Ti u lu n h p ch t trung gin
I. Giới thiệu về cao su buna S
1. Thành phần hóa học
Công thức
2. Lịch sử phát triển
- Cao su styren-butađien còn gọi là cao su buna S là một loại cao su
tổng hợp. Nó được viết tắt là SBR ( Styrene Butadiene Rubber) là
chất đồng trùng hợp từ 2 đồng phân là butadiene và styren. Nó
được nhà hóa học người Đức Walter Bock tổng hợp thành công lần
đầu tiên vào năm 1929 bằng phương pháp polymer nhũ tương hai
cấu tử này. Nó cũng là loại cao su tổng hợp đầu tiên có khả năng
sử dụng ở quy mô kinh tế-thương mại.
3. Ứng dụng trong thực tế
- SBR là loại cao su tổng hợp được sử dụng nhiều nhất chiếm hơn
45% tổng lượng cao su tiêu thụ trên toàn cầu. Trong đó, ứng dụng
sản xuất lốp xe là nhiều nhất và tiêu thụ trên 75% lượng SBR sản
xuất trên thế giới.
- Ngoài ra, SBR còn được ứng dụng làm nguyên liệu để sản xuất rất
nhiều vật dụng khác như giày dép,chất kết dính, các thiết bị máy
móc: trục máy in, tấm lót bàn phím, tấm đệm, ….
4. Tính chất
- Nhiệt độ chuyển tiếp thủy tinh (Tg) của SBR vào khoảng -55
o
C
phụ thuộc vào hàm lượng styrene.
- Nhiệt độ sử dụng : -40 đến 100
o
C
- Độ giãn dài (%) : 450-500
5. Nhu cầu sử dụng
[Typể tểxt] Pậgể 1
Ti u lu n h p ch t trung gin
- Do nhu cầu trong ngành công nghiệp chế tạo lốp xe tang lên, dẫn
đến nhu cầu tiêu thụ SBR tăng đều đặn trong suốt 10 năm qua. Từ
3.286.677 tấn năm 2000 lên 4.571.201 tấn năm 2010 và dự kiến
đạt 8.201.902 tấn/ năm vào năm 2020.
- Nghiên cứu vào năm 2010 cho thấy các ngành công nghiệp sản
xuất lốp xe chiếm 3.363.045 tấn, giày dép chiếm 315.770 tấn, xây
dựng chiếm 247.000 tấn; tức là chúng chiếm đến hơn 85% nhu cầu
SBR trên toàn thế giới.
II. Các phương pháp sản xuất monomer.
1. Sản xuất butadiene
- Butadien (t
0
s
=-4,413
0
C, d
20
4
=0,6211) một sản phẩm hóa dầu phổ biến, nhờ
đó sự phát triển của các loại polyme đồng trùng hợp với styren
acrylonitril. Quá trình sản xuất butadien gần đây nhất từ acetylene
formaldehyt (Germany, the Reppe process) hoặc sản xuất bằng phương pháp
aldol hóa acetandehyt (Germany), hoặc dehydrat hóa, dehydro hóa etanol
(USSR, United States: Union Carbide)
- Các phương pháp sản xuất ngày nay đi từ nguyên liệu dầu mỏ. Tại châu Âu
Nhật, butadien được phân tác từ phân đoạn C
4
của quá trình steam
craking. Tại Mỹ, thể được sản xuất bằng cách dehydro hóa n-butan
đặc biệt là n-buten trong phân đoạn C
4
từ cracking xúc tác
1.1. Dehydro hóa xúc tác trực tiếp
Butadien từ dehydro hóa vẫn cung cấp 1/15 sản lượng trên tòan thế giới năm
1981, nhưng đến năm 1990, phương pháp tổng hợp này gần như không còn xuất
hiện. Đầu tiên từ buten, sau đó từ butan trong 2 giai đoạn với nguyên liệu
trung gian là buten và cuối cùng trong 1 giai đoạn
1.1.1. Dehydro hóa buten có xúc tác
[Typể tểxt] Pậgể 2
Ti u lu n h p ch t trung gin
Chuẩn bị
nguyên liệu
Tinh chế butadien Thu hồi sản phẩm nhẹ
H
2
-C
3
polymer
butadien
Hơi nước
Hơi nước quá nhiệt
Buten tuần hòan
Flue gas
Tháp phản ứng
Tháp phản ứng
Hệ thống thiết bị gia nhiệt
Không khí đã gia nhiệt
(chỉ cho xúc tác Dow)
Phân đoạn C4
buten
Gia nhiệt buten
Công nghệ sản xuất butadien bằng phương pháp dehydro hóa buten
a. Các điều kiện của quá trình
Buten chỉ trong hỗn hợp trong phân đoạn C
4
(25 đến 45 phần trăm
khối ợng) gồm n-buten, iso-buten, n-butan iso-butan. Để đạt yêu cầu
cho quá trình dehydro hóa, nồng độ n-buten trong nguyên liệu phân đoạn C
4
phải ít nhất 70%, thể là 80-95%. Bởi từ sự chuyển hóa buten thành
butadien chỉ xảy ra một phần trong mỗi đoạn xúc tác, phần chưa chuyển hóa
phải được tuần hoàn lại. thế các hydrocacbon C
4
phải được giới hạn đến
mức thể, để tránh làm mất một số lượng buten chưa được chuyển hóa
trong phần cặn.
Sự dehydro hóa xảy ra theo phản ứng sau:
2 2 3
2 2 2
3 3
CH CH CH CH
CH CH CH CH H
CH CH CH CH
Phản ứng là cân bằng, thu nhiệt. Do đó phản ứng thích hợp ở nhiệt độ cao
và áp suất thấp
[Typể tểxt] Pậgể 3
Ti u lu n h p ch t trung gin
Trong thực tế, quá trình sản xuất công nghiệp xảy ra trong điều kiện
xúc tác, nhiệt độ trên 600
0
C với lượng lớn hơi nước, để giảm áp suất riêng
phần của các hydrocacbon cũng để hạn chế sự hình thành cốc. Sự phụ
thuộc vào mức độ hình thành cốc này, các quá trình thể thực hiện theo
chu kỳ, với tần suất tỷ lệ thuận với số lượng cốc hình thành.
Bảng. Quá trình dehydro hóa buten thực hiện với các loại xúc tác khác
nhau
Xúc tác
Shell
105
Fe
2
O
3
/Cr
2
O
3
Shell
205
Fe
2
O
3
/Cr
2
O
3
Dow B
Ni và
Ca
3
(PO
4
)
2
Phillips
1490
Fe
2
O
3
/bô-
xít
- Nhiệt độ (
0
C)
- Áp suất (10
6
Pa)
- Tỷ lệ hơi
nước/buten (mol/mol)
- Tốc độ không gian
- Độ chuyển hóa %
- Độ chọn lọc
butadien %
- Thời gian tái sinh
xúc tác
620 -
680
-
10 đến
18/1
-
20 đến
30
70 đến
80
1 giờ
đến 7 ngày
620 -
680
0,15 -
0,18
8/1
≈500
26 – 28
73 – 75
1 đến 24
giờ
600 -
680
0,16 –
0,2
20/1
125 –
175
Đến 45
90
15 đến
30 phút
620 - 680
0,15 – 0,18
9 – 12/1
300 – 400
27 – 33
69 – 76
Không
b. Quy trình
Quá trình dehydro hóa n-buten có sự có mặt của hơi nước được phát triển
ban đầu bởi Esso, Shell Phillips. Quy tắc chung của các quá trình này,
hỗn hợp đầu đã được gia nhiệt trộn với hơi ớc quá nhiệt, sau đó đến thiết
bị phản ứng đoạn nhiệt chứa xúc tác chiều dày từ 80 đến 90 cm. Nhiệt
độ, khoảng 620
0
C, tăng thì hoạt tính xúc tác giảm. Sau đó được tái sinh
trong thiết bị xử lý hơi nước đơn giản. Áp suất phản ứng là từ 0,1- 0,2.10
6
Pa
và đạt đến 0,5.10
6
Pa trong quá trình tái sinh.
[Typể tểxt] Pậgể 4
Ti u lu n h p ch t trung gin
Sản phẩm phản ứng được làm lạnh bằng phun hơi nước, sau đó cho đi
qua một hệ thống trao đổi nhiệt để sản xuất hơi nước. Sản phẩm được làm
lạnh lần hai bởi nước hoặc bởi các hydrocacbon nặng. Nước ngưng được
tách ra, khí được nén đưa đến tháp chưng cất để loại bỏ các hydrocacbon
nhẹ, hydro và CO
2
, để tách và làm sạch butadien và tuần hòan lại buten chưa
phản ứng.
Mỗi chu kỳ kéo dài 30 phút bao gồm 15 phút phản ứng 11 phút tái
sinh qua không khí được làm loãng bằng hơi nước với xúc tác 2 phút làm
sạch trước và sau tái sinh.
1.1.2. Dehydro hóa xúc tác n-butan
Quá trình chuyển hóa n-butan thành butadien xảy ra trong 1 hoặc 2 thiết bị, với
sự hình thành trung gian của n-buten có thể hoặc không được cô lập
a. Các điều kiện công nghệ
Quá trình xảy ra theo phản ứng:
3 2 2 3 2 2 2
2CH CH CH CH CH CH CH CH H
Phản ứng thu nhiệt chuyển hóa thuận nghịch. 600
0
C áp suất
khí quyển, phản ứng 1 đạt độ chuyển hóa là 57,7%, và phản ứng 2 là 15,9 %.
Ở áp suất 10 kPa và cùng nhiệt độ, độ chuyển hóa là 45,4% cho phản ứng 2.
Quá trình dehydro hóa, xúc tác phải được hoạt hóa đầy đủ để thời gian
tiếp xúc ngắn sử dụng nhiệt độ thấp, để giảm thiểu phản ứng cracking
nhiệt. Sự hình thành C được loại bỏ bởi nhiệt với sự mặt của khí chứa
oxi. Điều đó nghĩa xúc tác phải được ổn định nhiệt để tránh sự mất
hoạt tính trong quá trình oxi hóa. Những xúc tác tốt nhất chứa nhôm oxit
crom oxit nhưng chúng lại không hoạt động với sự mặt của hơi nước.
