


















Preview text:
  lOMoAR cPSD| 23136115 Group 12  23/12/2023 
VIETNAM NATIONAL UNIVERSITY, HANOI  INTERNATIONAL SCHOOL 
----------------*****-----------------   
FINAL REPORT: DATABASE SYSTEMS 
Topic: Database Systems for Boston House Price Prediction  Lecturer 
Nguyễn Trần Đình Long  Class  INS 2055-01  Phạm Hải Đăng  20070701  Nguyễn Đức Anh  20070668  Nguyễn Minh Hoàng  20070720  Hanoi, Dec    NAME  ASSIGNMENT  PROGRESS  PHAM HAI DANG  100%  SQL server code  Edit Report  Slide  NGUYEN MINH HOANG  100%  SQL server code  ERD Diagram  Collected Data      lOMoAR cPSD| 23136115 Group 12  23/12/2023  NGUYEN DUC ANH  100%  Query assumption  Relation Schema  Business Question          lOMoAR cPSD| 23136115 Group 12  23/12/2023  Table of Contets:  Contents 
I. Introduction .................................................................................................................... 5 
II. Data dictionary ............................................................................................................. 5 
III. Analyzing and draw the ERD diagram ....................................................................... 7 
IV. Relational Schema ....................................................................................................... 9 
V. Build a database using SQL Sever ................................................................................ 9   
VI. Business Questions..................................................................................................15 
VII.Conclusion:..............................................................................................................19 
VIII. Reference...............................................................................................................20        lOMoAR cPSD| 23136115 Group 12  23/12/2023          lOMoAR cPSD| 23136115 Group 12  23/12/2023  I. Introduction: 
Housing is one of the most basic demands of human life, along with food, water, and 
other necessities. As people's living circumstances improved, demand for housing 
increased rapidly. Housing markets have a favorable impact on a country's currency, which 
is a significant factor in the national economy. Numerous factors influence housing sales 
prices, including the size of the property, its location, the materials used in construction, 
the age of the property, the number of bedrooms and garages, and so on. 
A house-price prediction model can provide numerous benefits to home purchasers, 
property investors, and home builders. This model may provide a wealth of information 
and expertise to home purchasers, property investors, and home builders, such as the 
valuation of current market house prices, which will assist them in determining house 
pricing. Meanwhile, this model can assist potential purchasers in determining the features 
of a property that are appropriate for their budget. 
In this project, we will develop and evaluate the performance and the predictive 
power of a model trained and tested on data collected from houses in Boston’s suburbs. 
Once we get a good fit, we will use this model to predict the monetary value of a house 
located at the Boston’s area. A model like this would be very valuable for a real state agent 
who could make use of the information provided on a daily basis.  II. Data dictionary: 
The dataset used in this project comes from the UCI Machine Learning 
Repository. This data was collected in 1978 and each of the 506 entries represents 
aggregate information about 13 features of homes from various suburbs located in Boston 
and some data about buyer, seller and investor information is generated by us from 
collecting information on the internet. And here is 13 detailed attribute information can be  found below:      lOMoAR cPSD| 23136115 Group 12  23/12/2023  Attribute Information: 
- CRIM: Per capita crime rate by town 
- ZN: Proportion of residential land zoned for lots over 25,000 sq.ft. 
- INDUS: Proportion of non-retail business acres per town 
- CHAS: Charles River dummy variable (= 1 if tract bounds river; 0  otherwise) 
- NOX: Nitric Oxide concentration (parts per 10 million) 
- RM: The average number of rooms per dwelling 
- AGE: Proportion of owner-occupied units built before 1940 
- DIS: Weighted distances to five Boston employment centers 
- RAD: Index of accessibility to radial highways 
- TAX: Full-value property-tax rate per 10,000 dollars 
- PTRATIO: Pupil-teacher ratio by town 
- LSTAT: % lower status of the population 
- MEDV: Median value of owner-occupied homes in 1000 dollars      lOMoAR cPSD| 23136115 Group 12  23/12/2023 
III. Analyzing and draw the ERD diagram 
The ent ity relationship diagram can be thought of as the datab ase's design sketch.   
