Vở bài tập Toán 9 tập 1 phần Đại số

Tài liệu gồm 172 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 1 phần Đại số. Tài liệu giúp bạn nắm vững kiến thức để chuẩn bị cho kì thi sắp tới . Mời bạn đọc đón xem.

Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 1 Toång hôïp: Thaày Hoùa
Bài 1. CĂN BC HAI S HC
A. KIN THC TRNG TÂM
1. Căn bậc hai s hc
Vi s dương
a
, s
a
được gọi là căn bậc hai s hc ca
a
.
S 0 cũng được gọi là căn bậc hai s hc ca 0.
Vi s
a
không âm, ta có
2
0x
ax
xa

.
2. So sánh hai căn bậc hai s hc
Vi hai s
a
b
không âm, ta có
ab a b
.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Tìm căn bc hai, căn bc hai s hc ca một số
Dựa vào định nghĩa căn bậc hai s hc ca một s
2
0
.
x
ax
xa

Ví d 1. Tìm căn bậc hai s hc ca mi s sau rồi suy ra căn bậc hai của chúng.
a)
0
; b)
81
; c)
; d)
4, 41
;
e)
0, 25
; f)
169
49
; g)
36
121
; h)
6
3
25
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2: Tìm căn bậc hai s hc ca mi s sau rồi suy ra căn bậc hai của chúng.
a)
1
; b)
64
; c)
144
; d)
2, 25
;
Chương
1
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 2 Toång hôïp: Thaày Hoùa
e)
0, 16
; f)
25
36
; g)
256
225
; h)
15
1
49
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tính giá trị của biểu thc chứa căn bậc hai
S dụng kiến thức: vi
0a
, ta có
2
2
;a aa a
.
Ví d 3: Tính:
a)
16
; b)
0, 81
; c)
324
289
; d)
625
64
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4: Tính:
a)
25
; b)
0, 16
; c)
25
81
; d)
64
49
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5: Tính:
a)
2
75
; b)
2
0, 4
; c)
2
4
81


; d)
2
19
16


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 3 Toång hôïp: Thaày Hoùa
Ví d 6: Tính:
a)
2
19
; b)
2
0, 16
; c)
2
10
9


; d)
2
27
4


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7: Thc hiện phép tính:
a)
3 25 10 9 19 4
; ĐS:
7
. b)
1
2 2 5 0, 64
4

; ĐS:
7
.
c)
23
81 16 13
32

; ĐS:
13
. d)
41
3 50 1
94

. ĐS:
22
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8: Tính giá trị ca các biểu thức sau:
a)
0, 5 64 2 25
; ĐS:
6
. b)
11
10 1, 69 5 1
25

; ĐS:
19
.
c)
12
9 25
35
; ĐS:
1
. d)
121 3 196
9 27
9 29

. ĐS:
1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 4 Toång hôïp: Thaày Hoùa
Dạng 3: Tìm giá trị ca
x
thỏa mãn biểu thc cho trưc
22
x a xa

hoc
xa
.
Vi
0a
thì
2
xax a
hoc
xa

.
Ví d 9: m
x
, biết:
a)
2
289x
; ĐS:
17x 
. b)
2
25 16
x
; ĐS:
4
5
x 
.
c)
2
0, 49 2, 56
x
; ĐS:
16
7
x 
. d)
2
9 10 0x

. ĐS: Vô nghiệm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10: m
x
, biết:
a)
2
324
x
; ĐS:
18x 
. b)
2
9 16
x
; ĐS:
4
3
x 
.
c)
2
0,25 1,96x
; ĐS:
14
5
x 
. d)
2
4 19 0x

. ĐS: Vô nghiệm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 5 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11: m
x
, biết:
a)
2
17x
; ĐS:
17x 
. b)
2
31 0x 
; ĐS:
31x

.
c)
2
81 23x
; ĐS:
23
9
x 
. d)
2
27 6 0x 
. ĐS:
2
3
x

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 12: m
x
, biết:
a)
2
2x
; ĐS:
2x 
. b)
2
15 0x 
; ĐS:
15x 
.
c)
2
64 13x
; ĐS:
13
8
x 
. d)
2
49 26 0x 
. ĐS:
26
7
x 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 6 Toång hôïp: Thaày Hoùa
Ví d 13: m
x
không âm, biết:
a)
21
x
; ĐS:
441x
. b)
21
x

; ĐS: Vô nghiệm.
c)
2
14
x 
; ĐS:
1x
. d)
12x 
. ĐS:
9x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 14: m
x
không âm, biết:
a)
6x
; ĐS:
36x
. b)
21
x 
; ĐS: Vô nghiệm.
c)
2
14x 
; ĐS:
9x
. d)
14x 
. ĐS:
9x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 7 Toång hôïp: Thaày Hoùa
Dạng 4: So sánh các căn bậc hai s hc
S dụng định lý: với
, 0:ab a b a b
.
Ví d 15: So sánh:
a)
6
37
; b)
4
37 2
;
c)
10 3
6
; d)
4
26 1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 16: So sánh:
a)
6
41
; b)
32
5
; c)
51
3
; d)
4
17 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 17: m
x
không âm, biết:
a)
5x
; ĐS:
0 25x
. b)
2 0, 4x
; ĐS:
0 0, 08x
.
c)
13x 
; ĐS:
16x
. d)
1
1
3
x
. ĐS:
4
0
9
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 8 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 18: m
x
không âm, biết:
a)
2x
; ĐS:
04x
. b)
3 0, 6x
; ĐS:
0 0, 12x
.
c)
13x

; ĐS:
4
x
. d)
2
12
5
x
. ĐS:
9
0
50
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 19: Chứng minh rằng với
0x
thì
a)
33x

; b)
33x
;
c)
3
3
1x
; d)
53
1
2
2x

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 9 Toång hôïp: Thaày Hoùa
Ví d 20: Chứng minh rằng với
0x
thì
a)
22x

; b)
22x

;
c)
4
2
2x
; d)
11
1
2
2x

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
Bài 1: Tìm căn bậc hai s hc ca mi s sau rồi suy ra căn bậc hai s hc của chúng.
a)
0
; b)
64
; c)
; d)
2, 56
;
e)
0, 36
; f)
169
324
; g)
49
144
; h)
14
2
25
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2: Tính:
a)
; b)
0, 01
; c)
64
25
; d)
25
9
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 10 Toång hôïp: Thaày Hoùa
Bài 3: Tính:
a)
2
23
; b)
2
1, 2
; c)
2
9
16


; d)
2
25
4


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4: Thc hiện phép tính:
a)
3 4 8 9 15 16
; ĐS:
30
. b)
5 0, 16 3 0, 04
; ĐS:
13
5
.
c)
23
9 36 19
32

; ĐS:
12
. d)
81 1
11 3 1
121 9

. ĐS:
9
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5: Tìm
x
, biết
a)
2
400x
; ĐS:
20
. b)
2
75 48x
; ĐS:
4
5
.
c)
2
0, 16 0, 09x
; ĐS:
3
4
. d)
2
27 10 0x 
. ĐS: Vô nghiệm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 11 Toång hôïp: Thaày Hoùa
Bài 6: Tìm
x
, biết:
a)
2
11x
; ĐS:
11
. b)
2
70x 
; ĐS:
7
.
c)
2
9 17x
; ĐS:
17
3
. d)
2
12 21 0x 
. ĐS:
7
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7: Tìm
x
không âm, biết:
a)
5x
; ĐS:
25
. b)
73x
; ĐS:
9
49
.
c)
2
19
x
; ĐS:
16
. d)
13x
. ĐS:
16
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 12 Toång hôïp: Thaày Hoùa
Bài 8: So sánh:
a)
7
41
; b)
25
4
; c)
15 4
8
; d)
3
17 1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9: Tìm
x
không âm, biết:
a)
3
x
; ĐS:
09x
. b)
4 0, 6
x
; ĐS:
0 0, 09
x
.
c)
3 25x 
; ĐS:
49
3
x
. d)
3
2
4
x
. ĐS:
25
0
16
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10: Chứng minh rằng với
0x
thì
a)
33x 
; b)
2 11x 
;
c)
2
11
1x

; d)
77
0
3
3x

.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 13 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 14 Toång hôïp: Thaày Hoùa
Bài 2. CĂN THỨC BC HAI.
HNG ĐẲNG THỨC BC HAI
A. KIN THC TRNG TÂM
Vi A là biểu thức đi s, ta gi
A
là căn thc bc hai ca A, còn A đưc gi biểu thức
lấy căn hoặc biểu thức dưi dấu căn.
A
xác định (hay có nghĩa) khi và chỉ khi
0A
.
Hng đng thc
neáu
neáu
2
0
0.
AA
AA
AA


B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Tìm giá trị của biểu thc chứa căn bậc hai
S dụng hằng đng thc
neáu
neáu
2
0
0.
AA
AA
AA


Ví d 1: Tính:
a)
25
; b)
2
2, 5
; c)
81
100
; d)
121
49


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2: Tính:
a)
2
13
; b)
2
2
; c)
64
25
; d)
36
169


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Chương
1
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 15 Toång hôïp: Thaày Hoùa
Ví d 3: Rút gọn các biểu thức sau:
a)
2
32
; ĐS:
32
. b)
2
11 3
; ĐS:
11 3
.
c)
4 23
; ĐS:
31
. d)
7 43
. ĐS:
23
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4: Rút gọn các biểu thức sau:
a)
2
23
; ĐS:
23
. b)
2
73
; ĐS:
73
.
c)
6 25
; ĐS:
51
. d)
8 27
. ĐS:
17
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5: Thc hiện các phép tính:
a)
196 25 5 81
; ĐS:
25
. b)
32 : 16 289 49
; ĐS:
175
.
c)
2
10 3 10
; ĐS:
3
. d)
2
5 7 8 27 
. ĐS:
6
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 16 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6: Thc hiện các phép tính:
a)
64 25 10 36
; ĐS:
100
. b)
81 : 9 169 225
; ĐS:
600
.
c)
2
71 7
; ĐS:
1
. d)
2
3 1 4 23
. ĐS:
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7: Chứng minh:
a)
2
3 7 16 6 7 
; b)
11 20 6 11 3
;
c)
41 12 5 41 12 5 2 5 
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 17 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8: Chứng minh:
a)
2
1 2 3 22 
; b)
6 25 5 1 
; c)
7 43 7 43 23 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tìm điều kiện để biu thc chứa căn bậc hai có nghĩa
A
xác định (hay có nghĩa) khi và chỉ khi
0A
.
Ví d 9: Với giá trị o của
a
thì mỗi căn thức sau có nghĩa:
a)
72a
; ĐS:
0a
. b)
13
3a
; ĐS:
0a
.
c)
19 4a
; ĐS:
19
4
a
. d)
27 6a
. ĐS:
9
2
a
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 18 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10: Với giá trị nào của
a
thì mỗi căn thức sau có nghĩa:
a)
86a
; ĐS:
0a
. b)
10
9
a
; ĐS:
0a
.
c)
24 10a
; ĐS:
12
5
a
. d)
17 5a
. ĐS:
17
5
a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11: Với giá trị nào của
x
thì mỗi căn thức sau có nghĩa:
a)
15
2x
; ĐS:
2x
. b)
17
12
x
; ĐS:
12x
.
c)
2
10 30
31
x
x
; ĐS:
1
3
x
. d)
2
42
45
x
xx

. ĐS:
1
2
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 19 Toång hôïp: Thaày Hoùa
Ví d 12: Với giá trị nào của
x
thì mỗi căn thức sau có nghĩa:
a)
1
3
x
; ĐS:
3x 
. b)
22
5 x
; ĐS:
5
x
.
c)
2
22 5
1
x
x
; ĐS:
22
5
x
. d)
2
2
23
x
xx

. ĐS:
2x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Rút gọn biu thc cha căn bậc hai
Dùng hằng đng thc
neáu
neáu
2
0
0.
AA
AA
AA


