H l p nghi p ọc để
____________________________________________________________________________________________________________________________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________________
www.edemy.vn 1
KHÓA H C: TOÁN CAO C P I TÍCH 1 GI
BÀI 1: I H N C A HÀM S - ÁP ÁN BTTL GI Đ
1.
2 2 2
x 0 x 0 x 0
5x 3x
5x 3x
2. .
2sin .sin
2 2
cos x cos 4x 15
2 2
lim lim lim
2
x x x
= = =
(do khi
x 0
ta có
5x 5x 3x 3x
sin
2 2 2 2
).
2.
( )
3 3
3
2 2 2
x 0 x 0 x 0
x arcsin x arcsin x
ln( ) ln(1 )
ln x arcsin x lnx
x x
lim lim lim L
x x x
+ + +
+
+
+
= = =
Khi
x 0
,
3 3
arcsin x arcsin x
ln(1 )
x x
+
.
3.
( ) ( )
1
2
x 0 x 0
4x 1 1 (1 4x) 1
lim lim L
ln 1 3x ln 1 3x
+ +
= =
+ +
Khi
x 0
,
1
2
1
(1 4x) 1
2
+
x 0
2x 2
L lim
3x 3
= =
.
4.
2
x 0 x 0 x 0
1
1
ln(1 x) x x
1 x
lim lim (L' Hospital) lim
2x 2x(1 x)x
+
+
= =
+
x 0
1 1
lim
2(1 x) 2
= =
+
.
Chú ý: nếu thay tương đương
ln(1 x)+
y nhé . là sai luôn đấ
5.
3 3
2 2
x 0 x 0
cos x cos x ( cos x 1) ( cos x 1)
lim lim
sin x x
=
( do khi
2
x 0,sin x
)
3
2 2 2
2
x 0 x 0
2
3 3
cosx 1 cos x 1 cosx 1 cosx 1
lim lim L
x x
x ( cosx 1)
x ( cosx cos x 1)
= = =
+
+ +
Khi
x 0
ta có :
2
2
x
cos x 1
2
,
2 2
2 2
x 0
x / 2 x / 2 1
L lim
12
2x 3x
= =
.
Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________________
2 www.edemy.vn
6.
( )
x
x 0 x 0
e 1 x 1
lim lim
2x 2
arctan 2x
= =
(thay th ế tương đương khi
x
x 0:e 1
).
7.
x
x sinx
lim
x arctanx
→+
Khi
x +
ta có :
π π
1 sinx 1; arctanx
2 2
, hay nói cách khác đại lượng
x
r t l n so v i
đại lượng
sinx
arctanx
.
(x sinx)
x x
x sinx x
lim lim 1
x arctanx x
→+ →+
= =
.
8.
α α α
x 0 x 0 x 0
ln 1 (cos 3x 1)
ln(cos3x) cos 3x 1
L lim lim lim
ax ax ax
+
= = =
2 2
α α
x 0 x 0
(3x) / 2 9 x
lim lim .
2aax x
= =
.
Vy d thấy để
L 1=
thì
9
a
2
=
α 2=
.
9.
3 3
3 4
x 0 x 0 x 0 x 0
lnx 1/ x 1
limx .lnx lim lim (L' Hospital) lim x 0
31/ x 3/ x
= = = =
.
10.
ax bx ax bx
x 0 x 0
e e ae be
lim lim (L' Hospital) a b
x 1
= =
.
11.
ax bx ax bx ax bx
x 0 x 0 x 0
e e e e e e
lim lim lim
(a b)x (a b)x (a b)x
sinax sinbx
2cos .sin 2.
2 2 2
= =
+
ax bx
x 0
1 e e a b
.lim 1
a b x a b
= = =
.
Chú ý khi
x 0
ta có
(a b)x (a b)x (a b)x
cos
2 2 2
+
12.
100 99
50 49
x 1 x 1
x 2x 1 100x 2 100 2 49
lim lim (L' Hospital)
50 2 24
x 2x 1 50x 2
+
= = =
+
.
13.
x x
x x x x
lim lim 1
x 1 x
→+ →+
+ +
= =
+
( lấy tương đương khi
x +
).
H l p nghi p ọc để
____________________________________________________________________________________________________________________________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________________
www.edemy.vn 3
14. Cách 1 (tay to):
x 2 x 2 x 2
2
πx 2 x 1 4
lim(2 x)tan lim lim (L' Hospital)
πx 1 π
4 π
cot .
