-
Thông tin
-
Hỏi đáp
Chapter 14 - Square Testing - Statistics for Business | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM
Chapter 14 - Square Testing - Statistics for Business | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!
Statistics for Business (BAO8OIU) 43 tài liệu
Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh 695 tài liệu
Chapter 14 - Square Testing - Statistics for Business | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM
Chapter 14 - Square Testing - Statistics for Business | Trường Đại học Quốc tế, Đại học Quốc gia Thành phố HCM được sưu tầm và soạn thảo dưới dạng file PDF để gửi tới các bạn sinh viên cùng tham khảo, ôn tập đầy đủ kiến thức, chuẩn bị cho các buổi học thật tốt. Mời bạn đọc đón xem!
Môn: Statistics for Business (BAO8OIU) 43 tài liệu
Trường: Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh 695 tài liệu
Thông tin:
Tác giả:
Tài liệu khác của Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh
Preview text:
International University IU
STATISTICS FOR BUSINESS [IUBA] CHAPTER 14 CHI - SQUARE TESTING
CHI – SQUARE TESTING PROCESS STEP 01:
Det er mine t he nu ll and alt ernat ive hypo t heses STEP 02:
Det er mine t he expect ed coun t s and obser ved count s of dat a point s in dif fer ent cells. STEP 03:
Com put e t he t est st at ist ic value (based o n t he dif ference bet w een t he
obser ved and t he expect ed ; Hint : Est ab lishin g a t able) and t he cr it ical value
(based on t he level of signif icance and chi – squar e dist r ibut ion). STEP 04:
Com pare t he t est st at ist ic value w it h t he cr it ical value and m ake a decision. sts e T re a u q i - S h : C 4 r 1 te ap h C ss | e sin u r B s fo istic tat S
Pow ered by statisticsforbusinessiuba.blogspot.com 1
International University IU PART I
A CHI – SQUARE TEST FOR GOODNESS OF FIT
CHI-SQUARE TESTING PROCESS STEP 01:
Det er mine t he nu ll and alt ernat ive hypo t heses
: The probabilities of occurrence of events , ,…, are given by
t he specif ied pr obabilit ies ,,…,
: The probabilities of the events not the stated in the null hypot hesis STEP 02:
Det er mine t he observed count s and t he expect ed count s ( = ) of data point s in dif ferent cells. STEP 03:
Com put e t he t est st at ist ic value and t he crit ical value
The t est st at ist ic value (based o n t he dif fer ence bet w een t he obser ved and t he expect ed): sts e ( T − ) = re a u q
Hint : Est ablishing a t able i - S h : C
The cr it ical value (based on t he level of significance ( 4 )): r 1 te
= , ap h C STEP 04:
Com pare t he t est st at ist ic value w it h t he cr it ical value and m ake a decision. ss | e
Based on t he level of signif icance, sin u
+ W e can reject t he null hypot hesis > r B if s fo
+ W e cannot reject t he null hypot hesis
if < istic tat S
Pow ered by statisticsforbusinessiuba.blogspot.com 2
International University IU
Example 14.01: Case of Chi – Square Testing for Goodness of Fit PROBLEM
In a biology laborat ory t he m at ing of t w o red -eyed fruit flies yielded = 576 offspring, among
w hich 338 w ere red-eyed, 102 w ere brow n-eyed, 112 w ere scarlet -eyed, and 24 w ere w hit e-eyed.
Use t hese dat a t o t est , w it h = 0.05, the hypot hesis t hat the rat io among the offspring w ould be
9: 3: 3: 1, respect ively. SOLUTION
= 4, = k − 1 = 4 − 1 = 3 Let
( ) be the event that off-springs are red-eyed.
( ) be the event that off-springs are brown-eyed.
( ) be the event that off-springs are scarlet-eyed.
( ) be the event that off-springs are white-eyed.