Quá trình xảy ra ở nhiệt độ khoảng 550 đến 700
0
C và áp suất thấp, từ 0,1.10
6
Pa
b. Quy trình
- Công nghệ của UOP
[Typể tểxt] Pậgể 5
Ti u lu n h p ch t trung gin
Kế hoạch sản xuất công nghiệp đầu tiên của quá trình dehydro hóa butan
thành buten được xây dựng bởi UOP (Universal Oil Products) trong ICI
(Imperial Chemical Industries) kết hợp với Billingham (United Kingdom)
vào năm 1939/1940. Công nghệ UOP nổi bật với thiết bị phản ứng họat
động với xúc tác Cr
2
O
3
/Al
2
O
3
, 570
0
C 0,8.10
6
Pa đầu vào 0,5.10
6
Pa
trong thiết bị loại ống(dài 5m, đường kính 7,5cm). Độ chuyển hóa 22,5%
với độ chọn lọc mol là từ 80 đến 90%
Bản cải tiến của công nghệ này, gọi Oleflex, kết hợp với một đơn vị Olex
để tách olefin bằng rây phân tử, được sử dụng để sản xuất phân đoạn giàu n-
buten.
- Công nghệ của Phillips
Đây là phiên bản mới nhất của công nghệ này qua các bước sau:
- Dehydro hóa n-butan thành buten
- Tách buten, butan chưa phản ứng các sản phẩm khác bằng cách chưng
cất phân đoạn hoặc chưng trích ly với sự mặt của dung môi furfural,
sau đó tuần hoàn lại n-butan chưa phản ứng
- Dehydro hóa buten thành butadien
- Tách làm sach butadien bằng chưng cất với furfural, tuần hòan lại
buten
Butan được dehydro hóa đẳng nhiệt trong thiết bị phản ứng loại ống, với các
ống có chiều dài 3-5m và đường kính là 5cm. Điều kiện vận hành như sau:
Nhiệt độ………………………….565-590
0
C
Áp suất…………………………..0,1 – 0,2.10
6
Pa
Tốc độ không gian……………...700 h
-1
Độ chuyển hóa…………………...30%
Độ chọn lọc mol………………….80%
[Typể tểxt] Pậgể 6
Ti u lu n h p ch t trung gin
Nguyên liệu đầu bao gồm 98% n-C
4
được làm khô. Quá trình tuần hoàn
các phản ứng thực hiện luôn phiên 1giờ dehydro hóa 1 giờ tái sinh. Sự
tái sinh xảy ra ở 0,7.10
6
Pa, với khí có chứa 2 đến 3%
Ngày nay, butan thể được dehydro hóa bởi công nghệ mới Star process,
có sự dehydro hóa propan và sản xuất iso-buten
- Công nghệ catadien Houdry (Air Products)
Công nghệ này được sử dụng phổ biến nhất để sản xuất butadien bằng
phương pháp dehydro hóa. Sử dụng nguyên liệu chứa 95% hoặc hơn n-C
4
,
sản xuất ra một hỗn hợp buten butadien trong 1 giai đoạn. Butadien được
tách ra, buten butan chưa phản ứng thì được tuần hoàn lại. Xúc tác, Al
2
O
3
đã họat hóa chứa 18 đến 20% khối lượng Cr
2
O
3
, thời gian sống hơn 6
tháng. Xúc tác được chứa trong một hệ thống thiết bị phản ứng nằm ngang
với gạch chịu lửa. Nhôm oxit được trộn với dòng xúc tác để nhiệt được phân
bố đồng đều cho phản ứng và năng suất nhiệt cao của lớp xúc tác
Các điều kiện vận hành:
Nhiệt độ………………………….600-675
0
C
Áp suất…………………………..15-70 kPa
Tốc độ không gian……………...300 h
-1
LHSV……………………………1-3 h
-1
Độ chuyển hóa…………………...50-60%
Quá trình tuần hoàn. Nguyên liệu C
4
tuần hoàn được gia nhiệt đến
600
0
C đưa đến buồng xúc tác, hình thành butadiene, buten, các khí sản
phẩm phụ cốc. Sau phản ứng từ 5 đến 10 phút, tùy thuộc vào số thiết bị
phản ứng, nhiệt độ giảm 15 đến 20
0
C. Sau đó đến quá trình tái sinh, kéo dài
5-10 phút. Sản phẩm được trộn với hơi nước không khí 600
0
C, sau đó
được đốt cháy C đã được hình thành. Nhiệt tạo ra sẽ làm tăng nhiệt độ của
lớp xúc tác. Quá trình tái sinh này tiến hành áp suất khí quyển ngừng
hút không khí, các khí dễ bắt cháy được loại bỏ bằng oxi để tái sinh xúc
[Typể tểxt] Pậgể 7
Ti u lu n h p ch t trung gin
tác. Thời gian tiến hành chuyển hóa này ít nhất 3-5 phút. Do đó một chu
trình kéo dài từ 15 đến 30 phút.
Bằng cách điều chỉnh chiều dài của quá trình chuyển đổi, hệ thống liên tục
thể vận hành với ít nhất 3 thiết bị phản ứng (phản ng, tái sinh phân
tách). Để tăng năng suất, có thể sử dụng 5 thiết bị phản ứng.
Nguyên liệu sạch
Và n-butan tuần hoàn
Gia nhiệt nguyên liệu
Thiết bị phản ứng
Hơi nước rửa
Không khí
Off gas
Gia nhiệt không khí
Máy phun hơi nước
Off-gas
Hấp
thụ
Tháp
chưng
cất
Tách
sản
phẩm
nhẹ
Làm
nguội
nước
C
3
=
C4 tới
tháp tách
butadien
Sản xuất butadien bằng phương pháp dehydro hóa n-butan, Houdry process
1.1.3. Dehydro hóa có sự có mặt của oxi
Phương pháp này có 2 cách:
- Sự kết hợp của hydro với iot, được tái sinh bằng xử lý oxi. Giải pháp này,
được nghiên cứu bởi Shell trong công nghệ Idas, không được đưa ra công
nghiệp vì sự ăn mòn và mất iot
- Dehydro hóa bằng oxi, tạo ra nước:
Phản ứng xảy ra 400-600
0
C, 0,15.10
6
Pa, sự mặt của xúc tác trên
bismuth molipden photphat, pha với các kim loại chuyển tiếp. Quá trình
được tiến hành với tỷ lệ mol của oxi trên buten khoảng bằng 1 của hơi
nước trên buten 30-50. Độ chuyển hóa một lần trên 60% độ chọn lọc
mol của butadiene là 95%.
[Typể tểxt] Pậgể 8
Ti u lu n h p ch t trung gin
Nếu quá trình này so sánh với quá trình dehydro hóa trực tiếp, sự thêm vào từ
10 đến 20% thể tích oxi vào nguyên liệu đầu để tăng năng suất của sản phẩm ít
nhất 25%, bằng cách tăng sản lượng 1 lần. Việc sử dụng oxi những tác
dụng:
- Sự dịch chuyển cân bằng bằng cách kết hợp với hydro sinh ra trong phản
ứng
- Giảm gradien nhiệt độ trong lớp xúc tác, vì phản ứng là tỏa nhiệt
- Giảm thiểu hình thành cốc, do đó tăng thời gian sống của xúc tác chu
kỳ vận hành
Nhiều công nghệ khác nhau được phát triển, đặc biệt BP Chemical, Polymer
Corporation, Shell…nhưng quy trình công nghiệp chính dựa trên Phillips (OXD
process, nguồn gốc từ Borger. Texas, gần đây đã ngừng họat động)
Petrotex (Oxo-D process được ứng dụng trong nhà máy Tenneco Houston,
Texas và kế hoạch Firestone ở Orange, Texas…)
Tháp tinh
chế
butadien
Làm
nguội
Tinh chế
dung môi
Xử lý nước
Không k
Hơi nước
n-buten
Tháp
phản
ứng
nước
nước
Nước thải
nước
Dung môi tuần hòan
Tháp rửa
Off-gases
Hấp th
Khử khí
Tháp
chưng
cất
Hơi nước
Dung môi
Sản phẩm nặng
Sản phẩm nặng
butadien
Sản xuất butadien bằng phương pháp oxi dehydro hóa n-buten, Oxo-D Petrotex process
1.2. Tách butadiene từ phân đoạn C
4
của quá trình steam cracking
1.2.1. Đặc trưng hóa lý của quá trình
[Typể tểxt] Pậgể 9
Ti u lu n h p ch t trung gin
Để đạt được độ tinh khiết cao, quá trình phải sử dụng nhiều phương pháp tách
phức tạp. Trong công nghiệp quá trình tách bao gồm:
- Trích ly bằng muối amoni đồng (I)
- Chưng trích ly
Quá trình trích ly sử dụng tính chất của muối axetat amoni đồng (I) có khả năng
tạo phức chọn lọc với butadien, khả năng hấp thụ của buten thấp hơn từ 10-50 lần.
Mặt khác, các hợp chất axetylen sẽ tạo phức đầu tiên quá trình bất thuận
nghich. Hiệu quả của quá trình phụ thuộc vào hàm lượng của các hợp chất axetylen
trong nguyên liệu đầu, trong thực tế để áp dụng phương pháp này, hàm lượng
các hợp chất axetylen phải không vượt quá 500ppm. Phân đoạn C
4
thu được từ quá
trình steam cracking thường không đáp ứng được điều kiện này, do vậy, quá trình
luôn đòi hỏi phải có công đoạn hydro hóa chọn lọc để tách axetylen
Dung môi sử dụng trong quá trình chưng trích ly phải có các tính chất sau:
- Nhiệt độ sôi của dung môi phải cao hơn nhiệt độ sôi của các cấu tử
trong nguyên liệu đầu
- Vai trò của dung môi hấp thụ butadien cho phép các hợp chất
khác đi vào phần cất
Do vậy dung môi phải đáp ứng được các điều kiện sau:
- độ chọn lọc cao với diolefin, không chọn lọc đối với axetylen
olefin, nghĩa dung môi phải khả năng làm tăng sự khác nhau về độ bay
hơi tương đối của các cấu tử khác nhau trong phân đoạn được xử lý.