4 4
πx
sin
4
= = =
.
Cách 2: (s d ng công th thay th ức lượng giác để ế tương đương 1 cách khéo léo) :
x 2 x 2
πx π(x 2) π
lim(2 x)tan lim(2 x)tan
4 4 2
= +
x 2
2 x
lim
π(x 2)
tan
4
=
(chú ý
π 1
tan(α ) cot α
2 tanα
+ = =
)
x 2
2 x 4
lim
π(x 2)
π
4
= =
.
15.
2
5
4
x
x 4 x
lim
x x 2x
→+
+ +
+ +
S d ng quy t c ng t b VLC b c cao, khi
x +
ta có:
( )
2
x 4 x+ +
.
16.
2
x 1
(x 3x 2)sin(x 1)
L lim
1 cos(πx)
+
=
+
Khi
x 1
ta có :
2
x 3x 2 (x 1)(x 2) + =
2
x 1
(x 1)
L lim
1 cos(πx)
=
+
.
Đến đây các bạ ụng L'Hospital đượ ồi, nhưng nế tương n th áp d c r u khéo léo dùng thay thế
đương thì cũng không cn :
2 2
π (x 1)
1 cos(πx) 1 cos π(x 1) π 1 cosπ(x 1) (x 1)
2
+ = + + =
2 2
2 2 2
x 1 x 1
(x 1) (x 1) 2
L lim lim
1 cos(πx)
π (x 1) π
2
= = =
+
.
17.
x
x x x
x 0 x 0 x 0
1 1 1 e 1 tanx
lim cot x lim lim
tan xe 1 e 1 (e 1)tanx
= =
x
2
x 0
e 1 tan x
lim
x
=
(thay th ế tương đương)
Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________________
4 www.edemy.vn
x
x 2 x 2
2
2
x 0 x 0 x 0
1
e
e cos x 1 e cos x 1
cos x
lim (L' Hospital) lim lim
2x 2x
2xcos x
= = =
x 2
x 0
e (cos x 2cos x.sin x) 1
lim (L' Hospital)
2 2
= =
.
18.
2
x 0 x 0 x 0
1 1 arcsinx x arcsinx x
lim lim lim
x arcsinx xarcsinx
x
= =
(thay th ế tương đương)
2
2
2x 0 x 0
1
1
1 1 x
1 x
lim lim L
2x
2x 1 x
= = =
Khi
x 0
ta có :
1
2
2 2 2
2
1 x
1 1 x (1 x ) 1 )
2 2
= =
2 2
2x 0 x 0
1 1 x x / 2
L lim lim 0
2x
2x 1 x
= = =
.
19.
( )
3 2 3
3
3 2
2
x x
3 33 2 3 2 2
x x 1 x
lim x x 1 x lim
x x 1 x x x 1 x
→+ +
+
+ =
+ + + +
2
2
x
x 1 1
lim
3
3x
→+
= =
(thay th u s khi ế tương đương mẫ
x +
).
20.
( )
2 2
2 2
2 2x x
(x x 1) (x x 1)
lim x x 1 x x 1 lim L
x x 1 x x 1
→− →−
+ + +
+ + + = =
+ + + +
Khi
x −
ta chú ý như sau :
2
x x 1+ +
(do
x −
thì
x 0
).
x
2x
L lim 1
2x
→−
= =
.
21.
x 1 x 1 x 1
x 1 xlnx x 1 xln x x 1
lim lim lim
x 1 lnx (x 1)ln x (x 1)ln(1 (x 1))
+ +
= =
+
2
x 1
xlnx x 1
lim
(x 1)
+
=
(khi
x 1
ta có
ln(1 (x 1))+
)
2
x 1 x 1 x 1
xln x x 1 lnx 1/ x 1
lim lim lim
2(x 1) 2 2
(x 1)
+
= = = =
d ng quy t c L'Hospital 2 l n). (s
H l p nghi p ọc để
____________________________________________________________________________________________________________________________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________________
www.edemy.vn 5
Chú ý: v i gi i h n d ạng mũ ta có công thức chung :
x x
0
0
lim v( x ).lnu( x )
v( x )
x x
lim u(x) e
=
. Đặc bit v i d ng
1
ta thay th ế tương đương :
lnu(x) ln 1 (u(x) 1)= +
).
22.
1 1
x x
x
x
2 3
1 1
lim x. 1
2
x x
L
x
2 3
lim e e
2
→+
+
→+
+
= =
.