Ví d 13: Rút gọn các biểu thức sau:
a)
vi
0a
; ĐS:
3a
. b)
2
81 9aa
vi
0a
; ĐS:
0
.
c)
42
25 3aa
; ĐS:
2
2
a
. d)
63
92aa
vi
0a
. ĐS:
3
5a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 20 Toång hôïp: Thaày Hoùa
Ví d 14: Rút gọn các biểu thức sau:
a)
2
2 a
vi
0a
; ĐS:
2a
. b)
2
16 4aa
vi
0a
; ĐS:
0
.
c)
42
4aa
; ĐS:
2
3a
. d)
63
aa
vi
0a
. ĐS:
0
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 15: Rút gọn các biểu thức sau:
a)
2
4a
vi
4a
; ĐS:
4a
. b)
2
54aa
vi
5a
; ĐS:
53a
.
c)
2
69aa
vi
3a 
; ĐS:
3a
. d)
2
4 4 12aa a 
vi
1
2
a
. ĐS:
1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 16: Rút gọn các biểu thức sau:
a)
2
1a
vi
; ĐS:
1a
. b)
2
2 aa
vi
2a
; ĐS:
2
.
c)
2
21aa
vi
1a 
; ĐS:
1a
. d)
2
9 6 13aa a 
vi
1
3
a
. ĐS:
1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 21 Toång hôïp: Thaày Hoùa
Dạng 4: Phân tích đa thức thành nhân t
Dùng kết quả
2
2
aa a
.
Ví d 17: Phân tích đa thức thành nhân tử
a)
2
7x
; b)
2
43x
; c)
2
27 7xx
; d)
2
9 62 2
xx

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 18: Phân tích đa thức thành nhân tử
a)
2
3x
; b)
2
95x
; c)
2
22 2xx
; d)
2
4 43 3xx

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 5: Giải phương trình
ớc 1: Tìm điều kiện xác định.
c 2: Biến đổi hai vế v các phương trình đã biết cách gii.
ớc 3: Đối chiếu điều kiện rồi kết luận nghiệm của phương trình.
Các phép biến đổi thường gp
2
0B
AB
AB


2
0
||
B
AB
AB

22
| || |A B AB A B 
.
Ví d 19: Giải các phương trình sau:
a)
2
50x 
; ĐS:
5x 
. b)
2
4 20x 
; ĐS:
1
2
x 
.
c)
2
25 5 0xx 
; ĐS:
5
x 
. d)
2
4 42 2 0xx 
. ĐS:
2
2
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 22 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 20: Giải các phương trình sau:
a)
2
20x 
; ĐS:
2x

. b)
2
4 30x 
; ĐS:
3
4
x
.
c)
2
23 3 0xx 
; ĐS:
3x 
. d)
2
22 2 0xx 
. ĐS:
2x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 21: Giải các phương trình sau:
a)
2
8x
; ĐS:
8x 
. b)
2
9 10x
; ĐS:
10
3
x 
.
c)
2
4 19 0x 
; ĐS:
19
2
x 
. d)
2
49 | 14 |x 
. ĐS:
2x 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 23 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 22: Giải các phương trình sau:
a)
2
3x
; ĐS:
3x 
. b)
2
16 1x
; ĐS:
1
4
x 
.
c)
2
25 125 0
x 
; ĐS:
25x 
. d)
2
36 | 12 |x 
. ĐS:
2x

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 23: Giải các phương trình sau:
a)
2
23x 
; ĐS:
{ 1; 5}S

. b)
2
25 10 1xx 
; ĐS:
{4; 6}S
.
c)
2
4 41xx x

; ĐS:
S

. d)
2
9 61xx x 
; ĐS:
S 
.
e)
2 10xx 
; ĐS:
1x
. f)
2 30xx 
. ĐS:
9x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 24 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 24: Giải các phương trình sau:
a)
2
14x 
; ĐS:
3
5
x
x

. b)
2
96 1xx
; ĐS:
4
2
x
x
.
c)
2
2 12xx x 
; ĐS:
3
2
x
. d)
2
69 1xx x 
; ĐS:
S 
.
e)
4 40xx 
; ĐS:
4
x
. f)
4 50xx 
. ĐS:
25x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 25 Toång hôïp: Thaày Hoùa
C. BÀI TẬP VN DNG
Bài 1: Tính
a)
; b)
2
3, 7
; c)
324
169
; d)
25
361


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2: Rút gọn các biểu thức sau:
a)
2
35
; ĐS:
35
. b)
2
73
; ĐS:
37
.
c)
14 2 13
; ĐS:
13 1
. d)
12 2 11
. ĐS:
1 11
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3: Thc hiện phép tính:
a)
16 625 5 81
; ĐS:
55
. b)
35 : 25 4 100 
; ĐS:
50
.
c)
2
53 5
; ĐS:
3 25
. d)
2
5 6 7 26 
. ĐS:
6
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 26 Toång hôïp: Thaày Hoùa
Bài 4: Chứng minh
a)
2
3 11 20 6 11 
; b)
7 11 4 7 2

; c)
6 25 6 25 2 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5: Với giá trị nào ca
a
thì mỗi căn thức sau có nghĩa:
a)
2a
; ĐS:
0a
. b)
5a
; ĐS:
0a
.
c)
92a
; ĐS:
9
2
a
. d)
73a
. ĐS:
7
3
a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6: Với giá trị nào ca
x
thì mỗi căn thức sau có nghĩa:
a)
1
2
x
; ĐS:
2x 
. b)
7
7
x
; ĐS:
7x
.
c)
2
13
2
x
x
; ĐS:
1
3
x
. d)
2
2
23
x
xx

. ĐS:
2x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 27 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7: Rút gọn các biểu thức sau:
a)
2
2 a
vi
0
a
; ĐS:
2a
. b)
2
93aa
vi
0a
; ĐS:
0
.
c)
42
aa
; ĐS:
0
. d)
63
16 4aa
vi
0a
. ĐS:
3
8a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8: Rút gọn các biểu thức sau:
a)
2
2a
vi
2a
; ĐS:
2a
. b)
2
1 aa
vi
1a
; ĐS:
1
.
c)
2
44aa
vi
2a 
; ĐS:
. d)
2
16 8 1 4aa a 
vi
1
4
a
. ĐS:
1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 28 Toång hôïp: Thaày Hoùa
Bài 9: Phân tích đa thức thành nhân tử:
a)
2
13x
; b)
2
42x
; c)
2
25 5xx

; d)
2
22 2xx

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10: Giải các phương trình sau:
a)
2
20x 
; ĐS:
2x 
. b)
2
16 7 0x 
; ĐS:
7
4
x 
.
c)
2
2 13 13 0xx

; ĐS:
13x
. d)
2
4 43 3 0xx 
. ĐS:
3
2
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11: Giải các phương trình sau:
a)
2
3x
; ĐS:
3x 
. b)
2
95x
; ĐS:
5
3
x 
.
c)
2
4 50x 
; ĐS:
5
2
x 
. d)
2
169 | 4 |x 
; ĐS:
4
13
x 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 29 Toång hôïp: Thaày Hoùa
Bài 12: Giải các phương trình sau:
a)
2
22
x

; ĐS:
{0; 4}S
. b)
2
44 3xx
; ĐS:
{ 1; 5}S 
.
c)
2
4 43xx x 
; ĐS:
1
2
x 
. d)
2
9 61 1
xx x 
. ĐS:
S 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 30 Toång hôïp: Thaày Hoùa
Bài 3. LIÊN H GIA PHÉP NHÂN VÀ PHÉP KHAI PHƯƠNG
A. KIN THC TRNG TÂM
1. Quy tắc
Muốn khai phương một tích các số không âm, ta th khai phương từng thừa số rồi nhân
các kết quả lại với nhau.
Muốn nhân các căn bậc hai của các số không âm, ta th nhân các số dưới du căn với
nhau rồi khai phương kết quả đó.
C th: vi
,0
ab
,
ab a b
.
2. Chú ý
Với hai biểu thức không âm A và B, ta có
AB A B
.
Đặc biệt khi
0A
thì
2
2
A AA
.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Khai phương một tích
Dựa vào quy tắc khai phương một tích: vi
,0ab
,
ab a b
.
Nh chú ý điều kiện áp dụng.
Ví d 1. Tính: a)
12,1 160
; b)
2500 4, 9 0,9
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Tính: a)
22
41 40
; b)
81 6,25 2,25 81
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Đẳng thức
(1 ) 1xy x y
đúng với những giá tr nào ca
x
y
?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Nhân các căn bậc hai
Dựa vào quy tắc nhân các căn bậc hai: vi
,0ab
,
a b ab
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 31 Toång hôïp: Thaày Hoùa
Ví d 4. Tính
a)
72 50
; b)
12, 8 0, 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Tính
a)
40 20 4,5
; b)
2 12 1
3252

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Thc hiện các phép tính:
a)
20 45 5 5 
; b)
12 3 27 3
; c)
5 31 51 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Tính
a)
2
73
; b)
2
82
; c)
53 27 53 27
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 32 Toång hôïp: Thaày Hoùa
Dạng 3: Rút gon, tính giá trị của biểu thức
Trước hết tìm điều kiện của biến để biểu thức có nghĩa (nếu cần).
Áp dụng quy tắc khai phương một tích, quy tắc nhân các căn bậc hai, các hng đẳng thức
để rút gọn.
Thay giá trị của biến vào biểu thức đã rút gọn rồi thực hiện các phép tính.
Ví d 8. Rút gọn các biểu thức sau:
a)
35
5 27
xx
vi
0x
; b)
62
( 2)xx
vi
2x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Rút gọn các biểu thức sau:
a)
3
60
15
x
x
; b)
2
16 6 9xx

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Rút gọn biểu thức
2
25 2 1M xx x 
vi
01
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Rút gọn các biểu thức sau:
a)
4 23 3
; b)
8 2 15 3
; c)
9 45 5
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 33 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 12. Rút gọn các biểu thức sau:
a)
21xx
; b)
22 1xx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Viết biểu thức dưi dạng tích
Vận dụng các phương pháp phân tích đa thức thành nhân tử
Đặt nhân tử chung.
Dùng hằng đng thc.
Nhóm hạng tử.
Ví d 13. Phân tích thành nhân tử (với điều kin các biểu thức dưới dấu căn đều có nghĩa)
a)
33
; b)
3x xy
; c)
x y yx
; d)
x x xy y

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 14. Phân tích thành nhân tử (với điều kin các biểu thức dưới dấu căn đều có nghĩa)
a)
3
25xx
; b)
96x xy y
; c)
33
xy
; d)
2
92 3
xx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 34 Toång hôïp: Thaày Hoùa
Dạng 5: Giải phương trình
c 1: tìm điu kiện để biểu thức có chứa căn thức có nghĩa.
ớc 2: Áp dụng quy tắc khai phương một tích, hoc các hng đẳng thức đưa phương
trình đã cho về dạng phương trình đơn giản hơn.
Chú ý: có thể đưa về dng tích
0
0
0
A
AB
B

;
2
00AA
;
3
00
AA
.
Ví d 15. Giải phương trình
2
25 ( 5) 15x

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 16. Giải phương trình
2
9 90 225 6xx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 17. Giải phương trình
2
25 2 5
xx
. .................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 18. Giải phương trình
11
5 9 45 25 125 6
35
xx x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 19. Giải phương trình
1
2x
x

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 35 Toång hôïp: Thaày Hoùa
Dạng 6: Chứng minh bất đẳng thức
Có thể dùng một trong hai cách
Cách 1: Biến đổi tương đương.
Cách 2: vi
,0ab
thì
22
ab a b
.
Ví d 20. Không dùng máy tính hoặc bng s, chứng minh rằng:
5867

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 21. Không dùng máy tính hoặc bng s, chứng minh rằng
32 231
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 22. Cho
0a
, chứng minh rằng
93aa
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 23. Cho
a
,
b
,
. Chứng minh rằng
a)
2
a b ab
; b)
a b c ab bc ca
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 24. Cho
1
2
a
, chứng minh rằng
21aa
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 36 Toång hôïp: Thaày Hoùa
C. BÀI TẬP VN DNG
Bài 1. Áp dụng quy tắc nhân các căn bậc hai, hãy tính
a)
10 40
; b)
5 45
; c)
52 13
; d)
2 162
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Áp dụng quy tắc khai phương một tích hãy tính
a)
45 80
; b)
75 48
; c)
90 6, 4
; d)
2, 5 14, 4
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Rút gọn rồi tính
a)
22
6, 8 3, 2
; b)
22
21, 8 18,2
; c)
22
117,5 26,5 1440
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Tính
a)
400 0, 81
; b)
53
27 20
; c)
22
( 5) 3
; d)
22
252 5 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 37 Toång hôïp: Thaày Hoùa
Bài 5. Rút gọn các biểu thức sau:
a)
3 8 2 15
; b)
12 2xx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Phân tích thành nhân tử
a)
5aa
; b)
vi
0a
; c)
44aa
; d)
4 3 12
xy x y
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Giải phương trình
a)
53x 
; b)
10 2x 
; c)
21 5
x 
;
d)
4 5 12
x
; e)
2
49 1 2 35 0xx
; f)
2
95 3 0xx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 38 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Rút gọn các biểu thức: a)
2
4( 3)a
vi
3a
;
b)
2
9( 2)b
vi
2b
; c)
22
( 1)aa
vi
0a
; d)
22
( 1)bb
vi
0b
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Tính: a)
32xx
; b)
x yx y
;
c)
25 49
33
33



