

Preview text:
DẠNG 4: KẾT HỢP CÁC CÔNG THỨC LƯỢNG GIÁC
Câu 81: Biến đổi biểu thức sina +1 thành tích. æ a p ö æ a p ö æ a p ö æ a p ö
A. sina +1 = 2sin + cos -
B. sina +1 = 2cos + sin - ç ÷ ç ÷ ç ÷ ç ÷ è 2 4 ø è 2 4 ø è 2 4 ø è 2 4 ø æ p ö æ p ö æ p ö æ p ö
C. sina +1 = 2sin a + cos a -
D. sina +1 = 2cos a + sin a - ç ÷ ç ÷ ç ÷ ç ÷ è 2 ø è 2 ø è 2 ø è 2 ø p a 2 æ a p ö
Câu 82: Cho góc thỏa mãn < a < p và sin =
. Tính giá trị của biểu thức A = tan - . ç ÷ 2 2 5 è 2 4 ø 1 A. A = 1 .
B. A = - .
C. A = 3 D. A = 3 - 3 3 1 æ p ö
Câu 83: Cho cosx =
- < x < 0 . Giá trị của tan2x . ç ÷ 3 è 2 ø 5 4 2 5 A. . B. . C. - 4 2 . D. - . 2 7 2 7 æ p ö æ p ö
Câu 84: Cho cosx = 0 . Tính 2 2 A = sin x - + sin x + . ç ÷ ç ÷ è 6 ø è 6 ø 3 1 A. B. 2 . C. 1 . D. 2 4 2 a + a
Câu 85: Cho biết cosa = - cot 3tan
. Giá trị của biểu thức P = bằng bao nhiêu? 3 2cota + tana 19 A. P = 25 . B. P = 25 . C. P = - 19 . D. P = - . 13 13 13 13 p p
Câu 86: Cho sina ×cos(a + b ) = sinb a + b ¹ + kp ,a ¹ + lp , ( k,l ÎZ). Ta có 2 2
A. tan(a + b ) = 2cota . B. tan(a + b ) = 2cotb . C. tan(a + b ) = 2tanb . D. tan(a + b ) = 2tana . 1 2× tanx cos(ax) Câu 87: Biết rằng + =
a,b Î R . Tính giá trị của biểu thức P = a + b . 2 2 2
cos x - sin x 1- tan x b - sin (ax) ( )
A. P = 4 .
B. P = 1.
C. P = 2 . D. P = 3 . 2
Câu 88: Cho cos2a = . Tính giá trị của biểu thức 3 7 A. P = 7 . B. P = 5 . C. P = 5 . D. . 18 9 9 18 æ 3p ö æ p ö
Câu 89: Cho tanx = 2 p < x <
. Giá trị của sin x + là ç ÷ ç ÷ è 2 ø è 3 ø 2 - 3 2 + 3 + -2 + 3 A. B. - 2 3 . C. . D. 2 5 2 5 2 5 2 5
Câu 90: Tổng A = tan9! + cot9! + tan15! + cot15! tan27!cot27! bằng: A. 4 . B. -4 . C. 8 . D. -8 . 1 1
Câu 91: Cho hai góc nhọn và với sina = , sinb = . Giá trị của sin2(a + b) là: 3 2 2 2 + 7 3 3 2 + 7 3 4 2 + 7 3 5 2 + 7 3 A. B. C. D. 18 18 18 18 Trang 1 2 2cos 2a + 3sin4a -1
Câu 92: Biểu thức A =
có kết quả rút gọn là: 2 2sin 2a + 3sin4a -1 cos(4a + 30! ) cos(4a -30! ) sin (4a + 30! ) sin (4a -30! ) A. B. . C. . D. cos(4a -30! ) cos(4a + 30! ) sin (4a -30! ) sin (4a + 30! )
Câu 93: Kết quả nào sau đây SAI ? sin9! sin12!
A. sin33! + cos60! = cos3! . B. = . sin48! sin81! C. ! 2 cos20 + 2sin 55! =1+ 2sin65! 1 1 4 . D. + = . cos290! 3sin250! 3
Câu 94: Nếu 5sina = 3sin (a + 2b ) thì:
A. tan (a + b ) = 2tanb . B. tan(a + b ) = 3tanb . C. tan(a + b ) = 4tanb . D. tan (a + b ) = 5tanb .
Câu 95: Cho biểu thức 2 A = (a+b) 2 2 sin
-sin a -sin b. Hãy chọn kết quả đúng:
A. A = 2cosa ×sinb×sin (a +b).
B. A = 2sina ×cosb×cos(a +b).
C. A = 2cosa ×cosb×cos(a +b).
D. A = 2sina ×sinb×cos(a +b).
Câu 96: Xác định hệ thức SAI trong các hệ thức sau ? cos ! ! (40! -a)
A. cos40 + tana ×sin40 = . cosa 6
B. sin15! + tan30! ×cos15! = 3 C. 2 x - a × x× (a+ x) 2 + (a+ x) 2 cos 2cos cos cos cos = sin a. D. 2 x + (a- x) 2 × x× a + (a- x) 2 sin 2sin sin cos sin = cos a. Câu 97: a , b 2 thoả mãn sina + sinb = 6 và cosa + cosb =
. Tính cos(a - b ) +sin(a + b ) 2 2 12 + 3 4 + 3 3 3 A. . B. . C. - 3 D. . 6 2 2 2
Câu 98: Cho tam giác ABC . Tính giá trị của biểu thức 2 2 2
A = sin A + sin B + sin C - 2cos c A os c B osC. A. 1 . B. 3 . C. 2 . D. 0 . 7 2 2 + sin x
Câu 99: Cho sinx + cosx = . Giá trị của biểu thức 2
A = cos4x - sin x - bằng. 5 2 3tan x + 2 1152 98 A. - 8 B. - 98 . C. D. - 625 25 625 625 æ p ö æ p ö
Câu 100: Biểu thức 2 4cos -a sin
-a = m + nsin a với , m n Î ! . Khi đó, 2 2 m - n bằng ç ÷ ç ÷ è 6 ø è 3 ø A. 7 . B. 15 . C. -7 . D. -15 . ĐÁP ÁN 81.C 82.D 83.A 84.B 85.A 86.A 87.D 88.D 89.D 90.B 91.C 92.C 93.C 94.A 95.C 96.D 97.D 98.D 99.C 100.A Trang 2