ERD provides visualization for database design, hence it serves the following functions:      lOMoAR cPSD| 23136115 Group 12  23/12/2023 
- Supports in the definition of information system requirements across the organization 
and assists users in planning how to organize data. It facilitates planning before 
beginning to build the tables. 
- The ERD diagram can be used as a document to help others comprehend the  database's core.      lOMoAR cPSD| 23136115 Group 12  23/12/2023 
- The ERD diagram depicts the database's logical structure so that users can  understand it. 
- Once the relational database has been deployed, the ERD can still be used 
as a reference point if the debug or business process needs to be re-established  later. 
Analyzing the entities: 
+ Property: the property table includes the address, number of floors, year of 
construction, area of 1 property, and the ID attached to each property. 
+ Person: the person table plays the role of managing the properties, through the 
propertyID and it is divided into 3 main categories (Seller, Customer, Investor) 
through the ID of the table role 
+ Roles: role table for information about types of people (Seller, Customer,  Investor) 
+ Status: status table to view the status of the property based on the ID of the 
table status (sold, on sale, fixing) 
+ HousePrices: house price list for sale date and original selling price of the  property via propertyID 
+ MarketData: provides information about the real estate market by address and 
date and at each time there is a main keyword, MarketDataID 
+ Prediction: provide the property's predicted date and price via the propertyID 
and the MarketData table influenced prediction table via the MarketDataID 
+ PropertyType: this table for found property's classification (Villa, Apartment,  Cabin, Penthouse) via TypeID 
+ Interior: this table shows the interior of each property based on the PropertyID.    Group 12  23/12/2023  lOMoAR cPSD| 23136115  IV. Relational Schema: 
The Relational Schema is generated from the ERD, displaying the table elements that 
correspond to the entities and providing table designers in SQL server with a more detailed 
perspective of the table implementation.   
V. Build a database using SQL Sever  -- Create table Role  CREATE TABLE Role (    Group 12  23/12/2023  lOMoAR cPSD| 23136115 
 roleID int IDENTITY(1,1) NOT NULL, 
roleName varchar(30) NOT NULL, 
 CONSTRAINT PK_Role PRIMARY KEY CLUSTERED (roleID ASC)  );  GO  -- Create table Status  CREATE TABLE Status ( 
 statusID int IDENTITY(1,1) NOT NULL, 
statusName varchar(30) NOT NULL, 
 CONSTRAINT PK_Status PRIMARY KEY CLUSTERED (statusID ASC)  );  GO  -- Create table PropertyType  CREATE TABLE PropertyType ( 
typeID int IDENTITY(1,1) NOT NULL, 
typeName varchar(30) NOT NULL, 
 CONSTRAINT PK_PropertyType PRIMARY KEY CLUSTERED (typeID ASC)  );  GO  -- Create table MarketData  CREATE TABLE MarketData ( 
 marketDataID int IDENTITY(1,1) NOT NULL,   date date NOT NULL, 
address varchar(100) NOT NULL,   CRIM float NOT NULL,   ZN float NOT NULL,   INDUS float NOT NULL,   CHAS bit NOT NULL,   NOX float NOT NULL,   RM float NOT NULL,   AGE float NOT NULL,   DIS float NOT NULL,   RAD int NOT NULL,   TAX int NOT NULL,   PTRATIO float NOT NULL,   LSTAT float NOT NULL,   MEDV float NOT NULL, 
 CONSTRAINT PK_MarketData PRIMARY KEY CLUSTERED (marketDataID ASC)  );  GO  -- Create table Person  CREATE TABLE Person ( 