- khả năng hòa tan cao: khả năng này bị giảm trong hầu hết các tác
nhân trích ly, đối với hydrocacbon cùng số nguyên tử cacbon, khả năng
hòa tan giảm dần từ axetylen đến dien và đến olefin
- Dễ tiến hành: độ nhớt thấp, độ chênh lệch điểm sôi so với butadien khá
lớn, không tạo đẳng phí hoặc không phản ứng hóa học với các cấu tử trong
hỗn hợp cần tách
- Độ bền tốt trong điều kiện tách: dung môi phải bền nhiệt, độ ăn mòn
thấp, khả năng bắt cháy thấp, phải hòa tan hoàn toàn với nước…
- Sẵn có và giá cả hợp lý
[Typể tểxt] Pậgể 10
Ti u lu n h p ch t trung gin
Việc lựa chọn dung môi phụ thuộc vào tính chất hiệu quả kinh tế của công nghệ
sử dụng.
1.2.2. Quá trình tách butadien từ phân đoạn C
4
của quá trình steam
cracking trong công nghiệp
A. Hydro hóa chọn lọc các hợp chất axetylen trong nguyên liệu đầu
Công đoạn này cần thiết đối với quá trình trích ly butadien bằng muối amoni
đồng (I), nhưng không thực sự cần cho quá trình tách butadien bằng chưng
trích ly. Tuy nhiên, nếu sử dụng quá trình chưng trích ly, công đoạn xử lý hydro
hóa này thể giúp cho quá trình tách dễ dàng hơn tăng được lượng
butadien thu hồi. Ngoài ra, công đoạn hydro hóa cũng làm giảm các hợp chất
axetylen
Quá trình hydro hóa chọn lọc axetylen được tiến hành trong pha lỏng, áp suất
0,5-1 MPa, nhiệt dộ 1060
0
C. Thiết bịchứa lớp xúc tác trên cơ sở Pd, nhiệt
phản ứng được tác bởi quá trình bay hơi một phần môi trường phản ứng hoặc sử
dụng thiết bị ống chùm làm lạnh bằng propan. Sau khi làm lanh, hydro chưa
phản ứng được tách, nén và tuần hòan lại thiết bị phản ứng.
B. Trích ly bằng muối amoni đồng (I)
Công nghệ trích ly butadien bằng muối amoni được hãng Esso phát triển Mỹ
sau Thế chiến 2, chủ yếu để sản xuất butadien bằng quá trình dehydro hóa n-
buten và n-butan. Quá trình bao gồm các bước sau:
Hấp thụ sơ bộ các hợp chất axetylenic bằng dung dịch axetat amoni đồng
(I) 20% khối lượng, sau đó nhả hấp thụ butadien bằng cách gia nhiệt đến
65
0
C, butadien được tuần hòan, tiếp theo các hợp chất axetylenic được
nhả hấp thụ bằng cách tăng nhiệt độ lên tới 90
0
C
Sử dụng một loạt các thiết bị trộn/lắng, hoạt động theo chế độ ngược
dòng tại -20 +5
0
C; 0,3 0,4 Mpa để hấp thụ butadien để làm giàu
dung dịch amoni bằng cách tiếp xúc lỏng/lỏng.
Nhả hấp thụ butadien bằng cách gia nhiệt đến khỏang 80
0
C và 0,12 Mpa
Thu hồi amoniac bằng cách rửa butadien với nước chưng cất dung
dịch thu được
[Typể tểxt] Pậgể 11
Ti u lu n h p ch t trung gin
Tinh chế butadien bằng chưng cất mặt chất ức chế trùng hợp butadien
(t-butylpyrocatehol)
C. Chưng trích ly
Về nguyên tắc, các quá trình công nghiệp tách butadien bằng phương pháp
chưng trích ly đều bao gồm các bước chính sau:
Chưng trích ly trong một hoặc hai tháp, tất cả các hợp chất axetylen
butadien đều được đi vào phần trích. Nếu quá trình tiến hành trong hai
tháp, buten được tách trong tháp thứ nhất, sau đó các hợp chất axetylen
được tách trong tháp thứ hai
Thu hồi dung môi đã sử dụng bằng cách bay hơi
Chưng siêu phân đoạn phần trích để tách loại các hợp chất axetylen
buten
Rửa nước phân đoạn đã tách butadien để thu hồi dung môi rửa
Các hãng đầu tiên sử dụng công nghệ này bao gồm
a. Shell
Ban đầu hãng Shell sử dụng dung môi axeteon, sau đó vào năm 1956, dung
môi này được thay thế bằng axetonitril. Công nghệ này sử dụng một tháp chưng
trích ly
b. Phillips
Hãng Phillips áp dụng công nghệ chưng trích ly vào công nghiệp từ những năm
1940, sử dung dung môi furfural. Công nghệ bao gồm 1 tháp trích ly/ tái sinh và
1 tháp tái chế.
c. Nippon Zeon
Công nghệ tách butadien của Nippon Zeon sử dụng dung môi dimetylformamit
được đưa vào ứng dụng trong công nghiệp từ năm 1965.
[Typể tểxt] Pậgể 12
Ti u lu n h p ch t trung gin
Chưng
trích ly
sơ cấp
Tái sinh
sơ cấp
Chưng
trích ly
thứ cấp
Tái sinh
thứ cấp
Chưng
cất sản
phẩm
nhẹ
Chưng
cất sản
phẩm
nặng
Làm sạch dung môi
bằng chưng cất
Phân đoạn C
4
Dung môi
C
4
rafinat
Hợp chất axetylenic
Butadien
Cặn C
4
, C
5
Công nghệ tách butadien của Nippon Zeon sử dụng dung môi dimetylformamit
Công nghệ này bao gồm hai tháp trích ly tái sinh riêng rẽ. Phân đoạn C
4
đầu
tiên được gia nhiệt được bay hơi 50
0
C, tận dụng nhiệt của dòng dung môi
tuần hoàn nóng. Sau đó được đưa vào tháp chưng trích ly thứ nhất. tháp thứ
nhất khoảng 200 đĩa, nhiệt độ 45 - 115
0
C 0,5 - 0,7 MPa, với dòng dung
môi chảy ngược dòng được đưa vào đỉnh tháp. Phần trích giàu butadien được
đưa tới tháp tái sinh thứ nhất có 15 đĩa, quá trình được thực hiện ở 45 và 160
0
C;
0,11 0,14 MPa. Sản phẩm đỉnh được ngưng tụ một phần, pha hơi chứa chủ
yếu butadien được nén tới áp suất 0,5 MPa được đưa vào tháp chưng trích
ly thứ 2 gồm 60 đĩa, làm việc nhiệt độ 45 180
0
C. Hợp chất axetylen được
trích ly theo dung môi, sau đó được tái sinh với điều kiện tương tự như tháp tái
sinh thứ nhất. butadien thu được đỉnh tháp chưng trích ly thứ hai vẫn chứa
metyl axetylen các tạp chất nặng khác, được bổ sung chất ức chế oxy hóa (t-
butylpyrocatechol 100ppm), đưa vào làm sạch trong hai tháp chưng cất đơn
giản để tách sản phẩm nhẹ (tháp chứa 30 đĩa) và tách sản phẩm nặng (tháp chứa
60 đĩa). Dimetylformamit được tách ra từ đáy của hai tháp tái sinh được làm
lạnh tuần hòan. Dung môi thể được làm sạch bằng cách chưng cất tách
nước và các polyme butadien.
d. BASF/Lurgi
[Typể tểxt] Pậgể 13
Ti u lu n h p ch t trung gin
Công nghệ BASF/Lurgi được đưa vào công nghiệp từ năm 1968 sử dụng dung
môi N-metylpyrolidon một trong những công nghệ được sử dụng rộng rãi
nhất hiện nay. Công nghệ này dựa trên nguyên tắc tương tự như các công nghệ
khác, nhưng khác các công nghệ khác thực tế họat động như được chỉ ra
hình sau:
Làm sạch dung môi
bằng chưng cất
Phân đoạn C
4
Dung môi
nước
1,2-butadien
Và C
5
1,3-butadien
propyn
C4 axetylenic
Butan, buten
nước
HẤP THỤ
TINH CHẾ
CHƯNG CẤT
TRÍCH LY THỨ CẤP
TÁI SINH
CHƯNG CẤT TÁCH
PHÂN ĐOẠN NHẸ
CHƯNG CẤT TÁCH
PHÂN ĐOẠN NĂNG
Công nghệ tách butadien của BASF Lurgi sử dụng dung môi N-metylpyrolidon
Quá trình được chia làm ba bộ phận:
Tháp hấp thụ: Trong tháp này các hợp chất axetylen, butadien một
lượng nhỏ buten được hấp thụ khỏi nguyên liệu đầu trong thiết bị khí/lỏng
ngược dòng với dung môi N-metylpyrolidon chứa 80% khối lượng nước.
Quá trình được tiến hành trong tháp với 80 đĩa, làm việc nhiệt độ 45
55
0
C 0,4 0,6 MPa, nguyên liệu đầu được bay hơi bằng cách trao đổi
nhiệt tận dụng nhiệt của dòng dung môi tuần hoàn nóng được đưa vào
đáy tháp. Dung môi N-metylpyrolidon được đưa vào đỉnh tháp. Các khí
không hấp thụ (chủ yếu là butan và buten) thu được ở đỉnh tháp.
Tháp tinh chế: Phân đoạn buten hòa tan vào dung môi được tác ra khỏi
dụng môi chảy ngược dòng với hơi butadien. Sản phẩm buten lẫn
[Typể tểxt] Pậgể 14
Ti u lu n h p ch t trung gin
butadien thu được đỉnh tháp được đưa trở lại tháp hấp thụ. 1,3 butadien
lẫn một số lượng nhỏ axetylen, không lẫn olefin được lấy ra khỏi tháp
tinh chế cạnh sườn. Tháp tinh chế khoảng 45 đĩa, nhiệt độ đáy tháp
khoảng 75
0
C, áp suất 0,7 MPa.