Xét
1 1
x x
t t
1 1
x x
x x
t 0
2 3
1
2 3
1
2
2
2 3
L lim x. 1 lim lim
2 1/ x t
+
→+ +
+
+
+
= = =
t (đặ
t 1/ x=
)
t t t t
t 0 t 0
2 3 2 2 ln2 3 ln 3 ln2 ln 3
lim lim (L' Hospital)
2t 2 2
+ +
+ + +
= = =
x
1 1
ln2 ln3
x x
ln2 ln3
2
x
2 3
lim e e 6
2
+
+
→+
+
= = =
.
23.
1
x
x 0
x 1
lim
1 x lnx
+
Đây là giới h n d ng
0
thì
1
x
x 0
x 1
lim 0
1 x lnx
+
=
ch đừng cắm đầu làm nhé (chú ý
0
không phi
là d nh nhé ạng vô đị ).
24.
( )
x 0
lim sinx.ln(tanx )
sinx
L
x 0
lim tanx e e
+
+
= =
Xét
x 0 x 0
L lim sinx.ln(tanx) lim x.ln(tanx)
+ +
= =
(thay th VCB) ế
2
2 2
2 2 2
x 0 x 0 x 0 x 0
1/ cos x
ln(tanx) x x
tanx
lim lim (L' Hospital) lim lim 0
1/ x
1/ x cos x.tanx 1 .x
+ + + +
= = = = =
(thay th VCB) ế
( )
sinx
0
x 0
lim tanx e 1
+
= =
.
25.
( )
( )
x 0
11
lim . ln e 2x 1
L
sinxsinx
x 0
lim ln e 2x e e
+
+ = =
Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________________
6 www.edemy.vn
Xét
( ) ( )
x 0 x 0
ln e 2x 1 ln e 2x 1
L lim lim
sinx x
+ +
= =
(thay th VCB) ế
x 0
2/ (e 2x) 2
lim (L' Hospital)
1 e
+
= =
.
( )
21
esinx
x 0
lim ln e 2x e
+ =
.
26.
( )
x π/4
lim tan2x.(tanx 1)
tan2x
L
π
x
4
lim tanx e e
= =
Xét
2
2
x π/ 4 x π/4 x π/ 4
tanx 1 1/ cos x
L lim tan2x.(tanx 1) lim lim (L' Hospital)
cot 2x
2 / sin 2x
= = =
( )
2
tan2x
1
2
π
x π/4
x
4
sin 2x
lim 1 lim tanx e 1/ e
2cos x
= = = =
.
27.
x 1
2
x 1
2
x
x 1
lim 1
x 1
+
→
+
=
Đây là
1
1
không ph i dch ạng vô định
1
nhé.
28.
x 3 x 3
1 x 1 x 3
1
lim 1 lim
x 3 3 x 3 3
1/3 3
x 3
x 3
x
lim( ) e e e e
3



= = = =
.
29.
x π/2
lim 2cos x.ln(tanx)
2cosx L
x π/2
lim (tanx) e e
= =
Xét
x π/2 x π/ 2
π
L lim 2cosx.ln(tanx) lim 2sin( x).ln(tanx)
2
= =
x π/2
π
lim 2( x).ln(tanx)
2
=
(thay th VCB) ế
2
2
x π/2 x π/2
1/ cos x
ln(tanx)
tanx
lim lim ( L' Hospital)
1/ (π 2x)
2 / (π 2x)
= =
2 2 2
2
x π/ 2 x π/2 x π/ 2
(π 2x) (π 2x) (π 2x)
lim lim (tanx sin x / cos x) lim
2sin x.cos x sin 2x
2tanx.cos x
= = = =
2 2
x π/2 x π/ 2
(π 2x) 2x)
lim (sin(α π) sin α) lim
π π
sin2(x ) 2(x )
2 2
= = =
(thay VCB) thế
2cosx 0
x π/ 2 x π/ 2
lim (π 2x) 0 lim (tan x) e 1.