 personID int IDENTITY(1,1) NOT 
NULL, name varchar(50) NOT NULL, 
phone varchar(11) NOT NULL, address 
varchar(100) NOT NULL, isMale bit  NOT NULL, 
 roleID int FOREIGN KEY REFERENCES Role(roleID) NOT NULL, 
CONSTRAINT PK_Person PRIMARY KEY CLUSTERED (personID ASC)    Group 12  23/12/2023  lOMoAR cPSD| 23136115  );  GO  -- Create table Property  CREATE TABLE Property ( 
 propertyID int IDENTITY(1,1) NOT NULL, 
squareFootage decimal(10,4) NOT NULL,   floor int NOT NULL, 
yearBuilt int NOT NULL, address 
varchar(100) NOT NULL, saleDate  date NOT NULL, salePrice  decimal(8,4) NOT NULL, 
 typeID int FOREIGN KEY REFERENCES PropertyType(typeID) NOT NULL, 
statusID int FOREIGN KEY REFERENCES Status(statusID) NOT NULL, 
personID int FOREIGN KEY REFERENCES Person(personID) NOT NULL, 
CONSTRAINT PK_Property PRIMARY KEY CLUSTERED (propertyID ASC)  );  GO  -- Create table Interior  CREATE TABLE Interior (  propertyID int NOT NULL,  numBedRooms int NOT NULL,  numBathrooms int NOT NULL,  kitchen bit NOT NULL,  pool bit NOT NULL, garden  bit NOT NULL,   
 CONSTRAINT FK_Interior_Property FOREIGN KEY (propertyID) REFERENCES  Property(propertyID), 
 CONSTRAINT PK_Interior PRIMARY KEY CLUSTERED (propertyID ASC)  );  GO  -- Create table Prediction 
CREATE TABLE Prediction ( propertyID 
int NOT NULL, marketDataID int NOT 
NULL, predictionDate date NOT NULL, 
predictionPrice decimal(8,3) NOT NULL, 
 CONSTRAINT FK_Prediction_Property FOREIGN KEY (propertyID) REFERENCES  Property(propertyID), 
 CONSTRAINT FK_Prediction_MarketData FOREIGN KEY (marketDataID) REFERENCES  MarketData(marketDataID), 
 CONSTRAINT PK_Prediction PRIMARY KEY CLUSTERED (propertyID, marketDataID ASC)  );  GO  -- Insert data 
INSERT INTO Role VALUES('Seller'); 
INSERT INTO Role VALUES('Customer');    Group 12  23/12/2023  lOMoAR cPSD| 23136115  INSERT INTO   Role VALUES('Investor');  GO 
INSERT INTO Status VALUES('On Sale'); 
INSERT INTO Status VALUES('Sold'); 
INSERT INTO Status VALUES('Fixing');  GO 
INSERT INTO PropertyType VALUES('Villa'); 
INSERT INTO PropertyType VALUES('Cabin'); 
INSERT INTO PropertyType VALUES('Apartment'); 
INSERT INTO PropertyType VALUES('Villa');  GO 
INSERT INTO Person VALUES('Andrew Garfield', '08172645781', '408 5th Ave, Brooklyn,  United States', 0, 1); 
INSERT INTO Person VALUES('Charlie Puth', '04716284625', '3548 S Jefferson St #52, 
Falls Church, United States', 0, 2); 
INSERT INTO Person VALUES('Selena Gomez', '0751827458', '1455 S Lamb Blvd, Las  Vegas, United States', 0, 3); 
INSERT INTO Person VALUES('Justin Bieber', '0564728659', '3910 N Cedar Ave, Fresno,  United States', 0, 2); 
INSERT INTO Person VALUES('Camila Cabello', '0857175847', '397 Arguello Blvd, San 
Francisco, United States', 0, 3); 
INSERT INTO Person VALUES('Ariana Grande', '08572648596', '3210 Botham Jean Blvd, 
Dallas, United States', 0, 2); 
INSERT INTO Person VALUES('Bruno Mars', '04528592871', '1232 Metropolitan Pkwy SW, 
Atlanta, United States', 0, 1); 
INSERT INTO Person VALUES('Harry Styles', '07582647582', '2813 W 55th St, Chicago,  United States', 0, 2); 
INSERT INTO Person VALUES('Ed Sherran', '08571285749', '8646 Goodwood Blvd, Baton  Rouge, United States', 0, 2); 
INSERT INTO Person VALUES('Post Malone', '07597265919', '262 Keyes St, San Jose,  United States', 0, 2); 
INSERT INTO Person VALUES('Dua Lipa', '09746517285', '3124 Ingersoll Ave, Des 
Moines, United States', 0, 3); 