; d)
135135
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 39 Toång hôïp: Thaày Hoùa
Bài 10. Tìm
x
y
, biết
13 2 2 3xy x y
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. (*) Rút gọn biểu thức
( 14 6) 5 21
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. (*) Chứng minh rằng
73 62
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 13. (*) Tính giá trị của biểu thức
7 13 7 13
A 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 40 Toång hôïp: Thaày Hoùa
Bài 4. LIÊN H GIA PHÉP CHIA VÀ PHÉP KHAI PHƯƠNG
A. KIN THC TRNG TÂM
1. Quy tắc
Muốn khai phương một thương
0, 0
a
ab
b

, ta có th lần lượt khai phương số
a
b
,
ri ly kết quả th nhất chia cho kết quả th hai.
Mun chia căn bc hai ca s
a
không âm cho căn bậc hai ca s dương
b
, ta th chia s
a
cho s
b
rồi khai phương kết quả đó.
C th: vi s
a
không âm và số dương
b
, ta có
aa
b
b
.
2. Chú ý
Vi các biểu thức
, 0; 0AB A B
, ta có
AA
B
B
.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: khai phương một thương
Dùng quy tắc khai phương một thương: với s
a
không âm và số dương
b
, ta có
aa
b
b
.
Ví d 1. Tính
a)
4 49
:
25 121
; b)
36
49
a
vi
0a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Tính
a)
22
65 52
225
; b)
11 7
: 1, 4 4 : 1, 4 4
99
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 41 Toång hôïp: Thaày Hoùa
Ví d 3. Đẳng thức
55
2
2
xx
y
y

đúng với những giá tr nào ca
x
y
?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Chia các căn bc hai
Dựa vào quy tắc chia các căn bc hai: vi s
a
không âm và số dương
b
, ta có
aa
b
b
.
Ví d 4. Tính
a)
45 : 80
; b)
5 35
(2.3) : 2 3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Tính
a)
54 : 2 : 3
; b)
3 52
:
75 117
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Thc hiện phép tính
a)
( 45 125 20) : 5
; b)
(2 18 3 8 6 2) : 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 42 Toång hôïp: Thaày Hoùa
Dạng 3: Rút gọn, tính giá trị của biểu thức
Tìm điu kiện của biến để biểu thc chưa căn thức có nghĩa.
Áp dụng quy tắc khai phương một thương, một tích hay quy tắc nhân, chia các căn bc
hai để rút gọn.
Thay giá trị của biến vào biểu thức đã rút gọn rồi thực hiện phép tính.
Ví d 7. Rút gọn biểu thức
16 12
12 8
33
33
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Rút gọn rồi tính giá tr biểu thức sau vi
6x
22
165 124
.
369
Ax
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Cho biểu thức
1
1
:
11
y
x
B
yx

. Rút gọn rồi tính giá tr biểu thức
B
vi
5x
,
10
y
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Giải phương trình
ớc 1: tìm điều kiện để biểu thức cha căn thức có nghĩa.
ớc 2: nếu hai vế của phương trình không âm thì có thể bình phương hai vế để kh du căn.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 43 Toång hôïp: Thaày Hoùa
Ví d 10. Giải phương trình
a)
31
2
2
x
x
. b)
57
1
21
x
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Áp dụng quy tắc khai phương một thương, hãy tính
a)
9
169
; b)
25
144
; c)
9
1
16
; d)
7
2
81
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Áp dụng quy tắc chia hai căn bậc hai, hãy tính
a)
2300
23
; b)
12, 5
0, 5
; c)
192
12
; d)
6
150
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Tính
a)
72 : 8
; b)
( 28 7 112) : 7
;
c)
49 1
:3
88
; d)
54 : 6xx
0
x
; e)
1 32 56
:
125 35 225
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 44 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Rút gọn biểu thức
a)
3
63
7
y
y
vi
0y
; b)
3
5
48
3
x
vi
0x
;
c)
2
45
20
mn
m
vi
,0mn
; d)
21
21
xx
xx


vi
0x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho
23
:
32
x
, tính giá trị của biểu thức
65Mx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Tìm
x
thỏa điều kiện
a)
23
2
1
x
x
; b)
23
2
1
x
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 45 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Chứng minh đẳng thc:
6 25 5 26
51 3 2


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 46 Toång hôïp: Thaày Hoùa
Bài 6. BIN ĐI ĐƠN GIN BIU THC CHA CĂN BC HAI
A. KIN THC TRNG TÂM
1. Đưa thừa s ra ngoài dấu căn
Với hai biểu thức A, B vi
, ta có
neáu
neáu
2
0
0
AB A
AB A B
A
AB

2. Đưa thừa s vào trong dấu căn
Với hai biểu thức A, B vi
, ta có
neáu
neáu
2
2
0
0
AB A
AB
A
AB
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Đưa thừa s ra ngoài dấu căn
Biến đổi biểu thức ly căn thành dạng tích, trong đó thừa s bình phưởng ca mt
s hoc một biểu thức.
Khai phương thừa s này và viết kết quả ra ngoài dấu căn theo công thức
neáu
neáu
2
0
0
AB A
AB A B
A
AB

Ví d 1. Đưa tha s ra ngoài dấu căn
a)
45
; b)
2400
; c)
147
; d)
1, 2 5
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Đưa tha s ra ngoài dấu căn
a)
50 6
; b)
14 21
; c)
32 45
; d)
125 27
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Đưa tha s ra ngoài dấu căn
a)
18x
; b)
2
75xy
; c)
32
605xy
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 47 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Đưa tha s ra ngoài dấu căn
a)
2
128( )xy
; b)
2
150 4 4 1xx
; c)
32
6 12 8xx x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Đưa thừa s vào trong dấu căn
neáu
neáu
2
2
0
0
AB A
AB
A
AB
Ví d 5. Đưa tha s vào trong dấu căn
a)
35
; b)
56
; c)
2
35
7
; d)
1
4
8
; e)
0, 06 250
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Đưa tha s vào trong dấu căn
a)
xx
; b)
x
y
y
; c)
xy
yx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Đưa tha s vào trong dấu căn
a)
3
x
x
vi
0x
; b)
1
x
x
vi
0x
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 48 Toång hôïp: Thaày Hoùa
Ví d 8. Ch ra ch sai trong các biến đổi sau:
a)
2
33
77
x
x
; b)
2
yy
xy y x y xy
xx

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: So sánh hai số
ớc 1: Đưa thừa s bên ngoài vào trong dấu căn.
ớc 2: So sánh hai căn bậc hai
0
ab a b
.
c 3: Kết luận.
Ví d 9. Không dùng máy tính hoặc bng số, hãy so sánh
a)
56
73
; b)
2
32
3
1
51
5
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Không dùng máy tính hoặc bng số, hãy so sánh
a)
5
2
4
2
7
3
; b)
3 11
2 23
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Sp xếp theo thứ tự tăng dần
a)
22
6 3, 7 2, 15 , 9 1
59
; b)
21
71, 12, 21, 5 3
32

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 49 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Rút gọn biu thc
S dụng phép biến đổi đưa tha s ra ngoài (vào trong) để rút gọn biểu thức.
Ví d 12. Rút gọn các biểu thức
a)
2 125 5 45 6 20
; b)
2 75 4 27 12
.
c)
16 2 40 90b bb

vi
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 5: Tìm x
ớc 1: đặt điều kiện để biểu thức có cha căn bậc hai có nghĩa (nếu có).
c 2: vận dụng phép biến đổi đưa thừa s ra ngoài (vào trong) dấu căn để tìm
x
.
2
0b
ab
ab

;
0a b ab

.
Ví d 13.Tìm
x
, biết
a)
25 35x
; b)
46x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 50 Toång hôïp: Thaày Hoùa
C. BÀI TẬP VN DNG
Bài 1. Đưa tha s ra ngoài dấu căn:
a)
2
7
x
vi
0x
; b)
2
8
y
vi
0y
; c)
3
25x
vi
0x
;
d)
4
48y
vi
0y
; e)
3
75a
vi
0
a
; f)
52
98 6 9ab b
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Đưa tha s vào trong dấu căn
a)
5
x
vi
0
x
; b)
13
x
vi
0x
; c)
11
x
x
vi
0x
; d)
29
x
x
vi
0x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. So sánh các số sau
a)
37
2 15
; b)
45
53
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Rút gọn các biểu thức sau
a)
75 48 300
; b)
98 72 0,5 8
; c)
9 16 49aa a
vi
0a
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 51 Toång hôïp: Thaày Hoùa
Bài 5. Chứng minh đẳng thc:
x y yx x y
xy
xy


vi
,0xy
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Tìm
x
, biết
a)
25 35x
; b)
3 12
x
; c)
4 162x
; d)
2 10
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 52 Toång hôïp: Thaày Hoùa
Bài 7. BIN ĐI ĐƠN GIN BIU THC CHA CĂN BC HAI
(tiếp theo)
A. KIN THC TRNG TÂM
1. Kh mẫu của biểu thc lấy căn
Với A, B là các biểu thức thì
0; 0
A AB
AB
B
B

.
2. Trục căn thức mẫu
Với A, B, C là các biểu thức, ta có
(1)
0
A AB
B
B
B

;
(2)
2
2
0;
CA B
C
A AB
AB
AB

;
(3)
0; 0;
CA B
C
A B AB
AB
AB


.
Chú ý: hai biểu thức
AB
AB
được gọi là hai biểu thức liên hợp của nhau.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Khử mẫu của biểu thc lấy căn
Vận dụng công thức
0; 0
A AB
AB
B
B

để kh mẫu.
Chú ý điều kiện để áp dụng được công thc.
Ví d 1. Kh mẫu của biểu thức ly căn
5
72
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Kh mẫu của biểu thức ly căn
a)
11
27x
; b)
3
3
5
x
y
; c)
32
1
3 31xxx 
; d)
23
11
xx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 53 Toång hôïp: Thaày Hoùa
Dạng 2: Trục căn thức mẫu
Có thể s dụng một trong hai cách sau
Cách 1: Phân tích tử thức thành nhân tử có thừa s là căn thc dưới mẫu.
Chia c tử và mẫu cho thừa s chung.
Cách 2: Nhân cả tử và mẫu của biểu thức với biểu thức liên hợp của mẫu thức đ làm mt
dấu căn ở mẫu thức.
Ví d 3. Trc căn thc mẫu
a)
33
53
; b)
22
21
; c)
3
7
; d)
2
31
; e)
3
15 4
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Trc căn thc mẫu
a)
53 35
53 35
; b)
2
12 3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Trc căn thc mẫu
a)
1
1
a
a
vi
0a
;
; b)
1
1ab
; vi
0a
;
;
1
4
ab
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 54 Toång hôïp: Thaày Hoùa
Dạng 3: Rút gọn biu thc
Thc hiện phép biến đổi đơn giản biểu thức chưa căn bc hai rồi thu gọn các căn thc
đồng dạng hoặc rút gọn các tha s chung ở tử và mu.
Ví d 6. Rút gọn các biểu thức sau
a)
1
200 50 4
8

; b)
3 72 4,5 12,5
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Rút gọn các biểu thức sau
a)
23
12
32


; b)
21 1
42
9 2 18

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Rút gọn biểu thức
1
97 5 3
ab
P ab ab
b a ab

vi
,0ab
.
Dạng 4: Chứng minh đẳng thức
Thc hiện một trong các cách sau để chứng minh đẳng thức
AB
.
Cách 1: biến đổi vế trái (A) v vế phải (B).
Cách 2: biến đổi vế phải (B) v vế trái (A).
Cách 3:
0A B AB 
.
Ví d 9. Chứng minh đẳng thức:
341
26
526265


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 55 Toång hôïp: Thaày Hoùa
Ví d 10. Cho
0
ab
, chứng minh rằng
22
2
4
82
2
6
15
75
a ab b
ab
b
ab
ab

