-
Thông tin
-
Hỏi đáp
Chapter 04 - Normal Distribution - Statistics for Business | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM
Chapter 04 - Normal Distribution - Statistics for Business | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!
Statistics for Business (BAO8OIU) 43 tài liệu
Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh 695 tài liệu
Chapter 04 - Normal Distribution - Statistics for Business | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM
Chapter 04 - Normal Distribution - Statistics for Business | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!
Môn: Statistics for Business (BAO8OIU) 43 tài liệu
Trường: Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh 695 tài liệu
Thông tin:
Tác giả:
Tài liệu khác của Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh
Preview text:
International University IU
STATISTICS FOR BUSINESS [IUBA] CHAPTER 04
THE NORM AL DISTRIBUTION
St a nda rd Norma l Distribut ion
Norma l Dist ribution
~ ( ,)
~ (,) PART I
Finding probabilities of the normal distribution with given values n tio u St ep 01:
Use t he follow in g form ula t o t r ansform t he norm al random var iable , trib
w here ~ (, ) int o t he standard normal random variable , where is l D ~ (0,1). a rm − o = N e h : T 4 r 0 te St ep 02:
Use t he calculat or or Table 2 (Areas of St andard Norm al Dist ribut ion) in ap h
Appendix C t o com put e t he pr obab ilit ies (or ar eas) of t he norm al C
dist r ibu t ion based on t he st andar d nor m al dist ribut ion. s | es sin u r B s fo istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 1
International University IU CALCULATOR INSTRUCTION
St ep No.01: Press M ODE 3: STAT [ AC ]
St ep No.02: Press SHIFT + 1 | [ STAT ] 7: DISTR
Aft er t hat , t he calculat or w ill show you 4 available sym bols.
How ever, w e just pay at t ent ion t o t he first t hree ones. 1 : P ( 2 : Q ( 3 : R (
+ We use [ 1 : P ( ] t o com put e t he pr obabilit y bet w een t he
st andard norm al random variable to −∞, or ( < )
+ We use [ 2 : Q ( ] t o com put e t he probabilit y bet w een t he
st andard norm al random variable to the mean or ( 0 < < ) .
+ We use [ 3 : R ( ] t o com put e t he pr obab ilit y bet w een t he
st andard norm al random variable to + ∞. ( > ) St ep No.03:
Press [ = ] t o get t he result . n tio u trib is l D a rm o N e h : T 4 r 0 te ap h C s | es sin u r B s fo istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 2
International University IU Example | Part 1:
(Case of finding probabilities of the normal distribution with given values) PROBLEM :
A psychologist has devised a st ress t est for dent al pat ient s sit t ing in t he w ait ing room s.
According t o t his t est , t he st ress scores (on a scale of 1 t o 10) f or pat ient s w ait ing for root cana l
t reat m ent s are found t o be approximat ely norm ally dist ribut ed w it h a m ean of 7.59 and a
st andard deviat ion of 0.73.
a. W hat percent age of such pat ient s have a st ress score low er t han 6.0? SOLUTION: = 7.59, = 0.73 .. St ep 01:
( < 6.0) = < = ( < −2.1781) . St ep 02:
M ODE 3 : STAT [ AC ]
SHIFT + 1| [STAT]
7 : DISTR 1 : P (-2.1781) n tio
Then, press [ = ] t o get t he result ( −. ) = . u trib
Sum m ing up, ( < 6.0) = ( < −2.1781) = 0.0147 is l D a
b. W hat is t he probabilit y t hat a random ly select ed root canal pat ient sit t ing in t he w ait ing rm
room has a st ress score bet w een 7.0 and 8.0? o N e SOLUTION: h = 7.59, = 0.73 : T 4 .. St ep 01:
(7.0 < < 8.0) = .. < < r 0 . . te ap
= − 0.8082 < < 0.5616) h C St ep 02:
(There are t hree different met hods of using t he pocket calculator s | es
to solve the problem of calculating the probability betw een tw o sin
given values. You can use only one of three follow ing methods u r B
that depends on your choice, not all of them, since each of them
alw ays provides the same result w ith others) s fo istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 3
International University IU
M ETHODS 01: Using 1 : P (
M ODE 3 : STAT [ AC ]
SHIFT + 1| [STAT] 7 : DISTR 1 : P (0.5616) [ ]
SHIFT + 1| [STAT] 7 : DISTR 1 : P (-0.8082)
Then, press [ = ] t o get t he result
(.) − (−.) = .
