Giáo trình "Phần B: Nhiệt học"

Giáo trình  gồm 54 trang bao gồm các kiến thức cơ bản liên quan: "Phần B: Nhiệt học" giúp bạn ôn luyện và nắm vững kiến thức môn học Vật lý đại cương. Mời bạn đọc đón xem!

Trường:

Học viện kỹ thuật quân sự 90 tài liệu

Thông tin:
55 trang 11 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Giáo trình "Phần B: Nhiệt học"

Giáo trình  gồm 54 trang bao gồm các kiến thức cơ bản liên quan: "Phần B: Nhiệt học" giúp bạn ôn luyện và nắm vững kiến thức môn học Vật lý đại cương. Mời bạn đọc đón xem!

140 70 lượt tải Tải xuống
06. Giải bài tập Nhiệt học - Lương Duyên Bình
khoa học quản lý đại cương (Học viện Kỹ thuật Quân sự)
Scan to open on Studocu
Studocu is not sponsored or endorsed by any college or university
06. Giải bài tập Nhiệt học - Lương Duyên Bình
khoa học quản lý đại cương (Học viện Kỹ thuật Quân sự)
Scan to open on Studocu
Studocu is not sponsored or endorsed by any college or university
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180


 

  !"#
$ %&'!()*+ !"#&
'

 ,-./012322245/6/%
789:
; !"&
8
7
9:8<=>?
$ @/0!(A798%
; !"&
8
7
97
8<?
 *
B=!C/%"$0
  !"#&
$ *.!(&D6!#$E<
 !"#&.

 ; !"&
8
7
9:8BB?
$ @/0!(A98%
; !"&
8
9
8>?F68<=B,G
 !C/%"$0=
H
,;-I6$0/
" -J  % )    #  K L /% $0 $E
=>
M
,% !"N!O0-J!'6/

,-./012322245/6/%%&/-)4D6
78
9:=
78
9:=
21
21
2
2
1
1
mm
pp
m
p
m
p
==
?&-J!'6A
kg5,7m
p
p
1mmm
1
1
2
21
=
==
        H
%
 P  .  !( = &
-J/Q#$EM

9
0 !"#&
.

Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
/-).
789:
FG
P.789:
p=
ρ
:
9 (2)
R6FG9FG
( )
K1400273t
V
m
T
V
m
T
112
=+==
ρρ
> S6 !"
%
=P.!(=
&0A
 &/-)'
$ ; !"&'
 ?&-J/Q&/-)'
3 ?&-J/Q&'

 /-)'A
4,2RT/pV
11
=
µ
$ ; !"'A
8
7
97

H?
 ?&-J/Q#/-)'A
3
1
1
1
m/kg14,4
V
m
==
ρ
3 ?&-J/Q#'A
3
2
1
1
m/kg1
V
m
==
ρ
M 1"$0T"UH
%
4D0#
  !'  "& -J  % / +$0 4D   !" L
S&)
%


,-./012322245/6/%
( )
at19p
T2
TT
p
TTR
2/m
Vp
RT
m
Vp
12
2
1
=
=
=
µ
µ
H 1"V
;-I$.4D%V6!/N

3-)H>*;WX6$.!-J>0$%
X0$.S%Y

?&-JV$.
RT
PV
m
µ
=
IV$.
mRT
pV
m
m
t
=
=
µ
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
6  H>*8=>,= 8HZ8<?=
3
m300V =
=
:8B=[9%?=8=8>;\!-J
<<
B %3]*P4)!4N!-J !"
%4D**+-J!4N!'T

,^T
OHCOCaSOSOHCaCO
224423
+++
P&%
2
CO
/$E&%#
3
CaCO
^T?&
-J#
3
CaCO
^TA
100
RT
pV
100.nM.nm
233
COCaCOCaCO
===
6&8*8
Pa10.33,1
5
=
33
m10.32,1V
=
g18,7m
< $0V!-J&4)$E"&%=T_
"$0T$E>,=$0TD
M,1`D!$0N%% !"
N!O?!'X$E=$0D>,0
#$0VT=$#$0TD>

O&%/-)4DN!OF4D !"aN
!OGQA
( )
RT
VVp
RT
Vp
RT
Vp
212211
+
=+
7\6=#$0VT
3
1
2
1
2
dm5V
pp
pp
V =
=
 $0TTN4)$E"&
#6#$0TD=#$0T
DRb!V!=$0V-JD4D
P!`D!$0N%% 
!"4cN6!O#/%$0
N

-.C$D\<=A
( )
RT
VVp
RT
Vp
RT
Vp
212211
+
=+
at6,1
VV
VpVp
p
21
2211
=
+
+
=




Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 1" & #6   3  !d= " !V  " !V  Rb !V
-Ib!V4D%"\-)%%-)/%4D%D
&$E=d%KL#&$EP!-I
/b&Q"!%LF0G*+T-)/%&3X
Q$%Q=$/E !"SeN!O4D
e6DHM*

fg!"%"-)/%&DS
/%&XQ
( )( )
OcmHxpp
2o
=
hi\j..1/N%&$i
( ) ( )( )
x4lxpx4lplp
oo
+=+=
6&A
OcmH1033mmHg760p
2o
==
=
cm20l =
cm95,3x04132x1057-x
2
==+
kF
cm1053x =
lZ%LG
 /%&%4a$"N=3%!
!d $0-ILmDH>*
0&-J/Q#N/%&

$Q/%%4a$
Pa1360mmHg10pp'p
o
===
?&-J/Q#
( )
3
o
o
m/g17
273.31,8
1360.29
RT
pp
=
=
µ
ρ
  B  NS6 W J 4)   $% FG n !i &
-J#N%WJ!

?&-J#%WJ
( ) ( )
kmol/kg40
44/2232/8
228
kmol/kg
mm
mm
mol/g
n
m
2
2
1
1
21
=
+
+
=
+
+
==
µµ
µ
 1"WJ=B;.4D=oS6 !"H
%
4D

>
;9
0#WJ!

WJ
S

Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
( )
3
5
2
2
1
1
m2,1
10.4
17273.31,8.
32
3200
28
2800
p
RT
mm
p
nRT
V
+
+
=
+
==
µµ
> ?OD"WJp "V&-J6!N4DV
&-JoS6*'6S!i&-J/Q#O!!d
 -I

2%$D=&-J%#O
mol/g12
32/82/1
81
m/m
1
m/m1
mm
mm
8m/m
2
12
1
12
2
2
1
1
21
12
=
+
+
=
+
+
=
+
+
=
=
µµµµ
µ
?&-J/Q#WJ
3
5
o
o
m/g534
273.31,8
10.01,1.12
RT
p
==
µ
ρ

B M  %S6 !-J   q   !" >
%
 ! M
%
 0  
-JD\!-J4D!"$Q"r#&/%
eb/0
 h(k$h(

A
 @/0!(
( )
cal250J10405060.31.8.
2
5
.
32
160
TR
2
5m
TC
m
UQ
V
====
µµ
$ @/0!(
h"$Q"r
cal250TC
m
U
V
==
µ
; -J\4D%
( )
TR
2
7m
TRC
m
VpTC
m
AUQ
VV
=+=+=+=
µµµ
6&
@
( )
cal350J14545060.31.8.
2
7
.
32
160
=
B 0 3/QFG!(#"!6Qs=
$/E&-J/Q#!!d tD8H=<>

9

Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180

7)!6Qs= 3/Q%!(
( )
molK/JR3C
V
=
!d Qt
o
o
ooo
p
RT
RT
m
Vp
ρ
µ
µ
==
; 3/Q!(
kgK/J1400
T
p3
RT
CpC
c
oVoV
V
===
ρρµ
B 0 3/QFG!(#"=$/E&
-J#"N%!D89%* &,%SNFm&
!%L G8=

A
; 3/Q%!(A
RCC
Vp
+=

7)
V
p
C
C
=
γ
8l
1
=
γ
γ
R
C
p
; 3/Q!(A
( ) ( )
kgKJ
R
C
c
p
p
/5,969
14,1.10.30
31,8.4,1
1
3
=
=
==
γµ
γ
µ
B 1"$0T;.4D !"H
P
.=/%$0Q)>*+A
 ; !"#.Y
$ #$0Y
 h"r"r#Y

 @/0!(= !"&.D
K1500T
p
p
T
T
p
T
p
1
1
2
2
2
2
1
1
===
 $0
l72,12
p
mRT
V
1
1
==
µ
 h"r"r#&A
( )
kJ46,12T1
p
p
R
2
5m
TTC
m
U
1
1
2
12V
=
==
µµ
F
2
N
D-u6Qs8>=
2/R5C
V
=
G
B> ;U!(N0 +/$/E
&_$E9$!V
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180

;6QvT  #  !" C g=   -J D &\
!-J
UAQ
+= '
@/0!( Qw8
=TnC
V

; -JD&\!-J
JQ
V
V
Vp
V
dV
pVpdVAQ
V
V
V
V
676
10
1
ln10.3.10.81,9
ln'
34
1
2
11
2
1
2
1
=
====
xyzm//Ee/0CC+ 
BM 1"$0=!C. !"
%
P.
=/$0Q)
*0 -JD&
!'\!-J=$$0'U

j0'U=#$0N!O=e/0D!(
{8
;6Qv| !"Cg
( )
=
=
==+=
1212
12
RT
m
Vp
2
i
RT
m
RT
m
2
i
Q
TT
2
iRm
UUAQ
µµµ
µ
F
2
N
D-u6Qs8>=
2/R5C
V
=
G
6&
8
*8=
M
,=78

=
8B?
kJ1,4Q =

BH *.MoS6/%"$0'U !"
H
=q
>
;9
Q)
>
;9
0A
 ; !"#&.k
$ ; -J!'%&

j0='U=e/0!(= !"&.
D
( )
K93037273
10
10.3
T
p
p
T
T
p
T
p
5
5
1
1
2
2
2
2
1
1
=+===
$ ;  -J !'   % $E   -JD  \
!-J/%e/0!(/Q
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
( )
( )
kJ4,61
10
10.3
37273.31,8.
2
5
32
16
Q
1
p
p
RT
2
im
TTRC
m
UQ
5
5
1
2
112V
+=
===
µµ
BB P  \ !-J   -J @8>=   !" # 8= 
Srq
8M
%
)
8
%
*+e/0. !!-J
D/%!d D%Y

; -JD\!-J
( )
12
xx
ttm
Q
CTC
m
Q
==
µ
µ
( )
molK/J77,20
1640.3,40
18,4.150.32
C
x
=
=
; 3/Q%!(#SA
xV
CmolK/J77,20
2
31,8.5
2
iR
C ====
;-4\6
Vx
CC =
=e/0D!(
B< M=> 6!/N    !" H
%
= \   -J '   !N= /%
!d N!O
 ND/
$ h"$Q"r#&
 ; -J!'%&

 N/
( ) ( )
( )
J10.1,827273.31,8.
2
5,6
A
RT
m
VV2pVVpA
3
11112
+=
===
µ
$ h"$Q"r#&A
( ) ( )
( )
JU
RT
mi
pVpV
i
RT
m
RT
mi
TTC
m
U
V
3
1111212
10.2,2027273.31,8.
2
5,6
.
2
5
2
2
22
+=
==
==
µµµµ
 ; -J!'%&S$E -J
D\!-J2%6Qv|
J10.3,2810.2,2010.1,8UAQ
333
=+=+=
Fh&4)6Qs6!/NF-u6QsG&$\C3%6Qs
8>G
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
B %S6
%
=
>
,P.!(=
r!0A
 ; -JD&\!-J
$ ;"r#&/-)4D.

 2%6Qv|= -JD&\!-J/%eb
/0!(
( )
( )
J10.9,710273.31,8.
32
10
10.10.10.3
2
25
Q
RT
m
pV
2
2i
RT
m
RT
m
2
2i
TTC
m
UAQ
335
121212p
+
+
=
+
=
+
==+=
µµµµ
$ ;"r#&/-).
( )
J10.8,110273.31,8.
2
5
.
32
10
U
RT
2
im
TC
m
U
3
1
11V1
+=
==
µµ
;"r#&.
J10.5,710.10.10.3.
2
5
U
pV
2
i
RT
2
im
TC
m
U
335
2
222V2
==
===
µµ
Fh&4)6Qs%S6F-u6QsG&$\C3%6Qs8>G
B 1" #6 N 6 !" /% -) I N  U /% $0
T##6N]/N3%/j/E
#$0TD>=#NUq
^)


?]/DN/-I-)/)4D !"%-
N !O x% ! e /0 '   # #6 N /% -) % D e
/0!( FV!bD\iG
N3%/A
J10.26,2100ln10.5.10.81,9.1
p
p
lnVpA
334
2
1
11
==

B %$%!-J.!(%! !"r
Q>
%
0
 h"$Q"r#&
$ N3%'/
 ; -J/6d%

Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 h"$Q"r#&
kJ250050.
2
31,8.6
10.2T
2
iRm
U
3
==
µ
F
D!6QsFSDGQ&$\C3%#X
sDMG
$ N3%'/
( ) ( )
1212
TTR
m
VVpA ==
µ
kJ83050.31,8.10.2A
3
=
 ; -J/6d%$E -JD\!-J
kJ33308302500AUQ =+=+=
B H$%!-J.%) !"rQ
%

/%!d 'C3%0N3%/4D!"$QQ
"r#

f'C3%}D!(F'/%e6=$E
e6G
N3%/'
( ) ( )
121212
TTR
m
RT
m
RT
m
VVpA ===
µµµ
J2,1310.31,8.
44
7
A =
h"$Q"r#&
J7,3910.
2
31,8.6
.
44
7
T
2
iRm
U ==
µ
F
D!6QsFSDGQ&$\C3%#XsD
MG
B %S64D !"
%
!-J.!(4D
')0A
 ; -J%&
$ h"$QQ"r#&
 N3%/'


 ; -J%$E -JD\4D%
+
=
+
==+=
121212p
RT
m
pV
2
2i
RT
m
RT
m
2
2i
)TT(C
m
UAQ
µµµµ
( )
J10.8,710273.31,8.
32
10
10.10.10.81,9.3
2
25
Q
334
=
+
+
=
$ h"$Q"r
J10.5,5Q
2i
i
)TT(C
C
C
m
)TT(C
m
U
3
12p
p
V
12V
=
+
===
µµ
 N3%/'
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
J10.3,2UQA
3
==
B> 1"   !C /% " S !~ ( !T  N &
-JN! 3!"!-J*+V^ C  "N
$E$%Q!XNQ%Q"%^
cmh
10
1
=

d%$!V#"ND
cmh
o
15=
=e6D
at1p
o
=
=3 ~N
2
10
cmS
=
; !"#%DN
!O/%&e/0

N3%/
0
1o
oo
o
1
ooo
h
hh
lnVp
V
V
lnVpA
+
==
*6=$!O\4D%"NA
+
=
1o
o
ooo
hh
h
lnVpA
N#e6A
1ok
ShpA =
NVC $%pN/6d%4DN•e6
+==
o
1
o1ok
h
h
1lnhhSpAA'A
J3,2
15
10
1ln.10.1510.1010.10.10.8,9.1'A
2244
+=
BM 
 '  !(   q   8> !    
N3%  /4D -J % /%e/0
'

2%6Qv|
0U
UAQ
=
+=
2
1
11
VpVp
1
2
11
V
V
p
p
lnVp
V
V
lnVppdVAQ
2211
2
1
=
====
J10.2,2
4
5
ln.10.81,9.5.2AQ
54
===

BH 1"&;

87
8!-J')
!N0&_4DN3%/'
!DA
 h(
$ h( 
 h%L 
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180

 @/0!(
&
8
8
N3%/
( )
J98010.1010.10.2.10.81,9.1VpA
334
1
==
$ @/0!( 
&
A
at5,0p
V
V
pVpVp
1
2
1
22211
===
N3%/
===
2ln.10.10.10.81,9.1
V
V
lnVpA
34
1
2
11
MB[
 @/0!%L 

γ
γγ
==
2
1
122211
V
V
ppVpVp
h&4);
=
4,1
2
25
i
2i
=
+
=
+
=
γ
;Q
at38,02/1p
4,1
2
==
ZN3%/
( )
( )
( )
J5902110.10.10.81,9
2
5
A
V
V
1Vp
2
i
V
V
V
Vp
2
i
VpVp
2
i
A
RT
m
RT
m
2
i
TTC
m
UAUAQ
4,034
1
2
1
112
2
1
112211
2121V
=
=
==
===+=
γγ
µµµ
BB ;U%S6q!d Qt)0A
   4D   !" # &   W e /0 U !(
 4D!%L 
$ N V ! U /% W /-I Jq!= 6 /
QU2%D%0J.