Tháp tái sinh: Tháp tái sinh bao gồm 3 lớp đệm, nhiệt độ đỉnh tháp
khoảng 45
0
C, đáy tháp 150
0
C, tháp làm việc trong điều kiện áp suất thấp
(khoảng 0,2 MPa) để tránh sự tạo thành của các polyme ở nhiệt độ cao. Phần
trích lỏng từ tháp tinh chế sau khi được loại phần cặn buten bằng cách gia
nhiệt, nén và tách khí được đưa sang tháp tái sinh. Sản phẩm thu được từ quá
trình này như sau:
- Tại đáy tháp: Dung môi sau khi làm sạch bằng chưng cất được đưa
tuần hoàn lại tháp hấp thụ
- Ở cạnh sườn: thu được sản phẩm giàu hợp chất axetylen. 1,2- butadien
và hydrocacbon C
5
- Tại đỉnh tháp: 1,3-butadien thu được dạng khí được nén tuần
hòan lại tháp tinh chế
Ngoài ba bộ phận chính trên công nghệ BASF còn có các thiết bị phụ trợ sau:
Tháp hấp thụ/ tinh chế thứ cấp để xử dòng sản phẩm rời khỏi tháp tinh
chế. Tháp chưng trích ly thứ hai này (sử dụng dung môi N-metylpyrolidon)
bao gồm 70 đĩa, làm việc nhiệt độ 45
0
C 0,5 MPa. Phần trích lỏng thu
hồi đáy tháp được tuần hòan lại tháp tinh chế, butadien không hấp thụ thu
được ở đỉnh tháp. Sản phẩm butadien sau đó được làm sạch khỏi các tạp chất
như metyl axetylen, 1,2-butadiencác hydrocacbon nặng khác bằng 2 tháp
chưng cất đơn giản để tách sản phẩm nhẹ (tháp tách 70 đĩa) tách sản
phẩm nặng (tháp gồm 80 đĩa)
Thu hồi dung môi từ sản phẩm giàu axetylen rồi thiết bị tái sinh. Khí sản
phẩm được rửa bằng nước trong tháp đệm dung dịch N-metylpyrolidon
thu được tuần hoàn lại tháp tái sinh
e. Union Carbide
Quá trình được áp dụng vào công nghiệp từ năm 1965, sử dụng dung môi
dimetylaxetamit chứa 10% khối lượng nước, gồm 1 bước hấp thụ/tái sinh.
Nguyên liệu đầu phân đoạn C
4
được xử trong thiết bị chưng trích ly theo
[Typể tểxt] Pậgể 15
Ti u lu n h p ch t trung gin
chế độ ngược dòng. Tháp gồm 90 đĩa, làm việc nhiệt độ 45 70
0
C, áp suất
0,5 – 0,6 MPa. Buten và butan không hấp thụ thu được ở đỉnh tháp
Phần trích được tách khí olefin hòa tan, được nén tuần hoàn lại tháp chưng
trích ly. Phân đoạn lỏng giàu butadien hợp chất axetylen được gia nhiệt
đưa sang tháp tái sinh với 20 đĩa làm việc áp suất 0,2 MPa, nhiệt độ 90
0
C
đỉnh tháp 150
0
C đáy tháp. Dung môi sau khi làm sạch được tuần hòan.
Phần cất ở đỉnh tháp được làm lạnh, ngưng tụ, phần lỏng được hổi lưu, phần khí
được nén lại một phần được tuần hoàn lại tháp hấp thụ. Sản phẩm butadien
thô được làm sạch khỏi các tạp chất metylaxetylen và hydrocacbon nặng bằng 2
tháp chưng cất đơn giản với 40 110 đĩa, với sự mặt của chất ức chế t-
butylpyrocatechol
f. Công nghệ UOP KLP
Công nghệ UOP’s KLP giúp các công ty sản xuất sản phẩm hóa dầu tăng nhu
cầu về butadien
2. Sản xuất styrene
Quá trình :
2.1. Quá trình sản xuất Etylbenzen từ Benzen.
Alkl là quá trình đưa nhóm alkyl vào phân tử hợp chất hữu cơ hoặc vô cơ. Đây là
loại phản ứng dùng để đưa các nhóm alkyl vào hợp chất thơm, isoparafin,
mercaptan, sunfit, amin, các hợp chất chứa ete…
2.1.1. Tính chất vật lý của nguyên liệu.
a. Tính chất vật lý của benzene.
[Typể tểxt] Pậgể 16
Ti u lu n h p ch t trung gin
Benzen thường được biết đến dưới công thúc C
6
H
6
hay còn gọi PhH,
một hydrocacbon thơm, trong điều kiện bình thường là một chất lỏng không màu,
mùi dịu ngọt dễ chịu, dễ cháy. Benzen tan rất kém trong nước và rượu. Tuy benzen
có mùi thơm nhẹ, nhưng mùi này có hại cho sức khoẻ (gây bệnh bạch cầu).
Bảng 2: Tính chất vật lý của Benzen
Công thức phân tử C
6
H
6
Phân tử gam 78,1121 g/mol
Bề ngoài Chất lỏng không màu
Tỷ trọng 0,8786 g/cm³, chất lỏng
Điểm nóng chảy
5,5 °C (278,6 K)
Điểm sôi
80,1 °C (353,2 K)
Độ hòa tan trongnước 1,79 g/L (25 °C)
Độ nhớt 0,652 cP ở 20 °C
Mômen lưỡng cực 0 D
[Typể tểxt] Pậgể 17
Ti u lu n h p ch t trung gin
b. Tính chất vật lý của Ethylen.
Ethylen (IUPAC tên: ethene) một hydrocarbon với các công thức C
2
H4.
một chất khí dễ cháy không màu có mùi ngọt ngào.
Bảng 3: Tính chất vật lý của Ethylen
Công thức phân tử C
2
H
4
Phân tử gam 28.05 g/mol
Bề ngoài Khí không màu
Tỷ trọng 1.178 kg/m
3
at 15 °C, khí
Điểm nóng chảy
−169.2 °C (104.0 K, -272.6 °F)
Điểm sôi
−103.7 °C (169.5 K, -154.7 °F)
Độ hòa tan trong nước 3.5 mg/100 mL (17 °C)
Độ hòa tan trong Ethanol 4.22 mg/L
Độ hòa tan trong diethyl ether Tốt
Độ axit ( pKa) 44
2.1.2 Tính chất hóa học của nguyên liệu.
[Typể tểxt] Pậgể 18
Ti u lu n h p ch t trung gin
a. Tính chất hóa học của Benzen.
Benzen một nguyên liệu rất quan trọng trong công nghiệp hóa chất. Những
nguyên tử hydro trong benzene dễ bị thay thế bằng clo các halogen khác, bằng
các nhóm sunfo-, amino-, nitro- và các nhóm đính chức khác.
Các dẫn suất của benzene dùng trong công nghiệp hóa chất để sản xuất chất dẻo
thuốc nhuộm, bột giặt dược phẩm, sợi nhân tạo, chất nổ, thuốc bảo vệ thực
phẩm… Trong phòng thí nghiệm, benzene được sử dụng rộng rãi làm dung môi.
Tuy nhiên hơi benzene rất độc nên cần cẩn thận trong quá trình sử dụng.
Phản ứng thế :
Benzen + Br
2
→ brombenzen + khí hiđro bromua
C
6
H
5
– H + Br
2
C
6
H
5
– Br + HBr
Benzen + HNO
3
(đặc) → nitrobenzen (màu vàng nhạt)+ H
2
O
C
6
H
5
– H + HNO
3
(đặc) C
6
H
5
– NO
2
+ H
2
O
Phản ứng cộng :
Cộng H
2
: tạo thành xiclohexan.
C
6
H
6
+ H
2
C
6
H
12
Cộng Cl
2
: tạo thành 6.6.6.
C
6
H
6
+ 3 Cl
2
C
6
H
6
Cl
6
Phản ứng oxi hóa hoàn toàn :
C
6
H
6
+ 4,5O
2
3CO
2
+ 3H
2
O
đặc biệt có sinh ra nguội than.
b. Tính chất hóa học của ethylene.
[Typể tểxt] Pậgể 19
Ti u lu n h p ch t trung gin
Ethylen có nối đôi C=C, có chiều dài liên kết 0,134 nm và có một cấu trúc phẳng.
ethylene một chất trung gian phản ứng, thể tham gia hầu như tất cả các phản
ứng điển hình của một olefin có mạch ngắn.
Các quá trình công nghiệp sau đây thường được sử dụng:
Phản ứng cộng: CH
2
=CH
2
+ Cl
2
CH
2
Cl= CH
2
Cl
Phản ứng oxy hóa: CH
2
=CH
2
+ 1/2O
2
CH
2
-CH
2
Cacbonyl oxy hóa : CH
2
=CH
2
+ CO + ½ O
2
CH
2
=CH-
COOH
Phản ứng với benzen tạo thành ethylbenzene.
Phản ứng trùng hợp: tạo polyethylene (PE), trùng hợp với Propylen tạo
EP…
Phản ứng với axit axetic và oxy :
Ethylene + acetic acid + 1/2 O
2
→ Vinyl acetate + H
2
O
2.1.3. Hóa học của quá trình.
Tổng hợp etylbenzen bằng phương pháp alkyl hóa một quá trình thuận nghịch
tỏa nhiệt ( ∆H= -114 kJ/mol).
CH
2
=CH
2
+
Quá trình sẽ xảy ra thuận lợi ở điều kiện áp suất cao và nhiệt độ thấp. Tuy nhiên,
dưới 600
o
C, cân bằng phản ng chuyển đã dịch chuyển xa sang phải. Cùng với
phản ứng chính, một số phản ứng phụ cũng xẩy ra đồng thời, như alkyl hóa nối tiếp
tạo sản phẩm polyalkylbenzen, tách nhóm alkyl, phân bố lại và isome hóa.