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Kh mẫu của biểu thức ly căn
a)
3
80
; b)
2
3
; c)
2
5
x
; d)
3
x
vi
0x
; e)
2
75
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Trc căn thc mu
a)
53
2
; b)
2
2
aa
a
; c)
13
23 5
; d)
2 10 5
4 10
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 56 Toång hôïp: Thaày Hoùa
Bài 3. Trc căn thc mu
a)
8
53
; b)
1
52 25
; c)
57
57
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Rút gọn các biểu thức sau
a)
2 3 5 3 60 
; b)
5 2 2 5 5 250 
;
c)
22
31 31

; d)
xy
xy
vi
,0xy
xy
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Chứng minh đẳng thc:
x y yx x y
xy
xy


vi
,0xy
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 57 Toång hôïp: Thaày Hoùa
Bài 6. Tính a)
2
1
23


;
b)
111 1
1 2 2 3 3 4 99 100


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho
75 12
147 48
x
. Chứng minh rằng
3x
là một số nguyên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Biến đổi
26
10 4 3
v dng
3
ab
. Tính tích
ab
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 58 Toång hôïp: Thaày Hoùa
Bài 8. RÚT GN BIU THC CHA CĂN THC BC HAI
A. KIN THC TRNG TÂM
Để rút gọn biểu thức cha căn thc bậc hai, ta có thể thc hiện theo các bước như sau
c 1: Đặt điều kiện thích hợp cho ẩn để biểu thức nghĩa (thưng thì đ bài cho sẵn hoặc
có thể tìm sau khi tìm được mẫu thức chung).
c 2: Phân tích các mẫu thức thành nhân tử để tìm mẫu thức chung.
c 3: Quy đng mẫu thức ri thc hiện phép tính tương tự như đối với phân thức đi s.
c 4: Rút gọn tử thức và phân tích tử thức thành nhân tử (nếu có).
c 5: Chia tử và mẫu cho nhân tử chung (nếu có) để rút gọn.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Rút gọn biu thc ch cha cộng, trừ căn thức
Đưa tha s ra ngoài hoặc vào trong dấu căn hoc kh mẫu ca biểu thức ly căn ri rút
gọn các hạng t đồng dng.
Ví d 1. Rút gọn các biểu thức sau:
a)
20 80 45
; b)
18 50 98
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Rút gọn các biểu thức sau:
a)
11
4, 5 72 5
22

; b)
25 3 98
40 10 12
623

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Rút gọn biểu thức
3 33 3
2 16 7 25 3 36M x xy xy y xy 
vi
0x
,
0y
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 59 Toång hôïp: Thaày Hoùa
Ví d 4. Rút gọn biểu thức
33
11
22
N

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Biến đổi biểu thc
1
54
ba
a b ab

v dng
xy z
ab
a b ab



, trong đó
,0ab
;
,,
x yz
. Tính tổng
x yz
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 2:t gn biu thc có chứa các phép toán cộng, trừ, nhân, chia căn thức i dng
phân thc đi s
Xem phần kiến thức trng tâm.
Ví d 6. Rút gọn biểu thức
y
x
P
xy x y xy


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Rút gọn biểu thức
3:
3
xy
x
P
y x xy



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 60 Toång hôïp: Thaày Hoùa
Ví d 8. Rút gọn biểu thức
:( )
xx yy
P xy x y
xy




.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Rút gọn biểu thức
1
1:
11
xx
P
x x xx





.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Rút gọn biểu thức
1 2 3 122
1
11
x xx
P
xx
xx x







.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dng 3: Rút gn ri tính giá tr của biểu thc hoc rút gn ri tìm giá tr của biến đ biu
thc thỏa điu kiện nào đó.
c 1: Tìm điều kiện để biểu thức có nghĩa rồi rút gọn.
c 2: Thay giá tr ca biến (tha điu kiện) vào biểu thức đã đưc rút gọn rồi thc hin
phép tính.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 61 Toång hôïp: Thaày Hoùa
Ví d 11. Cho biểu thức
1 2 25
4
22
xxx
P
x
xx



.
a) Rút gọn
P
. b) Tính giá trị ca
P
vi
2
23
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 12. Cho biểu thức
2
2 24
:
1
( 1)
21
xx x
P
x
x
xx





.
a) Rút gọn
P
. b) Tính giá trị ca
P
, biết
| 5| 4x 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 13. Cho biểu thức
2
2
22
xy x y
x
P
xy
x yxy





.
a) Rút gọn
P
. b) Tính giá trị ca
P
, biết
4
9
x
y
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 62 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 14. Cho biểu thức
1 2 21
:
4
2 44 2
P
x
x xx x












.
a) Rút gọn
P
. b) Tìm
x
để
1
2
P 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 15. Cho biểu thức
1 3 33
:
3 9 33
xx
P
x xxxx xx







.
a) Rút gọn
P
. b) Tìm
x
để
1P
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 63 Toång hôïp: Thaày Hoùa
Dng 4: Rút gn biu thc ri chng minh biu thc mt tính cht khác hoc m
GTLN, GTNN của biu thc
c 1: Tìm điều kiện để biểu thức có nghĩa (nếu có).
c 2: Rút gọn biểu thức.
c 3: Da vào yêu cu bài toán để biến đổi biểu thức đã rút gọn đi đến điều phải
chứng minh hoặc điều phải tìm.
Lưu ý
Phân số hay phân thức
A
B
là s nguyên khi và chỉ khi B là ước ca A.
Nếu
AM
thì biểu thức A có giá trị lớn nhất là M.
Nếu
Bm
thì biểu thức B có giá trị nhỏ nhất là
m
.
Biểu thức C không âm với mi giá tr ca biến khi chỉ khi
vi mi giá tr ca
biến. Trường hợp biểu thức dương hoặc âm hoặc không dương thì làm tương tự
Ví d 16. Chứng minh rằng giá tr của biểu thức sau là hng s với mọi giá tr ca
x
y
:
2
2 x y xy yx
x
A
xy y xy x
xy





...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 17. Cho biểu thức
2 11
1 11
xx
B
xx x x x



.
a) Rút gọn
B
.
b) Chứng minh rằng
B
luôn luôn có giá trị không âm với mọi giá tr thích hợp của
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 64 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 18. Cho biểu thức
12
:1
1
11
x
C
x
x xx x x






.
a) Rút gọn
C
.
b) Chứng minh rằng
C
luôn luôn có giá trị âm vi mọi giá tr thích hợp của
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 19. Cho biểu thức
1 61
2:
23 1
23 1
xxx
D
xx
xx












.
a) Rút gọn
D
. b) Chứng minh rằng
3
2
D
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 65 Toång hôïp: Thaày Hoùa
Ví d 20. Cho biểu thức
11 4
:2
1
11
x
P
x
xx







.
a) Rút gọn
P
. b) Tìm giá tr lớn nhất của
P
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 21. Cho biểu thức
3 3 14 3
92
33
xx x
Q
x
xx





.
a) Rút gọn
Q
. b) Tìm giá tr nhỏ nhất ca
Q
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 5: Chứng minh đẳng thức
Biến đổi vế này thành vế kia hoặc biến đổi c hai vế cùng bằng một biểu thức thc ba.
Ví d 22. Chứng minh đẳng thức sau vi
0x
,
0y
xy
.
4
:
x y xy x y
x
xy
xy x xy





.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 66 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 23. Chứng minh đẳng thức sau vi
0x
,
0y
xy
.
2
:( ) 1
xx yy y
xy x y
xy xy





.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Rút gọn các biểu thức sau:
a)
23 1
6 3 4 12
32 6

;
b)
32
6 3 25 2 36 2 9a a ab a
vi
,0ab
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 67 Toång hôïp: Thaày Hoùa
Bài 2. Biến đổi biểu thức
11
11
xx
xx


v dng
2
2
1
1
m
x
x
, trong đó
1x
. nh gtrị
ca
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Rút gọn rồi tính giá trị của biểu thức
P
vi
0, 36x
:
36
.
9
33
xx
P
x
xx


...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Chứng minh đẳng thc sau vi
0x
,
0y
,
1y
,
xy
:
1
4
.
xy xyy
x
xy
x y x yy y





...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 68 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho biểu thức
1 11
11
x
Px
xx x x







.
a) Rút gọn
P
.
b) Tìm các giá tr nguyên ca
x
để
P
có giá tr nguyên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho biểu thức
6 36
36
6
2 323
x x xx x
P
x
xx
x xx





.
a) Rút gọn
P
.
b) Vi giá tr nào của
x
thì
P
có giá trị lớn nhất? Giá tr lớn nhất đó là bao nhiêu?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 69 Toång hôïp: Thaày Hoùa
Bài 7. Cho biểu thức
2 3 3 2 15 11
3 1 23
xx x
P
x x xx



.
a) Rút gọn
P
.
b) Tìm giá tr nhỏ nhất ca
P
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 70 Toång hôïp: Thaày Hoùa
Bài 9. CĂN BC BA
A. KIN THC TRNG TÂM
1. Khái niệm
Căn bậc ba ca s
a
là s
x
sao cho
3
xa
. Ta viết
3
3
ax x a
.
Như vy
3
3
3
3
a aa
.
Nhận xét: Mi s thc đều có đúng 1 căn bậc ba.
Căn bậc ba ca s dương là số dương.
Căn bậc ba ca s âm là s âm.
Căn bậc ba ca s 0 là s 0.
2. Tính chất
Tương tự tính chất của căn bậc hai, nhưng căn bậc ba của một số luôn luôn xác định.
(1)
33
ab a b
; (2)
3 33
ab a b
; (3)
3
3
3
0
aa
b
b
b

B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Tìm căn bậc ba ca một số
Ví d 1. Hãy tìm
a)
3
216
; b)
3
729
; c)
3
1331
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Hãy tìm
a)
3
343
. b)
3
1000
. c)
3
1728
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Hãy tìm
a)
3
8
27
; b)
3
125
512
; c)
3
0, 064
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 71 Toång hôïp: Thaày Hoùa
Dạng 2: So sánh
ớc 1: Đưa thừa s vào trong dấu căn:
3
3
3
a b ab
.
ớc 2: So sánh hai số trong dấu căn:
33
ab a b
.
Ví d 4. So sánh
a)
3
7 345
; b)
33
2 6 3 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. So sánh
a)
33
23
18 12
34
; b)
33
130 1 và 3 12 1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Cho
0a
, hi s nào lớn hơn trong hai số
3
2a
3
3a
?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Thc hiện các phép tính
Vận dụng định nghĩa căn bậc ba ca mt số, các tính chất nhân các căn bc ba, chia các
căn bậc ba để thc hiện.
Ví d 7. Rút gọn các biểu thức
a)
33
3
8 27 64 
; b)
33 3
54 16 128
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 72 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Tính
a)
3 33
3
16 13,5 120 : 15
; b)
3 33
( 2 1)( 4 2 1) 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Tính
a)
3 33
3
( 5 1) 3 5( 5 1)
; b)
3 3 33
3
( 4 2 ) 6 2( 2 1)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Tính
33
52 52A 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Rút gọn biểu thức
a)
3
3
1 3 ( 1)x xx
; b)
3
3
2
1
1
x
xx

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 73 Toång hôïp: Thaày Hoùa
C. BÀI TẬP VN DNG
Bài 1. Tính
a)
33
3
2
162 2
3

; b)
33
33
11
2 : 16 22 : 53
23
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Tính
a)
3
33
32
; b)
3 33 3 3
5 3 25 15 9 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Rút gọn biểu thức
a)
3 3 3 33
3 (5 18 3 144) 5 50 
; b)
33 33
3
1
(12 2 16 2 2) 5 4 3
2



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 74 Toång hôïp: Thaày Hoùa
Bài 4. Tìm
x
biết
a)
3
33
1
2 27 343 729 2
7
x xx

; b)
3
32
93x xx 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Tính
33
52 7 52 7M

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 75 Toång hôïp: Thaày Hoùa
Bài. ÔN TP CHƯƠNG I
A. KIN THC TRNG TÂM
Vi s
a
không âm, ta có
2
0
x
ax
xa