$!V
l74,22.
32
10
V
1
==
 @/0U!( A
&e/0D
A
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
2
1
122211
V
V
ppVpVp ==
Pa10.7,1
4
7
.10p
55
2
=
*%~I-.0/LA
Pa10.7,1
10.4.32
273.31,8.10
p
V
mRT
pRT
m
VpVp
5
3
2
2
1
212211
=
===
µµ
; !"N!O
K273TT
12
==
NU$E4D-J34)N/
JA
V
V
RT
m
V
V
VpAA
397
7
4
ln.273.31,8.
32
10
lnln
1
1
2
1
1
2
112
=
=
==
µ
$

A
Pa10.2,2
4
7
10
V
V
ppVpVp
5
4,1
5
2
1
122211
=
=
==
γ
γγ
; !"
K341
4
7
273
V
V
TTVTVT
14,
1
2
1
12
1
22
1
11
=
==
1
γ
γγ
NU$E4D-J34)N/
1
14,1
35
1
2
111
2
439
4
7
1
14,1
10.7.10
1
1
AJ
V
VVp
A >
=
=
γ
γ
7\6U!( 0&.
B< ;-I  & U   N  !     *+ Q U
!( 6U!%L Y

NU2%e/0!( F$E4D-J34)4)N
D/GA
=
=
2
1
11
1
2
111
V
V
lnVp
V
V
lnVpA
FG
-.C=!&4)e/0!%L A
UA0UAQ ==+=
NU/%/-IJD6=-.C-!'D4)$DBHA
===
1
2
1
112
V
V
1Vp
2
i
UAA
γ
FG
qFG4DFG
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
( )
( )
( )
( )
14,1
2/10ln
12/10
.
2
5
V/Vln
1V/V
.
2
i
A
A
14,1
21
1
21
1
2
>
=
=
γ
7\6U2%e/0!( &N.=3%!J.
B f'!%L "&N%%#r
!N*'6 !"&N!&e/0=$/Eb
! !"
%


,-./0%e/0!%L 
( ) ( )
K207
2
1
273
V
V
TT
VTVTVVpVVpVpVp
14,1
1
2
1
12
1
22
1
11
1
222
1
1112211
=
=
===
γ
γγγγγγ
B H=%S6!-JU!%L !=b!#
UDM*+$!VY

,-./0FS2]]G%e/0!%L 
at1
2,7
1
.16
V
V
ppVpVp
4,1
2
1
122211
=
==
γ
γγ
B N !"
%
4D=>!-J'!%L 
!*+A
 NrQ$%QVY
$ ; !"N'Y
 N3%N/'Y

 q-./0
33,1
1
5,1
p
p
V
V
VpVp
4,1/1
/1
2
1
1
2
2211
=
==
γ
γγ
r%^=V
$ ,-./0%e/0!g 
γ
γ
γγγγγγ
===
1
2
1
12
1
22
1
112211
p
p
TTpTpTVpVp
( )
K270
1
5,1
30273T
4,1
4,11
2
+=
 N3%/
( )
21
TT
2
iRm
UA ==
µ
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
h&4)N8<9%=$\C3%#Xs8>
( )
J10.4,2270303.
2
31,8.5
29
10
A
4
3
=
B T/E!&4)"v-S!i-./0A
U
i
2
pV =
wD"r#&6=D$\C3%

;"rv-
nRT
2
i
U =
,-./012322245/6/%
nRTpV =
x%!
U
i
2
pV =
B 1" N%  ;
F8B9%G !d   Q t ' !%L
 %%#rQ>V0A
 N3%C 
$ h"$QQ"r#&

 ; !"UD
A
1
22
1
112211
VTVTVpVp
==
γγ
γγ
K4,143
5
1
.273
V
V
TT
14,1
1
2
1
12
=
=
γ
N3%C 
( )
( )
J10.7,24,143273
2
31,8.5
.10A
TT
2
iRm
UA
63
21
=
==
µ
$ h"$Q"r#&$E4D-J34)N
3%/
J10.7,2AU
6
==
B> ?N/%S#"!".!&/%!-JU!g 
q!> !"#&e/0
U$/E !"$!V#D
C
o

,-./0%e/0!%L 
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
γ
γ
γγγγγγ
===
1
2
1
12
1
22
1
112211
p
p
TTpTpTVpVp
( )
C592K865
35
1
40273T
o
4,1
4,11
2
=
+=
BM 1"&'!%L =#r!N=-
 !"6 !&#^!=V0&$\C3%#X
s!

q-./0
( )
( )
21
12
1
22
1
112211
V/Vln
T/Tln
1VTVTVpVp ===
γ
γγ
γγ
( )
( )
( )
( )
5
32,1/1ln
2/1ln.2
T/Tln
V/Vln2
i
12
21
i/21
===
=
γ
P&$\C3%D>
BH 1"-u6Qs
lV
5,0
1
=
=
atmp
5,0
1
=
$i
U !%L   )   7
4D  
 P ! -I  €
6Q
2
V
4DDL) !"$!V?!
#D
atmp
o
1=
 7•!pi#e/0!
$ 0
2
V
4D
2
p


 hpi#e/0A

$ @/05!( QA
21
o
1
3113o
Vl25,0V
p
p
VVpVp ====
@/05!%L QA
at32,15,0.2p
p
p
p
p
V
V
pVpVp
4,1
2
1
1
o
1
2
1
22211
=
=
==
γγ
γγ

7


%
7
7
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
F? -u 6Q s 8> Q
4,1
5
25
i
2i
=
+
=
+
=
γ
G
BB ?U!%L %-u6Q
s=-I!'&NM[*+ !"
#rQ$%QY

? \ " N {8M[ F N 5{8
M[G=!"r"r$EN\4D%#
T
2
iRm
AU ==
µ
K7
10.31,8.5
10.146.2
/iRm
A2
T
3
3
==
µ
; !"rH
C
o

B< 1" -J  %S6    7
8    !" H
C
o
4D  
8B=
>
, /L  T =    N & 7
8=> 4D
8M
>
,FG0 -JD/'=4D
!" $ Q " r # & f^ $D % /% /-I J
$!O&q/L)/L2%%!-IA
 {j
$ {xj

 @/0{j
{!(A
( )
===
ACACAC
RT
m
RT
mi
TT
iRm
UQ
µµµ
22
( )
( )
JVpp
i
Q
AC
165010.310.2,810.6
2
5
2
355
112
===
@/0j!(A
RCC
Vp
+=
( )( )
+
=+=
CBCBVCB
RT
m
RT
mi
TTRC
m
Q
µµµ
2
2
( ) ( )
JVVp
i
Q
CB
31501035,410.6
2
25
2
2
35
122
=
+
=
+
=
^e/0
J150031501650QQQ
CBACACB
=+=+=
@/0{j\-J 
JQ
ACB
1500=

7
7
7
%
,

,


*0B
{
x
j
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
( ) ( )
( )
J60010.3.10.2,810.5,4.10.6
2
5
U
VpVp
2
i
TTC
m
U
3535
AB
1122ABVAB
==
==
µ
 !"#$%
( )
( )
J90010.310.5,4.10.6A
VVpAA
335
ACB
122CBACB
==
==
$ @/0{xj
&
@/0{x!(
( )( )
+
=+=
ADADVAD
RT
m
RT
m
2
2i
TTRC
m
Q
µµµ
( ) ( )
J43051035,410.2,8
2
25
VVp
2
2i
Q
35
121AD
=
+
=
+
=
xj!(A
( )
===
CADBDB
RT
m
RT
m
2
i
TT
2
iRm
UQ
µµµ
( )
( )
J247510.5,410.2,810.6
2
5
Vpp
2
i
Q
355
212DB
===
^e/0
J183024754305QQQ
CBACADB
==+=

( ) ( )
( )
J60010.3.10.2,810.5,4.10.6
2
5
U
VpVp
2
i
TTC
m
U
3535
AB
1122ABVAB
==
==
µ
 !"#
( )
( )
J123010.310.5,4.10.2,8A
VVpAA
335
ADB
121ADADB
==
==
B 1"%F&-J%GC "/0{jx-
03-)=/%!{j=xDe/0!( =T4) 
!"
1
T
4D
2
T
=j4Dx{De/0!(T4)
2
V
4D
1
V

Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180

 T/E
C
D
B
A
p
p
p
p
=
$ N4D /%^/0

 3]Q-./0#e/0!( A
C
D
D
C
A
B
B
A
p
p
V
V
V
V
p
p
===
F!G
$ N#/0$EN/Qe/0{j4Dx=
e/0KLN$EN
( )
1
2
12
2
1
1
2
ln lnln
V
V
TTR
m
V
V
Vp
V
V
VpAAA
RT
m
pV
DDAACDAB
=+=+=
=
µ
µ
; \/%^/0
A
( )
1
2
12
ln
V
V
TTR
m
AQ ==
µ
B 1"&C "/0-04•3-)=/%!4D
De/0!( T4) !"
1
T
4D
2
T
=4D
De/0!%L %
lVlV
5,2
21
==
=
lV 8
3
=
=
atmp
7
1
=
0A


AUAQ =+=
7
7
{
{
x
j


7

7

j
x
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180


24432
,,,, TVppp
$ NC /%qe/04D/%%D/0
 ;  D &  \ !-J 6 + / /% q e /0
!( 


atmp
V
V
p 7,2
1
2
1
2
==
=%ND-u6QsA8>=A
atmp
V
V
p
45,1
2
3
2
3
=
=
γ
atm
T
T
ppK
V
V
TT 6,3;331
1
1
2
14
1
3
2
12
=
==
=
γ
γ
γ
lV
p
p
V
2,3
3
4
3
4
==
$ NC /Qqe/0A
J
V
V
VpA
1300ln
1
2
1112
==
J
T
TVp
A 6201
1
1
222
23
=
=
γ
J
V
V
VpA
1070ln
3
4
2234
==
J
T
TVp
A 6201
1
2
122
41
=
=
γ
NC /%^/0A

JAAAAA
230
41342312
=+++=
 ; D\/%qe/0!%L A
7
7






7

7

7


Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
JAQ
1300
1212
==
=\ 
JAQ
1070
3434
==
=^ 
B /%"$0;
4D%S60!"$QQ"r#
WJ!DLS&B
%


h"^"r
T
2
iR
m
T
2
iR
m
U
N
N
O
O
+=
µµ
( )
J1000028273
2
31,8.5
28
20
32
32
U +
+=
B f^!pN2%v6#"6U!-J4•/Q0B5
 F^ !p C      /K .G h%L {j T 4) e
/0U!( N=je/0!t6N4D%$0
TFN!OGkx5^!""/%S#
6U!4%4D4Lkx{5%N4D%
   *'6 T  /E N # 6 U  " 
/0$EN!&4)e/0!( 4D!-J$3‚$E
3 {jfƒ

N{#6U$EN\!-J4D$E3 {jx
( ) ( )
( ) ( ) ( ) ( )
AFGHdtVVpVpVpVppBCDHBdt
BCDHBdtABHAdt)ABCDA(dtA
2112111212
====
+==
( ) ( ) ( )
ABGFdtAFGHdtABHAdtA =+=
F!G
B 7•!pi#€e/0!(=!(=!( 4D%
!%L #^!p
 =
$ =7
 =w
3 7=w


7
,

j
{
x
7

7

*0B
*
f
ƒ
,

Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 f^!p=
@ /0 !(  A 98%=  !p i $ 3‚ D !-I
(e&L!"F!-IG
@ /0 !( A   N !O=  !p i $ 3‚ D
!-I(%%4)F!-IG
@/0!( A !"N!O=!pi$3‚D
!-I(%4)
@/0!%L PC]"4D%%$-./0
1
T.constp
=
γ
γ
F403%
( )
( )
( )
1
11
11
T.constp
p
T
nR
p
pV
cconstcpV
=====
γ
γ
γ
γ
γ
γ
γ
γ
G
,-./0D6!piFGD"!-I%!e&g!"
$ f^!p=7
@/0 !( A  N!O=!pi$3‚ D !-I
(%%4)F!-IG
@/0!(A798%=!pi$3‚D!-I(e
&L%!"F!-IG
@/0!( A8%=!pi$3‚D!-I(%
4)7
@/0!%L PC]"74D%%$-./0
.T.constV
1
1
=
γ

7
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
F403%
( ) ( ) ( )
1
1
11
T.constVTVnRVpVcconstcpV
=====
γ
γγγ
=lG
,-./0D6!piFGD"!-I%3L62$% 
\4)/]g!"F!-IG
 /%"e/0$„A
RT
m
U
µ
=
=e/0!(=!(
=!%L !-I$3‚D!-I(e&g!"F!-I
==G=e/0!( !-J%$!-IEF!-IG
3 f^!pw=7Fw"E &
V
C
m
µ
=3%!mVU%3D
Q"m&
V
C
m
µ
!&4)/]!pi=7•\!-J!pi
w=7G
w
7
w
==
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180

 1"6.-)N=H…=Q]B=/%
"I;r+ #DHB9; !"#
p
%
= !"#pLD>B
C
o
0 
C # 6 P%     ! 4) v-#
6 D4 2%/0N4)€p 
/Q

* C#6
%20%100
18,4.7800.1,8
3600.7,14
%100
Q
Q
h
toanphan
coich
==
* v-2%/0N
%30%100
273200
58200
%100
T
TT
h
n
ln
lt
+
=
=
*6
lt
h
3
2
h =
 %LC/%6DLv-C "N$E
$% Q! 6! "   -J 
>
[ q $p D L= 
  !" # $p D M?= K   !" # -) D L D
B>?

* &DL#!".
A
Q
2
=
ε
;6L62%/0N-J0A
21
2
TT
T
=
ε
P6/
( )
J8365101
263
285
Q1
T
T
A
5
2
2
1
=
=
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 1" !" .   v - L6 2%  /0 N= ^ %
pLB† -JD!-J#p; 
-J!-J/%"/0D=>0A
 * !".
$ ND!".//%"/0

 * #!".
( )
%20%1008,01%100
Q
Q
1%100
Q
A
1
2
1
==
==
η
 ND!".//%"/0
{8@
8==>8=8=>[
 1"!". D4 2%/0N=W/0
 " N {8H=>
[ ;  !" # p  D 
C
o
=
 !"#pLD
%
0A
 * !".
$ ; -J\!-J#p"/0
 ; -J^%pL"/0

 * #!".
h"
.
 
1
Q
2
Q
A
;pL
;p
;p
16
L
1
Q
2
Q
A
;pL


Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
%8,26%100
273100
273
1%100
T
T
1
1
2
+
=
=
η
$ ; -J\!-J#p"/0
( )
J10.42,27268,0/10.35,7/AQ
44
1
==
η
 ; -J^%pL"/0
( )
J10.07,2010.35,710.42,27AQQ
444
12
===
 ; !"#.-)qK.4D%6.-)D
8H
C
o
= 
!"#$0-D
8H
C
o
*+&" -J@8
0!-J"NC!L2%v6$E$%QY

N C !L 2% v 6  !-J  !" . D 4  2%  /0
N\i4) v-
1
2
T
T
1 =
η
1~
( ) ( )
kJ672,1kcal4,01
273227
27327
1Q
T
T
1A
Q
A
1
2
==
+
+
=
==
η
 1"  /0 N C   €  6 !d     !"
8
%
=
8
%
I!C /0!D80
N FNGD4  #!".2% /06=$
XDN=&e/0'!( 
$E!Ve/0U!%L %N
8<9%

; -J\!-J#!"./%"/0D \!-J
/%e/0F04•G
2
1
11
p
p
lnRT
m
Q
µ
=
@/0!%L Q
γγγγγγ
4
1
41
1
14411
TpTpVpVp
==

7
7


7
7
7



Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
2%^
8
=
8

1
2
1
2
1
T
T
p
p
=
γ
γ
x%!
2
1
11
T
T
lnRT
1
m
Q
=
γ
γ
µ
N//%"/0
( )
2
1
211
1
21
T
TT
1
T
T
lnTTR
1
m
Q
T
TT
QA
1
21
=
==
=
γ
γ
µ
η
η
( ) ( )
kJ634
27320
273400
ln.20400.31,8
14,1
4,1
.
29
2000
A
+
+
=
N#!".
( )
kW634
A
P ==
τ
 1"6DLD4 2%/0Ni=Q]
N  MB… ;  !" # p L D 
%
=   !"
pDH
%
A
 * &DL#6
$ ; -J6!-J#pL/%
 ; -J^%p/%X6

 * &DL#6
( )
74,9
1017
27310
TT
T
A
Q
21
22
=
+
=
==
ε
$ ; -J6!-J#pL/%
( )
cal86000J10.6,31.36800.74,9PtA'Q
5
2
===
εε
 ; -J^%p/%X6
( ) ( )
cal10.5,9J10.41.36800174,9Pt1'QAQ
45
21
+=+=+=
ε
 ? C   /0 N=  NBM[4D ^ 
=>%pL #/0

* #/0
%45%100
18,4.10.5,28600
8600
%100
QA
A
%100
Q
A
3
21
+
=
+
==
η
 ?C /0N=\!-J -Jq
p4DC  N>[;  !"#p  D

C
o
 !"#pL
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180

* #/0N
( )
K239100273
18,4.10.10
10.15
1T
Q
A
1T
Q
A
T
T
1
3
3
12
1
2
=+
=
==
 1"6 v-=L62%/0N=p
 !"H
%
4DpL !"H
%
16\#p
DM9A
 * #6
$ ; -J^%pL/%"X6
 N#6

 * #6D #/0N
%23
273117
27327
1
T
T
1
1
2
+
+
==
η
$ ; -J^%pL/%"X6D@

s/cal4800063000
273117
27327
Q
T
T
Q
T
T
1
Q
Q
1
1
1
2
2
1
2
1
2
+
+
===
 N6D,$EN6//%"X6
kW6318,4
1
4800063000
QQ
A
P
21
=
==
ττ
 1" 6 D L v-= L62%  /0N -J 6
 qpL
C
o
^%$0-)N
C
o
-J
-)VD!NpL!$-)D.
$0 N % $    ^6 /Q # -) ! D
8=>
>
[9=4D ./Q#-)DR8=M
M
[9

036LD6-.!p!'QV•v6
; \qpL
2
Q
=^/pD
1
Q
A
1
1
2
2
21
2
21
2
Q
T
T
Q
TT
T
QQ
Q
=
=
FG
; -JVD$6.-)A
LmQ
1
=
FG
?&-J-)VD^6D‡A
'mQ
2
λ
=
FG
qFGFG4DFGA
kg93,41.
373
273
.
10.35,3
10.26,2
m
T
T
L
'm
5
6
1
2
==
λ
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 1" %  v - C   "  /0 p  e /0
!(4De/0!(?!#6!O
q7
8>
!7
8>
4Dq
8!
8*+N
C $/0D6+.$%QVNC 
$ /0 N !-I !(  T 4)   !")
4D+#/0/Q='!( 
rQ!NY

NC /%^/0A
( )( )
1212
VVppA =
/%/0N= !"pT4)!F7
=
G=pL
4)F7
=
G/%"/0X\ 
1
2
22
'V
'V
lnVp
4) A
22
1122
2
12
Vp
VpVp
T
TT
=
=
η
N//%"/0A
( )
1
2
11221
'V
'V
lnVpVpQ'A ==
η
( )
( )( )
1,2
VVpp
'V
'V
lnVpVp
A
'A
1221
1
2
1122
=
=
 1"6.-)D4 2%/0-04•<
 %LQ.-)qp.4D%S=.-)E
q
%
)
=N!O4D$E7
%
F{jG
$ *.-) ]!4D%=N6!"q/^
FjG4).N!OD
4DrQ
7

 n!4L=N6!"]^
!S^6/e/0'!%L F;xGk
3 ?!4i/&_$Q^=0.-)/%S!4D%
pL=!.^S&
%
=KN
!O$E7
=FxˆG
7
,

,
%
j
x
{
7
%
7

7

'(
ˆ
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
2 ,N6!"-JL=!t6.-)KL/%S
/%D=!N!O$E
%
=^q7
)
7
%
Fˆ{G
*'6  N D 6    / W  /0=  7
%
8=>k
7
8=>k7
8k
%
8k
84D &!%L D8=

NC /Qqe/0/Q$ A
Z@/0{j4Dxˆ!(=NN
0AA
DEAB
==
Z@/0j='!(=N
( ) ( ) ( )
J117610.5,05,110.8,9.12VVpA
34
o11BC
===
Z@/0x'!g =2%NTF,MGV]]=
N//%e/0'!%L A
( )
J1093
3
5,1
1
133,1
10.5,1.10.8,9.12
V
V
1
1
Vp
A
133,1
34
1
2
111
CD
=
=
γ
γ

Z@/0ˆ{$!O!(=NC 
( ) ( ) ( )
J24510.35,010.8,9VVpA
34
2ooEA
==
N D 6    / /% W  /0 D 4   $E N
C $
( )
J20242450109311760AAAAAA
EADECDBCAB
=+++=++++=
 *04•</0$D6^!pv6#!".!&/%$&
„
 /%e/0!VQ=WJ6!-JL4D%S=
!
%
8%4Drq7
)7
F{jGk
$ /% e /0 T  F jG= W C% 6 !-J U
!%L q7
)7
?! !"rq
%
!
4Dq
%
!
k
7
,

,
%
j
ˆ
x
7

7

*0<
{
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 2%De/0!&6WJ6$E2s
! k!rq
)
=N!O4D$E
7