= = = =
H l p nghi p ọc để
____________________________________________________________________________________________________________________________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________________
www.edemy.vn 7
30.
x 0
limtanx.ln(1 cosx)
tanx L
x 0
lim(1 cosx) e e
= =
Xét
x 0 x 0
L limtanx.ln(1 cosx) lim x.ln(1 cosx)
= =
(thay th VCB) ế
2
2
x 0 x 0 x 0
ln(1 cosx) sin x / (1 cos x) x sinx
lim lim (L' Hospital) lim
1/ x 1 cos x
1/ x
= = =
3
tanx 0
2
x 0 x 0
x
lim 0 lim(1 cos x) e 1
x / 2
= = = =

Preview text:


Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________
KHÓA HC: TOÁN CAO CP
GII TÍCH 1 BÀI 1: GI I H
N CA HÀM S - ÁP ÁN BTTL Đ 5x   3x 5x 3x  − 2 − − . . 2sin .sin   − 1. cos x cos 4x
2   2 15 2 2 lim = lim = lim = 2 2 2 x0 x0 x0 x x x 2 5x 5x3x 3x
(do khi x 0 ta có sin ). 2 2 2 2 3 3 ( x + arcsin x arcsin x 3 ) ln( ) ln(1+ + − ) ln x arcsin x ln x 2. x x lim = lim = lim = L + 2 + 2 + 2 x0 x x0 x x0 x 3 3 arcsin x arcsin x 3 3 arcsin x x
Khi x 0, ln(1+ )L = lim = lim = 1. x x + 3 + 3 x0 x0 x x 1 2 3.
4x + 1 1
(1+ 4x) 1 lim = lim = L
x0 ln(1+ 3x) x0 ln(1+ 3x) 1 1 Khi x 0 , 2
(1+ 4x) 1 2 2x 2L = lim = . x0 3x 3 1 1 + − − − − 4. ln(1 x) x + x 1 x 1 1 lim =lim
(L' Hospital) =lim = lim = . 2 x0 x0 x0 x 2x 2x(1+ x) x 02(1+ x) 2
Chú ý: nếu thay tương đương ln(1+ x) y nhé . là sai luôn đấ 3 3 − − − − 5. cos x cos x ( cos x 1) ( cos x 1) lim = lim ( do khi 2 x 0,sin x ) 2 2 x0 x0 sin x x 3cosx 1 cos x 1   cos x 1 cos x 1  = lim  − = lim −  = L 2 2 →   → 2 2 x 0 x 0 x x   2 3 3 x ( cos x 1 + )   
x ( cos x + cos x 1 + ) 2 2x
Khi x 0 ta có : cos x 1 , 2 2 2x/ 2 x/ 2 1 −  L = lim −  = . 2 2
x0 2x 3x 12
____________________________________________________________________________________________________________________________________________________________________________________________ www.edemy.vn 1
Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________ x 6. e 1 x 1 lim = lim =
(thay thế tương đương khi x
x 0: e 1 ).
x0 arctan( 2x) x0 2x 27. x sinx lim
x →+ x arctan x −π π
Khi x → + ta có : −1sinx 1;
arctanx  , hay nói cách khác là đại lượng x r t ấ lớn so với 2 2
đại lượng sinx arctanx .  (x sinx) xsinx xlim = lim = 1. x →+ x x arctanx →+ x ln(cos 3x) ln 1
 +(cos 3x 1)   − 8. cos 3x 1 L = lim = lim = lim α α α x 0x0 x 0 ax axax 2 2 (3x) / 29x  = lim = lim.  . α α x 0x 0 ax →  2a x  −9
Vậy dễ thấy để L = 1 thì a = và α = 2. 2 9.  −  3 lnx 1/ x 1 3 limx .ln x =lim =lim
(L' Hospital) =lim x =   0 . 3 4 x0 x0 x0 x0 1/ x 3/ x3ax bx ax bx − − 10. e e ae be lim = lim
(L' Hospital) = a b. x 0x 0 x1 ax bx ax bx ax bx 11. e e e e e e lim = lim = lim x 0x 0 sinax sinbx(a +b)x (a b)x x 0(a b)x 2cos .sin 2. 2 2 2 ax bx 1 e e a b = .lim = = 1. x 0 a b x a b (a+ b)x (ab)x (ab)x
Chú ý khi x 0 ta có cos 2 2 2 100 99 − + − − 12. x 2x 1 100x 2 100 2 49 lim = lim (L' Hospital) = = . 50 49 x 1x 1
x 2x +150x 2 50 2 24 + + 13. x x x x lim = lim
= 1 ( lấy tương đương khi x → + ) . x →+ x x+ 1 →+ x
____________________________________________________________________________________________________________________________________________________________________________________________ 2 www.edemy.vn
Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________ πx 2− x −1 4
14. Cách 1 (tay to): lim(2x)tan = lim = lim (L' Hospital) = . x2 x 2 → πx x2 −1 π 4 π cot . 4  πx 2 4 sin    4  Cách 2: (sử dụng công th thay th ức lượng giác để ế
tương đương 1 cách khéo léo) : πx  π(x− 2) π 2 x π 1 lim(2 x)tan = lim(2 x)tan +   = lim
(chú ý tan(α + ) = −cot α = − ) x2 x2 44 2 x 2 → π( x − 2) − tan 2 tanα 4 2x 4 = lim = . x2 π( x − 2) π − 4 2 + + 15. x 4 x lim x →+ 5 4 x+ x + 2x Sử dụng quy t c ng ắ t b ắ ỏ VLC b c cao, khi ậ x → + ta có:
( 2x+4+ x) 2 x + 4 + x xlim = lim = 1. x →+ 5 4 x →+ + + x x x 2x 2 16.