.
Vi
,0ab
thì
ab a b

.
A
có nghĩa khi và chỉ khi
0
A
.
Với mọi s thc
,
ab
thì
33
ab a b
.
Các công thức biến đổi căn thức
(1)
2
AA
; (2)
AB A B
(vi
0; 0AB
);
(3)
AA
B
B
(vi
0; 0AB
); (4)
2
||AB A B
(vi
0B
);
(5)
2
A B AB
(vi
0; 0AB
); (6)
||
A AB
BB
(vi
0AB
0
B
);
(7)
A AB
B
B
(vi
0B
); (8)
2
()
C C AB
AB
AB
(vi
0A
2
AB
);
(9)
()C CA B
AB
AB
(vi
0; 0;A B AB
).
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Tìm điều kiện để căn thức xác định (hay có nghĩa)
Vi A, B là các biểu thức, ta có
A
có nghĩa khi và chỉ khi
0A
.
A
B
có nghĩa khi và chỉ khi
0B
.
A
B
có nghĩa khi và chỉ khi
0B
.
Ví d 1. Tìm điều kiện của
x
để các căn thc sau xác định
a)
35x
; b)
12
x
; c)
5
2x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 76 Toång hôïp: Thaày Hoùa
Ví d 2. Tìm điều kiện của
x
để các biểu thức sau xác định
a)
1
24
1
x
x

; b)
3
21
x
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Rút gọn biểu thức. Tính giá trị của biểu thức
Tìm điu kiện để biểu thức có nghĩa (nếu cn).
Áp dng các công thc biến đổi căn thức, quy tắc thc hiện các phép tính về phân thc
đại s để rút gọn biểu thức.
Thay giá trị của biến vào biểu thức đã rút gọn rồi thực hiện phép tính.
Ví d 3. Rút gọn các biểu thức sau
a)
9 25 49 1
: :3
16 36 8 8
; b)
22 2 2
45, 8 44, 2 6 ( 2 1) ( 2 1)




.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Rút gọn các biểu thức sau
a)
22
22
1 165 124 32
4
34 164
176 112
; b)
5( 6 1) 2 3
61 2 3


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 77 Toång hôïp: Thaày Hoùa
Ví d 5. Rút gọn biểu thức
2 9 32 1
5 6 23
x xx
P
xx x x



.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Cho biểu thức
2 1 3 11
9
33
xx x
P
x
xx



.
a) Rút gọn
P
. b) Tính giá trị ca
P
vi
7 43
4
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Cho biểu thức
1 566
:
9
33 2
P
x
xx x




.
a) Rút gọn
P
. b) Tính các giá tr nguyên của
x
để
P
có giá tr nguyên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 78 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Chứng minh biểu thức có một tính chất nào đó
Trước tiên tìm điều kiện để biểu thức có nghĩa.
Rút gọn biểu thức ri kết luận.
Ví d 8. Cho biểu thức
31
:
9
33
xx
P
x
xx




.
a) Rút gọn
P
. b) Chứng minh rằng
1
3
P
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Cho biểu thức
11
11 1
xx x
P
x xx x x


.
a) Rút gọn
P
.
b) Chứng minh rằng biểu thức
P
luôn luôn không âm với mọi giá tr ca
x
làm
P
xác định.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 79 Toång hôïp: Thaày Hoùa
Ví d 10. Cho biểu thức
1
:
1
xx
P
xxx x




.
a) Rút gọn
P
. b) Tìm giá tr lớn nhất của
P
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Giải phương trình
Tìm điều kiện để hai vế của phương trình có nghĩa (nếu cn).
Áp dụng công thức biến đổi căn thức đ đưa phương trình về dạng đơn giản hơn.
Nếu hai vế đều không âm thì ta có thể bình phương hai vế để kh dấu căn.
Ví d 11. Giải phương trình
a)
2
25(3 1) 10x 
; b)
35
32
xx
xx


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 12. Giải phương trình
a)
2
5 (2 1) 2xx 
; b)
21xx x 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 80 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
I. PHN TRC NGHIM
Câu 1. Điu kiện xác định của biểu thức
15x
A.
15x 
. B.
15
x
. C.
15x 
. D.
15x
.
Câu 2. Tìm
x
để biểu thức
2
1
( 2)x
có nghĩa.
A.
2x
. B.
2x
. C.
2x

. D.
2
x
.
Câu 3. Tìm nghiệm của phương trình
11
.
22
x
x
A.
2x
. B.
3x
. C.
6
x
. D.
1x
.
Câu 4. Cho
0a
, rút gọn biểu thức
3
a
a
ta được kết quả
A.
2
a
. B.
a
. C.
a
. D.
a
.
Câu 5. Cho
13 4 3 3ab
vi
a
,
b
các s nguyên. Tính giá trị ca biểu thức
33
Ta b
.
A.
9T
. B.
7T
. C.
9T 
. D.
7T 
.
Câu 6. Kết quả của phép tính
2
25 5
A.
25 2
. B.
2
. C.
2
. D.
2 25
.
Câu 7. Điu kiện để biểu thức
42x
xác định là
A.
2x
. B.
2
x
. C.
2
x
. D.
2
x
.
Câu 8. Cho biểu thức
22
( 3 1) (1 3)P 
. Khẳng định nào sau đây đúng.
A.
2P
. B.
2 23P 
. C.
23P 
. D.
23P
.
Câu 9. Tìm điều kiện của
x
để biểu thức
2
56xx
có nghĩa.
A.
2x
. B.
2x
hoc
3x
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 81 Toång hôïp: Thaày Hoùa
C.
23x
. D.
3x
.
Câu 10. Tìm điều kiện của
x
để đẳng thc
22
3
3
xx
x
x

đúng.
A.
2
x
. B.
2
x

. C.
3x 
. D.
3x
.
Câu 11. Giá tr ca
x
tha mãn
84 2x

A.
3
2
x 
. B.
1x
. C.
1x 
. D.
3
2
x
.
Câu 12. Cho
2
44Ka a a

vi
2
a
. Khng định nào sau đây đúng?
A.
2K 
. B.
2K
. C.
22Ka
. D.
22
Ka

.
Câu 13. Tìm tất cả các giá tr ca
x
tha mãn
2
(2 1) 9.
x

A.
5x

,
4
x
. B.
5
x
,
4
x
.
C.
5
x 
,
4x 
. D.
5x
,
4x

.
Câu 14. Chọn khẳng định \textbf{đúng} trong các khẳng định sau
A.
2019 2018
43 7 43 7 43 7 
.
B.
2019 2018
43 7 43 7 43 7

.
C.
2018 2019
43 7 43 7 7 43 
.
D.
2018 2019
43 7 43 7 43 7 
.
Câu 15. Kết quả rút gọn biểu thức
11
13 15 15 17

A.
13 17
2
. B.
17 13
2
. C.
17 13
. D.
17 13
2
.
Câu 16. Cho
63
39 6A aa
, vi
0a
. Khng định nào sau đây đúng?
A.
3
3Aa
. B.
0A
. C.
3
3Aa
. D.
3
15Aa
.
Câu 17. Tìm các giá tr ca
a
sao cho
1
0
a
a
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 82 Toång hôïp: Thaày Hoùa
A.
0a
. B.
01a
. C.
. D.
01a
.
Câu 18. Cho
2
4 44Qaa a 
, vi
2
a
. Khng định nào sau đây?
A.
52
Qa
. B.
32Qa

. C.
32
Qa

. D.
52
Qa
.
Câu 19. Kết qu rút gọn biểu thức
11
4
22
x
A
x
xx


vi
0x
,
4x
dạng
xm
xn
. Tính giá trị ca
mn
.
A.
2mn 
. B.
4mn

. C.
4mn
. D.
2mn
.
Câu 20. Rút gọn biểu thức
2
4(1 6 9 )Q xx 
vi
1
3
x 
.
A.
2(1 3 )Qx
. B.
2(1 3 )Qx
. C.
2(1 3 )Qx
. D.
2(1 3 )Qx
.
Câu 21. Kết quả rút gọn của biểu thức
1 12
:
1
11
a
K
a
a aa a






(vi
0a
,
) có dạng
ma n
a
. Tính giá trị
22
.mn
A.
22
10mn
. B.
22
2mn
. C.
22
1mn

. D.
22
5
mn
.
Câu 22. Giá tr của biểu thức
225
49
16
bằng
A.
13
4
. B.
13
4
. C.
43
4
. D.
43
4
.
Câu 23. Đẳng thức nào dưới đây đúng?
A.
2
7 ( 7)( 7)x xx
. B.
2
77 7x xx
.
C.
2
7 (7 )(7 )x xx
. D.
2
7 77x xx
.
Câu 24. Tính
4 16.M 
A.
6M
. B.
25M
. C.
52M
. D.
20M
.
Câu 25. Điu kiện của
x
để
4 x
có nghĩa là
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 83 Toång hôïp: Thaày Hoùa
A.
4x
. B.
1
4
x
. C.
1
4
x
. D.
4x
.
Câu 26. Tìm tất cả các giá tr ca
x
để biểu thức
2
x
có nghĩa.
A.
2x
. B.
2x
. C.
2x
. D.
0x
.
Câu 27. Đẳng thức nào sau đây đúng với mọi
0x
?
A.
2
93xx
. B.
2
93xx
. C.
2
99xx
. D.
2
99xx
.
Câu 28. Cho
2
46P aa
. Khẳng định o dưới đây đúng.
A.
4
Pa
. B.
4| |Pa
. C.
2 6| |Pa a
. D.
2||6P aa

.
Câu 29. Tính
12
3
M
.
A.
4M
. B.
3M
. C.
1M
. D.
2M
.
Câu 30. Cho biểu thức
2
Pa
vi
0a
. Khi đó biểu thức
P
bằng
A.
2
a
. B.
2a
. C.
2
2a
. D.
2
2a
.
Câu 31. Tính
9. 4M
.
A.
6M
. B.
5M
. C.
13M
. D.
36M
.
Câu 32. Cho
33
33
( 1) ( 1)Ma a 
. Khẳng định nào sau đây đúng?
A.
2Ma
. B.
1Ma
. C.
Ma
. D.
2Ma
.
II. PHN T LUẬN
Bài 1. Rút gọn các biểu thức sau
a)
9 45 9 45A 
; b)
2
10 25Bx x x 
vi
0x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 84 Toång hôïp: Thaày Hoùa
Bài 2. Tính
a)
( 8 18 5)( 50 5)
; b)
31 32231
23 4


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Giải phương trình
4 22
3
72
x
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho biểu thức
12 1
:
2
12
xx
P
xx x













.
a) Rút gọn
.P
b) Tính giá trị ca
P
khi
3 22
x

.
c) Tìm
x
để
1.P
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 85 Toång hôïp: Thaày Hoùa
Bài 5. Cho biểu thức
3 11
11
xx x
P
xxx x x x x




.
a) Rút gọn
P
.
b) Tìm các giá tr ca
x
để
10P
.
c) Tìm các giá tr nguyên ca
x
để
P
có giá tr nguyên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. [TS10 Hà Tĩnh, 2018-2019] Rút gọn biểu thức
75 3P 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. [TS10 Nghệ An, 2018-2019]
a) So sánh
2 3 27
74
.
b) Chứng minh đẳng thc
11 4
1
4
22
x
xx




, vi
0x
4x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 86 Toång hôïp: Thaày Hoùa
Bài 8. [TS10 Bắc Giang, 2018-2019] Tính giá trị của biểu thức
5 20 5 1A 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. [TS10 Trà Vinh, 2018-2019] Rút gọn biểu thức
2 75 3 48 4 27.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. [TS10 Phú Yên, 2018-2019] So sánh
5
26
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. [TS10 Quảng Trị, 2018-2019] Rút gọn biểu thức
2 5 3 45A 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. [TS10 Nam, 2018-2019] Cho biểu thức
32
9
33
aa
B
a
aa


vi
0, 9aa
.
a) Rút gọn
B
. b) Tìm các s nguyên
a
để
B
nhận giá trị nguyên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 87 Toång hôïp: Thaày Hoùa
Bài 13. [TS10 Điện Biên, 2018-2019] Cho biểu thức
2
11 1
: , v?i 0, 1.
1
1
x
A xx
xx x
x




a) Rút gọn biểu thức
A
. b) Tìm giá tr lớn nhất của biểu thức
9
PA x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. [TS10 Hà Nội, 2018-2019]
Cho hai biểu thức
4
1
x
A
x
31 2
23 3
x
B
xx x


vi
0
x
,
1x
.
a) Tính giá trị của biểu thức
A
khi
9x
. b) Chứng minh
1
1
B
x
.
c) Tìm tất cả giá tr ca
x
để
5.
4
Ax
B
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 88 Toång hôïp: Thaày Hoùa
Bài 15. [TS10 Bình Thuận, 2018-2019] Rút gọn biểu thức
6 2 2 16 12A 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. [TS10 Thái Nguyên, 2018-2019] Không dùng máy tính cầm tay, tính giá trị của biểu thức
15 12 1
.
52 2 3
A


...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 17. [TS10 Thanh Hóa, 2018-2019] Cho biểu thức
1
:
44 2 2
x xx
A
x x x xx