INSERT INTO Person VALUES('Billie Eilish', '07461728485', '912 12th Ave, Seattle,  United States', 0, 2); 
INSERT INTO Person VALUES('Olivia Rodrigo', '08461758295', '15550 Okeechobee Blvd, 
Loxahatchee, United States', 0, 1); 
INSERT INTO Person VALUES('Tom Cruise', '06475818257', '1700 N Wayside Dr, Houston,  United States', 0, 2); 
INSERT INTO Person VALUES('Ben Affleck', '01627485927', '525 Cortland Ave, San 
Francisco, United States', 0, 2); 
INSERT INTO Person VALUES('Anne Hathaway', '07416249581', '1259 S Poseyville Rd, 
Midland, United States', 0, 2); 
INSERT INTO Person VALUES('Will Smith', '08245712456', '3424 W Irving Park Rd, 
Chicago, United States', 0, 3); 
INSERT INTO Person VALUES('Tom Hanks', '09624516278', '2273 NW 7th St, Miami, United  States', 0, 2); 
INSERT INTO Person VALUES('Angelina Jolie', '06571862481', '1704 N Howard Ave,  Tampa, United States', 0, 2);    Group 12  23/12/2023  lOMoAR cPSD| 23136115 
INSERT INTO Person VALUES('Brad Pitt', '0245367986', '302 Randolph St, San 
Francisco, United States', 0, 2);  GO 
INSERT INTO Property VALUES(5000, 2, '04/11/2018', '974 Blue Hill Avenue, Boston, 
United States', '01/09/2023', 3012, 1, 1, 1); 
INSERT INTO Property VALUES(3670, 1, '06/20/2012', '521 Washington St, Boston, 
United States', '10/10/2019', 5921, 1, 1, 1); 
INSERT INTO Property VALUES(2830, 3, '07/10/2015', '415 American Legion Hwy, Boston, 
United States', '01/07/2020', 5921, 2, 2, 1); 
INSERT INTO Property VALUES(1930, 1, '08/31/2013', '1290 Blue Hill Avenue, Mattapan, 
United States', '09/01/2018', 5932, 1, 3, 1); 
INSERT INTO Property VALUES(5920, 2, '08/02/2014', '18 Croftland Ave, Boston, United 
States', '03/29/2022', 2941, 3, 1, 2); 
INSERT INTO Property VALUES(7280, 2, '06/11/2019', '9 Peacevale Rd, Boston, United 
States', '02/21/2021', 3912, 3, 3, 2); 
INSERT INTO Property VALUES(5820, 2, '05/19/2020', '630 Adams St, Boston, United 
States', '09/16/2021', 4627, 2, 2, 2); 
INSERT INTO Property VALUES(5920, 3, '04/18/2009', '419 Adams St, Boston, United 
States', '10/22/2017', 8273, 4, 2, 2); 
INSERT INTO Property VALUES(4670, 4, '04/10/2010', '416 Geneva Ave, Boston, United 
States', '11/29/2018', 5021, 4, 3, 3); 
INSERT INTO Property VALUES(2840, 1, '10/02/2010', '35 Westville St, Boston, United 
States', '06/08/2018', 5912, 1, 2, 3); 
INSERT INTO Property VALUES(1281, 2, '02/20/2011', '199 Blue Hill Avenue, Boston, 
United States', '03/30/2020', 4023, 1, 2, 4); 
INSERT INTO Property VALUES(5000, 2, '02/26/2018', '273 Croftland Ave, Boston, 
United States', '11/13/2023', 3012, 1, 1, 5); 
INSERT INTO Property VALUES(3670, 1, '06/06/2012', '1188 Adams St, Boston, United 
States', '10/10/2019', 5921, 1, 1, 6); 
INSERT INTO Property VALUES(2830, 3, '07/12/2015', '388 Blue Hill Avenue, Boston, 
United States', '01/03/2020', 5921, 2, 2, 7); 
INSERT INTO Property VALUES(1930, 1, '08/31/2013', '1356 Dorchester Ave, Boston, 
United States', '09/05/2016', 5932, 1, 3, 8); 
INSERT INTO Property VALUES(5920, 2, '08/02/2018', '186 Glenway St, Boston, United 
States', '03/29/2022', 2941, 3, 1, 9); 
INSERT INTO Property VALUES(7280, 2, '06/11/2019', '555 Talbot Ave, Boston, United 
States', '02/22/2022', 3912, 3, 3, 10); 
INSERT INTO Property VALUES(5920, 3, '04/18/2010', '630 Adams St, Boston, United 
States', '10/22/2012', 8273, 4, 2, 11); 
INSERT INTO Property VALUES(4670, 4, '04/10/2011', '367 Neponset Ave, Dorchester, 