FxG= !"r)
k
3  2% D e /0 ' !%L   q   7
) 7
FxˆG= !"^S&
k
2 &_#NF!ˆG=4=%/%D=
b ^  )
%
=   N !O 4D $E 7
 F
ˆjG
‰ &_De/0U!(
%
Fj{G
*'6 #/0&U
ε
87
97
8>4D&!%L
 D
γ
8=

;   X \ /% ^  /0  $E    X \
/%e/0xA
( )
CDVCD1
TTnCQQ ==
/QˆjX+ F \4D%•3XGA
( )
EBV2
TTnCQ
=
* #!".A
( )
( )
12
4o
2
1
2122
141o
CD
EB
CD
EB
1
2
pp
pp
V
V
1
VpVp
VpVp
1
TTnR
TTnR
1
TT
TT
1
Q
Q
1
+=
+=
+=
+=+=
η
FG
1~A
( ) ( )
γγγγγγ
1o421214221o21
VppVppVpVp ;VpVp ===
γ
γ
ε
=
=
1
2
12
4o
V
V
pp
pp
FG
6FG4D%FGA
%2,41511
33,111
===
γ
εη
 0   # !" . !&/%= %$  &!%L D
=4D &U$EA
 7
97
8k $7
97
8Mk7
97
8Bk

2%$D<!-JV-J%e/0]

%7,36411
33,111
===
γ
εη
$
%6,44611
33,111
===
γ
εη

%6,49811
33,111
===
γ
εη
 /0#!".!2Š2$&„!-J/0$D6/Q0<
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 ;{jT4)e/0LN=
%
8k
$ ;j5N!-JU!%L )b

 &„U=Q !-J4D%S=Q 6
/%N=!N6!"^=!V
QD!(FxG=!D!%L FxˆGk
3 &e/0!%L =4%=^S&
%
FˆjGk
2 ;j{T4)e/0!t6/+S
0 #!".32Š2

/%"/0=Xm\ /Qe/0xA
( )
CDpCD1
TTnCQQ ==
;^ A
( )
EBVEB2
TTnCQQ
==
* A
1V/V
p/pp/p
V
V
1
1
VpVp
VpVp
1
1
TT
TT
1
1
Q
Q
1
13
121o
1
2
1131
222o
CD
EB
1
2
+=
+=
+=+=
γγγ
η
1
p
p
p
p
1
1
2
1
o
+=
βγ
ε
η
FG
/%!
12
V/V=
ε
1~
γ
γ
γγ
ε
=
==
2
1
1
o
112o
V
V
p
p
VpVp
k
γγ
γγ
γγ
εβ
=
=
==
2
1
1
3
2
3
1
2
3122
V
V
V
V
V
V
p
p
VpVp
FG
7)
1
3
V
V
=
β
6FG4D%FG4D$!O\!-JA
7


%
7

7


x
ˆ
j
{

7
'()
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
( )
1
1
1
1
=
βγε
β
η
γ
γ

 1"6.-)L62%/0pe/0!(
 4De/0!(-0< #
/0!P% !4) /0N
_ !"#p4DpL

; \\!-J/%"/0D4 $%peb/0
54D5
( )
21V23
TTnCQ
=
==
1
2
13434
V
V
lnnRTAQ
NX/F$EN!"%/G/%"/0D
4 
( )
=+
++
=+++=
1
2
21
1
2
1
2
1
241342312
V
V
lnTTnR0
V
V
lnnRT0
V
V
lnnRTAAAAA
* #!".
( )
( )
Carnot
1
21
12
21
V
1
21
3423
T
TT
V/Vln
TT
R
C
T
TT
QQ
A
ηη
=
<
+
=
+
=
7\6!".D4 2%/0P +.D
4 2%/0/%
 !"$Q2/N
py
.!(M=>!/N=
r!N

h"$Q2/%6/%eb/0!(
T
dTnC
T
Q
dS
p
==
δ
7






*0<
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
^e/02/%6$Q"-J
1
2
T
T
p
T
T
lnR
2
2im
T
dT
nCdSS
2
1
+
===
µ
1~=e/0!(Q
2
V
V
T
T
1
2
1
2
==
7)*!/N8>
( ) ( )
K/J52,652ln.31,8.
2
25
.
2
5,6
S
=
+
=
 !"r2/N6$!O-)
%
D.
%


h"$Q2/%6-)!-JD)
%

=====
1
2
1
T
T
lnmC
T
dT
mCdSS
T
mCdT
T
Q
dS
δ
3,1
2730
273100
ln.4180.10S
3
1
=
+
+
=
h"$Q2/%6/%e/0-).
%

1,6
373
10.10.26,2
T
Lm
T
Q
S
36
22
2
===
δ
h"$QQ2/%6/%^e/0
( )
K/J4,7SSS
21
+=
 !"$Q2/N
py
'!( =>;.q
)>


( ) ( )
K/J9,22/5ln.31,8.
28
5,10
V
V
lnR
m
T
Q
T
Q
S
1
2
=
=
==
µ
δ
  NS6 !-J .  q
8>
%
 )
8>
%
  !" $ Q
2/N6e/0.DA
 h(k $!(

 @/0!(
( )
K/J7,1
27350
273150
ln.31,8.
2
5
32
10
S
T
T
lnR
2
2im
T
dT
C
m
T
dUA
T
Q
S
1
2
V
+
+
=
+
==
+
==
µµ
δ
δ
$ h(
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
( )
K/J4,2
27350
273150
ln.31,8.
2
25
32
10
S
T
T
lnR
2
2im
T
dT
C
m
T
Q
S
1
2
p
+
++
=
+
===
µµ
δ
  !" $ Q 2/N6  $ !O M  6!/N q  
==>!M=

70!"$Q2/%6m]"4D%/L!V4D&Q
g%"$!O$„DN^-)e^
(L=%$!O!()=!'!()
M
Z7)e/0TFe/0!(GA
=
===
1
2
V
1
2
VV1
p
p
lnC
m
T
T
lnC
m
T
dT
nC
T
Q
S
µµ
δ
Z7)e/0TFe/0!(GA
=
===
1
2
p
1
2
pp2
V
V
lnC
m
T
T
lnC
m
T
dT
nC
T
Q
S
µµ
δ
h"$Q2/%6#^e/0
( )
K/J71
5,1
1
ln.31,8.
2
5
20
60
ln.31,8.
2
25
2
6
S
p
p
lnC
V
V
lnC
m
SSS
1
2
V
1
2
p21
+
+
=
+
=+=
µ
 1"N%-u6Qs!-J.= !"6 !&
#!-J rQ=>V !" $ Q2/N6  e
/0.DA
 h(k $h(

 @/0!(
( ) ( )
K/J10.4,85,1ln.31,8.
2
5
.10S
T
T
lnR
2
im
T
T
lnC
m
T
dT
nC
T
Q
S
33
1
1
2
1
2
VV1
=
=
===
µµ
δ
$ @/0!(
( ) ( )
K/J10.8,115,1ln.31,8.
2
25
.10S
T
T
lnR
2
2i
n
T
T
lnnC
T
dT
nC
T
Q
S
33
2
1
2
1
2
pp2
+
=
+
=
===
δ
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 .!-J.= !"6 !&#r=V
4D2/N6rQ=<9?nU S2e/0.D!r
6!(Y

f^s 3#e/0$!OD=!
( ) ( )
( ) ( )
K/J29K/cal7
1,2ln.22
19,4.28
T/Tlnm
S
C
T
T
lnC
m
T
dT
nC
T
Q
S
12
1
2
=
=
===
µ
µ
δ
h&4);.
( )
( )
( )
mol/J29
2
R2i
C;mol/J21
2
iR
C
pV
+
==
7\6e/0.De/0!(
 h"$Q2/N6/Q!%L€e/0!%L /%
/0N$E9!"*  !"€!-I!(
 D
%
*+ -J!'6DN/%
/0D6

fg !"#!-I!( D
4D
F
l
G
N C   /%  /0 $E   #   \ 4D% C C 4D
 +/CC/%"/0F$EO -J*
+, /%^/0G
21
QQA +=
/%/0/%
2121
21
2
2
1
1
1
21
1
21
TT
A
TT
QQ
T
Q
T
Q
T
TT
Q
QQ
=
==
=
+
=
η
/% e /0 !(   F€  e /0 !%L  G= !" $ Q
2/%6D
2
2
1
1
T
Q
T
Q
T
Q
S
===
δ
;Q
( ) ( ) ( )
kJ418kcal100STTA
21
===
 j+-)!
%
4D%-)
%
/%"$04+
   v -  !" $ Q 2/N6 #   /% e
/0/%!O q!6//E m/6dq4\
4\L%$ ^6/Q#-)!
%
D
8B9k 3/Q#-)D9!"

Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
; !"X$E# /%!O S!iq-./0
X$E 
( ) ( )
( )
( )
21
11122
22111
mmc
mtmtmc
tttcmttcmm
+
+
==+
λ
λ
( )
( )
( )
( )
K281C8
4001001
100.800.10030.4001
t
o
==
+
+
=
h&4)-)!=!"r2/%6$%p!"r3%^64D!"r3%
r !"
+=+
=+=
1
1
1
1
T
T
1
1
21
1
T
T
lncm
T
m
T
dT
cm
T
Q
T
Q
T
Q
S
1
λ
δδ
7)8BF?GD !"X$E# 
h&4)-)$iL!=2/%6•^=!"$QD6D
===
1
2
T
T
22
T
T
lncm
T
dT
cm
T
Q
S
2
δ
h"$QQ2/%6# D
( )
( )
K/kcal002,0
27330
281
ln.4,0.1
2730
281
ln.1,0.1
2730
1,0.80
S
T
T
lncm
T
T
lncm
T
m
SSS
2
2
1
1
1
1
21
+
+
+
+
+
=
+
+=+=
λ
6
Pl=!d!T+ m/6dq4\4\
L
‹hT m/6dq4\4\L
D - A nU    4\ N \= r -J #   $^% %D F e
/0SUmQe!C/6d 0 !-J$^%%DG
2121
QQconstQQQ
δ
δ
==+=
/%!
1
Q
δ
=
2
Q
δ
D!"$Q -J#4\4D
h"$Q2/%6
2
2
1
1
21
T
Q
T
Q
dSdSdS
δδ
+=+=
2%F‹G
( )
( )
0QTT0
TT
QTT
T
1
T
1
QdS
112
21
112
21
1
>>
=
=
δ
δ
δ
;
l
0 @
l T D 4\  \   6   /6d q 4\ 
4\
;
Œ
0@
ŒTD4\+ 6 /6dq4\
4\
7\6 m/6dq4\4\L
 !"$Q2/N6#"v-/L
#6!Oq{)jF0<>G2%A
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 h-I{j
$ h-I{xj
%$A7
8k
8B=
>
;9
k7
8=>k
8H
C
o
=
8M
>
;9

h"$Q2/%6N]"4D%e/0$!O-D%=
Dm]"4D%/L!V4D/L&=QA
+
=+=+=
C
B
p
A
C
V
B
C
p
C
A
VCBAC
T
T
lnnC
T
T
lnnC
T
dT
nC
T
dT
nCSSS
{4D5j!(Q
1
2
A
C
p
p
T
T
=
k
1
2
C
B
V
V
T
T
=

x%!
+
+
=
+
+
=
1
2
1
2
1
11
1
2
1
2
V
V
ln
2
2i
p
p
ln
2
i
T
Vp
V
V
lnR
2
2i
n
p
p
lnR
2
i
nS
( )
( )
K/J4,5
3
5,4
ln
2
26
10.31,8
10.6
ln
2
6
27327
10.3.10.31,8
S
5
535
+
+
+
=
 $0=$0T7
8T;.

8=$0T7
8T
8>%$0N4)4D!~b/%"4+
 v-!"$Q2/N6# /"
c4D% = $   !" $ !V/%  $0$E4D
$EH
%


?'4D%NN= L$iQe
/0!L!-J/L&_ !"N!OF-v=!X6N
^De/0!%L \iGˆ/%66!O"-JF
$E%!-I!( G
+=+=
21
21
T
Q
T
Q
SSS
δ
δ
@/0!( 
,
7
7
7
,

,


*0<>
{
x
j
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
1
2
V
V
lnpVAQ ==
( )
K/J1,3
3
32
ln
27273
10.3.10.8,9.5
2
32
ln
27273
10.2.10.8,9
S
V
VV
ln
T
Vp
V
VV
ln
T
Vp
S
3434
2
2122
1
2111
+
+
+
+
+
=
+
+
+
=

 •
%
!-J$+4D%" -JT-)

C
o
ˆ/N6# D66!O-D%X$E Y

P/%!O  •X$E !"
%
,-./0X$E
 
( ) ( )
2211
222111
222111
mcmc
tmctmc
tttmcttmc
+
+
==
( )
C18
3,0.41802,0.460
12.3,0.4180100.2,0.460
t
o
+
+
=
h"$Q2/%6# $%pC^2/%6#•4DC
r2/%6#&-)
+
=+=
2
22
1
112211
T
T
lnmc
T
T
lnmc
T
dT
mc
T
dT
mcS
( )
K/J3,3
27312
27318
ln.3,0.4180
273100
27318
ln.2,0.460S
+
+
+
+
+
=
7\6X$E 2/%6# rQ"-J=F[9?G
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 !"#
 *2

B
;9
0 
!"#/%/-IJ
 %*2Dv-
$ %*2DC

 ? *2 v -=   !" !-J S !i q -. /0
12!22245/6/%
( ) ( )
( )
K481
31,8.4/10
10.100.10
R/m
pV
T
68
==
µ
$ ?*2C= !"!-JS!iq-./0732
…
+==
+ b
m
V
V
am
m
p
R
1
TRT
m
b
m
V
V
am
p
222
2
µµ
µ
µµµ
( )
K20510.3,2
4
10
10.100
10.100
10.1,4
4
10
10
10.4
31,8
1
T
56
2
6
48
+=
h&4)*2
kmol/m2,3.10b;kmol/Jm4,121.10a
3-523-4
==
 /%"$0T=>. !"H
%

 0m&€"4D3%3]QD$0
$ 0m&€"4D#$0

E&732…#;.
mol/m10.92,3b;mol/Jm0,141a
3523
==
,-./0732…
RT
m
b
m
V
V
am
p
22
2
µµ
µ
=
+
FG
 m&€"4D3%3]QD$0
;"
22
2
V
am
'p
µ
=
4#FG%‡A
=
==
+
b
m
V
TRV
ma
p
'p
b
m
Va
m
TRV
'p
p
am
RTV
b
m
V1
'p
p
2
22
µ
µ
µµ
µ
µ
FG
%9,410.92,3.
28
250
01,0.
300.01,0.31,8.28
141,0.250
p
'p
5
2
=

 !"#$"%&'$()*+,-./01(2345&6
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
$ m&€"4D#$0
"
b
m
'V
µ
=
m&
%5,3
01,0.28
10.92,3.250
V
mb
V
'V
5
===
µ
 0#$%
%
$&-J/Q#
 !"!D>>9


,-./0732…
( )
2
2
2
2
22
2
a
b/
RT
p
RTb1
a
pRT
m
b
m
V
V
am
p
µ
ρ
ρµ
µ
ρ
µ
ρ
µ
ρ
µµ
µ
=
=
+=
+
6&
( )
( )
( )
Pa10.4,1141,0.
028,0
550
10.92,3550/028,0
3273.31,8
p
8
2
5
+
=
 #%S6rq!>3
n2%S6DC
0N#"C/%e/0'!

;"
2
2
V
am
'p
=
µ
N#"C
( )
J7,1
005,0
1
001,0
1
32
4
138,0'A
V
1
V
1m
a
V
adVm
dV'p'A
2
21
2
V
V
2
2
2
1
=
=
==
µµ
  "  #  $% b & -J /Q #  D
>>9
 % $ !& 4)  $% A
8? 4D
8H=
M
;9

;"#$%
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
k
k
p
RT
V
am
p
64
27
'
2
2
2
22
2
µ
ρ
µ
==
;-3%
=
a
k
k
p
RT
64
27
2
;Q
( )
Pa10.8,6
10.4,7.64
304.31,8.27
044,0
550
'p
6
6
2
2
=
 &-J-)V%4D%"$0
!
!)/L)L%D$"#$0

fg&-J-)V%4D%$0D?!)/L)
L=#$0D)L=Q
b3
V
mb3
m
V
m
VV
okk
µ
µµ
====
*E&732…#-)$8=>
M
9%=!-J8>=<
 n!i&-J/Q#.-)!)L2%/i
"$8=
9%

"
( )
3
3
k
kokk
m/kg200
10.03,0.3
018,0
b3V
m
b3
m
V
m
V ======
µ
ρ
µµ
 h&4)$%A8=M
>
[
9%
=$8=
9%*+A
 $%+)D$%QY
$ .$'%K)D$%QY
 
+ !"%D$%QY
3 V^U
4)$E$%Q!D
+ !"
%
4D>
%


   )  # $% + T 4 /L  ) L
F6/q!-I!( 732…G
kg/m10.93,2
10.44
10.043,0.3bm3
V
m
V
33
3
3
okk
==
µµ
F$8=
9%8=

9%G
$ .$'%%DC!LT4)!$F6/q!-I
!( 732…G
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
( )
( )
Pa10.4,7
0,043.1027
0,364
b27
a
p
6
2
3-
2
k
==
F8=M
>
[
9%
8=M[
9%G
 ; !"%D.K+T4) !"!$
( )( )
!C31K304
10.043,0.31,8.27
364,0.8
Rb27
a8
T
o
3
k
===
3 $%+
%
VU)$E)L
( )
Pa10.4,7p
6
k
=
h a D   !" )  D $%  +  g 
7) !">
%
DNC %+4)$TD%
 hQT/L)LD4\vg;{7Q/6
3_""/%!!C"&T22!-JD
*."!e/L)L
  
%
= Q2 -) ^  "   $E $% Q V
/r#&!! !")L=&T!V6
Q2  /L  ) LY j /E & -J % Q2 D
H9%= & -J /Q # Q2  
%
 $E H9
h&
4)Q2
8<
%
=
8>=<
>
;9
k
$ ;#&)6+.Q2)L0•
S^6/ -J0 !"XQY

 fg4D&-JQ2!O4D%&D74D=#
/L)LD7
F3%!aD#&G

k
k
okk
p8
RT
b3
m
b3
m
V
m
V
µµµ
===
( )
%25
193273.31,8.714.3
10.9,34.074,0.8
RT3
p8
V
Vm
V
5
k
k
k
+
===
ρ
µ
ρ
$ ?#&+.7
0-!22Q)
/L)L22!'!V6&
 ?#&).7
0-!22Q)
/L)L22!'$6.
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 $
 n!iNV!$"g-)D-._
F} D !  g -) ! D € g +G !-I 
=x $d~#g-)b!V%-N!
%4)O3 $d~#g-._