,
vi
0x
.
a) Rút gọn biểu thức
A
.
b) Tìm tất cả các giá tr ca
x
để
1
3
A
x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 89 Toång hôïp: Thaày Hoùa
Bài 18. [TS10 Bc Kạn, 2018-2019] Rút gọn biểu thức sau
11
2
12 1
x
B
xx




vi
1
0, 1,
4
xxx

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 19. [TS10 Đà Nẵng, 2018-2019] Trc căn thc mẫu của biểu thức
1
.
23
A
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 20. [TS10 Tiền Giang, 2018-2019] Tính giá trị của biểu thức
1
4 2 3 12
2
A 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 21. [TS10 Đà Nẵng, 2018-2019] Cho
0, 4.aa

Chứng minh
2( 2)
1.
4
2
aa
a
a

...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 22. [TS10 Lai Châu, 2018-2019]
Cho biểu thức
2 39
9
33
x xx
A
x
xx


(vi
0x
9x
).
a) Rút gọn biểu thức
A
.
b) Tìm giá tr lớn nhất của biểu thức
A
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 90 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 23. [TS10 Lạng Sơn, 2018-2019] Cho biểu thức
1 16
3
4 3 11
x
Q
xx




.
a) Tính
Q
khi
25x
.
b) Rút gọn biểu thức
Q
đã cho ở trên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 24. [TS10 Sóc Trăng, 2018-2019] Các đng thức sau đúng hay sai, giải thích?
a)
2
( 3) 3 
. b)
xy
xy
xy

vi
0, 0xy

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 25. [TS10 Đồng Tháp, 2018-2019] Tính
81 16H 
.
...........................................................................................................................................................................................................................................................................
Bài 26. [TS10 Đồng Tháp, 2018-2019] Tìm điều kiện của
x
để
2x
có nghĩa.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 91 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 27. [TS10 Bc Kạn, 2018-2019] Rút gọn biểu thức
2 20 3 45 4 80
A

.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 28. [TS10 Hòa Bình, 2018-2019] Rút gọn:
12 3
A

.
...........................................................................................................................................................................................................................................................................
Bài 29. [TS10 Lạng Sơn, 2018-2019] Tính giá trị ca các biểu thức sau
a)
36 5A 
; b)
2
11 5 5B 
; c)
3323C 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 30. [TS10 Cần Thơ, 2018-2019] Rút gọn biểu thức
1
9 45
52
A 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 31. [TS10 Ninh Bình, 2018-2019] Rút gọn biểu thức:
3 5 20P 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 32. [TS10 Bình Phước, 2018-2019] Tính giá tr ca các biểu thức
a)
36 25M 
. b)
2
51 5N 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 92 Toång hôïp: Thaày Hoùa
Bài 33. [TS10 Vĩnh Long, 2018-2019]
a) Tính giá trị biểu thức
3 27 2 12 4 48A 
.
b) Rút gọn biểu thức
1
7 43
23
B 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 34. [TS10 Hà Nam, 2018-2019] Rút gọn các biểu thức
11
2 8 63
22
A 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 35. [TS10 Hưng Yên, 2018-2019] Rút gọn biểu thức
3 12 3 27.P

...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 36. [TS10 Lào Cai, 2018-2019] Tính giá trị ca các biểu thức sau:
a)
1692A 
. b)
2
31 1B 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 93 Toång hôïp: Thaày Hoùa
Bài 37. [TS10 Bạc Liêu, 2018-2019] Rút gọn biểu thức
a)
45 20 2 5A 
. b)
24
22
a aa
B
aa



, (với
0; 4aa
).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 38. [TS10 Vũng Tàu, 2018-2019] Rút gọn biểu thức
3
12
16 8 .
3
P 
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 39. [TS10 Bình Định, 2018-2019] Cho biểu thức
11
1 21
x
A
xx x x x




,
vi
0x
.
a) Rút gọn biểu thức
A
. b) Tìm các giá tr ca
x
để
1
2
A
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 94 Toång hôïp: Thaày Hoùa
Bài 40. [TS10 Nam Định, 2018-2019]
Cho biểu thức
2
4 21
1 32
xx x
M
x
x xx





, vi
0x
,
1x
,
4x
.
a) Rút gọn
M
. b) Tìm
x
để
4M
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 41. [TS10 Bình Phước, 2018-2019] Cho biểu thức
1
1
xx
P
x

, vi
0
x
1x
.
a) Rút gọn biểu thức
P
. b) Tìm các giá tr ca
x
, biết
3P
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 95 Toång hôïp: Thaày Hoùa
Bài 42. [TS10 Thái Bình, 2018-2019] Cho biểu thức
1
1
x
A
xx

.
a) Tính giá trị biểu thức
A
vi
4
9
x
.
b) Tìm điều kiện để biểu thức
A
có nghĩa.
c) Tìm
x
để
3
2
A
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 43. [TS10 Lào Cai, 2018-2019]
Cho biểu thức
6 1 12 6
:
1
33
xx
P
x
x xxx





vi
0x
,
9x
.
a) Rút gọn biểu thức
P
.
b) Tìm
x
để
1P
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 96 Toång hôïp: Thaày Hoùa
Bài 44. [TS10 Đắk Lắk, 2018-2019] Tìm
x
biết
23x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 45. [TS10 Long An, 2018-2019]
a) Rút gọn biểu thức
3 27 4 3.T

b) Rút gọn biểu thức
1 12
:
16
44
x
A
x
xx




vi
0, 16xx

.
c) Giải phương trình
2
8 16 2xx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 97 Toång hôïp: Thaày Hoùa
Bài 1-2. NHC LI VÀ B SUNG CÁC KHÁI NIM HÀM S
HÀM S BC NHẤT
A. KIN THC TRNG TÂM
1. Khái niệm hàm s
Nếu đại ợng y phụ thuộc vào đi ợng thay đổi x sao cho vi mi giá tr ca x ta luôn xác
định chỉ một giá tr ơng ng của y thì y được gọi là hàm số của x, x được gọi là biến số.
Hàm s có thể được cho bằng bảng hoặc bằng công thức.
Khi y hàm s ca x, ta th viết
( ), ( ),y f x y gx= =
Chng hạn: cho hàm số
() 1y fx x= = +
hay
1yx= +
.
Khi hàm số được cho bng công thc
( )
y fx=
, ta có th hiu rng biến số x ch ly nhng
giá tr mà tại đó
( )
fx
xác định. Tập hợp các giá tr đó gọi là tập xác định của hàm số. Kí hiu
D
.
Giá tr ca hàm
( )
fx
tại
0
x
kí hiu là
( )
0
fx
.
Khi x thay đổi mà y luôn nhận một giá tr không đổi thì hàm y được gọi là hàm hằng.
2. Đồ th của hàm số
Tập hợp tất c các điểm biểu din các cp gtr tương ng
( ; ( )) x fx
trên mặt phẳng ta đ
gọi là đồ th hàm số
( )
y fx
=
.
3. Hàm số đồng biến, nghịch biến
Cho hàm số
( )
y fx=
xác định trên
, với mọi
12
,xx
Nếu
( )
( )
12
12
0
fx fx
xx
>
thì hàm số
( )
y fx=
đồng biến trên
.
Nếu
( ) ( )
12
12
0
fx fx
xx
<
thì hàm số
( )
y fx=
nghch biến trên
.
4. Hàm số bậc nhất
Hàm s bậc nhất là hàm số có dạng
y ax b= +
; trong đó
,ab
là các cho trưc và
0a
.
Khi
0b =
, hàm số
(
)
0
y ax a=
(đã học lớp 7).
Hàm s bậc nhất
( )
0y ax b a=+≠
xác định với mọi
x
.
Hàm s đồng biến trên
khi
0a >
.
Hàm s nghch biến trên
khi
0a <
.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Tìm giá tr ca biến số để hàm số được xác định
Chương
2
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 98 Toång hôïp: Thaày Hoùa
Hàm s
()y fx=
xác định khi và chỉ khi
( )
0fx
.
Hàm s
(
)
(
)
fx
y
gx
=
xác định khi và chỉ khi
( )
0
gx
.
Hàm s
(
)
()
fx
y
gx
=
xác định khi và chỉ khi
( )
0gx>
.
Ví d 1. Với những giá trị nào của
x
thì hàm số sau đây xác định?
a)
21yx=
; b)
2
2
1
4
x
y
x
+
=
; c)
35
yx x= −+
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tính giá trị ca hàm s khi biết giá tr của biến số và ngược li
ớc 1: Tìm điều kiện của biến số để điều kiện của hàm số được xác định.
c 2: Thế giá tr ca biến vào biểu thức ri thc hiện phép tính để tính giá tr ca hàm
s (đôi khi cần rút gọn biểu thức hoc biến đổi giá tr ca biến rồi mi thay giá tr ca
biến vào để tính toán).
Thế giá tr ca hàm s ri giải phương trình để tìm giá tr của biến số.
Ví d 2. Tính giá của hàm số
2
31
()
44
y fx x= =−−
tại
1x =
;
1x =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Cho hàm số
2
9
()
3
x
y fx
x
= =
+
. Khi đó
( 3)f
bằng bao nhiêu?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho hàm số
() 1y f x mx m= = +−
, biết
(2) 8f =
. Tính
(3)f
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Cho hàm số
() 1y fx x x= = +−
. Tìm
x
, biết
() 1fx=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 99 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Biu diễn điểm trên mặt phẳng ta đ. Xác định khoảng cách gia hai đim trên mt
phẳng tọa đ
Cách biểu diễn điểm
(
)
;
M ab
trên mặt phẳng tọa đ
Oxy
K đường thẳng vuông góc với trục Ox tại điểm a.
K đường thẳng song song với trục Oy tại điểm b.
Giao điểm của hai đường thẳng trên chính là điểm M.
Để xác định khoảng cách giữa hai điểm
( )
;
AA
Ax y
(
)
;
BB
Bx y
, ta làm như sau
Ta có
;
AB AB
AH x x BH y y
=−=
. Khi đó
( ) ( )
22
2 22 2 2
BA B A
AB AH BH AB AH BH AB x x y y= + ⇒= + ⇒= +−
Ví d 6. Biu diễn hai điểm
(2;1)A
và
(4;5)B
trên cùng một mặt phẳng ta độ. Tính khoảng cách
giữa hai điểm đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Cho tam giác
ABC
(1;1)A
;
(3;3)B
(5;1)C
.
a) Tính chu vi tam giác
ABC
;
b) Chứng minh rằng tam giác
ABC
vuông cân.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 100 Toång hôïp: Thaày Hoùa
Ví d 8. Cho các điểm
(2;4), ( 1;0)AB
(0; 4)C
.
a) Biu diễn trên các điểm
,,ABC
trên mặt phẳng ta đ.
b) Tính chu vi và diện tích của tam giác
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Cho hai điểm
(2; 4)A
( 1; 0)B
trên hệ trc ta đ
Oxy
.
a) Biu diễn các điểm
,AB
trên mặt phẳng ta đ.
b) Tìm các đim
C
trên trục hoành sao cho
ABC
cân ti
A
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 101 Toång hôïp: Thaày Hoùa
Dạng 4: Điểm thuộc hoặc không thuộc đ th hàm số
Cho hàm số
( )
y fx=
xác định trên
và có đồ th G. Khi đó
( )
00
;Mx y
thuộc đ th G khi và ch khi
( )
0
00
x
y fx
=
.
( )
00
;Mx y
không thuộc đ th G khi và ch khi
( )
00
y fx
hoc
0
x
.
Ví d 10. Cho hàm số
()y fx x= =
. Trong các điểm
(9;3), (4; 2), ( 1;1)AB M−−
( )
4 2 3; 3 1N +−
điểm nào thuộc đ th
()G
của hàm số cho?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Đim
( 1; 1)M −−
thuộc đ th của hàm số nào trong các hàm số dưới dây?
A.
2
yx=
. B.
4
yx
=
. C.
32yx= +
. D.
3
yx
=
.
Ví d 12. Khi
m
thay đổi, tìm tập hợp các điểm
M
có tọa đ như sau
a)
( ;3)Mm
; b)
(2; )Mm
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 13. Cho hàm số
( ) ( 1) 2y fx m x m= =+−
.
a) Tìm
m
để đồ th của hàm số đã cho đi qua điểm
(1;1)A
.
b) Chứng minh rằng đ th của hàm số đã cho luôn đi qua một điểm cố định với mọi
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 102 Toång hôïp: Thaày Hoùa
Dạng 5: Xác định hàm số bậc nhất
Hàm s bậc nhất là hàm số có dạng
( )
0y ax b a=+≠
.
Ví d 14. Trong các hàm số sau, hàm số nào là hàm số bậc nhất
a)
13yx=
; b)
2
25y xx
= +−
;
c)
(
)
2
23
yx x x
=+ −+
; d)
( )
2
31 1
yx
=−+
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 15. Cho
3
hàm số
2
() 3fx x= +
;
2
() 1
gx x x
= −+
2
() 2 3 1hx x x= +−
.
Xét các khng định
(1):
() ()f x gx
là hàm số bậc nhất;
(2):
() ()hx gx
là hàm số bậc nhất;
(3):
() () ()f x gx hx+−
là hàm số bậc nhất.
Trong các khẳng định trên, khẳng định đúng là
A. Ch (1). B. Ch (2). C. Ch (1) và (2). D. Ch (1) và (3).
Ví d 16. Cho hàm số
2
( ) (1 2 ) 2
y f x mx m= = ++
. Tìm
m
để hàm số đã cho là hàm số bậc nhất.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 17. Cho hàm số
( )
22
() 2y f x m m x mx= = ++
. Tìm
m
để hàm số đã cho là hàm số bậc nhất.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 6: Xét tính đồng biến, nghịch biến của hàm s
Cho hàm số
(
)
y fx=
xác định trên
, với mọi
12
,xx
Nếu
( ) (
)
12
12
0
fx fx
xx
>
thì hàm số
( )
y fx=
đồng biến trên
.
Nếu
( ) ( )
12
12
0
fx fx
xx
<
thì hàm số
( )
y fx=
nghch biến trên
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 103 Toång hôïp: Thaày Hoùa
Ví d 18. Chứng minh hàm số
() 3
y fx x= = +
đồng biến trên
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 19. Cho hàm số
() 2y fx m x= =
(
m
là hng số). Xét sự đồng biến, nghịch biến của hàm số
()y fx
=
trên
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 20. Tìm
m
để hàm số
( 2) 1ym x=−+
(
m
là tham số) đồng biến trên
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Trong các hàm s sau, hàm số nào hàm s bâc nht? Hãy xác đnh các h s
a
,
b
và xét
xem hàm sổ nào đồng biến? Hàm số nào nghịch biến?
a)
3 0,5
yx=
; b)
1, 5yx=
; c)
2
52yx=
;
d)
( 2 1) 1yx= −+
; e)
3( 2)yx=
; f)
23yx+=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho hàm số bậc nhất
( 1) 5ym x=++
.
a) Tìm giá tri của
m
để hàm số
y
là hàm sổ đồng biến;
b) Tìm giá tr ca
m
để hàm sổ
y
là hàm số nghịch biến.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 104 Toång hôïp: Thaày Hoùa
Bài 3. Cho hàm số
(3 2) 1yx=−+
.
a) Hàm s đã cho đồng biến hay nghịch biến trên
? Vì sao?
b) Tính giá trị ca
y
khi
x
nhận các giá tr ơng ứng bằng cách điền vào bảng sau?
x
0
1
2
32+
32
(3 2) 1
yx
=−+
c) Tính giá trị ca
x
khi
y
nhận các giá tr ơng ứng bằng cách điền vào bảng sau?
x
(3 2) 1yx=−+
0 1 8
22
+
22
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Vi giá tr o của
m
thì hàm số sau đây là hàm số bậc nhất?
a)
2
3
3
y mx
= −+
; b)
13
24
St
m
=
+
(
t
là biến số).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hai hàm số
2
()
3
x
y fx
= =
() 1
y gx x x= = +−
.
a) Tìm giá tr ca
x
để hàm số đã cho xác định.
b) Tính
11
(2), , (0), (1),
22
f f g gg
 