United States', '11/29/2012', 5021, 4, 3, 12); 
INSERT INTO Property VALUES(2840, 1, '10/02/2013', '735 William T Morrissey Blvd, 
Boston, United States', '06/08/2018', 5912, 1, 2, 13); 
INSERT INTO Property VALUES(1281, 2, '02/20/2017', '2297 Dorchester Ave, Boston, 
United States', '03/30/2022', 4023, 1, 2, 14); 
INSERT INTO Property VALUES(5000, 2, '04/11/2005', '126 Granite Ave, Boston, United 
States', '01/09/2008', 3012, 1, 1, 15); 
INSERT INTO Property VALUES(3670, 1, '06/26/2012', '1750 Dorchester Ave, Boston, 
United States', '10/10/2019', 5921, 1, 1, 16); 
INSERT INTO Property VALUES(2830, 3, '07/14/2015', '735 William T Morrissey Blvd, 
Boston, United States', '01/07/2017', 5921, 2, 2, 17);    Group 12  23/12/2023  lOMoAR cPSD| 23136115  INSERT INTO 
INSERT INTO Property VALUES(1930, 1, '08/30/2013', '280 W Broadway, Boston, United 
States', '01/19/2016', 5932, 1, 3, 18); 
 Property VALUES(5920, 2, '08/02/2014', '726 E Broadway, Boston, United 
States', '03/29/2020', 2941, 3, 1, 19); 
INSERT INTO Property VALUES(7280, 2, '06/11/2018', '658 E Broadway, Boston, United 
States', '02/21/2021', 3912, 3, 3, 20); 
INSERT INTO Property VALUES(5920, 3, '04/18/2017', '243 Dorchester St, Boston, 
United States', '10/22/2019', 8273, 4, 2, 13); 
INSERT INTO Property VALUES(4670, 4, '04/10/2010', '170 W Broadway, Boston, United 
States', '11/29/2013', 5021, 4, 3, 14); 
INSERT INTO Property VALUES(2840, 1, '10/02/2016', '383 Adams St, Boston, United 
States', '06/08/2018', 5912, 1, 2, 6); 
INSERT INTO Property VALUES(1281, 2, '02/20/2011', '30 Adams St, Boston, United 
States', '03/30/2015', 4023, 1, 2, 7); 
INSERT INTO Property VALUES(5000, 2, '04/11/2012', '700 Dorchester Ave, Boston, 
United States', '01/09/2016', 3012, 1, 1, 8); 
INSERT INTO Property VALUES(3670, 1, '06/20/2012', '775 Dorchester Ave, South 
Boston, United States', '10/10/2019', 5921, 1, 1, 8); 
INSERT INTO Property VALUES(2830, 3, '07/10/2018', '88 Dorchester Ave, Boston, 
United States', '01/07/2020', 5921, 2, 2, 9); 
INSERT INTO Property VALUES(1930, 1, '08/31/2017', '77 Dorchester Ave, Boston, 
United States', '09/01/2018', 5932, 1, 3, 10); 
INSERT INTO Property VALUES(5920, 2, '08/02/2014', '58 Talbot Ave, Boston, United 
States', '03/29/2016', 2941, 3, 1, 11); 
INSERT INTO Property VALUES(7280, 2, '06/11/2019', '27 Talbot Ave, Boston, United 
States', '02/21/2020', 3912, 3, 3, 12); 
INSERT INTO Property VALUES(5920, 3, '04/18/2020', '176 Talbot Ave, Boston, United 
States', '10/22/2022', 8273, 4, 2, 13); 
INSERT INTO Property VALUES(4670, 4, '04/10/2010', '150 Talbot Ave, Boston, United 
States', '11/29/2012', 5021, 4, 3, 14); 
INSERT INTO Property VALUES(2840, 1, '10/02/2015', '35 Glenway St, Boston, United 
States', '06/08/2018', 5912, 1, 2, 15); 
INSERT INTO Property VALUES(1281, 2, '02/20/2014', '190 Glenway St, Boston, United 
States', '03/30/2018', 4023, 1, 2, 16); 
INSERT INTO Property VALUES(2840, 1, '10/02/2020', '279a Glenway St, Boston, United 
States', '06/08/2022', 5912, 1, 2, 17); 
INSERT INTO Property VALUES(1281, 2, '02/20/2019', '569 Glenway St, Boston, United 
States', '03/30/2023', 4023, 1, 2, 18);  GO 
INSERT INTO Interior VALUES(3,2,1,1,0,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,0); 
INSERT INTO Interior VALUES(3,1,1,0,1,1); 
INSERT INTO Interior VALUES(1,1,1,1,0,0); 
INSERT INTO Interior VALUES(2,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,1); 