?&-J#"g-._
3
r
3
4
m
πρ
=
F/D$g-.G
P&g-.!-JL%Dqg-)
3
r4
M3
m
M
N
πρ
==
x $d~#"g
2
r4s
π
=
=4\63 $d~O"
d
M6
r
M3
sNS
ρρ
===
F38/D!-Ig-.G
NV!$gD-._&$Er-J~
%D
d
M6
SA
ρ
σ
σ
==
( )
J19,2
10.2.1000
001,0.073,0.6
A
6
==
 * g #6 X 4) $ W g D  \ L D
"g)*+ !"#g#6XrQ$%QY
% $ #6 X r ~ %D 8=>;9= & -J
/Q8=M
9
=`3/Q8B[9!"

fg$#g+D/=#g)!-JL%DD:A
3
33
2rRr
3
4
2R
3
4
==
ρπρπ
;\D"=3 ~%D#g)•+.O3 ~
%D#g+=r-J$d~•^h"^r-J$d
~D6•$E -J#g)\!-J
(
)
tmcR4r4.2
22
=
σππ
k
3
r
3
4
2m
πρ
=
x%!
( )
C10.65,1
001,0.6,13.138
5,0.3
2
4
1
rc
3
2
4
1t
o4
33
=
=
ρ
σ
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
 N V C  !O "$%$ SD K!L !
$/8HPr~%D#-)SDKD8
;9e6
%
8=
>
;9


 %   !" #  /% e /0 O D N !O Fe /0 !(
 GNVO$%$$ENL%/~%DF$Er-J
~%DG{
=4DNU!( {
#"-J!b$E-J
/%$%$&e/0qe64D%
22
1
r8r4.2A
σππσ
==
o
2
p
p
lnpVA =
%
De6=D/%$%$
h=bvDSDK p~X=W~X
F~G•X6//]yUz4D%X4)/i2%
NTR2
r/2p
p
σ
=
]O"3%DSDKX6/%$Q/%
$%p3%~%%D4D~%/%F4)$
SSm$~%%DG4De6"LA
o
p
r
4
p +=
σ
x%!
+
+=
+
+=
rp
4
1ln
rp
4
1pr
3
4
p
r/4p
lnr
3
4
r
4
pA
oo
o
3
o
o
3
o2
σσ
π
σ
π
σ
703%
1
rp
4
x
o
<<=
σ
Q
( ) ( ) ( )
xxx11xlnx1 +++
Q
3
r16
A
2
2
σπ
7\6NO"
( )
J10.2,8
3
07,0.14,3.04,0.40
A
3
r40
3
r16
r8AAA
2
2
22
2
21
=
=+=+=
σπσπ
σπ
 1"D$E€!%L3X6%LTh%L3X6
{j!"=3D8>?!-J#"DSDK
r~%D8=>;9FGNVC 
!U%{j/"!%L
S8
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180

RC&U%{j$ECr~%D3]Q{j=N#C
D6Fa$Er-J~%D!'!-JrQ3%r 3 
$d~DG
( )
J10.4,504,0.15,0.045,0xlFsA
4
====
σ
 "0€\d3D8h%L3X6{j
!"!D+04NFG*+
!%L{j•3i64dD%4D3i6"!%L$E
$%Q04N !!-J#$ED
 +     r ~ %D -. T DA

8=M;94D
8=;9

nU4d~r-J=r-J~%D# $!VD
( )
S
21
σ
σ
+
FP
D3 s0€\G* X$E4i/%%r-J~
%D# DSDKD+=}D3X6{j•6
!"4dDDSDKr~%D).?e^D
3X6{j•6!"!\_$QDTr~K
).
 hS!iCr~%D#/-J-ID-A%
/-J /% " $0 ^6+ g/ %D 2% " & +
(!T!-I38IgD6/.2%g
D8X6;-I6/EI8HBX60
8/-J^6/r~%D#/-J%
W•#g/-J$•!V/.!-I$E!-I
#&+g

?&-J#"g/-J
t
m
m
=
τ
FG
fgF$•!VG+S&A
{
j

{
j

()

(-
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
( )
td
mg
t
mg
mgd
=
=
=
π
τ
σ
τ
πσ
1
6&
m/N04,0
780.10.2.14,3
8,9.10.10.2
3
3
=
σ
 1"J3X6$L!-I38=!-J/2%(!T?D
 ^6 !-J  g $L 0 J 3X6 $L • ! " !%L
8=> n !i  r #~ %D $L   +Y %
$&-J/Q#$L+D8<9
4DS2/E
W•#g$L$•!V/.!-I$E!-I
#J3X6$L

?&-J#$L!'%+
h
4
d
M
2
π
ρ
=

?&-J#"g$L+
k
4
hd
k
M
m
2
ρπ
==
FG
fgF$•!VG+S&A
( )
k
4
gdh
g
k
4
hd
mgd
2
1
ρ
σ
ρπ
πσ
==
=
6&
( )
m/N39,0
12.4
205,0.10.8,9.9300
k
4
gdh
3
==
ρ
σ
  " & % 3c !-I  %D 38= " !V !-J $i
hV$i!!C"#6XF>G?&-J#
& %3c 4D #6 XD= hV $i# & % 3c
/%-)n2-)D-)%D %D&%3c4D-) 
 r ~ %D 8=H;9=  & -J /Q 8
9

Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180

* F&%3cZ•XGi3]#Cr~%D4D/g
C-)S&=C{2-)Q=X$E0
( )
( )
( )
cm8,3
003,0.8,9.1000.14,3
8,9.0002,0003,0.073,0.14,34
h
gd
mgd4
hh
4
d
mgd
2
2
2
+
=
+
==+
πρ
πσ
ρπσπ
 h T  C r ~ %D= -I  !O -) 4D% "
3X6$E-)•DJ-)!'!-J#")/‰W
#-)•3L0/K!-I38=*+d%
)#T-)!O4D%3X6D-)^6/2%W!Y

;-) K !g !-J /Q 3X6 D 3% C r ~ %D S   L ~
%.Sb#4K3X64D-);-)•+S&Tr
~%DNK!#T€€?!
( )
cm15
0002,0.10.1000
073,0.4
gd
4
hd4/dgh
2
=
ρ
σ
σππρ
 /%"&%3c!~(!T=!-I/%
"g-)*+&-J#g-)^-D%!
~$Q3-)#g-)DA~Ž=~(=~pY

  !iDg -)•! 3V )  !6 & % 3ch"
FŽG#~$Q3-)•yU.z~/QF~/QN
ND~V4)!-I$E!-I#&%3cG?&
-J#g-)D)!"%~$Q3-)D^=!
3
*05>
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
&-Jg-)!L)/i
%
D%!~D6•D~(=
)./iD6~/D~p
kg10.34,2
8,9
001,0.073,0.14,3
g
d
mdgm
5
oo
===
πσ
σπ
7\6QA
?Œ
kg10.34,2
5
~$Q3-)D~Ž
?8
kg10.34,2
5
~$Q3-)D~(
?l
kg10.34,2
5
~$Q3-)D~p
 * & % 3c  !-I /%V-J D => 4D 
b/%"$0!C+ T+
/%&%3cA
 +!D-)
$ +!D#6X

 ?b&/%-)=-)•3XQh"3XQ#
-)/%q&D
gd
4
h
ρ
σ
=
* T+/%&%3cD
( )
cm3
001,0
1
0005,0
1
8,9.1000
073,0.4
d
1
d
1
g
4
h
12
=
=
ρ
σ
$ ?b&/%•X=•X/%&•L
S&h"LS&#•X/%q&DX$E
€•}4D]%!$Q/%
+6L~
gd
4
h
2/d
2
gh
ρ
σ
σ
ρ
==
* T+/%&%3cD
( )
cm5,1
001,0
1
0005,0
1
8,9.13600
5,0.4
d
1
d
1
g
4
h
12
=
=
ρ
σ
 1"&!-Jb(!T/%"$03C+*+
d%#"-)/%&6!O-D%&%
3c4D$0!-JXQ3V!d4)&./Y*LS&
3V!d4)&./012
A
?$04D&!-JXQ4)&=#!$Q/%
&  ~%  + %D& $% p   e6= 
•}#"-)=]X6$~4DX6/
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
3%Ce
D6/i$EL€!
$E4)%D&
( )
γρ
ργρ
+
=++=
g
p
hhghppp
p
poo
?&%3c4D$0N6!"F
0=
γ
G0
g
p
h
p
o
ρ
=
x%!A
γ
+
=
g
g
h
h
o
?XQ
g=
γ
2
1
h
h
o
=
?LS&A
2/g=
γ
2
h
h
o
=
  & % 3c p 4D% = !p/]=b( !T
4D%"$0-)h-I/%#&%3c+=$E$d
/"#2L%Q€&%3cj+e$d3D6#&
%3c/%*+T+/%&D%%.=%.
$%QVY

h"3X#-)/%&%3c/%
gd
4
h
1
ρ
σ
=
F3D!-I/%#&%3c/%G
h-I/%#&%3c%D2%^!-JD3h"
3X#-)/%&%3c%DD
?X$EOCr~
%D   !-I  Sb € ~% # -) 4)  &% 3c
/%4D%DF(!T-)QG$E/gC#"-)3XQ
F(!T-)S&G
( )
( )
gd
2
hgh4/d4/d3d3d
22
2
2
ρ
σ
ρππσπσπ
==+
x%!
2
h
h
2
1
=

7
89':;$<=>%&?@AB)C9@0'&DEF/G+=H@A)C
I&ργ")J8AK:ALMI&"$<:8B'&'A
9
ργ
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
7\6-)3XQ/%&%3c/%%.V%4)!"3X
#y2z%3c€&
 #6(!~%%"%^
38== b ( !T 4D% /% "  + n !i
&-J/Q#+!$/Ed%#&
+€#63XQ"!%L8=P
r~%D#+D=H;9n2+D-)
%D%D#6

h"3X#T+/%&D=
( )
3
m/kg861
0002,0.032,0.8,9
027,0.2
ghd
2
ghdbb2 ===
σ
ρρσ
 * T#6X/%#&%3c0€w
!-I/%3
84D3
8D
8n!i
r~%D##6X%$&-J/Q##6
XD=M
9


X$E%!63-)~X#)
( )
12
21
21
dd4
dhdg
hg
d
4
d
4
=+=
ρ
σρ
σ
σ
( )
( )
m/N67,0
001,0002,04
002,0.001,0.01,0.8,9.13600
=
σ
 ?&-J/Q#N/%"$%$3-)!6
#"p-)XM)>V&-J/Q#N
e6F !"$E !"!6pGn!i$
$%$

fg$#$%$D:=$Q/%$%$DA
σ
ρ
= + +
FG
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
q-./012!Q225Q/N6/
&-J/Q#$Q
/%4D$Q%D$%$V-JD
RT
p
µ
ρ
=
4D
RT
p
o
o
µ
ρ
=

q!
oo
p
p
n ==
ρ
ρ
FG
6FG4D%FG
( )
ghp1n
2
r
p
gh
rp
2
1n
ooo
ρ
σ
ρ
σ
=++=
6&A
( )
m4,0
6.8,9.100010.15
073,0.2
r
5
µ
=
=
 /Q~-)-I!"$N")u+F!
%+$i-)D-)G?!-I)D$%Q
!!-J€/Q~-)DN$i0S&3-)Y
%$&-J/Q#UDD8H=H
9


hN$i0 0 3%/%-J#L ~Sb
€4D-)^+.X6/$~%#-)4D
3%C!t6{23]Q
( )
rl
gmmg
S
Fmg
r
rl
rlS
A
2
2/
2
ρ
ρ
σ
FG
/%!33
3
TCD$=d3D=&-J/Q#4D
#-)K&-.#A
r
lrm
ρπ
2
=
FG
6FG4D%FG
( )
( )
mm6,1
10.8,9.17,7.2.14,3
073,0.16
g2
16
dr2
3
lr
=
=
ρρπ
σ
*

N
RT
p
V
m
RT
m
pV
µ
ρ
µ
===
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180

 
/%e/0!%L 
0dTnCpdV0Q
V
=+=
δ
F,G
* &!%L 
+
==
V
V
V
p
C
RC
C
C
γ
1
R
C
V
=
γ
k
1
R
C
p
=
γ
γ
F,G
4D%FG=4D-v-./012322245/6/%
nRdTVdppdVnRTpV =+=
%
( )
0VdppdV
1
pdV =+
1
+
γ
(
)
0pVd0VdppdV ==+
γ
γ
*6
constpV =
γ
hX6D-./0%e/0!%L 
*6a4
( )
(
)
==
11
TVnRVpVpV
γγγ
constTV
1
=
γ
F,G
( )
( )
Τ
==
11
p
nR
p
pV
pV
γ
γ
γ
γ
γ
γ
constTp
1
=
γγ
F,G
N/%e/0!%L 
( )
TnR
1
1
TnCUA
V
2
===
γ
x%
( )
112212
VpVpTTnRTnR ==
;Q
1
VpVp
A
2211
=
γ
 F,>G
a4
( )
=
=
1
2
111
3
1
2
1
V
V
1
1
Vp
T
T
1nRT
1
1
A
γ
γγ
F,MG
•
  !"#$%&
'
(
)
'
(
'
,-./0732…%"%C
( )
RTbV
V
a
p
2
=
+
2
V
a
bV
RT
p
=
L!$
2
kk
k
k
V
a
bV
RT
p
=
F,HG
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
( ) ( )
3
k
2
k
k
3
k
2
k
k
0V
V
a2
bV
RT
0
V
a2
bV
RT
0
V
p
k
=
=+
=
=
F,BG
( ) ( )
4
k
3
k
k
4
k
3
k
k
0V
2
2
V
a3
bV
RT
0
V
a6
bV
RT2
0
V
p
k
=
=
=
=
F,<G
F,<G%F,BG\!-J
b3V
k
=
F,G
F,G4D%F,HG\!-J
( )
( )
2
k
2
k
k
2
k
k
k
b27
a
p
V
a
bV
bV
RT
p =
=
F,G
qF,G4DF,BG\!-J
bR27
a8
T
k
=
F,G
E&732…
qF,HG4DF,BG
k
kk
3
k
k
k
k
p8
RT
b
2
V
V
a2
bV
RT
p =
=
F,G
*E&!-J0qF,G4DF,G
k
2
k
2
k
2
p64
TR27
pb27a ==
F,G
‹‹‹*‹‹‹
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)
lOMoARcPSD|36477180
| 1/55

Preview text:

