

Preview text:
1 BÀI TäP VäN D÷NG I. ó BÀI:
1. MÎt nhà sinh v™t hÂc muËn lên th¸c Ïn cho mÎt ch∏ Î ´n kiêng t¯ cá và bÎt, th¸c
Ïn gÁm 183 gam protein và 93 gam carbonhydrate mÈi ngày. Bi∏t r¨ng cá ch˘a 70%
protein và 30% carbonhydrate, bÎt ch˘a 30% protein và 60% carbonhydrate. H‰i l˜Òng
mÈi lo§i th˘c ´n c¶n thi∏t cho mÈi ngày là bao nhiêu?
2. MÎt con cá có uôi n∞ng 150 gam, ¶u cá n∞ng b¨ng uôi Î c ng n˚a thân, thân n∞ng
b¨ng ¶u cÎng uôi. ‰
H i con cá n∞ng bao nhiêu gam?
3. Tìm các hàm sË b™c hai có Á th‡ i qua các i∫m (1, 6), (1, 2), (2, 11). 4. Cân b¨ng ph£n ˘ng sau C8H18 + O2 ! CO2 + H2O.
5. Trong phân t˚ M2X có tÍng sË h§t (p, n, e) là 140 h§t, trong ó sË h§t mang iªn
nhi∑u hÏn sË h§t không mang iªn là 44 h§t. SË k Ë
h i cıa nguyên t˚ M lÓn hÏn sË khËi
cıa nguyên t˚ X là 23. TÍng sË h§t (p, n, e) trong nguyên t˚ M nh ∑ i u hÏn trong nguyên
t˚ X là 34 h§t. Xác ‡nh công th˘c phân t˚ cıa hÒp chßt M2X.
6. Hòa tan hoàn toàn 13,4g hÈn hÒp X gÁm M g, Al, F e vào dung d‡ch H2SO4 ∞c nóng
d˜ thu ˜Òc 12, 32 lít khí SO2 (trong i∑u kiªn tiêu chu©n). ∞ M t khác, n∏u cho 13,4 g hÈn hÒp trên tác dˆng Ó
v i dung d‡ch HCl d˜ thì thu ˜Òc 11,2 lít H2 (trong i∑u kiªn
tiêu chu©n). Tính khËi l˜Òng M g, Al, F e trong hÈn hÒp X.
7. Cho mÎt m§ch iªn nh˜ hình v≥ (trang cuËi). Bi∏t R1 = 36⌦, R2 = 90⌦, R3 = 60⌦ và
U = 60V . GÂi I1 là c˜Ìng Î dòng iªn cıa m§ch chính, I2 và I3 là c˜Ìng Î dòng iªn
cıa hai m§ch r≥. Tính I1, I2, I3.
8. Tr˜Ìng THCS và THPT NTT xây d¸ng mÎt quˇ tình th˜Ïng t¯ s¸ quyên góp cıa các
hÂc sinh trong toàn tr˜Ìng. Gi£ s˚ r¨ng sË ti∑n khËi THCS quyên góp ˜Òc mÈi n´m
b¨ng sË ti∑n khËi THCS quyên góp ˜Òc trong n´m tr˜Óc ó, và sË ti∑n quyên góp ˜Òc cıa khËi THPT b¨ng Í
t ng sË ti∑n quyên góp ˜Òc cıa khËi THCS vàkhËi THCS trong
n´m tr˜Óc ó. Gi£ s˚ n´m th˘ nhßt khËi THCS quyên góp ˜Òc sË ti∑n là 5 triªu Áng
và khËi THPT quyên góp ˜Òc sË ti∑n là 10 triªu Áng . H‰i sau n n´m, tÍng sË ti∑n
quyên góp ˜Òc cıa toàn tr˜Ìng là bao nhiêu?
9. Cho hai dãy sË {x } và {y }, vÓi x n n 0 = 3, y0 = 7, và x 6y , y 12y . n+1 = 17xn n n+1 = 35xn n
Hãy tìm sË h§ng tÍng quát cıa mÈi dãy sË.
10. Cho hai dãy sË {x } và {y }, vÓi x n n 0 = 1, y0 = 4, và x + 4y , y + 3y . n+1 = xn n n+1 = 2xn n
Ch˘ng minh r¨ng |x y | = 3 Ói mÂi n 0. n n v
11. – mÎt khu b£o tÁn các loài chim, mÈi n´m có 1% sË chim t¸ nhiên ∏n sinh sËng,
Áng thÌi có 10% sË chim rÌi i. Â
G i p(n) và r(n) t˜Ïng ˘ng là sË l˜Òng chim bên
trong và bên ngoài khu b£o tÁn cıa n´m th˘ n. Tìm công th˘c tính (p(n), r(n)) bi∏t (p(1), r(1)).
12. Cho hàm sË f : N ! R xác ‡nh bi công th˘c truy hÁi f(n + 1) = 4f(n 1). Cho
f (0) = 0, f (1) = 1. Tìm công th˘c tính f (n) vÓi n > 1.
13. Cho hàm sË f : N ! R xác ‡nh bi công th˘c truy hÁi f(n + 1) = 6f(n) + 7f(n
1) + 6f (n 2). Cho f (0) = 1, f (1) = 1, f (2) = 3. Tính f (n) vÓi n > 2.
14. Cho A ma tr™n vuông cßp hai. Ch˘ng minh ¨
r ng |det(A)| chính là diªn tích hình
bình hành t§o bi hai vectÏ cÎt cıa A.
15. Ch˘ng minh r¨ng ph˜Ïng trình ˜ n
Ì g thØng trong m∞t phØng i qua hai i∫m
(x2, y2) và (x3, y3) cho bi x x 2 x3 y y2 y3 = 0. 1 1 1