INSERT INTO Interior VALUES(1,1,1,1,0,1); 
INSERT INTO Interior VALUES(1,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,1); 
INSERT INTO Interior VALUES(1,1,1,1,0,1);    Group 12  23/12/2023  lOMoAR cPSD| 23136115 
INSERT INTO Interior VALUES(1,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,1); 
INSERT INTO Interior VALUES(1,1,1,1,0,1);    Group 12  23/12/2023  lOMoAR cPSD| 23136115  INSERT INTO 
 Interior VALUES(1,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,1); 
INSERT INTO Interior VALUES(1,1,1,1,0,1); 
INSERT INTO Interior VALUES(1,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,1); 
INSERT INTO Interior VALUES(1,1,1,1,0,1); 
INSERT INTO Interior VALUES(1,2,1,1,1,1); 
INSERT INTO Interior VALUES(2,2,1,1,1,1); 
INSERT INTO Interior VALUES(2,2,1,1,1,1); 
INSERT INTO Interior VALUES(1,1,1,1,1,1); 
INSERT INTO Interior VALUES(1,2,1,1,1,1); 
INSERT INTO Interior VALUES(2,2,1,1,1,1); 
INSERT INTO Interior VALUES(2,2,1,1,1,1); 
INSERT INTO Interior VALUES(1,1,1,1,1,1); 
INSERT INTO Interior VALUES(1,2,1,1,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,1); 
INSERT INTO Interior VALUES(1,1,1,1,0,1); 
INSERT INTO Interior VALUES(1,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,1); 
INSERT INTO Interior VALUES(1,1,1,1,0,1); 
INSERT INTO Interior VALUES(1,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,1,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,1); 
INSERT INTO Interior VALUES(2,2,1,0,0,1);  GO 
INSERT INTO MarketData VALUES('01/01/2023','Blue Hill Avenue, Boston, United 
States', 0.00632, 18, 2.31, 0, 0.538, 6.575, 65.2, 4.09, 1, 296, 15.3, 4.98, 24); 
INSERT INTO MarketData VALUES('03/01/2023','Blue Hill Avenue, Boston, United 
States', 0.02731, 0, 7.07, 0, 0.469, 6.421, 78.9, 4.9671, 2, 242, 17.8, 9.14, 21.6); 
INSERT INTO MarketData VALUES('06/01/2023','Blue Hill Avenue, Boston, United 
States', 0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); 
INSERT INTO MarketData VALUES('09/01/2023','Blue Hill Avenue, Boston, United 
States', 0.03237, 0, 2.18, 0, 0.458, 6.998, 45.8, 6.0622, 3, 222, 18.7, 2.94, 33.4); 
INSERT INTO MarketData VALUES('12/01/2023','Blue Hill Avenue, Boston, United 
States', 0.06905, 0, 7.07, 0, 0.469, 7.147, 54.2, 4.9671, 3, 222, 17.8, 5.33, 36.2); 
INSERT INTO MarketData VALUES('01/01/2023','Washington St, Boston, United States', 
0.02985, 0, 7.07, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); INSERT 
INTO MarketData VALUES('03/01/2023','Washington St, Boston, United States', 
0.08829, 12.5, 7.87, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 22.9); 
INSERT INTO MarketData VALUES('06/01/2023','Washington St, Boston, United States', 
0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); INSERT 
INTO MarketData VALUES('09/01/2023','Washington St, Boston, United States', 
0.14455, 12.5, 7.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8, 19.15, 27.1); 
INSERT INTO MarketData VALUES('12/01/2023','Washington St, Boston, United States',    Group 12  23/12/2023  lOMoAR cPSD| 23136115  INSERT INTO MarketData 
0.21124, 12.5, 7.87, 0, 0.524, 7.147, 100, 4.9671, 3, 222, 17.8, 29.93, 16.5); 
VALUES('01/01/2023','American Legion Hwy, Boston, United 
States', 0.02185, 0, 7.1, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); 
INSERT INTO MarketData VALUES('03/01/2023','American Legion Hwy, Boston, United 
States', 0.08823, 23.5, 7.33, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 