lOMoARcPSD|36477180
06. Giải bài tập Nhiệt học - Lương Duyên Bình
khoa học quản lý đại cương (Học viện Kỹ thuật Quân sự) Scan to open on Studocu
Studocu is not sponsored or endorsed by any college or university
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 !" # $ % & ' !( ) *+ !" # & ' , -. /0 12 32 224 5 / 6/% 78 9 : ; !" & 8 7 9:8 < =>? $ @ /0 !( A 79 8 % ; !" & 8 7 97 8 < ? * B= !C /% " $0 !" # & $ *. !( & D6 ! # $E < !" # & . ; !" & 8 7 9:8 BB? $ @ /0 !( A 9 8 % ; !" & 8 9 8 >? F 6 8<=B , G !C /% " $0 = H, ; -I 6 $0 / " -J % ) # K L /% $0 $E => M, % !" N !O 0 -J !' 6 / , -. /0 12 32 224 5 / 6/% % & /-) 4D 6 78 9 : = 78 9 : = p p p − p 1 2 1 2 = = m m m − m 1 2 1 2 ? & -J !' 6A p ∆m = m − m = 1 2 − m = k 5 , 7 g 1 2 p 1 1 H% P . !( = & -J / Q # $E M 9 0 !" # & .
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 /-) . 78 9 : F G P . 78 9 : p= ρ : 9 (2) R 6 F G9F G m m T = T = + = 2 1 (t 27 1 ) 3 1400K ρV ρV > S6 !" % = P . !( = & 0 A & /-) ' $ ; !" & ' ? & -J / Q & /-) ' 3 ? & -J / Q & ' /-) ' A V = p µ / RT ≈ , 2 4 1 1 $ ; !" ' A 8 7 97 ≈ H ? ? & -J / Q # /-) ' A m1 3 ρ = = 1 , 4 4kg / m 1 V1 3 ? & -J / Q # ' A m1 3 ρ = = k 1 g / m 1 V2 M 1" $0 T " U H% 4D 0 # !' " & -J % / + $0 4D !" L S & ) % , -. /0 12 32 224 5 / 6/% m p V = RT 1 µ T − T ∆ → p = p ≈ 19at m / 2 2 1 p V = R − ∆ 2 (T T) 2T µ H 1" V ; -I $. 4D% V 6!/N 3-) H> * ; W X6 $. !-J > 0 $ % X 0 $. S% Y ? & -J V $. P µ V m = RT I V $. m p µ V t = = ∆m m ∆ RT
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 6 H> * 8 = >, = 8 H Z 8 < ?= 3 V = 300m =
:8B= [9 % ?= 8 = ∆ 8 > ; \ !-J ≈ << B % 3] * P 4) ! 4N !-J !" % 4D * *+ -J ! 4N !' T , ^ T
CaCO + H SO → CaSO + CO + H O 3 2 4 4 2 2 P& % CO / $E & % # CaCO ^ T ? & 2 3 -J # CaCO ^ T A 3 pV m = n .M = n .100 = 100 CaCO3 CaCO3 CO2 RT 6 & 8 * 8 3 , 1 . 3 105 Pa = 3 − 3 V = 3 , 1 . 2 10 m m ≈ 1 , 7 g 8 < $0 V !-J & 4) $E " & % = T _ " $0 T $E >, = $0 T D M, 1 ` D ! $0 N % % !" N !O ? !' X $E = $0 D >, 0 # $0 V T = $ # $0 T D > O & % /-) 4D N !O F4D !" a N !O G Q A p V p V p + 1 1 2 2 (V V 1 2 ) + = RT RT RT 7\6= # $0 V T p − p1 3 → V = V = d 5 m 2 1 p − p 2 $0 T T N 4) $E " & #6 # $0 T D = # $0 T D Rb !V ! = $0 V -J D 4D P ! ` D ! $0 N % % !" 4c N 6 !O # /% $0 N -. C $D \ <= A p V p V p + 1 1 2 2 (V V 1 2 ) + = RT RT RT p V + p V → p 1 1 2 2 = = a 6 , 1 t V + V 1 2
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 1" & #6 3 !d = " !V " !V Rb !V -I b !V 4D% " \ -) % % -) /% 4D %D & $E = d % K L # & $E P ! -I /b & Q " !%L F 0 G *+ T -) /% & 3X Q $ % Q = $ /E !" S e N !O 4D e 6 D HM * fg !" % " -) /% & D S /% & X Q p = (p − x o )(cmH O 2 ) hi \ j. . 1 / N % & $i p l = p + − = − + − o (l 4 x) (p x o )(l 4 x) S 6 &A p = 760mmHg = 103 c 3 mH O = l = 2 c 0 m o 2 x 2 -105 x 7 + 4132 = 0 → x = 9 , 3 c 5 m k F x = 105 c 3 m l Z %L G /% & % 4a $ " N = 3% ! ! d $0 -I L m D H> * 0 & -J / Q # N /% & $Q /% % 4a $ p' = p − p = 10mmHg = 1360Pa o ? & -J / Q # µ(p − p 29 1 . 360 o ) 3 ρ = = ≈ 17g / m RT 3 , 8 1.273 o B NS6 W J 4) $% F G n !i & -J # N % W J ! ? & -J # % W J m µ = ( + + g / mo ) m m l 1 2 = (kg/ kmo ) 8 22 l = = 4 k 0 g/ kmol n m m 1 2 8/ 32 + 22/ 44 + µ µ 1 2 1" W J =B ; . 4D = oS6 !" H% 4D >;9 0 # W J ! W J
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 m m 1 2 2800 3200 + RT + 3 , 8 . 1 ( . 273 + 17) nRT µ µ 1 2 28 32 3 V = = = ≈ , 1 2m 5 p p 4.10 > ? O D " W J p " V & -J 6!N 4D V & -J oS6 *'6 S !i & -J / Q # O ! ! d -I 2% $D = & -J % # O m + m 1 + m / m m / m =8 2 1 1 + 8 1 2 2 1 µ = = = = 12g / mol m m 1 m / m 1 2 2 1 1/ 2 + 8 / 32 + + µ µ µ µ 1 2 1 2 ? & -J / Q # W J 5 µp 12. 0 , 1 1.10 o 3 ρ = = ≈ 534g / m RT 3 , 8 1 2 . 73 o B M %S6 !-J q !" > % ! M % 0 -J D \ !-J 4D !" $ Q " r # & /% eb /0 h( k $ h( A @ /0 !( m m 5 160 5 Q ∆ = U ∆ = C ∆T = R∆T = . . − ≈ ≈ V (. 31 . 8 60 50) 1040J c 250 al µ µ 2 32 2 $ @ /0 !( h" $ Q " r m U ∆ = C T ∆ = c 250 al V µ ; -J \ 4D% m m Q ∆ = U ∆ + A = C ∆T + p∆V = + ∆ = ∆ V (C R V ) m 7 T R T µ µ µ 2 6 & 160 7 ∆@ = . 8 . .31 (
. 60 − 50) ≈ 1454J ≈ 35 c 0 al 32 2 B 0 3 / Q F G !( # " ! 6Q s= $ /E & -J / Q # ! ! d t D 8H=<> 9
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 7) ! 6Q s= 3 / Q % !( C = R 3 V (J / molK) ! d Q t m R ρ To p V = RT → µ = o o o µ po ; 3 / Q !( C p C p 3 c V o V o = = = ≈ 1400J / kgK V µ ρRT T ρ B 0 3 / Q F G !( # " = $ /E & -J # " N % ! D 8 9 % * & ,% SN F m & !%L G 8 = A ; 3 / Q % !( A C = C + R p V 7) C p γR γ = 8l C = C p γ −1 V ; 3 / Q !( A C R γ , 1 4 3 , 8 . 1 c p = = = = 969 5 , J / kgK p µ µ(γ − ) 1 30.10−3 ( . , 1 4 − ) 1 B 1" $0 T ; . 4D !" H P . = /% $0 Q ) > *+ A ; !" # . Y $ # $0 Y h" r " r # Y @ /0 !( = !" & . D p p p 1 2 = → T 2 = T = 1500K T T 2 p 1 1 2 1 $0 mRT V 1 = = 12 7 , 2l p µ 1 h" r " r # & A m U ∆ = C − = − = V (T T 2 1 ) m 5 p R 2 1 T 12 4 , 6kJ µ µ 2 p 1 1 F N D -u 6Q s 8>= C = 5R / 2G 2 V B > ;U !( N 0 + / $ /E & _ $E 9 $ !V
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 ; 6Q v T # !" C g = -J D & \ !-J Q ∆ = A + ' U ∆ @ /0 !( Q ∆w8 nC ∆T = V ; -J D & \ !-J V V 2 2 dV V Q ∆ = A' = pdV = pV = p V ln 2 1 1 V V 1 1 V V1 4 3 − 1 Q ∆ = 8 , 9 1 1 . 0 .3 1 . 0 ln ≈ 6 − 76J 10 x y z m / /E e /0 C C + B M 1" $0 = !C . !" % P . = / $0 Q ) * 0 -J D & !' \ !-J = $ $0 ' U j0 ' U = # $0 N !O = e /0 D !( {8 ; 6Q v | !" C g m iR ∆Q = A + ∆U = ∆U = (T − T 2 1 ) µ 2 i m m i m ∆Q = RT − RT = p V − RT 2 1 2 1 2 µ µ 2 µ F N D -u 6Q s 8>= C = 5R / 2 G 2 V 6 & 8 * 8 = M, = 78 = 8 B ? Q ∆ = k 1 , 4 J B H *. M oS6 /% " $0 ' U !" H = q > ;9 Q ) >;9 0 A ; !" # & . k $ ; -J !' % & j0 = ' U = e /0 !( = !" & . D p p p 3 1 . 05 1 2 = → T 2 = T = + = 2 1 (273 37) 930K T T p 105 1 2 1 $ ; -J !' % $E -J D \ !-J /% e /0 !( /Q
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 m Q ∆ = U ∆ = C R − = − V (T T 2 1 ) m i p RT 2 1 µ µ 2 1 p1 16 5 5 Q ∆ = . 3 , 8 1 ( . 273 + 37) 3 1 . 0 −1 ≈ ,64kJ 32 2 105 B B P \ !-J -J @8 > = !" # 8 = S r q 8 M% ) 8 % *+ e /0 . ! !-J D /% ! d D%Y ; -J D \ !-J m Q µ Q = C T ∆ → C = x x µ m(t − t 2 1 ) 32.150 1 , 4 . 8 C = = 20 7 , 7J / molK x 40 3 , ( . 40 − 16) ; 3 / Q % !( # S A iR 5. 3 , 8 1 C = = = 20 7 , 7J / molK = C V x 2 2 ; - 4\6 C = C = e /0 D !( x V B < M=> 6!/N !" H% = \ -J ' !N = /% ! d N !O N D / $ h" $ Q " r # & ; -J !' % & N / A = p(V − V = − = 2 1 ) p(2V1 1 ) m V RT1 µ 5 , 6 A = . 3 , 8 1 ( . 273 + 27) ≈ 1 , 8 1 . 03 J 2 $ h" $ Q " r # & A mU = C − = − = 2 − = V (T T 2 1 ) i m m i RT RT 2 1 ( pV pV 1 1 ) i m RT1 µ 2 µ µ 2 2 µ 5 5 , 6 ∆U = . 3 , 8 . 1 ( . 273 + 27) 3 ≈ 2 , 0 2.10 J 2 2 ; -J !' % & S $E -J D \ !-J 2% 6Q v | Q ∆ = A + U ∆ = 1 , 8 .103 + 2 , 0 2 1 . 03 = 28 3 , 1 . 03 J Fh& 4) 6Q s 6!/N F -u 6Q sG & $\ C 3% 6Q s 8>G
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 B %S6 % = >, P . !( = r ! 0 A ; -J D & \ !-J $ ;" r # & /-) 4D . 2% 6Q v |= -J D & \ !-J /% eb /0 !( m + + Q = A + U ∆ = C − = − = − p (T T 2 1 ) i 2 m m i 2 m RT RT pV RT µ 2 2 1 µ µ 2 2 1 µ 5 + 2 5 −3 10 Q = 3 1 . 0 .10 1 . 0 − . 3 , 8 1 ( . 273 + 10) ≈ 9 , 7 1 . 03 J 2 32 $ ;" r # & /-) . m m i U = C T = RT 1 V 1 µ µ 2 1 10 5 U = . 3 , 8 . 1 + ≈ 1 (.273 10) 8 , 1 .103 J 32 2 ;" r # & . m m i i U = C T = RT = pV 2 V 2 µ µ 2 2 2 2 5 U = 3 . .105 1 . 0.10−3 = 5 , 7 1 . 03 J 2 2 Fh& 4) 6Q s %S6 F -u 6Q sG & $\ C 3% 6Q s 8>G B 1" #6 N 6 !" /% -) I N U /% $0 T # #6 N ] / N 3% / j /E # $0 T D > = # N U q ^ ) ? ] / D N /-I -) / ) 4D !" % - N !O x% ! e /0 ' # #6 N /% -) % D e /0 !( F V !b D \ i G N 3% / A p A = p V ln 1 = 8 , 9 . 1 . 1 104. 1 . 5 0−3 ln100 ≈ , 2 26 1 . 03 J 1 1 p2 B % $% !-J . !( % ! !" r Q > % 0 h" $ Q " r # & $ N 3% ' / ; -J / 6d %
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 h" $ Q " r # & m iR 3 3 , 8 . 6 1 U ∆ = T ∆ = . 2 10 5 . 0 ≈ 2500kJ µ 2 2 F D ! 6Q s F S D G Q & $\ C 3% # X s D MG $ N 3% ' / A = p( m V − V = R T − T 2 1 ) ( 2 1 ) µ A = 2.10 . 3 3 , 8 1.50 ≈ 830kJ ; -J / 6d % $E -J D \ !-J Q = U ∆ + A = 2500 + 830 = 3330kJ B H $% !-J . % ) !" r Q % /% ! d ' C 3% 0 N 3% / 4D !" $ Q Q " r # f ' C 3% } D !( F ' /% e 6 = $E e 6 G N 3% / ' A = p( m m m V − V = RT − RT = R T − T 2 1 ) 2 1 ( 2 1 ) µ µ µ 7 A = 3 , 8 . 1 1 . 0 ≈ 1 , 3 2J 44 h" $ Q " r # & m iR 7 6. 3 , 8 1 U ∆ = T ∆ = . .10 ≈ 39 7 , J µ 2 44 2 F D ! 6Q s F S D G Q & $\ C 3% # X s D MG B %S6 4D !" % !-J . !( 4D ' ) 0 A ; -J % & $ h" $ Q Q " r # & N 3% / ' ; -J % $E -J D \ 4D% m i + 2 m m i + 2 m Q = A + ∆U = C (T − T ) = RT − RT = pV − RT p 2 1 2 1 2 1 µ 2 µ µ 2 µ 5 + 2 4 −3 10 Q = 3. 8 , 9 1 1 . 0 .10 1 . 0 − . 3 , 8 1 ( . 273 + 10) = 8 , 7 1 . 03 J 2 32 $ h" $ Q " r m m C i U ∆ = C (T − T ) V = C (T − T ) = Q = 5 , 5 1 . 03 J V 2 1 µ µ C p 2 1 i + 2 p N 3% / '
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 A = Q − U ∆ 3 , 2 1 . 03 = J B > 1" !C /% " S !~ ( !T N & -J N ! 3 !" !-J *+ V ^ C " N $E $ % Q ! X N Q % Q " %^ h = 1 c 0 m 1 d % $ !V # " N D h =1 c 5 m = e 6 D o p = a 1 t = 3 ~ N 2 S = 10cm ; !" # % D N o !O /% & e /0 N 3% / V h + h 1 o 1 A = p V ln = p V ln o o o o o V h o 0 * 6= $ !O \ 4D% " N A h − A = o p V ln o o o h + h o 1 N # e 6 A A = p Sh k o 1 N V C $ % p N / 6d % 4D N • e 6 h
A' = A − A = p S h − h ln 1 + 1 k o 1 o ho 4 −4 −2 −2 10 A' = 1 9 . 8 , .10 .10 1 . 0 10.10 − 15 1 . 0 . ln 1 + ≈ J 3 , 2 15 B M ' !( q 8> ! N 3% / 4D -J % /% e /0 ' 2% 6Q v | Q = A + U ∆ U ∆ = 0 p V =p V V2 V 1 1 2 2 p 2 1 Q = A = pdV = p V ln = p V ln 1 1 1 1 V1 V p 1 2 4 5 Q = A = 2.5 8 , 9 . 1 1 . 0 .ln = , 2 2 1 . 05 J 4 B H 1" & ; 8 7 8 !-J ' ) !N 0 & _ 4D N 3% / ' ! DA h( $ h( h%L
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 @ /0 !( & 8 8 N 3% / A = p V ∆ = 1 8 , 9 . 1 1 . 04 − − − ≈ 1 (.2 1.0.10 3 10 1.0 3) 980J $ @ /0 !( & A V p V = p V → p 1 = p = at 5 , 0 1 1 2 2 2 V 1 2 N 3% / V A = p V ln 2 = 4 − 1 8 , 9 . 1 1 . 0 1 . 0.10 . 3 ln 2 = MB [ 1 1 V1 @ /0 !%L γ γ γ V p V = p V → p = 1 p 1 1 2 2 2 1 V2 h& 4) ; = i + 2 5 + 2 γ = = = , 1 4 i 2 ;Q p = 1/ 2 ,14 = 3 , 0 a 8 t 2 Z N 3% / m Q = A + ∆U → A = −∆U = C − = − V (T T 1 2 ) i m m RT RT µ 2 1 2 µ µ γ γ 1 − i A = (p V − p V = − = − 1 1 2 2 ) i V i V p V 1 V p V 1 1 2 2 1 1 V 2 2 1 1 V 2 2 5 A = 8 , 9 1 1 . 04.10 1
. 0−3 (1 − 2−0,4 ) ≈ 590J 2 B B ;U %S6 q ! d Q t ) 0 A 4D !" # & W e /0 U !( 4D !%L $ N V ! U /% W /-I J q ! = 6 / Q U 2% D% 0 J . $ !V 10 V = 2 . , 2 4 = 7l 1 32 @ /0 U !( A & e /0 D A
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 V1 p V = p V → p = p 1 1 2 2 2 1 V2 5 7 p = 10 . ≈ 7 , 1 .105 Pa 2 4 *%~ I -. 0 /L A m mRT p V = p V = RT → p 1 = 1 1 2 2 1 2 µ V µ 2 10 3 , 8 . 1 2 . 73 p = ≈ 7 , 1 .105 Pa 2 32.4 1 . 0−3 ; !" N !O T = T = 27 K 3 2 1 N U $E 4D -J 3 4) N / V m V
A = − A = − p V ln 2 = − RT ln 2 2 1 1 V 1 µ V 1 1 10 4 A = − 3 , 8 . 1.273.ln ≈ 397J 1 32 7 $ A γ , 1 4 V γ γ 1 5 7 p V = p V → p = p = 10 = 2 , 2 .105 Pa 1 1 2 2 2 1 V 4 2 ; !" γ 1 − , 1 4 1 − γ − γ − V 1 1 7 T V = T V → T = T 1 = 273 ≈ 34 K 1 1 1 2 2 2 1 V 4 2 N U $E 4D -J 3 4) N / γ 1 − , 1 4 1 5 −3 − p V V 10 7 . .10 7 1 1 1 A = − 1 − = − 1 − ≈ 439J > A 2 1 γ − 1 V , 1 4 − 1 4 2 7\6 U !( 0 & . B < ; -I & U N ! *+ Q U !( 6 U !%L Y N U 2% e /0 !( F$E 4D -J 3 4) 4) N D / GA V V A = − 2 p V ln = 1 p V ln F G 1 1 1 1 1 V V 1 2 -. C= !& 4) e /0 !%L A Q
∆ = A + ∆U = 0 → A = − U ∆ N U /% /-I J D6= -. C - !' D 4) $D B H A γ −1 i V