(x 3x+ 2)sin(x1) L = lim x 11+ cos(πx)
Khi x 1 ta có : 2
x 3x + 2 = (x 1)(x 2) 2(x1)L =lim .
x1 1 +cos(πx)
Đến đây các bạn có thể áp dụng L'Hospital được rồi, nhưng nếu khéo léo dùng thay thế tương 2 2 − đương thì cũng π ( x 1)
không cần : 1+ cos(πx) = 1 + cos π(x − 1) + π = 1− cosπ(x − 1) ( x → 1)   2 2 2(x1)(x1)2L = lim = lim = . 2 2 2 x1 + x1 1 cos(πx) π ( x −1) π 2 x     − − 17. 1 1 1 e 1 tan x lim cot x − = lim − =     lim x x x x 0x 0x 0e 1  tan x e 1 →  (e 1)tanx x
e 1tan x = lim
(thay thế tương đương) 2 x 0x
____________________________________________________________________________________________________________________________________________________________________________________________ www.edemy.vn 3
Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________ x 1 e x 2 x 2 2 cos x e cos x 1 e cos x 1 = lim
(L' Hospital)= lim = lim 2 x 0x 0x 0 2x 2xcos x2x x 2
e (cos x 2cos x.sin x) 1 = lim (L' Hospital)= . x 02 2 18. 1 1arcsinx x arcsinx x lim − = lim =   lim (thay thế tương đương) 2 x 0x 0x 0x arcsinx x arcsinxx 11 2 2 1 x
1 1 x = lim = lim = L x 0x 02 2x 2x 1x 1 2   1 x
Khi x 0 ta có : 2 2 2 2
11x = − (1x ) 1 ) =     2 2 2 2
1 1 x x / 2L =lim = lim =0 . x 02 x 0 → − 2x 2x 1 x + − − 19. + − − = →+( ) 3 2 3 3 3 2 x x 1 x lim x x 1 x lim 2 x x →+ 3 3 2 3 3 2 2
x + x 1 + x x + x 1+ x 2 x 1 1 = lim
= (thay thế tương đương mẫu số khi x → + ). 2 x→+ 3x 3 + + − − + 20. (x x 1) (x x 1) lim
x + x +1 x x +1 = lim = L x →−( ) 2 2 2 2 x →− 2 2
x +x +1 + x x +1
Khi x → − ta chú ý như sau : 2 x + x +1
(do x → − thì x 0 ). 2xL = lim = 1 − . x→− 2x   − + − + 21. x 1 x lnx x 1 xln x x 1 lim − = lim =   lim x 1x 1x 1
x1 lnx (x1)ln x
(x1)ln(1+ (x1))
x lnxx+ 1 = lim
(khi x 1 ta có ln(1+ (x 1)) ) 2 x1 (x 1)
xln xx+ 1 lnx 1/ x 1 = lim = lim = lim
= (sử dụng quy t c L'Hospital 2 l ắ n). ầ 2 x1 x1 x1 (x1) 2(x 1) 2 2
____________________________________________________________________________________________________________________________________________________________________________________________ 4 www.edemy.vn
Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________ lim v( x ).lnu( x )
Chú ý: với giới h n
ạ dạng mũ ta có công thức chung : v( x) x x 0 lim u(x) = e → . Đặc biệt với d ng ạ 1x x0
ta thay thế tương đương :lnu(x) = ln 1
 +(u(x) 1)   ).  1 1xx x 2 3 +  1 1   lim x.1 −  x x x →+ 2    + 22. 2 3    L lim = e = e   . x →+ 2     1 1   x x2 + 3t t12 + 31 1    2   − 1x x2 + 3       2  Xét L = lim x.1 = lim = lim   (đ t ặ t = 1/ x) x x 2 1/ x + →+ →+ t0 t     t t t t
2 + 3 2 2 ln 2 + 3 ln 3 ln 2 + ln 3 = lim = lim (L' Hospital) = t 0 + t 0 2t + → → 2 2 x 1 1   ln2+ ln3 x x2 + 3 2 ln2+ln3lim = e = e = 6   . x →+ 2     1 x   23. x 1 lim −   + x 0
1x ln x 1 x   Đây là giớ x 1
i hạn dạng 0 thì lim − =  
0 chứ đừng cắm đầu làm nhé (chú ý 0 không phải x 0 + →