[Typể tểxt] Pậgể 20
O
[Pd, Cu]
C
2
H
5
FeCl
3

Preview text:

Tiểu luận hợp chật trung giận
I. Giới thiệu về cao su buna S 1. Thành phần hóa học Công thức 2. Lịch sử phát triển
- Cao su styren-butađien còn gọi là cao su buna S là một loại cao su
tổng hợp. Nó được viết tắt là SBR ( Styrene Butadiene Rubber) là
chất đồng trùng hợp từ 2 đồng phân là butadiene và styren. Nó
được nhà hóa học người Đức Walter Bock tổng hợp thành công lần
đầu tiên vào năm 1929 bằng phương pháp polymer nhũ tương hai
cấu tử này. Nó cũng là loại cao su tổng hợp đầu tiên có khả năng
sử dụng ở quy mô kinh tế-thương mại.
3. Ứng dụng trong thực tế
- SBR là loại cao su tổng hợp được sử dụng nhiều nhất chiếm hơn
45% tổng lượng cao su tiêu thụ trên toàn cầu. Trong đó, ứng dụng
sản xuất lốp xe là nhiều nhất và tiêu thụ trên 75% lượng SBR sản xuất trên thế giới.
- Ngoài ra, SBR còn được ứng dụng làm nguyên liệu để sản xuất rất
nhiều vật dụng khác như giày dép,chất kết dính, các thiết bị máy
móc: trục máy in, tấm lót bàn phím, tấm đệm, …. 4. Tính chất
- Nhiệt độ chuyển tiếp thủy tinh (Tg) của SBR vào khoảng -55oC
phụ thuộc vào hàm lượng styrene.
- Nhiệt độ sử dụng : -40 đến 100oC
- Độ giãn dài (%) : 450-500 5. Nhu cầu sử dụng [Typể tểxt] Pậgể 1
Tiểu luận hợp chật trung giận
- Do nhu cầu trong ngành công nghiệp chế tạo lốp xe tang lên, dẫn
đến nhu cầu tiêu thụ SBR tăng đều đặn trong suốt 10 năm qua. Từ
3.286.677 tấn năm 2000 lên 4.571.201 tấn năm 2010 và dự kiến
đạt 8.201.902 tấn/ năm vào năm 2020.
- Nghiên cứu vào năm 2010 cho thấy các ngành công nghiệp sản
xuất lốp xe chiếm 3.363.045 tấn, giày dép chiếm 315.770 tấn, xây
dựng chiếm 247.000 tấn; tức là chúng chiếm đến hơn 85% nhu cầu SBR trên toàn thế giới.
II. Các phương pháp sản xuất monomer.
1. Sản xuất butadiene
- Butadien (t0s=-4,4130C, d204=0,6211) là một sản phẩm hóa dầu phổ biến, nhờ
đó là sự phát triển của các loại polyme đồng trùng hợp với styren và
acrylonitril. Quá trình sản xuất butadien gần đây nhất là từ acetylene và
formaldehyt (Germany, the Reppe process) hoặc sản xuất bằng phương pháp
aldol hóa acetandehyt (Germany), hoặc dehydrat hóa, dehydro hóa etanol
(USSR, United States: Union Carbide)
- Các phương pháp sản xuất ngày nay đi từ nguyên liệu dầu mỏ. Tại châu Âu
và Nhật, butadien được phân tác từ phân đoạn C4 của quá trình steam
craking. Tại Mỹ, nó có thể được sản xuất bằng cách dehydro hóa n-butan và
đặc biệt là n-buten trong phân đoạn C4 từ cracking xúc tác
1.1. Dehydro hóa xúc tác trực tiếp
Butadien từ dehydro hóa vẫn cung cấp 1/15 sản lượng trên tòan thế giới năm
1981, nhưng đến năm 1990, phương pháp tổng hợp này gần như không còn xuất
hiện. Đầu tiên là từ buten, sau đó từ butan trong 2 giai đoạn với nguyên liệu
trung gian là buten và cuối cùng trong 1 giai đoạn
1.1.1. Dehydro hóa buten có xúc tác [Typể tểxt] Pậgể 2
Tiểu luận hợp chật trung giận Không khí đã gia nhiệt (chỉ cho xúc tác Dow) Phân đoạn C4 buten Chuẩn bị nguyên liệu Gia nhiệt buten Tháp phản ứng Tháp phản ứng
Hệ thống thiết bị gia nhiệt Hơi nước Flue gas Hơi nước quá nhiệt H2-C3 Buten tuần hòan butadien Tinh chế butadien Thu hồi sản phẩm nhẹ polymer
Công nghệ sản xuất butadien bằng phương pháp dehydro hóa buten
a. Các điều kiện của quá trình
Buten chỉ có trong hỗn hợp trong phân đoạn C4 (25 đến 45 phần trăm
khối lượng) gồm n-buten, iso-buten, n-butan và iso-butan. Để đạt yêu cầu
cho quá trình dehydro hóa, nồng độ n-buten trong nguyên liệu phân đoạn C4
phải ít nhất 70%, có thể là 80-95%. Bởi vì từ sự chuyển hóa buten thành
butadien chỉ xảy ra một phần trong mỗi đoạn xúc tác, phần chưa chuyển hóa
phải được tuần hoàn lại. Vì thế các hydrocacbon C4 phải được giới hạn đến
mức có thể, để tránh làm mất một số lượng buten chưa được chuyển hóa trong phần cặn.
Sự dehydro hóa xảy ra theo phản ứng sau:
CH CH CH CH  2 2
3   CH CH CH CH H 2 2 2
CH CH CH CH  3 3
Phản ứng là cân bằng, thu nhiệt. Do đó phản ứng thích hợp ở nhiệt độ cao và áp suất thấp [Typể tểxt] Pậgể 3
Tiểu luận hợp chật trung giận
Trong thực tế, quá trình sản xuất công nghiệp xảy ra trong điều kiện có
xúc tác, nhiệt độ trên 6000C với lượng lớn hơi nước, để giảm áp suất riêng
phần của các hydrocacbon và cũng để hạn chế sự hình thành cốc. Sự phụ
thuộc vào mức độ hình thành cốc này, các quá trình có thể thực hiện theo
chu kỳ, với tần suất tỷ lệ thuận với số lượng cốc hình thành.
Bảng. Quá trình dehydro hóa buten thực hiện với các loại xúc tác khác nhau Shell Shell Phillips Dow B 105 205 1490 Xúc tác Ni và Fe2O3/Cr Fe2O3/Cr Fe Ca 2O3/bô- 3(PO4)2 2O3 2O3 xít 620 - 620 - 600 - 620 - 680 680 680 680 0,15 – 0,18 - Nhiệt độ (0C) - 0,15 - 0,16 – 9 – 12/1 - Áp suất (106 Pa) 10 đến 0,18 0,2 - Tỷ lệ hơi 18/1 8/1 20/1 300 – 400 nước/buten (mol/mol) 27 – 33 - Tốc độ không gian - ≈500 125 – 69 – 76 - Độ chuyển hóa % 20 đến 26 – 28 175 Không - Độ chọn lọc 30 73 – 75 Đến 45 butadien % 70 đến 1 đến 24 90 - Thời gian tái sinh 80 giờ 15 đến xúc tác 1 giờ 30 phút đến 7 ngày b. Quy trình
Quá trình dehydro hóa n-buten có sự có mặt của hơi nước được phát triển
ban đầu bởi Esso, Shell và Phillips. Quy tắc chung của các quá trình này,
hỗn hợp đầu đã được gia nhiệt trộn với hơi nước quá nhiệt, sau đó đến thiết
bị phản ứng đoạn nhiệt có chứa xúc tác có chiều dày từ 80 đến 90 cm. Nhiệt
độ, khoảng 6200C, tăng thì hoạt tính xúc tác giảm. Sau đó được tái sinh
trong thiết bị xử lý hơi nước đơn giản. Áp suất phản ứng là từ 0,1- 0,2.106 Pa
và đạt đến 0,5.106 Pa trong quá trình tái sinh. [Typể tểxt] Pậgể 4
Tiểu luận hợp chật trung giận
Sản phẩm phản ứng được làm lạnh bằng phun hơi nước, sau đó cho đi
qua một hệ thống trao đổi nhiệt để sản xuất hơi nước. Sản phẩm được làm
lạnh lần hai bởi nước hoặc bởi các hydrocacbon nặng. Nước ngưng được
tách ra, khí được nén và đưa đến tháp chưng cất để loại bỏ các hydrocacbon
nhẹ, hydro và CO2, để tách và làm sạch butadien và tuần hòan lại buten chưa phản ứng.
Mỗi chu kỳ kéo dài 30 phút và bao gồm 15 phút phản ứng và 11 phút tái
sinh qua không khí được làm loãng bằng hơi nước với xúc tác và 2 phút làm
sạch trước và sau tái sinh.
1.1.2. Dehydro hóa xúc tác n-butan
Quá trình chuyển hóa n-butan thành butadien xảy ra trong 1 hoặc 2 thiết bị, với
sự hình thành trung gian của n-buten có thể hoặc không được cô lập
a. Các điều kiện công nghệ
Quá trình xảy ra theo phản ứng:
CH CH CH CH CH CH CH CH  2H 3 2 2 3 2 2 2
Phản ứng là thu nhiệt và chuyển hóa thuận nghịch. Ở 6000C và áp suất
khí quyển, phản ứng 1 đạt độ chuyển hóa là 57,7%, và phản ứng 2 là 15,9 %.
Ở áp suất 10 kPa và cùng nhiệt độ, độ chuyển hóa là 45,4% cho phản ứng 2.