A = −A = ∆U = − p V 1 − 1 F G 2 1 1 2 V2 q F G 4D F G
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 A γ i − − − − 2 (V / V 1 2 ) 1 1 5 (10 / 2) ,14 1 1 = . = . ≈ , 1 4 > 1 A 2 ln 1 (V / V 1 2 ) 2 ln(10 / 2) 7\6 U 2% e /0 !( & N . = 3% ! J . B f ' !%L " & N % % # r !N *'6 !" & N ! & e /0 = $ /E b ! !" % , -. /0 % e /0 !%L p Vγ = p Vγ → γ − = γ − → γ − = γ − 1 1 2 2 (p V 1 1 )V 1 1 (p V 2 2 )V 1 T V 1 T V 1 2 1 1 2 2 γ 1 − , 1 4 1 − V 1 → T = T 1 = 273 ≈ 207K 2 1 V 2 2 B H= %S6 !-J U !%L ! = b ! # U D M *+ $ !V Y , -. /0 FS2 ] ] G % e /0 !%L γ , 1 4 V γ γ 1 p V = p V → p = p 1 = 16. ≈ a 1 t 1 1 2 2 2 1 V , 7 2 2 B N !" % 4D => !-J ' !%L ! *+ A N r Q $ % Q V Y $ ; !" N ' Y N 3% N / ' Y q -. /0 1/ γ 1/ , 1 4 V p γ γ 5 , 1 p V = p V 2 1 → = = ≈ 3 , 1 3 1 1 2 2 V p 1 1 2 r %^ = V $ , -. /0 % e /0 !g 1 γ − γ γ γ γ p 1 γ − γ 1 γ − p V = p V → T p = T p → T = 1 T 1 1 2 2 1 1 2 2 2 1 p2 1− , 1 4 , 1 4 T = + ≈ 2 (273 ) 5 , 1 30 270K 1 N 3% / m iR A = − U ∆ = (T − T 1 2 ) µ 2
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 h& 4) N 8 < 9 % = $\ C 3% # X s 8> 103 3 , 8 . 5 1 A = (.303− 270) ≈ , 2 1 . 4 04 J 29 2 B T /E !& 4) " v - S !i -. /0 A 2 pV = U i w D " r # & 6= D $\ C 3% ;" r v - i U = nRT 2 , -. /0 12 32 224 5 / 6/% pV = nRT x% ! 2 pV = U i B 1" N % ; F 8 B 9 % G ! d Q t ' !%L % % # r Q > V 0 A N 3% C $ h" $ Q Q " r # & ; !" U D A γ γ γ 1 − γ 1 p V = p V → T V = T V − 1 1 2 2 1 1 2 2 γ 1 − , 1 4 1 − V 1 → T = T 1 = 273. ≈ 14 , 3 4K 2 1 V 5 2 N 3% C m iR A = − U ∆ = (T − T 1 2 ) µ 2 3 5 3 , 8 . 1 A = 10 . (273 −14 , 3 4) ≈ 7 , 2 1 . 06 J 2 $ h" $ Q " r # & $E 4D -J 3 4) N 3% / U ∆ = −A = 1 . 7 , 2 06 − J B > ? N /% S # " !" . !& /% !-J U !g q ! > !" # & e /0 U $ /E !" $ !V # D o C , -. /0 % e /0 !%L
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 1 γ − γ γ γ γ p 1 γ − γ 1 γ − p V = p V → T p = T p → T = 1 T 1 1 2 2 1 1 2 2 2 1 p2 1− , 1 4 , 1 4 T = + ≈ = 2 (273 ) 1 40 865K 592o C 35 B M 1" & ' !%L = # r !N = - !" 6 !& # ^ ! = V 0 & $\ C 3% # X s ! q -. /0 γ γ γ 1 − γ 1 − ln(T / T 2 1 ) p V = p V → T V = T V → γ −1 = 1 1 2 2 1 1 2 2 ln(V / V 1 2 ) γ 1 − =2 / i 2 ln(V / V 1 2 ) 2. ln(1/ 2)   → i = = = 5 ln(T / T 2 1 ) ln(1/ 3 , 1 2) P& $\ C 3% D > B H 1" -u 6Q s V = l 5 , 0 = p = 5 , 0 atm $i 1 1 U !%L ) 7 4D P ! -I € 6Q V 4D D L ) !" $ !V ? ! 2 # D p = a 1 tm o 7• !p i # e /0 ! $ 0 V 4D p 2 2 hp i # e /0 A % 7 7 7 $ @ /0 5 !( Q A p1 p V = p V → V = V = , 0 2 l 5 = V o 3 1 1 3 1 2 po @ /0 5 !%L Q A γ γ γ γ V p p V = p V → p 1 = p o = p 1 1 2 2 2 V 1 p 1 2 1 p = 2 ,14 5 , 0 . ≈ 3 , 1 2at 2
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 F? -u 6Q s 8> Q , { x i + 2 5 + 2 γ = = = , 1 4 G i 5 B B ? U !%L % -u 6Q , j s= -I !' & N M [ *+ !" # r Q $ % Q Y % 7 7 7 *0 B ? \ " N {8 M [ F N 5{8 M[G= !" r " r $E N \ 4D% # m iR U ∆ = A = T ∆ µ 2 2A 1 . 2 4 . 6 103 → ∆T = = ≈ 7K iRm / µ 3 , 8 . 5 1 1 . 03 ; !" r H o C B < 1" -J %S6 7 8 !" H o C 4D 8B= >, /L T = N & 7 8 => 4D 8M >, F G 0 -J D / ' = 4D !" $ Q " r # & f ^ $D % /% /-I J $ !O & q /L ) /L 2% % !-I A { j $ {xj @ /0 { j { !( A m iR i m m Q = ∆U = T T RT RT AC ( − C A ) = − C A µ 2 2 µ µ i 5 Q = − = 6.105 − , 8 2.105 3 1 . 0−3 = 1 − 650 AC (p p 2 1 )V1 ( ) J 2 2 @ /0 j !(
A C = C + R p V m i 2 m m Q = C R T T RT RT CB ( + V )( − B C ) + = − B C µ 2 µ µ i + 2 5 + 2 Q = p − = 6 1 . 05 5 , 4 − 3 10−3 = 3150 CB 2 (V V 2 1 ) ( ) J 2 2 ^ e /0 Q = Q + Q = 1 − 650 + 3150 = 1500J ACB AC CB @ /0 { j \ -J Q = 1500J ACB
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 m U ∆ = C − = − AB V (TB A ) i T (p V p V 2 2 1 1 ) µ 2 5 U ∆ = − − − = AB (6 1.05. 5, 4 .10 3 , 8 2 1 . 05.3 1 . 0 3 ) 600J 2 !"# $% A = A = p − ACB CB 2 (V V 2 1 ) A = 6.105 − − − = ACB (. 5, 4 .10 3 3 1 . 0 3 ) 900J $ @ /0 {xj & @ /0 {x !( m i 2 m m Q = C R T T RT RT AD ( + V )( − D A ) + = − D A µ 2 µ µ i + 2 + Q = p − = − − = AD 1 (V V 2 ) 5 2 , 8 2 1 . 05 1 ( 5 , 4 3)10 3 4305J 2 2 xj !( A m iR i m m Q = ∆U = T T RT RT DB ( − B D ) = − A C µ 2 2 µ µ i Q = − = − − = − DB (p p 2 1 ) 5 V2 (6 1.05 ,82.105 ) 5, 4 .10 3 2475J 2 2 ^ e /0 Q = Q + Q = 4305 − 2475 = 1830J ADB AC CB m U ∆ = C − = − AB V (TB A ) i T (p V p V 2 2 1 1 ) µ 2 5 U ∆ = − − − = AB (6 1.05. 5, 4 .10 3 , 8 2 1 . 05.3 1 . 0 3 ) 600J 2 !"# A = A = p − ADB AD 1 (V V 2 1 ) A = , 8 2.105 − − − = ADB (. 5, 4 .10 3 3 1 . 0 3 ) 1230J B 1" % F & -J % G C " /0 {j x - 0 3-) = /% ! {j= x D e /0 !( = T 4)
!" T 4D T = j 4D x{ D e /0 !( T 4) V 1 2 2 4D V1
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 { { x x j j 7 7 7 T /E p p A D = 7 p p B C $ N 4D /% ^ /0 3] Q -. /0 # e /0 !( A p V V p A B C D = = = F! G p V V p B A D C $ N # /0 $E N /Q e /0 {j 4D x= e /0 K L N $E N m pV = RT V V µ m V 2 1 A = A + A = p V ln + p V ln = RAB CD A A D D (T T ln 2 ) 2 1 V V µ V 1 2 1 ; \ /% ^ /0 A m Q = A = R( V T T ln 2 ) 2 1 µ V1 B 1" & C " /0 - 0 4• 3-) = /% ! 4D D e /0 !( T 4) !" T 4D T = 4D 1 2 D e /0 !%L % V = l 2 ,V = l 5 = V = l 8 = p = 7atm 0 A 1 2 3 1 Q = A + U ∆ = A
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 7 7 7 7 7
p , p , p ,V ,T 2 3 4 4 2 $ N C /% q e /0 4D /% %D /0 ; D & \ !-J 6 + / /% q e /0 !( V p 1 = p = , 2 7atm = % N D -u 6Q sA 8>= A 2 V 1 2 γ V p 2 = p = , 1 45atm 3 V 2 3 γ 1 − 1−γ V T γ T = T 2 = 33 K 1 ; p = p 2 = 6 , 3 atm 2 1 V 4 1 T 3 1 p V 3 = V = , 3 l 2 4 p 3 4 $ N C /Q q e /0 A V
A = p V ln 2 = 1300J 12 1 1 V1 p V T A 2 2 = 1 2 − = 620J 23 γ −1 T1 V A = p V ln 4 = 1 − 070J 34 2 2 V3 p V T A 2 2 = 1 1 − = −620J 41 γ −1 T2 N C /% ^ /0 A
A = A + A + A + A = 230J 12 23 34 41 ; D \ /% q e /0 !%L A
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 Q = A = 1300J = \ 12 12 Q = A = 1 − 070J = ^ 34 34 B /% " $0 ; 4D %S6 0 !" $ Q Q " r # W J ! D L S & B% h" ^ " r m iR m iR U O ∆ = T N ∆ + T ∆ µ 2 µ 2 O N 32 20 5 3 , 8 . 1 U ∆ = + (273 + 28) ≈ 10000J 32 28 2 B f ^ !p N 2% v 6 # " 6 U !-J 4• /Q 0 B 5 F ^ !p C /K . G h%L {j T 4) e /0 U !( N = j e /0 !t6 N 4D% $0 T F N !O Gk x 5 ^ !" " /% S # 6 U ! 4 % 4D 4 L k x{ 5 % N 4D% *'6 T /E N # 6 U " /0 $E N !& 4) e /0 !( 4D !-J $ 3 ‚ $E 3 {jfƒ j , , x * { f ƒ 7 7 7 *0 B N { # 6 U $E N \ !-J 4D $E 3 {j x
A = dt(ABCDA) = dt(ABHA) + dt(BCDH ) B dt(BCDH ) B = (p − p = − = − = 2 1 )V p V p V p 2 1 1 1 2 1 (V V 1 2 ) dt(AFGH)
→ A = dt(ABHA) + dt(AFGH) = dt(ABGF) F! G B 7• !p i # € e /0 !( = !( = !( 4D% !%L # ^ !p = =w $ =7 3 7=w
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 f ^ !p = • @ /0 !( A 9 8 % = !p i $ 3 ‚ D !-I ( e & L !" F!-I G • @ /0 !( A N !O = !p i $ 3 ‚ D !-I ( % % 4) F!-I G • @ /0 !( A !" N !O = !p i $ 3 ‚ D !-I ( % 4) • @ /0 !%L PC ] " 4D% % $ -. /0 γ 1 p const T . − = γ γ γ γ F40 3% γ pV γ T pV = c = const → c = = nR → p = const T . γ − G 1 ( ) ( ) 1 ( ) 1 γ 1 − γ 1 p p − , -. /0 D6 !p i F G D " !-I % ! e & g !" $ f ^ !p =7 7 • @ /0 !( A N !O = !p i $ 3 ‚ D !-I ( % % 4) F!-I G • @ /0 !( A 79 8 % = !p i $ 3 ‚ D !-I ( e & L% !" F!-I G • @ /0 !( A 8 % = !p i $ 3 ‚ D !-I ( % 4) 7 • @ /0 !%L PC ] " 7 4D% % $ -. /0 1 V const T . 1 − = γ .
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 1 −
F40 3% pVγ = c(= const)→ c = (pV) γ 1 V − = (nR ) γ 1 − γ 1 TV → V = const T . − = l G , -. /0 D6 !p i F G D " !-I % 3L 6 2 $% \ 4) /] g !" F!-I G /% " e /0 $ „ A m U = RT = e /0 !( = !( µ = !%L !-I $ 3 ‚ D !-I ( e & g !" F!-I = = G= e /0 !( !-J % $ !-I E F!-I G w = = 3 f ^ !p w=7 Fw " E & m C = 3% ! m V U% 3D V µ Q " m & m C !& 4) /] !p i =7 • \ !-J !p i V µ w=7 G 7 w
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 1" 6 . -) N =H …= Q ] B= /% " I ;r + # D HB 9 ; !" # p % = !" # p L D >B o C 0 C # 6 P% ! 4) v - # 6 D 4 2% /0 N 4) € p /Q * C # 6 Q 14 . 7 , 3600 h coich = 10 % 0 = 10 % 0 ≈ 2 % 0 Q . 1 , 8 7800 1 , 4 . 8 toanphan * v - 2% /0 N T − T 200 − 58 h n l = 100% = 100% ≈ 30% lt T 200 + 273 n * 6 2 h = hlt 3 %L C /% 6 D L v - C " N $E $ % Q ! 6 ! " -J >[ q $ p D L = !" # $ p D M ?= K !" # -) D L D B>? * & D L # !" . Q2 ε = A ; 6 L6 2% /0 N -J 0A T2 ε = T −T 1 2 P 6 / T 285 → A 1 = − 1 Q = − 1 105 ≈ 836 2 ( 5 J) T 263 2
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 ; p Q1 1 6 A L Q2 ; p L 1" !" . v - L6 2% /0 N= ^ % p L B † -J D !-J # p ; -J !-J /% " /0 D => 0 A * !" . $ N D !" . / /% " /0 ; p Q1 h" A . Q2 ; p L * # !" . A Q η = 100% = 1 2 − 100% = (1 − 8 , 0 )100% = 20% Q Q 1 1 N D !" . / /% " /0 {8 @ 8 = =>8 = 8 => [ 1" !" . D 4 2% /0 N= W /0 " N {8H= > [ ; !" # p D o C = !" # p L D % 0 A * !" . $ ; -J \ !-J # p " /0 ; -J ^ % p L " /0 * # !" .
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 T 273 η = 1 2 − 100% = 1 − 100% ≈ 26 8 , % T 100 + 273 1 $ ; -J \ !-J # p " /0 Q = A /η = 3 , 7 5.104 / 2 , 0 68 ≈ 2 , 7 42 1 . 04 1 (J) ; -J ^ % p L " /0 Q = Q − A = 27 4 , 2.104 − 3 , 7 5 1 . 04 = 20 0 , 7 1 . 04 2 1 (J) ; !" # . -) q K . 4D% 6 . -) D 8 H o C = !" # $0 - D 8 H o C *+ & " -J @8 0 !-J " N C !L 2% v 6 $E $ % Q Y N C !L 2% v 6 !-J !" . D 4 2% /0 N \ i 4) v - T2 η = 1 − T1 1~ A T 27 + 273 η = → A = 1 2 − Q = 1 − 1 = 4 , 0 (kcal) = 6 , 1 72(kJ) Q T 227 + 273 1 1" /0 N C € 6 ! d !" 8 % = 8 % I ! C /0 ! D 8 0 N F N G D 4 # !" . 2% /0 6= $ X D N = & e /0 ' !( $E !V e /0 U !%L % N 8 < 9 % 7 7 7 7 7 ; -J \ !-J # !" . /% " /0 D \ !-J /% e /0 F 0 4•G m p1 Q = RT ln 1 1 µ p2 @ /0 !%L Q γ γ 1−γ γ 1−γ γ p V = p V → p T = p T 1 1 4 4 1 1 4 4
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 2% ^ 8 = 8 γ γ 1 p T − 1 1 → = p T 2 2 x% ! m γ T1 Q = RT ln 1 1 µ γ − 1 T2 N / /% " /0 T −T 1 2 η = T1 T − T m γ T 1 2 A = Q η = Q = R T − T ln 1 1 ( 1 ) 1 2 T µ γ − 1 T 1 2 2000 4 , 1 + A = . 3 , 8 1 ( . 400 − 20) 400 273 .ln ≈ 634(kJ) 29 , 1 4 − 1 20 + 273 N # !" . A P = = 634(kW) τ 1" 6 D L D 4 2% /0 N i = Q ] N MB … ; !" # p L D % = !" p D H% A * & D L # 6 $ ; -J 6 !-J # p L /% ; -J ^ % p /% X6 * & D L # 6 Q T − 10 + 273 2 2 ε = = = = 7 , 9 4 A T − T 17 − − 1 2 ( 10) $ ; -J 6 !-J # p L /% Q' = εA = P ε t = 7 , 9 4.36800 1 . ≈ 6 , 3 .105 ≈ 2 (J) 8600 c 0 al ; -J ^ % p /% X6 Q = A + Q' = ε + = + ≈ ≈ 1 2 ( ) 1 Pt ( 7 , 9 4 ) 1 36800 1 . 4 1 . 05 J 5 , 9 .104 cal ? C /0 N= N BM [ 4D ^ => % p L # /0 * # /0 A A 8600 η = 100% = 100% = 100% ≈ 45% Q A + Q 8600 + 5 , 2 1 . 03 1 , 4 . 8 1 2 ? C /0 N= \ !-J -J q p 4D C N > [ ; !" # p D o C !" # p L
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 * # /0 N T A A 15 1 . 03 1 2 − = → T = 1 − T = 1 − + = 2 1 (273 100) 239K T Q Q 10 1 . 0 . 3 1 , 4 8 1 1" 6 v - = L6 2% /0 N= p !" H% 4D p L !" H% 1 6 \ # p D M 9 A * # 6 $ ; -J ^ % p L /% " X6 N # 6 * # 6 D # /0 N T 27 + 273 η = 1 2 − = 1 − ≈ 23% T 117 + 273 1 $ ; -J ^ % p L /% " X6 D @ Q T T 27 + 273 1 2 − = 1 2 − → Q 2 = Q = 63000 ≈ 4800 c 0 al / s Q T 2 T 1 117 + 273 1 1 1 N 6 D , $E N 6 / /% " X6 A Q − Q 63000 − 48000 P 1 2 = = = 1 , 4 8 ≈ 6 k 3 W τ τ 1 1" 6 D L v - = L6 2% /0 N -J 6 q p L o C ^ % $0 -) N o C -J -) V D !N p L ! $ -) D . $0 N % $ ^6 / Q # -) ! D 8 = > >[9 = 4D . / Q # -) D R8 = M M[9 0 3 6 L D6 - . !p !' Q V • v 6 ; \ q p L Q = ^ / p D Q A 2 1 Q T T 2 2 2 = → Q = Q F G 2 1 Q − Q T − T T 1 2 1 2 1 ; -J V D $ 6 . -) A Q = Lm F G 1 ? & -J -) V D ^6 D ‡A Q = λm' F G 2 q F G F G 4D F G A L T , 2 26.106 273 m' 2 = m = . 1 . ≈ 9 , 4 k 3 g λ T 3 , 3 5 1 . 05 373 1