22.9); INSERT INTO MarketData VALUES('06/01/2023','American Legion Hwy, Boston, 
United States', 0.08233, 23.5, 6.33, 0, 0.522, 6.032, 66.21, 5.5605, 3, 211, 15.2,  12.43, 
22.9); INSERT INTO MarketData VALUES('09/01/2023','American Legion Hwy, Boston, 
United States', 0.14321, 7.5, 8.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8,  19.15, 
27.1); INSERT INTO MarketData VALUES('12/01/2023','American Legion Hwy, Boston, 
United States', 0.21214, 1.5, 9.87, 0, 0.524, 7.147, 100, 4.9671, 3, 222, 17.8,  29.93,  16.5); 
INSERT INTO MarketData VALUES('01/01/2023','Croftland Ave, Boston, United States', 
0.02985, 0, 7.07, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); INSERT 
INTO MarketData VALUES('03/01/2023','Croftland Ave, Boston, United States', 
0.08829, 12.5, 7.87, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 22.9); 
INSERT INTO MarketData VALUES('06/01/2023','Croftland Ave, Boston, United States', 
0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); INSERT 
INTO MarketData VALUES('09/01/2023','Croftland Ave, Boston, United States', 
0.14455, 12.5, 7.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8, 19.15, 27.1); 
INSERT INTO MarketData VALUES('12/01/2023','Croftland Ave, Boston, United States', 
0.21124, 12.5, 7.87, 0, 0.524, 7.147, 100, 4.9671, 3, 222, 17.8, 29.93, 16.5); 
INSERT INTO MarketData VALUES('01/01/2023','Peacevale Rd, Boston, United States', 
0.02985, 0, 7.07, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); INSERT 
INTO MarketData VALUES('03/01/2023','Peacevale Rd, Boston, United States', 
0.08829, 12.5, 7.87, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 22.9); 
INSERT INTO MarketData VALUES('06/01/2023','Peacevale Rd, Boston, United States', 
0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); 
INSERT INTO MarketData VALUES('09/01/2023','Peacevale Rd, Boston, United States', 
0.14455, 12.5, 7.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8, 19.15, 27.1); 
INSERT INTO MarketData VALUES('12/01/2023','Peacevale Rd, Boston, United States', 
0.21124, 12.5, 7.87, 0, 0.524, 7.147, 100, 4.9671, 3, 222, 17.8, 29.93, 16.5); 
INSERT INTO MarketData VALUES('01/01/2023','Adams St, Boston, United States', 
0.02985, 0, 7.07, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); 
INSERT INTO MarketData VALUES('03/01/2023','Adams St, Boston, United States', 
0.08829, 12.5, 7.87, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 22.9); 
INSERT INTO MarketData VALUES('06/01/2023','Adams St, Boston, United States', 
0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); 
INSERT INTO MarketData VALUES('09/01/2023','Adams St, Boston, United States', 
0.14455, 12.5, 7.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8, 19.15, 27.1); 
INSERT INTO MarketData VALUES('12/01/2023','Adams St, Boston, United States', 
0.21124, 12.5, 7.87, 0, 0.524, 7.147, 100, 4.9671, 3, 222, 17.8, 29.93, 16.5); 
INSERT INTO MarketData VALUES('01/01/2023','Geneva Ave, Boston, United States', 
0.02985, 0, 7.07, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); 
INSERT INTO MarketData VALUES('03/01/2023','Geneva Ave, Boston, United States',    Group 12  23/12/2023  lOMoAR cPSD| 23136115  INSERT INTO MarketData 
0.08829, 12.5, 7.87, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 22.9); 
INSERT INTO MarketData VALUES('06/01/2023','Geneva Ave, Boston, United States', 