 
 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho các điểm
(2;3), ( 2;0)AB
(4;3)C
.
a) Biu diễn các điểm
,,ABC
trên mặt phẳng ta đ.
b) Tính chu vi và diện tích của tam giác
ABC
.
c) Tìm điểm
M
trên trục hoành sao cho tam giác
ABM
cân ti
A
.
d) Tìm điểm
N
trên trục tung sao cho tam giác
ABN
cân ti
B
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 105 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho hàm số
() 3y f x mx m= = +−
. Biết
( 2) 6f −=
, tính
( 3)f
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho hàm số
( ) ( 3 2) 2 3y fx x
= = ++
. Tìm
x
sao cho
() 3fx=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho hàm số
() 4y f x mx= =−+
.
a) Tìm
m
để đồ th của hàm số đã cho đi qua điểm
( 1; 1)A −−
.
b) Chứng minh rằng đ th của hàm số đã cho luôn đi qua một điểm cố định với mọi
m
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Vi các giá tr nào của
m
thì hàm số sau là hàm số bậc nhất?
a)
(
)
2
41ym x=
; b)
5 ( 2)y mx=−−
;
c)
( )
22 2
24 12y mx m x x x= + + +−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 106 Toång hôïp: Thaày Hoùa
Bài 11. Tính khoảng cách giữa hai điểm sau đây trên mặt phẳng ta đ
Oxy
.
a)
(1;1)A
(5; 4)B
; b)
( 2; 2)M
(3;5)
N
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 107 Toång hôïp: Thaày Hoùa
Bài 3. Đ THỊ M S
y ax b a 0
A. KIN THC TRNG TÂM
1. Đồ th hàm số
y ax b a

0
Đồ th hàm số
y ax b a 0
là một đường thẳng
Ct trục tung tại điểm có tung độ bằng b.
Song song với đường thẳng
y ax
nếu
b 0
; trùng với đường thẳng
y ax
nếu
b 0
.
2. Cách v đồ th hàm số
y ax b a 0
c 1: lấy giao điểm với hai trục ta đ
Giao điểm với trục tung: cho
x
0
thì
yb
, ta được điểm
;Ab0
thuc trục tung.
Giao điểm với trục hoành: cho
y
0
thì
b
x
a

, ta được điểm
;
b
a


0
thuộc trục hoành.
c 2: V đường thẳng đi qua hai điểm A và B, ta được đ th hàm số
y ax b
.
3. Tính đồng biến, nghịch biến của hàm số
y ax b a 0
Nếu
a 0
thì hàm s đồng biến trên
có đ th một đường thẳng đi từ dưới lên trên từ
trái sang phải.
Nếu
a 0
thì hàm s nghịch biến trên
đ th một đường thẳng đi từ trên xuống
dưới từ trái sang phải.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: V đồ th hàm số
y ax b a 0
Nếu
b
0
ta có đường thẳng
:d y ax
đi qua hai điểm
( ; ); ( ; )O Aa00 1
.
Nếu
b 0
đường thẳng đi qua hai điểm
( ; ); ;
b
O bB
a


00
.
Ví d 1. V đồ th ca các hàm s sau trên cùng một hệ trc ta đ
Oxy
:
a)
yx 2
; b)
yx
21
; c)
yx 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 108 Toång hôïp: Thaày Hoùa
Ví d 2. V đồ th các hàm s sau trong cùng một hệ trc ta đ:
yx24
;
yx33
;
yx
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. a) V đồ th ca các hàm s
:dy x
1
2
2
3
:dy x
2
22
trong cùng một mặt phẳng
tọa đ;
b) Gi .
A
.
,
B
lần lượt giao đim ca đường thẳng
1
d
.
2
d
vi trục hoành giao điểm ca hai
đường thẳng là
C
. Tìm tọa đ giao điểm
A
,
B
,
C
; ĐS:
( 3; 0)A
,
( 1; 0)B
,
(0; 2)C
.
c) Tính diện tích tam giác
ABC
. ĐS:
2
đvdt.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. a) V đồ th ca các hàm s
1
:4dy x=−+
và
2
:4dyx=
trong ng mt mặt phẳng ta
độ;
b) Gi
A
,
B
lần lượt giao đim ca đưng thẳng
1
d
.
2
d
vi trục tung giao điểm ca hai
đường thẳng là
C
. Tìm tọa đ giao điểm
A
,
B
,
C
; ĐS:
(0; 4)A
,
(0; 4)B
,
(4;0)C
.
c) Tính diện tích tam giác
ABC
. ĐS:
16
đvdt.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 109 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tìm tham s
m
biết hàm số đi qua điểm cho trước
ớc 1: Thay tọa đ điểm thuộc đ th vào phương trình đường thng.
c 2: Giải phương trình ẩn
m
.
Ví d 5. Cho hàm số
( 1) 1ym x=−+
.
a) Tìm
m
để đồ th hàm số đã cho đi qua điểm
(1; 2)A
; ĐS:
2m =
.
b) Tìm
m
để đồ th hàm số đã cho đi qua điểm
(3; 2)B
; ĐS:
0m
=
.
c) V đồ th hàm số tìm đưc ng với giá trị ca
m
tìm đưc câu a) và b).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Cho hàm số
( 2) 1y m xm= +−
a) Tìm
m
để đồ th hàm số đã cho cắt trục hoành tại điểm có hoành độ bằng
2
; ĐS:
5
3
m =
.
b) Tìm
m
để đồ th hàm số đã cho cắt trục tung tại điểm có tung độ bằng
2
. ĐS:
3m =
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 110 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Trong mặt phẳng ta đ
Oxy
, cho các điểm
(0;3)
A
,
( 2; 0)B
(2;0)
C
.
a) Hãy viết phương trình đường thẳng
AB
,
BC
,
CA
;
b) Tính chu vi và diện tích tam giác
ABC
nếu coi độ dài mỗi đơn vị trên các trc
Ox
,
Oy
1
cm.
ĐS:
11, 21
cm
;
6
2
cm
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Xác định giao điểm của hai đường thng
Giao đim ca hai đưng thng
:d y ax b a 0
': ' ' 'd y ax b a 0
, ta làm
như sau
ớc 1: Xét phương trình hoành độ giao điểm ca
d
và
'd
:
''axbaxb
ri tìm
nghiệm
x
0
.
ớc 2: Tính
y ax b
00
, từ đó suy ra tọa đ giao điểm.
Ví d 8. Cho hai đường thẳng
1
:3dyx=
2
:3dy x=
.
a) V các đưng thng
1
d
,
2
d
trong cùng một hệ trc ta đ;
b) Dựa vào đồ thị, hãy tìm tọa đ giao điểm ca
1
d
2
d
. ĐS:
(3; 0)
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 111 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Cho các đưng thng
1
: 21
dy x= +
;
2
: 34dy x=
;
3
1
:3
2
dy x=
;
4
:dy x=
. Tìm giao
điểm của các đưng thng:
a)
1
d
2
d
; ĐS:
(5;11)
.
b)
3
d
4
d
. ĐS:
(6; 6)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Xét tính đồng quy của ba đường thng
Ba đường thng đồng quy là ba đường thẳng cùng đi qua một điểm.
Để xét tính đồng quy của ba đường thẳng (phân biệt) cho trước, ta làm như sau
ớc 1: Tìm tọa đ giao điểm của hai trong ba đường thẳng đã cho.
c 2: Kim tra ta đ giao điểm va tìm đưc thuc đưng thng th ba thì ba đường
thẳng đó đồng quy và ngược li.
Ví d 10. Cho ba đường thẳng
1
:2dyx=
,
2
: 23dy x=
3
:dy x=
.
a) Tìm ta đ giao điểm của hai đường thng
1
d
2
d
; ĐS:
(1; 1)
.
b) Chứng minh rằng ba đường thẳng
1
d
,
2
d
,
3
d
đồng quy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 112 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Cho ba đường thng
1
: 21dy x= +
,
2
:1dy x=
3
: 41dy x= +
. Chứng minh rằng
1
d
,
2
d
3
d
đồng quy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 12. Cho ba đường thẳng
:dy x
1
2
,
:dy x

2
13
22
:( )d y mx
3
21
.
a) Tìm giao điểm
A
của hai đường thẳng
d
1
d
2
; ĐS:
( ;)A 11
.
b) Tìm giá tr của tham số
m
để đường thng
d
3
đi qua điểm
A
; ĐS:
m 2
.
c) Tìm giá tr của tham số
m
để ba đường thẳng đã cho đồng quy. ĐS:
m
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 13. Cho ba đường thng
:dy x