Quá trình dehydro hóa, xúc tác phải được hoạt hóa đầy đủ để thời gian
tiếp xúc ngắn và sử dụng ở nhiệt độ thấp, để giảm thiểu phản ứng cracking
nhiệt. Sự hình thành C được loại bỏ bởi nhiệt với sự có mặt của khí có chứa
oxi. Điều đó có nghĩa là xúc tác phải được ổn định nhiệt để tránh sự mất
hoạt tính trong quá trình oxi hóa. Những xúc tác tốt nhất chứa nhôm oxit và
crom oxit nhưng chúng lại không hoạt động với sự có mặt của hơi nước.
Quá trình xảy ra ở nhiệt độ khoảng 550 đến 7000C và áp suất thấp, từ 0,1.106 Pa b. Quy trình - Công nghệ của UOP [Typể tểxt] Pậgể 5
Tiểu luận hợp chật trung giận
Kế hoạch sản xuất công nghiệp đầu tiên của quá trình dehydro hóa butan
thành buten được xây dựng bởi UOP (Universal Oil Products) trong ICI
(Imperial Chemical Industries) kết hợp với Billingham (United Kingdom)
vào năm 1939/1940. Công nghệ UOP nổi bật với thiết bị phản ứng họat
động với xúc tác Cr2O3/Al2O3, ở 5700C và 0,8.106 Pa đầu vào và 0,5.106 Pa
trong thiết bị loại ống(dài 5m, đường kính 7,5cm). Độ chuyển hóa là 22,5%
với độ chọn lọc mol là từ 80 đến 90%
Bản cải tiến của công nghệ này, gọi là Oleflex, kết hợp với một đơn vị Olex
để tách olefin bằng rây phân tử, được sử dụng để sản xuất phân đoạn giàu n- buten. - Công nghệ của Phillips
Đây là phiên bản mới nhất của công nghệ này qua các bước sau:
- Dehydro hóa n-butan thành buten
- Tách buten, butan chưa phản ứng và các sản phẩm khác bằng cách chưng
cất phân đoạn hoặc chưng trích ly với sự có mặt của dung môi furfural,
sau đó tuần hoàn lại n-butan chưa phản ứng
- Dehydro hóa buten thành butadien
- Tách và làm sach butadien bằng chưng cất với furfural, và tuần hòan lại buten
Butan được dehydro hóa đẳng nhiệt trong thiết bị phản ứng loại ống, với các
ống có chiều dài 3-5m và đường kính là 5cm. Điều kiện vận hành như sau:
Nhiệt độ………………………….565-5900C
Áp suất…………………………..0,1 – 0,2.106 Pa
Tốc độ không gian……………...700 h-1
Độ chuyển hóa…………………...30%
Độ chọn lọc mol………………….80% [Typể tểxt] Pậgể 6
Tiểu luận hợp chật trung giận
Nguyên liệu đầu bao gồm 98% n-C4 được làm khô. Quá trình là tuần hoàn
và các phản ứng thực hiện luôn phiên 1giờ dehydro hóa và 1 giờ tái sinh. Sự
tái sinh xảy ra ở 0,7.106Pa, với khí có chứa 2 đến 3%
Ngày nay, butan có thể được dehydro hóa bởi công nghệ mới Star process,
có sự dehydro hóa propan và sản xuất iso-buten
- Công nghệ catadien Houdry (Air Products)
Công nghệ này được sử dụng phổ biến nhất để sản xuất butadien bằng
phương pháp dehydro hóa. Sử dụng nguyên liệu chứa 95% hoặc hơn n-C4,
sản xuất ra một hỗn hợp buten và butadien trong 1 giai đoạn. Butadien được
tách ra, buten và butan chưa phản ứng thì được tuần hoàn lại. Xúc tác, Al2O3
đã họat hóa chứa 18 đến 20% khối lượng Cr2O3, có thời gian sống hơn 6
tháng. Xúc tác được chứa trong một hệ thống thiết bị phản ứng nằm ngang
với gạch chịu lửa. Nhôm oxit được trộn với dòng xúc tác để nhiệt được phân
bố đồng đều cho phản ứng và năng suất nhiệt cao của lớp xúc tác
Các điều kiện vận hành:
Nhiệt độ………………………….600-6750C
Áp suất…………………………..15-70 kPa
Tốc độ không gian……………...300 h-1
LHSV……………………………1-3 h-1
Độ chuyển hóa…………………...50-60%
Quá trình là tuần hoàn. Nguyên liệu và C4 tuần hoàn được gia nhiệt đến
6000C và đưa đến buồng xúc tác, hình thành butadiene, buten, các khí sản
phẩm phụ và cốc. Sau phản ứng từ 5 đến 10 phút, tùy thuộc vào số thiết bị
phản ứng, nhiệt độ giảm 15 đến 200C. Sau đó đến quá trình tái sinh, kéo dài
5-10 phút. Sản phẩm được trộn với hơi nước và không khí ở 6000C, sau đó
được đốt cháy C đã được hình thành. Nhiệt tạo ra sẽ làm tăng nhiệt độ của
lớp xúc tác. Quá trình tái sinh này tiến hành ở áp suất khí quyển và ngừng
hút không khí, các khí dễ bắt cháy được loại bỏ bằng oxi dư để tái sinh xúc [Typể tểxt] Pậgể 7
Tiểu luận hợp chật trung giận
tác. Thời gian tiến hành chuyển hóa này là ít nhất 3-5 phút. Do đó một chu
trình kéo dài từ 15 đến 30 phút.
Bằng cách điều chỉnh chiều dài của quá trình chuyển đổi, hệ thống liên tục
có thể vận hành với ít nhất 3 thiết bị phản ứng (phản ứng, tái sinh và phân
tách). Để tăng năng suất, có thể sử dụng 5 thiết bị phản ứng. Thiết bị phản ứng Hơi nước rửa Gia nhiệt không khí Off gas Nguyên liệu sạch Và n-butan tuần hoàn Gia nhiệt nguyên liệu Không khí Máy phun hơi nước Off-gas nước C = 3 Tháp Tách Làm chưng sản Hấp nguội cất phẩm thụ nhẹ C4 tới tháp tách butadien
Sản xuất butadien bằng phương pháp dehydro hóa n-butan, Houdry process
1.1.3. Dehydro hóa có sự có mặt của oxi
Phương pháp này có 2 cách:
- Sự kết hợp của hydro với iot, được tái sinh bằng xử lý oxi. Giải pháp này,
được nghiên cứu bởi Shell trong công nghệ Idas, không được đưa ra công
nghiệp vì sự ăn mòn và mất iot
- Dehydro hóa bằng oxi, tạo ra nước:
Phản ứng xảy ra ở 400-6000C, 0,15.106 Pa, có sự có mặt của xúc tác trên
bismuth molipden và photphat, pha với các kim loại chuyển tiếp. Quá trình
được tiến hành với tỷ lệ mol của oxi trên buten là khoảng bằng 1 và của hơi
nước trên buten là 30-50. Độ chuyển hóa một lần là trên 60% và độ chọn lọc mol của butadiene là 95%. [Typể tểxt] Pậgể 8
Tiểu luận hợp chật trung giận
Nếu quá trình này so sánh với quá trình dehydro hóa trực tiếp, sự thêm vào từ
10 đến 20% thể tích oxi vào nguyên liệu đầu để tăng năng suất của sản phẩm ít
nhất là 25%, bằng cách tăng sản lượng 1 lần. Việc sử dụng oxi có những tác dụng:
- Sự dịch chuyển cân bằng bằng cách kết hợp với hydro sinh ra trong phản ứng
- Giảm gradien nhiệt độ trong lớp xúc tác, vì phản ứng là tỏa nhiệt
- Giảm thiểu hình thành cốc, do đó tăng thời gian sống của xúc tác và chu kỳ vận hành
Nhiều công nghệ khác nhau được phát triển, đặc biệt là BP Chemical, Polymer
Corporation, Shell…nhưng quy trình công nghiệp chính dựa trên Phillips (OXD
process, có nguồn gốc từ Borger. Texas, gần đây đã ngừng họat động) và
Petrotex (Oxo-D process được ứng dụng trong nhà máy Tenneco ở Houston,
Texas và kế hoạch Firestone ở Orange, Texas…) Off-gases butadien nước nước Tháp tinh chế butadien Không khí Tháp Làm Tháp rửa phản nguội Hấp thụ Khử khí Tháp chưng ứng cất Sản phẩm nặng Hơi nước Hơi nước n-buten Tinh chế dung môi Xử lý nước nước Dung môi Nước thải Sản phẩm nặng Dung môi tuần hòan
Sản xuất butadien bằng phương pháp oxi dehydro hóa n-buten, Oxo-D Petrotex process
1.2. Tách butadiene từ phân đoạn C4 của quá trình steam cracking
1.2.1. Đặc trưng hóa lý của quá trình [Typể tểxt] Pậgể 9
Tiểu luận hợp chật trung giận
Để đạt được độ tinh khiết cao, quá trình phải sử dụng nhiều phương pháp tách
phức tạp. Trong công nghiệp quá trình tách bao gồm:
- Trích ly bằng muối amoni đồng (I) - Chưng trích ly
Quá trình trích ly sử dụng tính chất của muối axetat amoni đồng (I) có khả năng
tạo phức chọn lọc với butadien, khả năng hấp thụ của buten thấp hơn từ 10-50 lần.
Mặt khác, các hợp chất axetylen sẽ tạo phức đầu tiên và quá trình là bất thuận
nghich. Hiệu quả của quá trình phụ thuộc vào hàm lượng của các hợp chất axetylen
có trong nguyên liệu đầu, trong thực tế để áp dụng phương pháp này, hàm lượng
các hợp chất axetylen phải không vượt quá 500ppm. Phân đoạn C4 thu được từ quá
trình steam cracking thường không đáp ứng được điều kiện này, do vậy, quá trình
luôn đòi hỏi phải có công đoạn hydro hóa chọn lọc để tách axetylen
Dung môi sử dụng trong quá trình chưng trích ly phải có các tính chất sau: -
Nhiệt độ sôi của dung môi phải cao hơn nhiệt độ sôi của các cấu tử trong nguyên liệu đầu -
Vai trò của dung môi là hấp thụ butadien và cho phép các hợp chất khác đi vào phần cất
Do vậy dung môi phải đáp ứng được các điều kiện sau:
- Có độ chọn lọc cao với diolefin, mà không chọn lọc đối với axetylen và
olefin, nghĩa là dung môi phải có khả năng làm tăng sự khác nhau về độ bay
hơi tương đối của các cấu tử khác nhau trong phân đoạn được xử lý.