: The four off-springs are equally preferred; that is, the probabilities of choosing any of the off- springs are equal 9: 3: 3: 1
: Not all four off-springs are equally preferred; t hat is, the probabilities of choosing any of the
off -spr ings are not equal 9: 3: 3: 1 sts e T 9 3 3 1 re a 9: 3: 3: 1 = : : : u 16 16 16 16 q i - S 9 3 h = = 576 × = 324 = 108 16 = = 576 × 16 : C 4 3 1 = = 576 × = 108 = = 576 × = 36 r 1 16 16 te ap h C
TABLE: Observed Count s (w it h t he expect ed count s show n in parent heses) ss | e Red-eyed Brow n-eyed Scarlet -eyed Whit e-eyed sin ( ) ( ) ( ) ( ) u 338 102 112 24 r B ( 324) ( 108) ( 108) ( 36) s fo istic tat S
Pow ered by statisticsforbusinessiuba.blogspot.com 3
International University IU
TABLE: Com put ing t he Value of t he Chi-Square St at ist ic − ( − )
( − ) / Red-eyed ( ) 338 324 14 196 0.60 Brow n-eyed ( ) 102 108 -6 36 0.33 Scarlet -eyed ( ) 112 108 4 16 0.15 Whit e-eyed ( ) 24 36 -12 144 4.00 Tot al 5.09 The t est st at ist ic value:
The crit ical value f or = 0.05 :
= ( − ) = 5.09
= ,. = 7.815
Thus, at 0.05 level of signif icance, w e cannot reject
because < (5.086 < 7.815)
t hat means t he rat io am ong t he of fspring w ould be 9:3:3:1. sts e T re a u q i - S h : C 4 r 1 te ap h C ss | e sin u r B s fo istic tat S
Pow ered by statisticsforbusinessiuba.blogspot.com 4
International University IU PART II
A CHI – SQUARE TEST FOR INDEPENDENCE
CHI-SQUARE TESTING PROCESS STEP 01:
Det er mine t he nu ll and alt ernat ive hypo t heses
: The two classification variables are independent of each other
: The two classification variables are not independent STEP 02:
Det er mine t he observed count s and t he expect ed count s ( = ) of data point s in dif ferent cells. STEP 03:
Com put e t he t est st at ist ic value and t he crit ical value
The t est st at ist ic value (based o n t he dif fer ence bet w een t he obser ved and t he expect ed): =
− / sts e T re
Hint : Est ablishing a t able a u q
The cr it ical value (based on t he level of significance ( ) ): i - S h = : C
( ,[( ) () ]) 4 r 1 STEP 04:
Com pare t he t est st at ist ic value w it h t he cr it ical value and m ake a decision. te ap h
Based on t he level of signif icance, C ss |
+ W e can reject t he null hypot hesis > e if sin u
+ W e cannot reject t he null hypot hesis
if < r B s fo istic tat S
Pow ered by statisticsforbusinessiuba.blogspot.com 5
International University IU
Example 14.02: Case of Chi – Square Testing for Independence PROBLEM
A m arket ing firm w ant s t o t est t he dependence bet w een t he regions of Viet nam (Nort hern, Cent re,
Sout hern) and t he habit of spending m oney (<50%, 50 -80% and >80% incom e). They conduct ed a
survey t o 2,000 people in Viet nam : Regions Nort her n Cent er Sout hern <50% incom e 203 290 155 Habit of 50-80% income 266 226 215 Spending >80% incom e 209 154 282
Conduct t he t est t hat t he habit s are independent t o region, using a level of signif icance of 5%. SOLUTION
H: The regions of Vietnam and the habit of spending money are independent of each other.
H: The regions of Vietnam and the habit of spending money are not independent.
Table: Cont ingency Table of t he regions of Viet nam versus t he habit of spending m oney – Observed
Count s (w it h t he expect ed count s show n in parent heses). sts e T Regions Tot al re a u Nort her n Cent er Sout hern (row ) q i - S < 50% 203 290 155 648 h : C 4 Incom e (219.67) (217.08) (211.25) r 1 te 50 - 80% 266 226 215 707 ap Habit of h Spending C Incom e (239.67) (236.85) (230.48) ss | e > 80% 209 154 282 645 sin u Incom e (218.66) (216.08) (210.27) r B s fo Tot al (colum n) 678 670 652 2,000 istic tat S
Pow ered by statisticsforbusinessiuba.blogspot.com 6
International University IU
Table: Com put ing of Value of t he Chi – Square St at ist ic Habit of Regions O E O − E O Spending − E
O− E/ E Nort her n 203 219.67 -16.67 277.89 1.27 < 50% Cent er 290 217.08 72.92 5,317.33 24.49 Incom e Sout hern 155 211.25 -56.25 3,164.06 14.98 Nort her n 266 239.67 26.33 693.27 2.89 50 - 80% Cent er 226 236.85 -10.85 117.72 0.50 Incom e Sout hern 215 230.48 -15.48 239.63 1.04 Nort her n 209 218.66 -9.66 93.32 0.43 > 80% Cent er 154 216.08 -62.08 3,853.93 17.84 Incom e Sout hern 282 210.27 71.73 5,145.19 24.47 Tot al (colum n) 2,000 2,000 87.90 sts e
The chi – square t est st at ist ic value for independence is T re a u q X
= O − E/ E = 87.90 i - S h : C 4
Thus t he t est st at ist ic value is t oo large ( X = 87.90), we can strongly reject H at all level of r 1
significance. It m eans t hat based on t he Chi – Square t est ing for independence, w e have enough te
evidence t o prove t hat t he regions of Viet nam and t he habit of spen ding m oney are independent of ap h each ot her. C ss | e sin u r B s fo istic tat S
Pow ered by statisticsforbusinessiuba.blogspot.com 7