0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); 
VALUES('09/01/2023','Geneva Ave, Boston, United States', 
0.14455, 12.5, 7.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8, 19.15, 27.1); 
INSERT INTO MarketData VALUES('12/01/2023','Geneva Ave, Boston, United States', 
0.21124, 12.5, 7.87, 0, 0.524, 7.147, 100, 4.9671, 3, 222, 17.8, 29.93, 16.5); 
INSERT INTO MarketData VALUES('01/01/2023','Westville St, Boston, United States', 
0.02985, 0, 7.07, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); INSERT 
INTO MarketData VALUES('03/01/2023','Westville St, Boston, United States', 
0.08829, 12.5, 7.87, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 22.9); 
INSERT INTO MarketData VALUES('06/01/2023','Westville St, Boston, United States', 
0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); 
INSERT INTO MarketData VALUES('09/01/2023','Westville St, Boston, United States', 
0.14455, 12.5, 7.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8, 19.15, 27.1); 
INSERT INTO MarketData VALUES('12/01/2023','Westville St, Boston, United States', 
0.21124, 12.5, 7.87, 0, 0.524, 7.147, 100, 4.9671, 3, 222, 17.8, 29.93, 16.5); 
INSERT INTO MarketData VALUES('01/01/2023','Glenway St, Boston, United States', 
0.02985, 0, 7.07, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); 
INSERT INTO MarketData VALUES('03/01/2023','Glenway St, Boston, United States', 
0.08829, 12.5, 7.87, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 22.9); 
INSERT INTO MarketData VALUES('06/01/2023','Glenway St, Boston, United States', 
0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); 
INSERT INTO MarketData VALUES('09/01/2023','Glenway St, Boston, United States', 
0.14455, 12.5, 7.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8, 19.15, 27.1); 
INSERT INTO MarketData VALUES('12/01/2023','Glenway St, Boston, United States', 
0.21124, 12.5, 7.87, 0, 0.524, 7.147, 100, 4.9671, 3, 222, 17.8, 29.93, 16.5); 
INSERT INTO MarketData VALUES('01/01/2023','Talbot Ave, Boston, United States', 
0.02985, 0, 7.07, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); 
INSERT INTO MarketData VALUES('03/01/2023','Talbot Ave, Boston, United States', 
0.08829, 12.5, 7.87, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 22.9); 
INSERT INTO MarketData VALUES('06/01/2023','Talbot Ave, Boston, United States', 
0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); 
INSERT INTO MarketData VALUES('09/01/2023','Talbot Ave, Boston, United States', 
0.14455, 12.5, 7.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8, 19.15, 27.1); 
INSERT INTO MarketData VALUES('12/01/2023','Talbot Ave, Boston, United States', 
0.21124, 12.5, 7.87, 0, 0.524, 7.147, 100, 4.9671, 3, 222, 17.8, 29.93, 16.5); 
INSERT INTO MarketData VALUES('01/01/2023','William T Morrissey Blvd, Boston, United 
States', 0.02985, 0, 7.07, 0, 0.469, 6.43, 58.7, 4.9671, 3, 222, 17.8, 5.21, 28.7); 
INSERT INTO MarketData VALUES('03/01/2023','William T Morrissey Blvd, Boston, United 
States', 0.08829, 12.5, 7.87, 0, 0.524, 6.012, 66.6, 5.5605, 3, 311, 15.2, 12.43, 
22.9); INSERT INTO MarketData VALUES('06/01/2023','William T Morrissey Blvd, Boston,  United 
States', 0.02729, 0, 7.07, 0, 0.469, 7.185, 61.1, 4.9671, 2, 242, 17.8, 4.03, 34.7); 
INSERT INTO MarketData VALUES('09/01/2023','William T Morrissey Blvd, Boston, United 
States', 0.14455, 12.5, 7.87, 0, 0.469, 6.172, 96.1, 5.9505, 3, 222, 17.8, 19.15,    