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 1" % v - C " /0 p e /0 !( 4D e /0 !( ? ! # 6 !O q 7 8 > ! 7 8> 4D q 8 ! 8 *+ N C $ /0 D6 + . $ % Q V N C $ /0 N !-I !( T 4) !" ) 4D + # /0 /Q = ' !( r Q !N Y N C /% ^ /0 A A = (p − p V − V 2 1 )( 2 1 ) /% /0 N= !" p T 4) ! F7 = G= p L 4) F7 = G /% " /0 X \ V'2 p V ln 4) A 2 2 V'1 T − T p V − p V 2 1 2 2 1 1 η = = T p V 2 2 2 N / /% " /0 A V' A' = Q η = p V − p V ln 1 ( 2 2 1 ) 2 1 V'1 (p V − p V 2 2 1 1 ) V' ln 2 A' V'1 → = = 1 , 2 A (p − p − 1 2 )(V V 2 1 ) 1" 6 . -) D 4 2% /0 - 0 4• < j , x ,% { ˆ 7 7 7 % 7 '( %L Q . -) q p . 4D% S = . -) E q % ) = N !O 4D $E 7% F {jG $ *. -) ] ! 4D%= N 6 !" q / ^ F j G 4) . N !O D 4D r Q 7 n ! 4 L = N 6 !" ] ^ ! S^6 / e /0 ' !%L F; xGk 3 ? ! 4i / & _ $Q ^ = 0 . -) /% S ! 4D% p L = ! . ^ S & %= K N !O $E 7 = F xˆG
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 2 , N 6 !" -J L = !t6 . -) K L /% S / %D = ! N !O $E %= ^ q 7 ) 7% F ˆ{G *'6 N D 6 / W /0 = 7%8 => k 7 8 => k7 8 k %8 k 8 4D & !%L D 8 = N C /Q q e /0 / Q $ A Z @ /0 { j 4D x ˆ !( = N N A = A = 0 AB DE Z @ /0 j = ' !( = N A = p − = − − = BC 1 (V V 1 ) 12. 8 , 9 1 . 04 o ( 5 , 1 5 , 0 ).10 3 117 ( 6 J) Z @ /0 x ' !g = 2% N T F, MG V ] ] = N / /% e /0 ' !%L A γ 1 − , 1 33 1 − p V V 12. 8 , 9 1 . 04. 5 , 1 1 . 0−3 5 , 1 A 1 1 = 1 1 − = 1 − ≈ 109 CD ( 3 J) γ −1 V 3 , 1 3 −1 3 2 Z @ /0 ˆ{ $ !O !( = N C A = p − = − − ≈ − EA o (V V o ) 8 , 9 .104 2 ( 5 , 0 3) 1 . 0 3 24 ( 5 J) N D 6 / /% W /0 D 4 $E N C $ A = A + A + A + A + A
= 0 + 1176 + 1093 + 0 − 245 = 2024 AB BC CD DE EA (J) *0 4• < /0 $D6 ^ !p v 6 # !" . !& /% $& „ /% e /0 !V Q = W J 6 !-J L 4D% S = ! %8 % 4D r q 7 ) 7 F {jGk $ /% e /0 T F j G= W C% 6 !-J U !%L q 7 ) 7 ? ! !" r q % ! 4D q % ! k x , ˆ , { % j 7 7 7 *0 <
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 2% D e /0 !& 6 W J 6 $E 2 s ! k ! r q ) = N !O 4D $E 7 F xG= !" r ) k 3 2% D e /0 ' !%L q 7 ) 7 F xˆG= !" ^ S & k 2 & _ # N F! ˆG= 4 = % / %D = b ^ ) %= N !O 4D $E 7 F ˆjG ‰ & _ D e /0 U !( % F j{G *'6 # /0
& U ε 87 97 8> 4D & !%L D γ 8 = ; X \ /% ^ /0 $E X \ /% e /0 xA Q = Q = nC T − T 1 CD V ( D C ) /Q ˆj X + F \ 4D% • 3 X GA Q = nC T − T 2 V ( B E ) * # !" .A Q T − T nR T − T p V − p V V p − p 2 B E ( B E ) o 1 4 1 1 o 4 η = 1 + = 1 + = 1 + = 1 + = 1 + F G Q T − T nR T − T p V − p V V p − p 1 D C ( D C ) 2 2 1 2 2 2 1 1~ A γ γ γ γ p V = p V ; p
V = p V → p − p V = p − p V 1 2 o 1 2 2 4 1 ( 2 1 ) γ 2 ( 4 o ) γ 1 γ p − p V o 4 2 γ → = − = ε − − F G p − p V 2 1 1 6 F G 4D% F GA η = 1 1 − −γ ε = 1 − 51− ,133 = 4 , 1 2% 0 # !" . !& /% = % $ & !%L D = 4D & U $E A 7 97 8 k $ 7 97 8Mk 7 97 8Bk 2% $D < !-J V -J % e /0 ] η = 1 1 − −γ ε = 1 − 41− ,133 = 36 7 , % $ η = 1 1 − −γ ε = 1 − 61− ,133 = 44 6 , % η = 1 1 − −γ ε = 1 − 81− ,133 = 49 6 , % /0 # !" . ! 2Š2 $& „ !-J /0 $D6 /Q 0 <
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 x ˆ j % { 7 7 7 7 '() ; {j T 4) e /0 L N = %8 k $ ; j 5 N !-J U !%L ) b & „ U = Q !-J 4D% S = Q 6 /% N = ! N 6 !" ^ = !V Q D !( F xG= ! D !%L F xˆGk 3 & e /0 !%L = 4 % = ^ S & % F ˆjGk 2 ; j{ T 4) e /0 !t6 / + S 0 # !" . 3 2Š2 /% " /0 = X m \ /Q e /0 xA Q = Q = nC T − T 1 CD p ( D C ) ; ^ A Q = Q = nC T − T 2 EB V ( B E ) * A Q − − − 2 1 T T B E 1 p V p V o 2 2 2 1 V p / p p / p η = 1+ = 1+ = 1+ = 1 2 o 1 2 1 + Q γ T − T γ p V − p V γ V V / V −1 1 D C 1 3 1 1 1 3 1 p p o 2 − ε p p η = 1 1 1 + F G γ β −1 /% ! ε = V / V 2 1 1~ γ γ γ p V o 1 γ p V = p V → = ε − = k o 2 1 1 p V 1 2 γ γ γ γ p V V V 2 3 3 1 γ −γ p V = p V → = = = β ε F G 2 2 1 3 p V V V 1 2 1 2 7) V3 β = V1 6 F G 4D% F G 4D $ !O \ !-J A
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 β γ − 1 η = 1 − γ 1 − γε (β − ) 1 1" 6 . -) L6 2% /0 p e /0 !( 4D e /0 !( - 0 < # /0 ! P% ! 4) /0 N _ !" # p 4D p L 7 *0 < ; \ \ !-J /% " /0 D 4 $ % p eb /0 5 4D 5 Q = nC T − T 23 V ( 1 2 ) V Q = A = 2 nRT ln 34 34 1 V1 N X / F$E N !" % / G /% " /0 D 4 V V V A = A + A + A + A = 1 nRT ln + 0 + 2 nRT ln + 0 = nR T T ln 12 23 34 41 2 1 ( − 1 ) 2 2 V V V 2 1 1 * # !" . A T − T T − T 1 2 1 2 η = = < = η Q + Q C T − T V ( 1 2 ) Carnot T 23 34 1 T + 1 R ln(V / V 2 1 ) 7\6 !" . D 4 2% /0 P + . D 4 2% /0 / % !" $ Q 2 /Npy . !( M=> !/N= r !N h" $ Q 2 /% 6 /% eb /0 !( Q δ nC dT dS p = = T T
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 ^ e /0 2 /% 6 $ Q " -J T2 dT m i + 2 T2 S ∆ = dS = nC = R ln p T1 T µ 2 T1 1~ = e /0 !( Q T V 2 2 = = 2 T V 1 1 7) * !/N 8> 5 , 6 5 + 2 S = . 3 , 8 . 1. ln(2) = 65 5 , 2(J / K) 2 2 !" r 2 /N 6 $ !O -) % D . % h" $ Q 2 /% 6 -) !-J D ) % Q δ mCdT dT T dS = = → ∆S = dS = mC = 2 mCln 1 T T T T1 − + 3 100 273 S ∆ = 10 .4180.ln = 3 , 1 1 0 + 273 h" $ Q 2 /% 6 /% e /0 -) . % Q δ Lm 2 , 2 6.106.10−3 S ∆ = = = ≈ 1 , 6 2 T T 373 2 2 h" $ Q Q 2 /% 6 /% ^ e /0 S ∆ = ∆S + S ∆ ≈ , 7 4 1 2 (J / K) !" $ Q 2 /Npy ' !( => ; . q ) > Q δ Q ∆ m V 10 5 , S ∆ = = = R ln 2 = 3 , 8 . 1.ln(5 / 2) ≈ 9 , 2 (J / K) T T µ V 28 1 NS6 !-J . q 8> % ) 8 > % !" $ Q 2 /N 6 e /0 . DA h( k $ !( @ /0 !( Q δ A δ + dU m dT m i + 2 T S ∆ = = = C = R ln 2 T T V µ T µ 2 T1 10 5 150 + 273 S ∆ = 3 , 8 . 1.ln ≈ 7 , 1 (J / K) 32 2 50 + 273 $ h(
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 Q δ m dT m i + 2 T S ∆ = = C = R ln 2 T p µ T µ 2 T1 10 5 + 2 150 + 273 S ∆ = 3 , 8 . 1.ln ≈ , 2 4(J / K) 32 2 50 + 273 !" $ Q 2 /N 6 $ !O M 6!/N q = => ! M = 70 !" $ Q 2 /% 6 m ] " 4D% /L !V 4D & Q g % " $ !O $ „ D N ^ - ) e ^ ( L = % $ !O !( ) = ! ' !( ) M Z 7) e /0 T Fe /0 !( GA Q δ dT m T m p ∆S = =nC = 2 C ln = 2 C ln 1 V V V T T µ T µ p 1 1 Z 7) e /0 T Fe /0 !( GA Q δ dT m T m V ∆S = =nC = 2 C ln = 2 C ln 2 p p p T T µ T µ V 1 1 h" $ Q 2 /% 6 # ^ e /0 m V p S ∆ = S ∆ + S ∆ = C ln 2 + C ln 2 1 2 p µ V V p 1 1 6 5 + 2 60 5 1 S ∆ = 3 , 8 . . 1 ln + 3 , 8 . . 1 ln ≈ 7 ( 1 J / K) 2 2 20 2 5 , 1 1" N % -u 6Q s !-J . = !" 6 !& # !-J r Q => V !" $ Q 2 /N 6 e /0 . DA h( k $ h( @ /0 !( Q δ dT m T m i T S ∆ = n = C = C ln 2 = R ln 2 1 T V T V µ T µ 2 T 1 1 3 5 S ∆ = 10 . . 3 , 8 . 1 ln ≈ 1 ( 5 , 1 ) , 8 4 1 . 03 (J / K) 2 $ @ /0 !( Q δ dT T i + 2 T ∆S = n = C = nC ln 2 = n R ln 2 2 T p T p T 2 T 1 1 + 3 5 2 ∆S = 10 . . 3 , 8 . 1 ln ≈ 2 ( ) 5 , 1 11 . 8 , 103 (J / K) 2
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 . !-J . = !" 6 !& # r = V 4D 2 /N 6 r Q = < 9? nU S2 e /0 . D !r 6 !( Y f ^ s 3 # e /0 $ !O D = ! Q δ dT m T S ∆ = n = C = C ln 2 T T µ T1 µ S ∆ 2 . 8 1 , 4 9 → C = = ≈ 7(cal / K) ≈ 29(J / K) m ln(T / T 2 1 ) 2 . 2 ln( ) 1 , 2 h& 4) ; . iR + C = ≈ 2 = ≈ V ( 1 J / mol) (i 2)R ;C 29 p (J / mol) 2 2 7\6 e /0 . D e /0 !( h" $ Q 2 /N 6 /Q !%L € e /0 !%L /% /0 N $E 9!" * !" € !-I !( D % *+ -J !' 6 D N /% /0 D6 fg !" # !-I !( D 4D F l G N C /% /0 $E # \ 4D% C C 4D + / C C /% " /0 F $E O -J * +, /% ^ /0 G A = Q + Q 1 2 /% /0 / % Q + Q T − T Q Q Q − Q A 1 2 1 2 1 2 1 2 η = = → = = = Q T T T T − T T − T 1 1 1 2 1 2 1 2 /% e /0 !( F € e /0 !%L G= !" $ Q 2 /% 6 D Q δ Q Q 1 2 S ∆ = = = T T T 1 2 ;Q A = (T − T ∆ = = 1 2 ) S 10 ( 0 kcal) 41 ( 8 kJ) j+ -) ! % 4D% -) % /% " $0 4+ v - !" $ Q 2 /N 6 # /% e /0 / % !O q ! 6 / /E m / 6d q 4\ 4\ L % $ ^6 / Q # -) ! % D 8B 9 k 3 / Q # -) D 9 !"
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 ; !" X $E # / % !O S !i q -. /0 X $E c(m t + m t − λm 2 2 1 1 )
λm + cm t − t = cm t − t → t = 1 1 ( 1 ) 2 ( 2 ) 1 c(m + m 1 2 ) ( 1 40 . 0 30 + 100 0 . ) − 80 1 . 00 t = = ( 8 o C) = 28 ( 1 K) ( 1 100 + 400) h& 4) -) ! = !" r 2 /% 6 $ % p !" r 3% ^6 4D !" r 3% r !" Q δ Q δ ∆ T Q dT λm T ∆S = + = + cm = 1 + cm ln 1 1 1 1 2 T T T T 1 T T T 1 1 1 7) 8 B F?G D !" X $E # h& 4) -) $i L ! = 2 /% 6 • ^ = !" $ Q D6 D T Q δ dT T ∆S = = cm = cm ln 2 2 2 T T 2 T T1 h" $ Q Q 2 /% 6 # D λm T T S ∆ = ∆S + S 1 ∆ = + cm ln + cm ln 1 2 T 1 T 2 T 1 1 2 80 1 , 0 . 281 281 S ∆ = + 1. 1 , 0 .ln + 1. , 0 4.ln ≈ 0 , 0 02(kcal / K) (0 + 27 ) 3 0 + 273 30 + 273 6 ∆Pl = ! d ! T + m / 6d q 4\ 4\ L ‹ h T m / 6d q 4\ 4\ L D - A nU 4\ N \ = r -J # $^% %D F e /0 SU m Q e ! C / 6d 0 !-J $^% %D G Q = Q + Q = const → Q δ = − Q δ 1 2 1 2 /% ! Q δ = Q δ D !" $ Q -J # 4\ 4D 1 2 h" $ Q 2 /% 6 Q δ Q δ 1 2 dS = dS + dS = + 1 2 T T 1 2 2% F‹G 1 1 (T − T δ 2 1 ) Q dS = Q 1 δ − = > 0 → − δ > 1 (T T 2 1 ) Q 0 T T T T 1 1 2 1 2 ; l 0 @ l T D 4\ \ 6 / 6d q 4\ 4\ ; Œ 0 @ Œ T D 4\ + 6 / 6d q 4\ 4\ 7\6 m / 6d q 4\ 4\ L !" $ Q 2 /N 6 # " v - /L # 6 !O q { ) j F 0 < >G 2%A
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 , , { x , j 7 7 7 *0 < > h-I { j $ h-I {xj % $ A 7 8 k 8B= >;9 k7 8 => k 8 H o C = 8M >;9 h" $ Q 2 /% 6 N ] " 4D% e /0 $ !O - D%= D m ] " 4D% /L !V 4D /L & = Q A C B dT dT T T ∆S = ∆S + ∆S = nC + nC = C nC ln + B nC ln AC CB V p V p A C T T T T A C { 4D 5 j !( Q T p T V C 2 = k B 2 = T p T V A 1 C 1 x% ! i p i + 2 V p V i p i + 2 V ∆S = 2 n R ln + 2 n R ln = 1 1 2 ln + 2 ln 2 p 2 V T 2 p 2 V 1 1 1 1 1 3 , 8 1 1 . 05 3 . .10 3 − 6 6 1 . 05 6 + 2 5 , 4 ∆S = ln + ln ≈ , 5 4(J / K) (27 + 273) 2 3 , 8 1 1 . 05 2 3 $0 = $0 T 7 8 T ; . 8 = $0 T 7 8 T 8> % $0 N 4) 4D !~ b /% " 4+ v - !" $ Q 2 /N 6 # /" c 4D% = $ !" $ !V /% $0 $E 4D $E H% ? ' 4D% N N = L $i Q e /0 !L !-J /L & _ !" N !O F - v= !X6 N ^ D e /0 !%L \ i G ˆ /% 6 6 !O " -J F $E % !-I !( G δQ δQ ∆S = ∆S + ∆S = + 1 2 1 2 T T @ /0 !(
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 V2 Q = A = pV ln V1 p V V + V p V V + V S 1 1 ∆ = ln 1 2 2 2 + ln 1 2 T V T V 1 2 8 , 9 .104.2 1 . 0−3 2 + 3 5. 8 , 9 1 . 04 3 . .10−3 2 + 3 S ∆ = ln + ln ≈ ( 1 , 3 J / K) 273 + 27 2 273 + 27 3 • % !-J $+ 4D% " -J T -) o C ˆ /N 6 # D6 6 !O - D% X $E Y P / % !O • X $E !" % , -. /0 X $E c m t + c m t c m t − t = c m t − t → t = 1 1 ( 1 ) 2 2 ( 2 ) 1 1 1 2 2 2 c m + c m 1 1 2 2 460. 2 , 0 .100 + 4180 3 , 0 . .12 t = 1 ( 8 o ≈ C) 460 , 0 . 2 + 418 . 0 3 , 0 h" $ Q 2 /% 6 # $ % p C ^ 2 /% 6 # • 4D C r 2 /% 6 # & -) dT dT T T ∆S = c m + c m = c m ln + c m ln 1 1 2 2 1 1 2 2 T T T T 1 2 18 + 273 18 + 273 S ∆ = 460. , 0 2. ln + 4180 3 , 0 . . ln ≈ ( 3 , 3 J / K) 100 + 273 12 + 273 7\6 X $E 2 /% 6 # r Q " -J = F[9?G
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 ! " # *2 B;9 0 !" # /% /-I J % *2 D v - $ % *2 D C ? *2 v - = !" !-J S !i q -. /0 12 !2 224 5 / 6/% pV 108 1 . 0 . 0 10−6 T = = ≈ 48 ( 1 K) (m / µ)R (10 / 4). 3 , 8 1 $ ? *2 C = !" !-J S !i q -. /0 7 32 … m2 a m m 1 p µ m a m p + V − b = RT → T = + V − b 2 µ V2 µ µ R m µ V2 µ 1 4 1 . 08 10 1 , 4 .10−4 −6 10 T −5 = + − ≈ 3 , 8 1 10 4 ( 2 100 1 . 0−6 ) 100 1 . 0 3 , 2 1 . 0 205K 4 h& 4) *2
a = 4,121.10-4 Jm3 / kmol2 ; b = 2,3.10-5 m3 / kmol /% " $0 T = > . !" H% 0 m & € " 4D 3% 3] Q D $0 $ 0 m & € " 4D # $0 E & 7 32 … # ; . a = 0,14 J 1 m3 / mol2 ; b = 9 , 3 2 1 . 0−5 m3 / mol , -. /0 7 32 … m2 a m m p + V − b = RT F G 2 µ V2 µ µ m & € " 4D 3% 3] Q D $0 2 ;" m a p' = 2 2 µ V 4 # F G % ‡ A p m V 2 µ RT p RV 2T p' ma m + 1 V − b = → = → = V − b F G p' µ am p' m m p R µ V2T µ a V − b µ µ p' 250. 1 , 0 41 250 = . , 0 01− . 9 , 3 2.10−5 ≈ 9 , 4 % p 28 3 , 8 . 1. , 0 01 . 2 300 28 ! " #$ "% &' $( )* + , -. / 0 1 ( 23 45 & 6
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 $ m & € " 4D # $0 " m V'= b µ m & V' mb 250 9 , 3 . . 2 10 5 − = = = % 5 , 3 V V µ 2 . 8 , 0 01 0 # $% % $ & -J / Q # !" ! D >> 9 , -. /0 7 32 … 2 2 m a m m ρ a ρ ρ p + V − b = RT → p + 1 − b = RT 2 2 2 µ V µ µ µ µ µ 2 RT ρ a → p = − (µ / ρ − b) 2 µ 6 & 2 3 , 8 1 ( . 273 + 3) 550 p 8 = ( − ≈ , 0 028 / 550 − 9 , 3 2.10−5 ) 1 , 0 . 41 , 1 4 1 . 0 (Pa) 0 , 0 28 # %S6 r q ! > 3 n2 %S6 D C 0 N # " C /% e /0 ' ! ;" 2 m a p' = 2 µ V N # " C 2 2 m V2 adV m 1 1 A' = p' dV = = a − V1 µ V 2 µ V V 1 2 2 4 1 1 A' = 1 , 0 38 − ≈ 7 , 1 (J) 32 0 , 0 01 0 , 0 05 " # $% b & -J / Q # D >> 9 % $ !& 4) $% A 8 ? 4D 8H= M;9 ;" # $%