- Có khả năng hòa tan cao: khả năng này bị giảm trong hầu hết các tác
nhân trích ly, đối với hydrocacbon có cùng số nguyên tử cacbon, khả năng
hòa tan giảm dần từ axetylen đến dien và đến olefin
- Dễ tiến hành: độ nhớt thấp, độ chênh lệch điểm sôi so với butadien khá
lớn, không tạo đẳng phí hoặc không phản ứng hóa học với các cấu tử trong hỗn hợp cần tách
- Độ bền tốt trong điều kiện tách: dung môi phải bền nhiệt, độ ăn mòn
thấp, khả năng bắt cháy thấp, phải hòa tan hoàn toàn với nước…
- Sẵn có và giá cả hợp lý [Typể tểxt] Pậgể 10
Tiểu luận hợp chật trung giận
Việc lựa chọn dung môi phụ thuộc vào tính chất và hiệu quả kinh tế của công nghệ sử dụng.
1.2.2. Quá trình tách butadien từ phân đoạn C4 của quá trình steam cracking trong công nghiệp
A. Hydro hóa chọn lọc các hợp chất axetylen trong nguyên liệu đầu
Công đoạn này là cần thiết đối với quá trình trích ly butadien bằng muối amoni
đồng (I), nhưng nó không thực sự cần cho quá trình tách butadien bằng chưng
trích ly. Tuy nhiên, nếu sử dụng quá trình chưng trích ly, công đoạn xử lý hydro
hóa này có thể giúp cho quá trình tách dễ dàng hơn và tăng được lượng
butadien thu hồi. Ngoài ra, công đoạn hydro hóa cũng làm giảm các hợp chất axetylen
Quá trình hydro hóa chọn lọc axetylen được tiến hành trong pha lỏng, áp suất
0,5-1 MPa, nhiệt dộ 10 – 600C. Thiết bị có chứa lớp xúc tác trên cơ sở Pd, nhiệt
phản ứng được tác bởi quá trình bay hơi một phần môi trường phản ứng hoặc sử
dụng thiết bị ống chùm làm lạnh bằng propan. Sau khi làm lanh, hydro chưa
phản ứng được tách, nén và tuần hòan lại thiết bị phản ứng.
B. Trích ly bằng muối amoni đồng (I)
Công nghệ trích ly butadien bằng muối amoni được hãng Esso phát triển ở Mỹ
sau Thế chiến 2, chủ yếu để sản xuất butadien bằng quá trình dehydro hóa n-
buten và n-butan. Quá trình bao gồm các bước sau:
 Hấp thụ sơ bộ các hợp chất axetylenic bằng dung dịch axetat amoni đồng
(I) 20% khối lượng, sau đó nhả hấp thụ butadien bằng cách gia nhiệt đến
650C, butadien được tuần hòan, tiếp theo các hợp chất axetylenic được
nhả hấp thụ bằng cách tăng nhiệt độ lên tới 900C
 Sử dụng một loạt các thiết bị trộn/lắng, hoạt động theo chế độ ngược
dòng tại -20 và +50C; 0,3 – 0,4 Mpa để hấp thụ butadien và để làm giàu
dung dịch amoni bằng cách tiếp xúc lỏng/lỏng.
 Nhả hấp thụ butadien bằng cách gia nhiệt đến khỏang 800C và 0,12 Mpa
 Thu hồi amoniac bằng cách rửa butadien với nước và chưng cất dung dịch thu được [Typể tểxt] Pậgể 11
Tiểu luận hợp chật trung giận
 Tinh chế butadien bằng chưng cất có mặt chất ức chế trùng hợp butadien (t-butylpyrocatehol) C. Chưng trích ly
Về nguyên tắc, các quá trình công nghiệp tách butadien bằng phương pháp
chưng trích ly đều bao gồm các bước chính sau:
 Chưng trích ly trong một hoặc hai tháp, tất cả các hợp chất axetylen và
butadien đều được đi vào phần trích. Nếu quá trình tiến hành trong hai
tháp, buten được tách trong tháp thứ nhất, sau đó các hợp chất axetylen
được tách trong tháp thứ hai
 Thu hồi dung môi đã sử dụng bằng cách bay hơi
 Chưng siêu phân đoạn phần trích để tách loại các hợp chất axetylen và buten
 Rửa nước phân đoạn đã tách butadien để thu hồi dung môi rửa
Các hãng đầu tiên sử dụng công nghệ này bao gồm a. Shell
Ban đầu hãng Shell sử dụng dung môi là axeteon, sau đó vào năm 1956, dung
môi này được thay thế bằng axetonitril. Công nghệ này sử dụng một tháp chưng trích ly b. Phillips
Hãng Phillips áp dụng công nghệ chưng trích ly vào công nghiệp từ những năm
1940, sử dung dung môi furfural. Công nghệ bao gồm 1 tháp trích ly/ tái sinh và 1 tháp tái chế. c. Nippon Zeon
Công nghệ tách butadien của Nippon Zeon sử dụng dung môi dimetylformamit
được đưa vào ứng dụng trong công nghiệp từ năm 1965. [Typể tểxt] Pậgể 12
Tiểu luận hợp chật trung giận C4 rafinat Hợp chất axetylenic Chưng Chưng Butadien Chưng Chưng Tái sinh Tái sinh cất sản cất sản trích ly trích ly sơ cấp thứ cấp phẩm phẩm Phân đoạn C4 thứ cấp sơ cấp nhẹ nặng Cặn C4, C5 Dung môi Làm sạch dung môi bằng chưng cất
Công nghệ tách butadien của Nippon Zeon sử dụng dung môi dimetylformamit
Công nghệ này bao gồm hai tháp trích ly và tái sinh riêng rẽ. Phân đoạn C4 đầu
tiên được gia nhiệt và được bay hơi ở 500C, tận dụng nhiệt của dòng dung môi
tuần hoàn nóng. Sau đó được đưa vào tháp chưng trích ly thứ nhất. tháp thứ
nhất có khoảng 200 đĩa, ở nhiệt độ 45 - 1150C và 0,5 - 0,7 MPa, với dòng dung
môi chảy ngược dòng được đưa vào ở đỉnh tháp. Phần trích giàu butadien được
đưa tới tháp tái sinh thứ nhất có 15 đĩa, quá trình được thực hiện ở 45 và 1600C;
0,11 – 0,14 MPa. Sản phẩm đỉnh được ngưng tụ một phần, pha hơi chứa chủ
yếu là butadien được nén tới áp suất 0,5 MPa và được đưa vào tháp chưng trích
ly thứ 2 gồm 60 đĩa, làm việc ở nhiệt độ 45 – 180 0C. Hợp chất axetylen được
trích ly theo dung môi, sau đó được tái sinh với điều kiện tương tự như tháp tái
sinh thứ nhất. butadien thu được ở đỉnh tháp chưng trích ly thứ hai vẫn chứa
metyl axetylen và các tạp chất nặng khác, được bổ sung chất ức chế oxy hóa (t-
butylpyrocatechol 100ppm), và đưa vào làm sạch trong hai tháp chưng cất đơn
giản để tách sản phẩm nhẹ (tháp chứa 30 đĩa) và tách sản phẩm nặng (tháp chứa
60 đĩa). Dimetylformamit được tách ra từ đáy của hai tháp tái sinh được làm
lạnh và tuần hòan. Dung môi có thể được làm sạch bằng cách chưng cất tách
nước và các polyme butadien. d. BASF/Lurgi [Typể tểxt] Pậgể 13
Tiểu luận hợp chật trung giận
Công nghệ BASF/Lurgi được đưa vào công nghiệp từ năm 1968 sử dụng dung
môi N-metylpyrolidon là một trong những công nghệ được sử dụng rộng rãi
nhất hiện nay. Công nghệ này dựa trên nguyên tắc tương tự như các công nghệ
khác, nhưng khác các công nghệ khác ở thực tế họat động như được chỉ ra ở hình sau: CHƯNG CẤT TÁCH CHƯNG CẤT CHƯNG CẤT TÁCH HẤP THỤ TINH CHẾ PHÂN ĐOẠN NĂNG TRÍCH LY THỨ CẤP TÁI SINH PHÂN ĐOẠN NHẸ Butan, buten C4 axetylenic propyn nước 1,3-butadien nước Phân đoạn C4 1,2-butadien Và C5 Dung môi Làm sạch dung môi bằng chưng cất
Công nghệ tách butadien của BASF Lurgi sử dụng dung môi N-metylpyrolidon
Quá trình được chia làm ba bộ phận:
 Tháp hấp thụ: Trong tháp này các hợp chất axetylen, butadien và một
lượng nhỏ buten được hấp thụ khỏi nguyên liệu đầu trong thiết bị khí/lỏng
ngược dòng với dung môi N-metylpyrolidon chứa 80% khối lượng nước.
Quá trình được tiến hành trong tháp với 80 đĩa, làm việc ở nhiệt độ 45 –
550C và 0,4 – 0,6 MPa, nguyên liệu đầu được bay hơi bằng cách trao đổi
nhiệt tận dụng nhiệt của dòng dung môi tuần hoàn nóng và được đưa vào
đáy tháp. Dung môi N-metylpyrolidon được đưa vào ở đỉnh tháp. Các khí
không hấp thụ (chủ yếu là butan và buten) thu được ở đỉnh tháp.
 Tháp tinh chế: Phân đoạn buten hòa tan vào dung môi được tác ra khỏi
dụng môi chảy ngược dòng với hơi butadien. Sản phẩm buten có lẫn [Typể tểxt] Pậgể 14
Tiểu luận hợp chật trung giận
butadien thu được ở đỉnh tháp được đưa trở lại tháp hấp thụ. 1,3 butadien có
lẫn một số lượng nhỏ axetylen, không có lẫn olefin được lấy ra khỏi tháp
tinh chế ở cạnh sườn. Tháp tinh chế có khoảng 45 đĩa, nhiệt độ đáy tháp
khoảng 750C, áp suất 0,7 MPa.