M ETHODS 02: Using 3 : R (
M ODE 3 : STAT [ AC ]
SHIFT + 1| [STAT] 7 : DISTR 3 : R (-0.8082) [ ] n
SHIFT + 1| [STAT] 7 : DISTR 3 : R (0.5616) tio u
Then, press [ = ] t o get t he result trib is
(−.) − (.) = . l D a rm o N e
M ETHODS 03: Using 2 : Q ( h : T 4
M ODE 3 : STAT [ AC ] r 0 te
SHIFT + 1| [STAT] 7 : DISTR 2 : Q (-0.8082) ap h C [ + ] s | es
SHIFT + 1| [STAT] 7 : DISTR 2 : Q (0.5616) sin u
Then, press [ = ] t o get t he result r B s fo
(−.) + (.) = . istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 4
International University IU Sum m ing up,
(7.0 < < 8.0) = (−0.8082 < < 0.5616) = 0.5033
c. The psychologist suggest s t hat any pat ient w it h a st ress score of 9.0 or higher should be given
a sedat ive prior t o t reat m ent . W hat percent age of pat ient s w ait ing for root canal t reat m ent s
w ould need a sedat ive if t his suggest ion is accept ed? SOLUTION: = 7.59, = 0.73 . St ep 01:
( ≥ 9.0) = ≥ (. = ( ≥ 1.9315) . St ep 02:
M ODE 3 : STAT [ AC ]
SHIFT + 1| [STAT] 7 : DISTR 3 : R (1.9315)
Then, press [ = ] t o get t he result ( .) = .
Sum m ing up, ( > 9.0) = ( > 1.9315) = 0.0267 n tio u trib is l D a rm o N e h : T 4 r 0 te ap h C s | es sin u r B s fo istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 5
International University IU PART II
Finding the values of X given a probability St ep 01:
The pro babilit y t hat a nor m al r ando m variable w ill be above (below , or
sym m et r ic) it s m ean a cert ain num ber of st andard deviat ions is exact ly
equal t o t he probabilit y t hat t he st andard no rm al r andom var iable w ill be
above (below , or sym m et r ic) it s m ean t he sam e num ber of (it s) st andar d deviat ions.
In part icular, ( > ) = ( > )
( < ) = ( < )
( < < ) = (− < < ) St ep 02: Find TA (Table Area)
(Table Ar ea TA f or a point of t he standard normal distribut ion is t he area n
given in t he st andar d n orm al pr obabilit y t able o f Table 2 in Appendix C tio u
under t he st andar d nor mal cur ve bet w een 0 and point > 0) trib is In part icular, l D a For rm ( > ): o N e
If ( > ) < 0.5, = . − ( > ) h : T 4
If ( > ) > 0.5, = ( > ) − . r 0 te For ( < ) : ap h C
If ( < ) < 0.5, = . − ( < ) s | es
If ( < ) > 0.5, = ( < ) − . sin u r B
For (− < < ) , = ( − < < )/ s fo istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 6
International University IU St ep 03:
Look inside Table 2 (Areas of t he St andar d Norm al Dist r ibut ion) in
Appendix E for t he values of corresponding t o TA. St ep 04:
Use t he f ollow ing form ula t o t r ansf or m t he st andard norm al ran dom
var iable to t he normal random variable = ± In par t icular , For ( > ) :
If ( > ) < 0.5, t he value of “ ” will be positive, or +
If ( > ) > 0.5, the value of “ ” will be negative, or − For ( < ) :
If ( < ) < 0.5, the value of “ ” will be negative, or − n
If ( < ) > 0.5, the value of “ ” will be positive, or + tio u
For (− < < ) , t he values of “ ” will include negative and positive trib is
value, or – and + l D a rm o N e h : T 4 r 0 te ap h C s | es sin u r B s fo istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 7
International University IU Example | Part 2:
(Finding the values of X given a probability) PROBLEM 01:
If X is a norm ally dist ribut ed random variable w it h m ean 120 and st andard deviat ion 44, find a
value x such t hat t he probabilit y t hat X w ill be less t han x is 0.56.