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 m 2 a 2 ρ 27RT 2k p' = = 2 µ V 2 2 µ 64 pk ; - 3% 27RT 2 a = k 64 pk ;Q 2 550 27. 3 , 8 1 3 . 042 p' = ≈ 8 , 6 1 . 06 (Pa ) 0 , 0 44 64.7,4 1 . 06 & -J -) V % 4D% " $0 ! ! ) /L ) L %D $" # $0 fg & -J -) V % 4D% $0 D ? ! ) /L ) L = # $0 D ) L = Q m m V µ V = V = V = b 3 → m = k ok µ µ b 3 *E & 7 32 … # -) $8 => M 9 % = !-J 8>=< n !i & -J / Q # . -) ! ) L 2% /i " $8 = 9 % " m m m µ 0 , 0 18 V = V = b 3 → ρ = = = = 200 kg / m k ok k ( 3 ) −3 µ µ V b 3 3 0 , 0 . 3.10 k h& 4) $% A 8 =M >[ 9 % = $8 = 9 % *+ A $% + ) D $ % Q Y $ . $'% K ) D $ % Q Y + !" % D $ % Q Y 3 V ^ U 4) $E $ % Q ! D + !" % 4D > % ) # $% + T 4 /L ) L F 6 / q !-I !( 7 32 … G m b 3 m 0 , 0 . 3 4 . 3 10−3 V = V = ≈ ≈ 9 , 2 . 3 10−3 m3 / kg k ok µ µ 4 . 4 10−3 F$8 = 9 % 8 = 9 % G $ . $'% %D C !L T 4) ! $ F 6 / q !-I !( 7 32 … G
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 a 0,364 p = = ≈ 7,4.106 k (Pa) 27b 2 2 27(0,043.10-3 ) F 8 =M >[ 9 % 8 = M [ 9 % G ; !" % D . K + T 4) !" ! $ a 8 8. 3 , 0 64 T = = ≈ 304K = 31o k (C)( )! 27Rb 27. 3 , 8 1. , 0 043 1 . 0−3 3 $% + % V U ) $E ) L p = 7,4 1 . 06 k (Pa) h a D !" ) D $% + g 7) !" > % D N C % + 4) $ T D% h Q T /L ) L D 4\ v g ; { 7Q / 6 3_ " " /% ! !C " & T 2 2 !-J D *. " ! e /L ) L % = Q 2 -) ^ " $E $ % Q V /r # & ! ! !" ) L = & T !V6 Q 2 /L ) L Y j /E & -J % Q 2 D H 9 % = & -J / Q # Q 2 % $E H 9 h& 4) Q 2 8 < % = 8 >=< >;9 k $ ; # & ) 6 + . Q 2 ) L 0 • S^6 / -J 0 !" X Q Y fg 4D & -J Q 2 !O 4D% & D 7 4D = # /L ) L D 7 F3% ! a D # & G m m m RTk V = V = b 3 = b 3 k ok µ µ µ 8pk m V 8 p µ 8 0 , 0 . 74.34 9 , .105 V k = → = = ≈ 25% ρ V 3 R ρ T 3.714 3 , 8 . 1 + k k (.273 193) $ ? # & + . 7 0 - ! 2 2 Q ) /L ) L 2 2 !' !V6 & ? # & ) . 7 0 - ! 2 2 Q ) /L ) L 2 2 !' $ 6 .
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 $ n !i N V ! $ " g -) D -. _ F } D ! g -) ! D € g +G !-I = x $d ~ # g -) b !V % - N ! % 4) O 3 $d ~ # g -. _ ? & -J # " g -. _ 4 3 m = πρr F/ D $ g -. G 3 P& g -. !-J L% D q g -) M M 3 N = = 3 m 4πρr x $d ~ # " g 2 s = 4 r π = 4\6 3 $d ~ O " M 3 6M S = sN = = F38 / D !-I g -. G ρr d ρ N V ! $ g D -. _ & $E r -J ~ %D 6 M σ A = S σ = d ρ 6 0 , 0 . 73 0 , 0 . 01 A = = 1 , 2 9(J) 1000 2 . .10−6 * g #6 X 4) $ W g D \ L D " g ) *+ !" # g #6 X r Q $ % Q Y % $ #6 X r ~ %D 8 =>;9 = & -J / Q 8 =M 9 = ` 3 / Q 8 B[9 !" fg $ # g + D /= # g ) !-J L% D D : A 4 4 3 3 3 R π ρ = 2 r π ρ → R = r 2 3 3 ; \ D " = 3 ~ %D # g ) • + . O 3 ~ %D # g += r -J $d ~ • ^ h" ^ r -J $d ~ D6 • $E -J # g ) \ !-J ( 4 2.4 r 2 π − 4 R 2 π )σ = mc∆t k 3 m = 2 π r ρ 3 x% ! 3 4 3 3 σ 4 3 5 , 0 . t ∆ = 1 − = 1 − ≈ , 1 65 1 . 0−4 (o C) 2 c r ρ 2 138.1 , 3 6 0 , 0 . 01
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 N V C ! O " $% $ SD K !L ! $ /8H P r ~ %D # -) SD K D 8 ;9 e 6 %8 = >;9 % !" # /% e /0 O D N !O Fe /0 !( G N V O $% $ $E N L% / ~ %D F$E r -J ~ %D G { = 4D N U !( { # " -J !b $E -J /% $% $ & e /0 q e 6 4D% 2 2 A = 2.σ 4 r π = 8σ r π 1 p A = pV ln 2 po % D e 6 = D /% $% $ h = b v D SD K p ~ X = W ~ X F ~ G • X6 / / ] yU z 4D% X 4) /i 2% N T R 2 p = 2σ / r ] O " 3% D SD K X6 / % $Q /% p $ % p 3% ~ % %D 4D ~ % /% F4) $ S Sm $ ~ % %D G 4D e 6 " L A 4σ p = + po r x% ! 4σ 4 σ σ σ 3 p + 4 / r 4 o 3 4 4 A = p + r π ln = r π p 1+ ln 1+ 2 o r 3 p 3 o p r p r o o o 70 3% 4σ x = << 1 Q (1+ x)ln(x + ) 1 ≈ (1+ x)x ≈ x Q p r o 16σ r 2 π A ≈ 2 3 7\6 N O " 16σ r 2 π σπ 2 40 r 2 A = A + A = 8σ r π + = 1 2 3 3 40. , 0 04 1 , 3 . 4. , 0 072 A = ≈ , 8 2 1 . 0−2 (J) 3 1" D $E € !%L 3X6 %L T h%L 3X6 {j !" = 3D 8 > ? !-J # " D SD K r ~ %D 8 = >;9 F G N V C ! U% {j / " !%L ∆S8
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 { { j j () (- RC & U% {j $E C r ~ %D 3] Q {j= N # C D6 F a $E r -J ~ %D !' !-J r Q 3% r 3 $d ~ D G A = Fs = l σ x ∆ = 0 , 0 45. 1 , 0 5. , 0 04 = , 5 4.10−4 (J) " 0 € \ d 3D 8 h%L 3X6 {j !" ! D + 0 4 N F G *+ !%L {j • 3i 6 4d D% 4D 3i 6 " !%L $E $ % Q 0 4 N ! !-J # $E D + r ~ %D -. T DA 8 = M;9 4D 8 = ;9 nU 4d ~ r -J = r -J ~ %D # $ !V D (σ + σ FP 1 )S 2 D 3 s 0 € \ G * X $E 4i / % % r -J ~ %D # D SD K D + = } D 3X6 {j • 6 !" 4d D D SD K r ~ %D ) . ? e ^ D 3X6 {j • 6 !" ! \ _ $Q D T r ~ K ) . h S !i C r ~ %D # /-J -I D - A % /-J /% " $0 ^6 + g / %D 2% " & + ( !T !-I 38 I g D6 /. 2% g D 8 X6 ; -I 6 /E I 8HB X6 0 8 /-J ^6 / r ~ %D # /-J % W • # g /-J $• !V /. !-I $E !-I # & + g ? & -J # " g /-J τ mm = F G t ∆ f g F$• !V G + S & A
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 (1) τ mg τ mg π d σ = mg → σ = = ∆t d π t ∆ 3 − 6 & 2.1 . 0 10 8 , 9 . σ = ≈ 0 , 0 4N / m 1 , 3 4 2 . .10−3 7 . 80 1" J 3X6 $L !-I 38 = !-J /2% ( !T ? D ^6 !-J g $L 0 J 3X6 $L • ! " !%L 8 => n !i r # ~ %D $L + Y % $ & -J / Q # $L + D 8< 9 4D S2 /E W • # g $L $• !V /. !-I $E !-I # J 3X6 $L 2 ? & -J # $L !' % + d π M = ρ h 4 ? & -J # " g $L + M d2 ρπ h m = = F G k 4k f g F$• !V G + S & A (1) ρ d2 π h g ρ dh π d σ = mg g → σ = = 4k 4k 6 & gdh 9300 . 8 , 9 . 10 3 − ρ , 0 . 205 σ = = ≈ 3 , 0 9(N / m) 4k 4 1 . 2 " & % 3c !-I %D 38 = " !V !-J $i hV $i ! !C " #6 X F >G ? & -J # & % 3c 4D #6 X D = hV $i # & % 3c /% -) n2 -) D -) %D %D & % 3c 4D -) r ~ %D 8 = H ;9 = & -J / Q 8 9
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 3 *0 5 > * F& % 3c Z • X G i 3] # C r ~ %D 4D /g C -) S & = C { 2 -) Q = X $E 0 d 2 4(π d σ + mg) σ d π + mg = ρπ h → h = 4 π g ρ d2 4( 1 , 3 4. 0 , 0 73. , 0 003 + 0 , 0 002. 8 , 9 ) h = ≈ c 8 , 3 m 1 , 3 4.1000 8 , 9 . (. , 0 00 ) 3 2 h T C r ~ %D = -I !O -) 4D% " 3X6 $E -) • D J -) !' !-J # " ) / ‰ W # -) • 3L 0 /K !-I 38 = *+ d % ) # T -) !O 4D% 3X6 D -) ^6 / 2% W ! Y ;-) K !g !-J /Q 3X6 D 3% C r ~ %D S L ~ % . Sb # 4K 3X6 4D -) ;-) • + S & T r ~ %D N K !# T € € ? ! σ 2 4 0 , 0 . 4 73 ρgh d π / 4 ≤ σ d π → h ≤ = ≈ 1 ( 5 cm) ρgd 1000 1 . . 0 , 0 0002 /% " & % 3c !~ ( !T = !-I /% " g -) *+ & -J # g -) ^ - D% ! ~ $Q 3-) # g -) DA ~ Ž = ~ ( = ~ p Y !i D g -) • ! 3V ) ! 6 & % 3c h" F Ž G # ~ $Q 3-) • y U . z ~ /Q F ~ /Q N N D ~ V 4) !-I $E !-I # & % 3c G ? & -J # g -) D ) !" % ~ $Q 3-) D ^ = !
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 & -J g -) !L ) /i % D% ! ~ D6 • D ~ ( = ) . /i D6 ~ / D ~ p π d σ 1 , 3 4. 0 , 0 73. , 0 001 m g = σ d π → m = = ≈ 3 , 2 4 1 . 0−5 kg o o g 8 , 9 7\6 Q A • ? Œ 3 , 2 . 4 10−5 kg ~ $Q 3-) D ~ Ž • ? 8 3 , 2 . 4 10−5 kg ~ $Q 3-) D ~ ( • ? l 3 , 2 . 4 10−5 kg ~ $Q 3-) D ~ p * & % 3c !-I /% V -J D => 4D b /% " $0 !C + T + /% & % 3c A + ! D -) $ + ! D #6 X ? b & /% -) = -) • 3X Q h" 3X Q # -) /% q & D 4σ h = g ρ d * T + /% & % 3c D 4σ 1 1 4. , 0 073 1 1 h ∆ = − = − ≈ ( 3 cm) ρg d d 1000. 8 , 9 , 0 0005 , 0 001 2 1 $ ? b & /% • X = • X /% & • L S & h" L S & # • X /% q & D X $E € • } 4D ] % ! $Q /% + 6 L ~ 2σ 4σ g ρ h = → h = d / 2 g ρ d * T + /% & % 3c D 4σ 1 1 4 5 , 0 . 1 1 h ∆ = − = − ≈ ( 5 , 1 cm) ρg d d 13600. 8 , 9 0 , 0 005 0 , 0 01 2 1 1" & !-J b ( !T /% " $0 3C + *+ d % # " -) /% & 6 !O - D% & % 3c 4D $0 !-J X Q 3V !d 4) & ./ Y *L S & 3V !d 4) & ./ 012 A ? $0 4D & !-J X Q 4) & = # ! $Q /% & ~ % + %D & $ % p e 6 = • } # " -) = ] X6 $ ~ 4D X6 /
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 3% C e D6 /i $E L € ! $E 4) %D & p
p = p − p + ρgh + ργh → h = p o o p ρ(g + γ ) ? & % 3c 4D $0 N 6 !" Fγ = 0 G 0 p h p = o g ρ x% ! A h g = h g + γ o ? X Q γ = g h 1 = h 2 o ? L S & A γ = −g / 2 h = 2 h o & % 3c p 4D% = !p /] = b ( !T 4D% " $0 -) h-I /% # & % 3c += $E $d /" # 2 L% Q € & % 3c j+ e $d 3D6 # & % 3c /% *+ T + /% & D% % . = % . $ % Q V Y h" 3X # -) /% & % 3c /% 4σ h = F3 D !-I /% # & % 3c /% G 1 ρgd h-I /% # & % 3c %D 2% ^ !-J D 3 h" 3X # -) /% & % 3c %D D ? X $E O C r ~ %D !-I Sb € ~ % # -) 4) & % 3c /% 4D %D F ( !T -) Q G $E /g C # " -) 3X Q F ( !T -) S & G σ σ d π + σπ d 3 = (π ( d 3 )2 / 4 − d 2 π / 4) 2 h g ρ → h = 2 2 g ρ d x% ! h1 = 2 h 2 7 8 9 ' : ; $< = >% & ? @A B )C 9 @ 0' & DE F / G+ =H @A )C I& ργ " )J 8 A K :A LM I& " $< : 8 B' &' A9 ργ
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 7\6 -) 3X Q /% & % 3c /% % . V % 4) !" 3X # y 2z % 3c € & #6 ( !~ % % " %^ 38 = = b ( !T 4D% /% " + n !i & -J / Q # + ! $ /E d % # & + € #6 3X Q " !%L 8 = P r ~ %D # + D = H;9 n2 + D -) %D %D #6 h" 3X # T + /% & D = 2σ 2 0 , 0 . 27 2bσ = hdb g ρ → ρ = = ≈ 86 ( 3 1 kg / m ) ghd 8 , 9 0 , 0 . 32. , 0 0002 * T #6 X /% # & % 3c 0 € w !-I /% 3 8 4D 3 8 D ∆ 8 n !i r ~ %D # #6 X % $ & -J / Q # #6 X D =M 9 X $E % ! 6 3-) ~ X # ) 4σ 4σ g ρ h ∆ d d 1 2 = + ρg h ∆ → σ = d d 4 d − d 1 2 ( 2 1 ) 13600. 8 , 9 . , 0 01 0 , 0 . 01. , 0 002 σ = ≈ , 0 67(N / m) 4( 0 , 0 02 − , 0 00 ) 1 ? & -J / Q # N /% " $% $ 3-) ! 6 # " p -) X M ) > V & -J / Q # N e 6 F !" $E !" ! 6 pG n !i $ $% $ fg $ # $% $ D := $Q /% $% $ DA σ = + + ρ F G
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 q -. /0 12 !Q 22 5 Q/N 6 / & -J / Q # $Q /% 4D $Q %D $% $ V -J D p µ p µ ρ = 4D o ρ = RT o RT q ! ρ p n = = F G ρ p o o 6 F G 4D% F G 2σ g ρ h 2σ n = 1+ + → r = p r p − − ρ o o (n ) 1 p gh o 6 &A 2 0 , 0 . 73 r = = , 0 4 m µ (5 − ) 1 1 . 05 −1000. 8 , 9 6 . /Q ~ -) -I ! " $N " ) u + F! % + $i -) D -) G ? !-I ) D $ % Q ! !-J € /Q ~ -) D N $i 0 S & 3-) Y % $ & -J / Q # U D D 8H=H 9 h N $i 0 0 3% /% -J # L ~ Sb € 4D -) ^ + . X6 / $ ~ % # -) 4D 3% C !t6 { 2 3] Q σ
mg F S≤2rl mg m ρ / 2ρ A ( l r )g ≥ ≥ F G r S 2rl /% ! 3 3 3 T C D $ = d 3D = & -J / Q # 4D # -) K & -. # A m r π 2 = lρr F G 6 F G 4D% F G 16σ 16 0 , 0 . 73 2r = d ≤ = ≈ 6 , 1 mm π (2ρ − ρ − r )g 1 , 3 4 ( . 2 7 . ,7 ) 1 8 , 9 . .103 l * m m p µ N pV = RT → ρ = = µ V RT
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 /% e /0 !%L Q δ = 0 → pdV + nC dT = 0 F, G V * & !%L Cp C + R R R γ γ = = V → C = kC = F, G C C V γ − 1 p γ −1 V V 4D% F G= 4D - v -. /0 12 32 224 5 / 6/% pV = nRT → pdV + Vdp = nRdT % 1 pdV + (pdV + Vdp) = 0 γ − 1 → pdV + Vdp = 0 → d(pVγ γ )= 0 * 6 pVγ = const hX6 D -. /0 % e /0 !%L * 6 a 4 pVγ = (pV) γ −1 V = nR( γ −1 TV )→ TVγ 1− = const F, G γ (pV)γ γ pV = (nR)γ Τ = → p1−γ Tγ = const F, G γ −1 γ −1 p p N /% e /0 !%L (2) 1 A = −∆U = − nC T ∆ = − nR T ∆ V γ − 1 x% nR T ∆ = nR(T − T = p V − p V 2 1 ) 2 2 1 1 ;Q p V − p V A 1 1 2 2 = F,>G γ − 1 a 4 ( γ 3) −1 1 T p V V A = nRT 1 − 2 1 1 1 − F,MG 1 = 1 γ − 1 T γ − 1 V 1 2 • ! " # $ % &'( )'( ' , -. /0 7 32 … % " % C a RT a p + (V − b) = RT → p = − V2 2 V − b V L ! $ RT a k p = − F,HG k 2 V − b V k k
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com) lOMoARcPSD|36477180 p ∂ RT 2a RT 2a k k = 0 → − + = 0 → = F,BG V ∂ = V − b V V − b V V 0 ( k k )2 3 k ( k )2 3 k 2 ∂ p 2RT 6a RT a 3 k k = 0 → − = 0 → = F,2 V ∂ (V − b V V − b V k )3 4 k ( k )3 4 k V =0 k F,% F,BG \ !-J V = b 3 F, G k F, G 4D% F,HG \ !-J RT a a k p = V − b − → p = F, G k ( k ) (V − b V 27b k ) k 2 2 2 k q F, G 4D F,BG \ !-J a 8 T = F, G k 27bR E & 7 32 … q F,HG 4D F,BG RT 2a V RT k k k p = − → b = F, G k 3 V − b V 2 8p k k k *E & !-J 0 q F, G 4D F, G 2 2 27R T 2 k a = 27b p = F, G k 64pk ‹‹‹* ‹‹‹
Downloaded by Ng?c Di?p ??ng (ngocdiep10012000@gmail.com)