 Tháp tái sinh: Tháp tái sinh bao gồm 3 lớp đệm, nhiệt độ ở đỉnh tháp
khoảng 450C, đáy tháp 1500C, tháp làm việc trong điều kiện áp suất thấp
(khoảng 0,2 MPa) để tránh sự tạo thành của các polyme ở nhiệt độ cao. Phần
trích lỏng từ tháp tinh chế sau khi được loại phần cặn buten bằng cách gia
nhiệt, nén và tách khí được đưa sang tháp tái sinh. Sản phẩm thu được từ quá trình này như sau:
- Tại đáy tháp: Dung môi sau khi làm sạch bằng chưng cất được đưa
tuần hoàn lại tháp hấp thụ
- Ở cạnh sườn: thu được sản phẩm giàu hợp chất axetylen. 1,2- butadien và hydrocacbon C5
- Tại đỉnh tháp: 1,3-butadien thu được ở dạng khí được nén và tuần hòan lại tháp tinh chế
Ngoài ba bộ phận chính trên công nghệ BASF còn có các thiết bị phụ trợ sau:
 Tháp hấp thụ/ tinh chế thứ cấp để xử lý dòng sản phẩm rời khỏi tháp tinh
chế. Tháp chưng trích ly thứ hai này (sử dụng dung môi N-metylpyrolidon)
bao gồm 70 đĩa, làm việc ở nhiệt độ 450C và 0,5 MPa. Phần trích lỏng thu
hồi ở đáy tháp được tuần hòan lại tháp tinh chế, butadien không hấp thụ thu
được ở đỉnh tháp. Sản phẩm butadien sau đó được làm sạch khỏi các tạp chất
như metyl axetylen, 1,2-butadien và các hydrocacbon nặng khác bằng 2 tháp
chưng cất đơn giản để tách sản phẩm nhẹ (tháp tách 70 đĩa) và tách sản
phẩm nặng (tháp gồm 80 đĩa)
 Thu hồi dung môi từ sản phẩm giàu axetylen rồi thiết bị tái sinh. Khí sản
phẩm được rửa bằng nước trong tháp đệm và dung dịch N-metylpyrolidon
thu được tuần hoàn lại tháp tái sinh e. Union Carbide
Quá trình được áp dụng vào công nghiệp từ năm 1965, sử dụng dung môi
dimetylaxetamit có chứa 10% khối lượng nước, gồm 1 bước hấp thụ/tái sinh.
Nguyên liệu đầu là phân đoạn C4 được xử lý trong thiết bị chưng trích ly theo [Typể tểxt] Pậgể 15
Tiểu luận hợp chật trung giận
chế độ ngược dòng. Tháp gồm 90 đĩa, làm việc ở nhiệt độ 45 – 70 0C, áp suất
0,5 – 0,6 MPa. Buten và butan không hấp thụ thu được ở đỉnh tháp
Phần trích được tách khí olefin hòa tan, được nén và tuần hoàn lại tháp chưng
trích ly. Phân đoạn lỏng giàu butadien và hợp chất axetylen được gia nhiệt và
đưa sang tháp tái sinh với 20 đĩa làm việc ở áp suất 0,2 MPa, nhiệt độ 900C ở
đỉnh tháp và 1500C ở đáy tháp. Dung môi sau khi làm sạch được tuần hòan.
Phần cất ở đỉnh tháp được làm lạnh, ngưng tụ, phần lỏng được hổi lưu, phần khí
được nén lại và một phần được tuần hoàn lại tháp hấp thụ. Sản phẩm butadien
thô được làm sạch khỏi các tạp chất metylaxetylen và hydrocacbon nặng bằng 2
tháp chưng cất đơn giản với 40 và 110 đĩa, với sự có mặt của chất ức chế t- butylpyrocatechol f. Công nghệ UOP KLP
Công nghệ UOP’s KLP giúp các công ty sản xuất sản phẩm hóa dầu tăng nhu cầu về butadien
2. Sản xuất styrene Quá trình :
2.1. Quá trình sản xuất Etylbenzen từ Benzen.
Alkl là quá trình đưa nhóm alkyl vào phân tử hợp chất hữu cơ hoặc vô cơ. Đây là
loại phản ứng dùng để đưa các nhóm alkyl vào hợp chất thơm, isoparafin,
mercaptan, sunfit, amin, các hợp chất chứa ete…
2.1.1. Tính chất vật lý của nguyên liệu.
a. Tính chất vật lý của benzene. [Typể tểxt] Pậgể 16
Tiểu luận hợp chật trung giận
Benzen thường được biết đến dưới công thúc C6H6 hay còn gọi là PhH, là
một hydrocacbon thơm, trong điều kiện bình thường là một chất lỏng không màu,
mùi dịu ngọt dễ chịu, dễ cháy. Benzen tan rất kém trong nước và rượu. Tuy benzen
có mùi thơm nhẹ, nhưng mùi này có hại cho sức khoẻ (gây bệnh bạch cầu).
Bảng 2: Tính chất vật lý của Benzen Công thức phân tử C6H6 Phân tử gam 78,1121 g/mol Bề ngoài Chất lỏng không màu Tỷ trọng 0,8786 g/cm³, chất lỏng Điểm nóng chảy 5,5 °C (278,6 K) Điểm sôi 80,1 °C (353,2 K) Độ hòa tan trongnước 1,79 g/L (25 °C) Độ nhớt 0,652 cP ở 20 °C Mômen lưỡng cực 0 D [Typể tểxt] Pậgể 17
Tiểu luận hợp chật trung giận
b. Tính chất vật lý của Ethylen.
Ethylen (IUPAC tên: ethene) là một hydrocarbon với các công thức C2H4. Nó là
một chất khí dễ cháy không màu có mùi ngọt ngào.
Bảng 3: Tính chất vật lý của Ethylen Công thức phân tử C2H4 Phân tử gam 28.05 g/mol Bề ngoài Khí không màu Tỷ trọng 1.178 kg/m3 at 15 °C, khí Điểm nóng chảy
−169.2 °C (104.0 K, -272.6 °F) Điểm sôi
−103.7 °C (169.5 K, -154.7 °F) Độ hòa tan trong nước 3.5 mg/100 mL (17 °C) Độ hòa tan trong Ethanol 4.22 mg/L
Độ hòa tan trong diethyl ether Tốt Độ axit ( pKa) 44
2.1.2 Tính chất hóa học của nguyên liệu. [Typể tểxt] Pậgể 18
Tiểu luận hợp chật trung giận
a. Tính chất hóa học của Benzen.
Benzen là một nguyên liệu rất quan trọng trong công nghiệp hóa chất. Những
nguyên tử hydro trong benzene dễ bị thay thế bằng clo và các halogen khác, bằng
các nhóm sunfo-, amino-, nitro- và các nhóm đính chức khác.
Các dẫn suất của benzene dùng trong công nghiệp hóa chất để sản xuất chất dẻo
và thuốc nhuộm, bột giặt và dược phẩm, sợi nhân tạo, chất nổ, thuốc bảo vệ thực
phẩm… Trong phòng thí nghiệm, benzene được sử dụng rộng rãi làm dung môi.
Tuy nhiên hơi benzene rất độc nên cần cẩn thận trong quá trình sử dụng.
Phản ứng thế :
Benzen + Br2 → brombenzen + khí hiđro bromua C6H5 – H + Br2 C6H5 – Br + HBr
Benzen + HNO3 (đặc) → nitrobenzen (màu vàng nhạt)+ H2O C6H5 – H + HNO3 (đặc) C6H5 – NO2 + H2O
Phản ứng cộng :
Cộng H2: tạo thành xiclohexan. C6H6 + H2 C6H12
Cộng Cl2: tạo thành 6.6.6. C6H6 + 3 Cl2 C6H6Cl6
Phản ứng oxi hóa hoàn toàn : C6H6 + 4,5O2 3CO2 + 3H2O
đặc biệt có sinh ra nguội than.
b. Tính chất hóa học của ethylene. [Typể tểxt] Pậgể 19
Tiểu luận hợp chật trung giận
Ethylen có nối đôi C=C, có chiều dài liên kết 0,134 nm và có một cấu trúc phẳng.
ethylene là một chất trung gian phản ứng, có thể tham gia hầu như tất cả các phản
ứng điển hình của một olefin có mạch ngắn.
Các quá trình công nghiệp sau đây thường được sử dụng:
Phản ứng cộng: CH FeCl3 2=CH2 + Cl2 CH2Cl= CH2Cl
Phản ứng oxy hóa: CH2=CH2 + 1/2O2 CH2-CH2 O
Cacbonyl và oxy hóa : CH2=CH2 + CO + ½ O2 [Pd, Cu] CH2=CH- COOH
Phản ứng với benzen tạo thành ethylbenzene.
Phản ứng trùng hợp: tạo polyethylene (PE), trùng hợp với Propylen tạo EP…
Phản ứng với axit axetic và oxy :
Ethylene + acetic acid + 1/2 O2 → Vinyl acetate + H2O
2.1.3. Hóa học của quá trình.
Tổng hợp etylbenzen bằng phương pháp alkyl hóa là một quá trình thuận nghịch
tỏa nhiệt ( ∆H= -114 kJ/mol). C H 2 5 CH2=CH2 + →
Quá trình sẽ xảy ra thuận lợi ở điều kiện áp suất cao và nhiệt độ thấp. Tuy nhiên,
dưới 600oC, cân bằng phản ứng chuyển đã dịch chuyển xa sang phải. Cùng với
phản ứng chính, một số phản ứng phụ cũng xẩy ra đồng thời, như alkyl hóa nối tiếp
tạo sản phẩm polyalkylbenzen, tách nhóm alkyl, phân bố lại và isome hóa. [Typể tểxt] Pậgể 20