SOLUTION: We have ~ ( 120,44) St ep 01:
W e are looking fo r t he value of t he random var iab le such that
( < ) = .. In order to find it, we look for the value of the
st andard norm al deviat ion such that ( < ) = . . St ep 02:
If t he area t o t he left of is equal to 0.56, the area between 0 and (the Table Area) is equal t o n
= . − . = .. tio u trib is St ep 03:
We lo ok inside Table 2 (Areas of St andard Norm al Dist ribut ion) in l D a
Appendix C for t he value corresponding to = 0.06 and find rm
= 0.15 (actually, = 0.0596, which is close enough to 0.06). o N e h : T 4 St ep 04:
We need t o find t he appr opr iat e value. Here we use the following r 0 equat ion. te ap h
= + = + (.)() = . C s | es sin u r B s fo istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 8
International University IU PROBLEM 02:
For a norm al random variable w it h mean 19,500 and st andard deviat ion 400, find a point of t he
dist ribut ion such t hat t he probabilit y t hat t he random variable w ill exceed t his value is 0.02. SOLUTION: = 19,500, = 400
( > ) = ( > ) = 0.02 = 0.5 − 0.02 = 0.48 = 2.05
Thus, = + = 19,500 + ( 2.05) (400) = 20,320 PROBLEM 03
For ~ ( 32,7) , find two values
, sym met rically lying on each side of t he m ean, and
w it h ( < < ) = 0.99. SOLUTION: = 32, = 7 n tio
( < < ) = (− < < ) = 0.99 u trib = 0.99/ 2 = 0.495 is l D = 2.576 a rm Thus, o
= + (−) = 32 + (−2.576)(7) = 13.968 N e h
= + () = 32 + (2.576)(7) = 50.032 : T 4 r 0 te ap h C s | es sin u r B s fo istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 9
International University IU PART III
The Normal Approximation to the Binomial Distribution
When t he num ber of t rials in a binomial distribution is large ( > 100), t he calculat ion of
probabilit ies becom e dif ficult for t he pocket calculat or. Fort unat ely, t he binom ial dist ribut ion as
increases and therefore we can approximate it as normal distribution. Condit ion:
Norma l Dist ribution as an Approxima t ion t o Binomial Dist ribut ion
Usually, t he norm al dist r ibut ion is used as an approxim at ion t o t he binom ial dist r ibut ion
w hen and ( 1 − ) are bot h greater than 5—that is, w hen
> 5 and( − ) > 5
St ep 1: Com put e and for the binomial distribut ion. n =
= ( − ) tio u
St ep 2: Conver t t he discr et e random var iable int o a cont inu ous rand om var iab le. trib is
Cont inuit y Correct ion Fa ct or l D a
The addit ion of .5 and/ or subt ract ion of .5 from t he value(s) of when t he normal distribution rm o
is used as an approxim at ion t o t he bin om ial dist ribut ion , w here is the number of successes in N e h
trials, is called the continuity correction factor. : T 4
Ther efor e, w hen w e calculat e t he binom ial probabilit y of an int er val, w e should subt ra ct r 0 te
0.5 from t he left limit a nd a dd 0.5 t o t he right limit t o get t he corr esponding nor m al ap h pr obabilit y. C s | In par t icular , es sin u
> ,. r B
< ,. s fo istic
= ,.. tat S
Powered by statisticsforbusinessiuba.blogspot.com 10
International University IU
w here = a normal variable with mean and st andard deviat ion = a given value
St ep 3: Com put e t he required pr obabilit y using t he nor m al dist r ibut ion. Example | Part 3:
(The Normal Approximation to the Binomial Distribution) PROBLEM :
CASIO Viet nam m akes calculat ors. Consum er sat isf act ion is one of t he t op priorit ies of t he
com pany’s m anagem ent . The com pany guarant ees t he refund of m oney or a replacement for
any calculat or t hat m alfunct ions w it hin t w o years from t he dat e of purchase. It is kn own from
