→0 x→0 x→0 1/ x 3 − / x 3 ax bx ax bx − − 10. e e ae be lim = lim
(L' Hospital) = a − b. x 0 → x 0 x → 1 ax bx ax bx ax bx 11. e −e e −e e − e lim = lim = lim x 0 → x 0 sinax − sinbx → (a +b)x (a −b)x x 0 → (a −b)x 2cos .sin 2. 2 2 2 ax bx 1 e − e a − b = .lim = = 1. x 0 a − b → x a − b (a+ b)x (a− b)x (a− b)x
Chú ý khi x → 0 ta có cos 2 2 2 100 99 − + − − 12. x 2x 1 100x 2 100 2 49 lim = lim (L' Hospital) = = . 50 49 x 1 → x 1
x −2x +1 → 50x − 2 50 − 2 24 + + 13. x x x x lim = lim
= 1 ( lấy tương đương khi x → + ) . x →+ x x+ 1 →+ x
____________________________________________________________________________________________________________________________________________________________________________________________ 2 www.edemy.vn
Học để lập nghiệp
____________________________________________________________________________________________________________________________________________________________________________________________ πx 2− x −1 4
14. Cách 1 (tay to): lim(2− x)tan = lim = lim (L' Hospital) = . x→2 x 2 → πx x→2 −1 π 4 π cot . 4 πx 2 4 sin 4 Cách 2: (sử dụng công th thay th ức lượng giác để ế
tương đương 1 cách khéo léo) : πx π(x− 2) π 2 − x π 1 lim(2 −x)tan = lim(2 −x)tan + = lim
(chú ý tan(α + ) = −cot α = − ) x→ 2 x→ 2 4 4 2 x 2 → π( x − 2) − tan 2 tanα 4 2− x 4 = lim = . x→2 π( x − 2) π − 4 2 + + 15. x 4 x lim x →+ 5 4 x+ x + 2x Sử dụng quy t c ng ắ t b ắ ỏ VLC b c cao, khi ậ x → + ta có:
( 2x+4+ x) 2 x + 4 + x x lim = lim = 1. x →+ 5 4 x →+ + + x x x 2x 2 16.
(x − 3x+ 2)sin(x− 1) L = lim x 1 → 1+ cos(πx)
Khi x → 1 ta có : 2
x − 3x + 2 = (x − 1)(x − 2) 2 −(x− 1) L =lim .
x→1 1 +cos(πx)
Đến đây các bạn có thể áp dụng L'Hospital được rồi, nhưng nếu khéo léo dùng thay thế tương 2 2 − đương thì cũng π ( x 1)
không cần : 1+ cos(πx) = 1 + cos π(x − 1) + π = 1− cosπ(x − 1) ( x → 1) 2 2 2 −(x− 1) −(x− 1) −2 L = lim = lim = . 2 2 2 x→ 1 + x→1 1 cos(πx) π ( x −1) π 2 x − − 17. 1 1 1 e 1 tan x lim cot x − = lim − = lim x x x x 0 → x 0 → x 0 e −1 tan x e −1 → (e −1)tanx x
e − 1− tan x = lim
(thay thế tương đương) 2 x 0 → x
____________________________________________________________________________________________________________________________________________________________________________________________ www.edemy.vn 3
Học để lập nghiệp
____________________________________________________________________________________________________________________________________________________________________________________________ x 1 e − x 2 x 2 2 cos x e cos x −1 e cos x −1 = lim
(L' Hospital)= lim = lim 2 x 0 → x 0 → x 0 2x 2xcos x → 2x x 2
e (cos x − 2cos x.sin x) 1 = lim (L' Hospital)= . x 0 → 2 2 18. 1 1 arcsinx − x arcsinx − x lim − = lim = lim (thay thế tương đương) 2 x 0 → x 0 → x 0 x arcsinx x arcsinx → x 1 −1 2 2 1 − x
1 − 1 − x = lim = lim = L x 0 → x 0 → 2 2x 2x 1− x 1 2 1 x
Khi x → 0 ta có : 2 2 2 2
1− 1− x = − (1− x ) − 1 ) = 2 2 2 2
1 − 1 −x x / 2 L =lim = lim =0 . x 0 → 2 x 0 → − 2x 2x 1 x + − − 19. + − − = →+( ) 3 2 3 3 3 2 x x 1 x lim x x 1 x lim 2 x x →+ 3 3 2 3 3 2 2
x + x − 1 + x x + x − 1+ x 2 x − 1 1 = lim
= (thay thế tương đương mẫu số khi x → + ). 2 x→+ 3x 3 + + − − + 20. (x x 1) (x x 1) lim
x + x +1 − x − x +1 = lim = L x →−( ) 2 2 2 2 x →− 2 2
x +x +1 + x −x +1
Khi x → − ta chú ý như sau : 2 x + x +1
(do x → − thì x 0 ). 2x L = lim = 1 − . x→− 2 − x − + − + 21. x 1 x lnx x 1 xln x x 1 lim − = lim = lim x 1 → x 1 → x 1
x− 1 lnx (x− 1)ln x
→ (x− 1)ln(1+ (x− 1))
x lnx− x+ 1 = lim
(khi x → 1 ta có ln(1+ (x − 1)) ) 2 x→ 1 (x − 1)
xln x− x+ 1 lnx 1/ x 1 = lim = lim = lim
= (sử dụng quy t c L'Hospital 2 l ắ n). ầ 2 x→ 1 x→ 1 x→ 1 (x− 1) 2(x 1 − ) 2 2
____________________________________________________________________________________________________________________________________________________________________________________________ 4 www.edemy.vn
Học để lập nghiệp