1x ln x  là dạng vô định nhé) . lim sinx.ln(tanx) 24. lim = = + (tan x )sinx x 0+ → L e e x 0
Xét L = lim sinx.ln(tan x) = lim x.ln(tanx) (thay thế VCB) x 0+ x 0+ → → 2 1/ cos x 2 2 ln(tanx) xx tan x − = lim = lim
(L' Hospital)= lim = lim = 0 (thay thế VCB) + + 2 + 2 + 2 x 01/ x x 0 → − x 0x 0 1/ x cos x.tanx1 .x
lim (tanx)sinx 0 = e = 1 . x 0 + → 1 1  + −  25. lim l  ( n e + 2 ) lim . l ( n e 2x) 1 sinx   x0 sinx L x  = e = e x 0
____________________________________________________________________________________________________________________________________________________________________________________________ www.edemy.vn 5
Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________ l  ( n e+ 2 ) x 1 l   ( n e+ 2 ) x 1 Xét L = lim = lim (thay thế VCB) x0 x0 sinx x 2 / (e + 2x) 2 = lim (L' Hospital) = . x 01 elim l
n (e + 2x ) 1 2 sinx e  = e   . x0
26. lim(tanx)tan2x lim tan2x.(tanx 1) x π → /4 L = e = e π x 4 2 tanx 1 1 / cos x
Xét L = lim tan2x.(tanx 1) = lim = lim (L' Hospital) 2 x→ π/ 4 x→ π/4 x→ π/4 cot 2x2 / sin 2x 2 sin 2x = lim
= −1lim (tanx )tan2x 1 = e− = 1/ e . 2 → π x π/ 4 −2cos x x4 x1 2 x 1 +  +  27. x 1 lim   = 1 2 x → x −  1  Đây là 1 1 chứ không ph i d
ả ạng vô định 1 nhé. 1 1 x
1  x3lim 1 −   lim   28. x
x3 x3 −  3
x3x3  3 1/3 3 x 3 lim( ) = e = e = e = e . x 33 29. lim 2cosx.ln(tanx) 2cosx x π → /2 L lim (tanx) =e =e x π → /2 π
Xét L = lim 2cos x.ln(tanx) = lim 2sin( x).ln(tanx) x→ π/2 x→ π/ 2 2 π
= lim 2( x).ln(tanx) (thay thế VCB) x π/ → 2 2 2 1/ cos x ln(tan x) tan x = lim = lim ( L' Hospital) 2 x π → /2 x π → /2 1/ (π− 2x) 2 / (π− 2x) 2 2 2 (π − 2x) (π − 2x) (π − 2x) = lim = lim
(tan x = sin x / cos x) = lim 2 x π → / 2 x π → /2 x π → / 2 2tan x.cos x 2sin x.cos x sin 2x 2 2 (π − 2x) (π − 2x) = lim
(sin(α − π) = − sinα) = lim (thay thế VCB) x π → /2 π x π → /2 π −sin2(x ) 2(x ) 2 2 2cosx 0
= lim (π− 2x) = 0  lim (tan x) = e = 1. x π → /2 x π → /2
____________________________________________________________________________________________________________________________________________________________________________________________ 6 www.edemy.vn
Học để lp nghip
____________________________________________________________________________________________________________________________________________________________________________________________ 30. limtanx.ln(1 cosx) tanx x 0L lim(1 cos x) = e = e x 0
Xét L = limtanx.ln(1cos x) = lim x.ln(1cos x) (thay thế VCB) x0 x0 2 ln(1cos x)
sin x / (1cos x)x sin x = lim = lim
( L' Hospital) = lim 2 x 0x0 x 0 1/ x 1/ x1cos x 3 xtanx 0 = lim
= 0 lim(1cos x) = e = 1 2 x 0x 0 x / 2
____________________________________________________________________________________________________________________________________________________________________________________________ www.edemy.vn 7