past dat a t hat despit e all ef fort s, 5% of t he calculat ors m anufact ured by t his company n
m alfunct ion w it hin a 2-year period. The company recent ly m ailed 500 such calculat ors t o it s tio u cust om ers. trib is
a. Find t he probabilit y t hat exact ly 29 of t he 500 calculat ors w ill be ret urned for refund or l D
replacem ent w it hin a 2-year period. a rm o SOLUTION: N e h
Step 1: Compute and for the binomial distribution. : T 4
= = 500 × 0.05 = 25 r 0 te ap √95 h
= (1 − ) = √500 × 0.05 × 0.95 = ≈ 4.8734 C 2 s |
Step 2: Convert the discrete random variable int o a continuous random variable. es sin u
To m ake t he cont inuit y cor rect ion, w e subt ract 0.5 from 29 and add 0.5 t o 29, w h ich gives t he r B
int erval 28.5 t o 29.5 t o obt ain t he value 29. Thus, ( = 29) for the binomial problem will be s fo
approximat ely equal t o ( 28.5 ≤ ≤ 29.5) for the normal distribution. istic
Step 3: Compute the required probability using the normal distribution. tat S
Powered by statisticsforbusinessiuba.blogspot.com 11
International University IU −
(28.5 ≤ ≤ 29.5) = 28.5 − 25 ≤ √95 ≤ 29.5 − 25 √95 2 2
7√95 ≤ ≤ 9√95 = (0.7182 ≤ ≤ 0.9234) = 0.0584 95 95
Thus, based on t he norm al approxim at ion, t he pr obabilit y t hat exact ly 29 of t he 500 calculat ors
w ill be ret urned for ref und or replacem ent w it hin a 2-year period is approxim at ely 0.0584
b. W hat is t he probabilit y t hat 27 or more of t he 500 calculat ors w ill be ret urned for refund or
replacem ent w it hin a 2-year period? SOLUTION:
Step 1: Compute and for the binomial distribution.
= = 500 × 0.05 = 25 √95 n
= (1 − ) = √500 × 0.05 × 0.95 = ≈ 4.8734 2 tio u
Step 2: Convert the discrete random variable int o a continuous ra ndom variable. trib is
For t he cont inu it y correct ion, w e subt ract 0.5 fr om 27, w hich gives 26.5 t o obt ain t he value 27. l D a
Thus, ( ≥ 27) for the binomial problem will be approximately equal to ( ≥ 26.5) for the rm o norm al dist r ibut ion. N e h
Step 3: Compute the required probability using the normal distribution. : T 4 r 0 − te ( ≥ 26.5) = ap ≥ 26.5 − 25 √95 h C 2 s | es
≥ 3√95 = ( ≥ 0.3078) = 0.3791 sin 95 u r B
Thus, based on t he norm al approxim at ion, t he probabilit y t hat 27 o r m ore of t he 500 s fo
calculat ors w ill be ret urned f or ref und or replacem ent w it hin a 2-year per iod is appr oxim at ely istic 0.3791 tat S
Powered by statisticsforbusinessiuba.blogspot.com 12
International University IU
c. W hat is t he probabilit y t hat 15 t o 22 of t he 500 calculat ors w ill be ret urned for refund or
replacem ent w it hin a 2-year period? SOLUTION:
Step 1: Compute and for the binomial distribution.
= = 500 × 0.05 = 25 √95
= ( 1 − ) = √500 × 0.05 × 0.95 = ≈ 4.8734 2
Step 2: Convert the discrete random variable int o a continuous ra ndom variable.
For t he cont inuit y cor rect ion, w e subt ract 0.5 f rom 15 and add 0.5 t o 22, w hich gives t he
int erval 14.5 t o 22.5 t o obt ain t he int erval 15 t o 22. Thus, ( 15 ≤ ≤ 22) for the binom ial
problem w ill be approxim at ely equal t o (14.5 ≤ ≤ 22.5) for the normal distribution.
Step 3: Compute the required probability using the normal distribution. −
(14.5 ≤ ≤ 22.5) = 14.5 − 25 ≤ √95 ≤ 22.5 − 25 √95 n 2 2 tio u √95 trib
− 21√95 ≤ ≤ −
= (−2.1546 ≤ ≤ −0.5130) = 0.2884 is 95 91 l D a
Thus, based on t he no rm al approxim at ion, t he p robabilit y t hat 15 t o 22 of t he 500 calculat ors rm o
w ill be ret urned for ref und or replacem ent w it hin a 2-year period is approxim at ely 0.2884 N e h : T 4 r 0 te ap h C s | es sin u r B s fo istic tat S
Powered by statisticsforbusinessiuba.blogspot.com 13