____________________________________________________________________________________________________________________________________________________________________________________________ lim v( x ).lnu( x )
Chú ý: với giới h n
ạ dạng mũ ta có công thức chung : v( x) x x 0 lim u(x) = e → . Đặc biệt với d ng ạ 1 x x → 0
ta thay thế tương đương :lnu(x) = ln 1
+(u(x) −1) ). 1 1 x x x 2 3 + 1 1 lim x. 1 − x x x →+ 2 + 22. 2 3 L lim = e = e . x →+ 2 1 1 x x 2 + 3 t t − 1 2 + 3 1 1 2 − 1 x x 2 + 3 2 Xét L = lim x. − 1 = lim = lim (đ t ặ t = 1/ x) x x 2 1/ x + →+ →+ t→ 0 t t t t t
2 + 3 − 2 2 ln 2 + 3 ln 3 ln 2 + ln 3 = lim = lim (L' Hospital) = t 0 + t 0 2t + → → 2 2 x 1 1 ln2+ ln3 x x 2 + 3 2 ln2+ln3 lim = e = e = 6 . x →+ 2 1 x 23. x 1 lim − + x 0 →
1− x ln x 1 x Đây là giớ x 1
i hạn dạng 0 thì lim − =
0 chứ đừng cắm đầu làm nhé (chú ý 0 không phải x 0 + →
1− x ln x là dạng vô định nhé) . lim sinx.ln(tanx) 24. lim = = + (tan x )sinx x 0+ → L e e x 0 →
Xét L = lim sinx.ln(tan x) = lim x.ln(tanx) (thay thế VCB) x 0+ x 0+ → → 2 1/ cos x 2 2 ln(tanx) x − x tan x − = lim = lim
(L' Hospital)= lim = lim = 0 (thay thế VCB) + + 2 + 2 + 2 x 0 → 1/ x x 0 → − x 0 → x 0 1/ x cos x.tanx → 1 .x
lim (tanx)sinx 0 = e = 1 . x 0 + → 1 1 + − 25. lim l ( n e + 2 ) lim . l ( n e 2x) 1 sinx x→0 sinx L x = e = e x 0 →
____________________________________________________________________________________________________________________________________________________________________________________________ www.edemy.vn 5
Học để lập nghiệp
____________________________________________________________________________________________________________________________________________________________________________________________ l ( n e+ 2 ) x − 1 l ( n e+ 2 ) x − 1 Xét L = lim = lim (thay thế VCB) x→ 0 x→0 sinx x 2 / (e + 2x) 2 = lim (L' Hospital) = . x 0 → 1 e lim l
n (e + 2x ) 1 2 sinx e = e . x→ 0 −
26. lim(tanx)tan2x lim tan2x.(tanx 1) x π → /4 L = e = e π x →4 2 tanx −1 1 / cos x
Xét L = lim tan2x.(tanx − 1) = lim = lim (L' Hospital) 2 x→ π/ 4 x→ π/4 x→ π/4 cot 2x −2 / sin 2x 2 sin 2x = lim
= −1 lim (tanx )tan2x 1 = e− = 1/ e . 2 → π x π/ 4 −2cos x x→ 4 x− 1 2 x 1 + + 27. x 1 lim = 1 2 x → x − 1 Đây là 1 1 chứ không ph i d
ả ạng vô định 1 nhé. 1 1 x
1 x−3 lim 1 − lim 28. x
x→3 x−3 − 3
x→3 x−3 3 1/3 3 x 3 lim( ) = e = e = e = e . x 3 → 3 29. lim 2cosx.ln(tanx) 2cosx x π → /2 L lim (tanx) =e =e x π → /2 π
Xét L = lim 2cos x.ln(tanx) = lim 2sin( − x).ln(tanx) x→ π/2 x→ π/ 2 2 π
= lim 2( − x).ln(tanx) (thay thế VCB) x π/ → 2 2 2 1/ cos x ln(tan x) tan x = lim = lim ( L' Hospital) 2 x π → /2 x π → /2 1/ (π− 2x) 2 / (π− 2x) 2 2 2 (π − 2x) (π − 2x) (π − 2x) = lim = lim
(tan x = sin x / cos x) = lim 2 x π → / 2 x π → /2 x π → / 2 2tan x.cos x 2sin x.cos x sin 2x 2 2 (π − 2x) (π − 2x) = lim
(sin(α − π) = − sinα) = lim (thay thế VCB) x π → /2 π x π → /2 π −sin2(x − ) 2 − (x − ) 2 2 2cosx 0
= lim (π− 2x) = 0 lim (tan x) = e = 1. x π → /2 x π → /2
____________________________________________________________________________________________________________________________________________________________________________________________ 6 www.edemy.vn
Học để lập nghiệp
____________________________________________________________________________________________________________________________________________________________________________________________ − 30. limtanx.ln(1 cosx) tanx x 0 → L lim(1 −cos x) = e = e x 0 →
Xét L = limtanx.ln(1− cos x) = lim x.ln(1− cos x) (thay thế VCB) x→ 0 x→ 0 2 ln(1− cos x)
sin x / (1− cos x) −x sin x = lim = lim
( L' Hospital) = lim 2 x 0 → x→0 x 0 1/ x 1 − / x → 1− cos x 3 x − tanx 0 = lim
= 0 lim(1− cos x) = e = 1 2 x 0 → x 0 x / 2 →
____________________________________________________________________________________________________________________________________________________________________________________________ www.edemy.vn 7