1
1
,
:dy x
2
1
:d y ax a
3
4 21
. Tìm giá tr
ca
a
để hai đường thẳng
d
1
ct
d
2
tại một điểm thuộc đưng thẳng
d
3
. ĐS:
a
1
2
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 113 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 5: Tính khoảng cách từ góc ta đ đến một đường thẳng cho trước không đi qua O
ớc 1: Tìm tọa đ giao điểm
,AB
của đường thng
d
vi các trc tọa độ
,Ox Oy
.
c 2: Gọi H hình chiếu ca O lên đưng thng
d
. Áp dụng h thc liên h đến
đường cao
OH OA OB

222
1 11
để tìm
OH
chính là khoảng cách t O đến đường thẳng
d
.
Ví d 14. Cho đường thẳng
:dy x1
. Tính khoảng cách:
a) T gốc ta đ
O
tới đường thẳng
d
; ĐS:
1
2
.
b) T điểm
( ;)M 11
tới đường thẳng
d
. ĐS:
1
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
I. TRẮC NGHIỆM
Câu 1. Đồ th của hàm số
yx 212
đi qua điểm nào sau đây?
A.
( ;)
M 11
. B.
(;)N 11
. C.
(; )P 11
. D.
;Q 21
.
Câu 2. Đim
( ;)E 20
thuộc đường thẳng nào trong các đường thẳng sau đây?
( ):dyx
1
2
;
( ):dy x
2
24
;
( ):dy x
3
36
;
( ):dy x
4
24
33
.
A. Ch thuộc
()d
1
. B. Ch thuộc
()d
2
()d
4
.
C. Ch thuộc
()d
2
()d
3
. D. Thuc c bốn đường thẳng trên.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 114 Toång hôïp: Thaày Hoùa
Câu 3. Cho hai đường thng
( ):dy x
1
2 2012
:dy x
2
1
2012
2
. Đưng thẳng nào dưới
đây không đi qua giao điểm của
()d
1
()d
2
?
A.
yx 2012
. B.
yx2012
.
C.
yx2012 2012
. D.
yx 2012
.
II. TỰ LUẬN
Bài 1. V đồ th ca các hàm s sau:
a)
yx
3
; b)
yx
31
; c)
yx 32
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. a) V đồ th ca các hàm s
:dy x
1
36
và
:dy x
2
22
trong cùng một mặt phẳng ta
độ;
b) Gi
A
,
B
lần lượt là giao đim ca các đưng thng
d
1
,
d
2
vi trục hoành và giao điểm ca hai
đường thẳng là
C
. Tìm tọa đ giao điểm
A
,
B
,
C
;
c) Tìm diện tích tam giác
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 115 Toång hôïp: Thaày Hoùa
Bài 3. Cho hàm số
()y mx 211
vi
m
là tham số.
a) Tìm
m
để đồ th hàm số đi qua điểm
(; )A 12
;
b) Tìm
m
để đồ th hàm số đi qua điểm
(; )B 32
;
c) V đồ th hàm số tìm đưc ng với giá trị ca
m
tìm đưc câu a) và b).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho hàm số
()
y m xm

2
vi
m
là tham số.
a) Tìm
m
để đồ th hàm số ct trục hoành tại điểm có hoành độ bằng
2
,
b) Tìm
m
để đồ th hàm số ct trục tung tại điểm có tung độ bằng
2
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Trong mặt phẳng ta đ
Oxy
, cho các điểm
(;)A 04
,
( ;)B
20
(;)C 40
.
a) Hãy viết phương trình các đường thng
AB
,
BC
,
CA
;
b) Tính chu vi din tích tam giác
ABC
nếu coi độ dài mỗi đơn vị trên các trc
Ox
,
Oy
1
cm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 116 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
Bài 6. Cho hai đường thẳng
:
dy x
1
23
:dy x
2
3
.
a) V các đưng thng
d
1
,
d
2
trong cùng một hệ trc ta đ;
b) Dựa vào đồ thị, hãy tìm tọa đ giao điểm ca
d
1
d
2
. ĐS: (
;)03
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho các đường thẳng
:dy x
1
21
;
:dy x
2
34
;
:dy x
3
1
3
2
;
:dy x
4
2
. Tìm
giao điểm ca các đường thẳng:
a)
d
1
d
2
; ĐS:
(;)35
.
b)
d
3
d
4
. ĐS:
;


10 4
33
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho ba đường thẳng
:dy x
1
2
,
dy x
2
23
:dy x
3
38
.
a) Tìm ta đ giao điểm của hai đường thng
d
1
d
2
; ĐS:
(; )57
.
b) Chứng minh rằng ba đường thẳng
d
1
,
d
2
,
d
3
đồng quy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 117 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho ba đường thng
:dy x
1
21
,
:dy x
2
23
:dy x

3
1
. Chứng minh rằng
d
1
,
d
2
d
3
đồng quy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Cho ba đường thẳng
:
dy x
1
2
,
:dy x
2
32
:( )d y mx m 
3
41
.
a) Tìm giao điểm
A
của hai đường thẳng
d
1
d
2
; ĐS:
(;)
A 02
.
b) Tìm giá tr của tham số
m
để đường thng
d
3
đi qua điểm
A
; ĐS:
m
1
.
c) Tìm giá tr của tham số
m
để ba đường thẳng đã cho đồng quy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Cho ba đường thng
:dy x
1
1
,
:
dy x
2
1
:d y ax a
3
3 21
. Tìm giá tr
ca
a
để hai đường thẳng
d
1
ct
d
2
tại một điểm thuộc đưng thẳng
d
3
. ĐS:
a 1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Cho đường thẳng
:dy x1
. Tính khoảng cách:
a) T gốc ta đ
O
tới đường thẳng
d
; ĐS:
1
2
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 118 Toång hôïp: Thaày Hoùa
b) Từ điểm
(;)
M 22
tới đường thẳng
d
. ĐS:
1
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 13. Cho hàm số
( 1) 1ym x=+−
.
a) Tìm
m
để đồ th hàm số đã cho đi qua điểm
(1; 3)A
; ĐS:
.
b) Tìm
m
để đồ th hàm số đã cho đi qua điểm
(3;1)B
; ĐS:
1
3
m
=
.
c) V đồ th hàm số tìm đưc ng với giá trị ca
m
tìm đưc câu a) và b).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. Cho hàm số
( 1)y m xm=−+
a) Tìm
m
để đồ th hàm số đã cho cắt trục hoành tại điểm có hoành độ bằng
2
; ĐS:
2
3
m =
.
b) Tìm
m
để đồ th hàm số đã cho cắt trục tung tại điểm có tung độ bằng
2
. ĐS:
2m =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 119 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 15. Trong mặt phẳng tọa đ
Oxy
, cho các điểm
(0; 3)
A
,
(3; 0)B
(2;0)C
.
a) Hãy viết phương trình đường thẳng
AB
,
BC
,
CA
;
b) Tính chu vi và diện tích tam giác
ABC
nếu coi độ dài mỗi đơn vị trên các trc
Ox
,
Oy
1
cm.
ĐS:
8,85
cm
;
1, 5
2
cm
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. Cho hai đường thẳng
1
:2dyx=
2
:2
dy x=
.
a) V các đưng thng
1
d
,
2
d
trong cùng một hệ trc ta đ;
b) Dựa vào đồ thị, hãy tìm tọa đ giao điểm ca
1
d
2
d
. ĐS:
(2;0)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 17. Cho các đưng thng
1
:1dyx= +
;
2
: 23dy x=
;
3
1
:
2
dy x=
;
4
:1dy x=−+
. Tìm giao
điểm của các đưng thng:
a)
1
d
2
d
; ĐS:
(4;5)
. b)
3
d
4
d
. ĐS:
(2; 2)
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 120 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 18. Cho ba đường thẳng
1
:2dyx=
,
2
2dy x=
3
: 24dy x=
.
a) Tìm ta đ giao điểm của hai đường thng
1
d
2
d
; ĐS:
(2;0)
.
b) Chứng minh rằng ba đường thẳng
1
d
,
2
d
,
3
d
đồng quy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 19. Cho ba đường thng
1
:1dyx= +
,
2
: 13dy x=
3
1
:1
3
dy x= +
. Chứng minh rằng
d
1
,
d
2
d
3
đồng quy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 20. Cho ba đường thẳng
:dy x
1
2
,
:
dy x

2
2
:( )d y mx
3
21
.
a) Tìm giao điểm
A
của hai đường thẳng
d
1
d
2
; ĐS:
(; )A 20
.
b) Tìm giá tr của tham số
m
để đường thng
d
3
đi qua điểm
A
; ĐS:
2
.
c) Tìm giá tr của tham số
m
để ba đường thẳng đã cho đồng quy. ĐS:
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 21. Cho ba đường thng
:dy x
1
1
,
:dy x
2
:d y ax a
3
21
. Tìm giá tr ca
a
để hai đường thng
d
1
ct
d
2
tại một điểm thuộc đường thẳng
d
3
. ĐS:
a
1
3
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 121 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 22. Cho đường thẳng
:
dy x

1
. Tính khoảng cách:
a) T gốc ta đ
O
tới đường thẳng
d
; ĐS:
1
2
.
b) T điểm
(;)
M
11
tới đường thẳng
d
. ĐS:
1
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
E. BÀI TẬP T LUYỆN
Câu 1. Cho đường thng
( ):dy x 31
. Trong các điểm
( ;)M 12
,
(;)N 01
,
;P


1
0
3
, hãy xác
định các điểm thuộc và không thuộc đường thng
()d
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 2. Đim
;M 21
thuộc đường thẳng nào trong các đường thẳng dưới dây?
A.
yx 12
. B.
xy 21
.
C.
yx 212
. D.
xy 20
.
Câu 3. Cho đường thẳng
( ):
dy x 23
. Tìm
m
để đường thẳng
()d
đi qua điểm
( ;)Am3
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 122 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 4. Cho đường thng
( ): ( )dy m x m2 31
. Tìm
m
để đường thng
()d
đi qua điểm
( ;)M 23
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 5. Chứng minh rằng đường thẳng
()
m xy m
 2 4 30
luôn đi qua một điểm cố định với
mọi giá tr ca
m
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 6. Cho hàm số bậc nhất
y xb 2
. Xác định
b
nếu
a) Đồ th hàm số ct trục tung tại điểm có tung độ bằng
2
.
b) Đồ th hàm số đi qua điểm
( ;)A
12
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 7. Xác định đường thng
()d
, biết
()
d
có dạng
y ax4
và đi qua điểm
( ;)
A 32
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 8. Xác định đường thng
()d
, biết
()d
có dạng
y ax4
và đi qua điểm
( ;)A 32
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 9. Cho hàm số
()y m xm 22
. Xác định
m
, biết
a) Đồ th hàm số ct trục hoành tại điểm có hoành độ bằng
2
.
b) Đồ th hàm số đi qua gốc ta đ.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 123 Toång hôïp: Thaày Hoùa
Câu 10. Xác định đường thẳng đi qua hai điểm
( ;)A 30
(;)B 02
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 11. Cho đường thng
( ):dy x
1
2012 2
. Xác định đường thng
()d
2
sao cho
()d
1
()
d
2
cắt nhau tại một điểm nằm trên trục tung.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 12. Cho các hàm số sau
;
y x yx
 2 1 21 2
.
a) V đồ th các hàm s (1), (2) trên cùng một mặt phẳng tọa đ.
b) Xác định tọa đ giao điểm
I
của (1) và (2).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 13. Cho hàm số
()yx d
1
1
2
.
a) V đồ th
()d
của hàm số đã cho.
b) Tính khoảng cách từ gốc
O
ca h trc ta đ đến đường thẳng
()d
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 124 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 14. Cho hàm số
()y mx d3
. Tìm
m
để khong cách t gốc ta đ
O
đến đường thẳng
()d
là lớn nhất.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 15. Cho ba đường thẳng sau
: ; : ; : , .d y x d y x d y kx

123
21 35
35
52 52
Hãy tìm các giá tr ca
k
sao cho ba đường thng đồng quy tại một điểm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 16. V đồ th của các hàm số sau trên cùng một hệ trc ta đ:
;;yxyxyx  
1
22224
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 125 Toång hôïp: Thaày Hoùa
Câu 17. Xác định đường thẳng đi qua hai điểm
( ;)A 20
(;)B 03
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 18. Cho
( ): ,( ): ,d y xd y x
12
05
; đường thng
()d
song song với trc
Ox
và ct trục tung
Oy
tại điểm
C
tung độ bằng
2
. Đưng thng
()d
lần lượt ct
()d
1
,
()d
2
tại
D
E
. Khi đó,
tính diện tích tam giác
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 19. Vi giá tr nào của
m
thì đ th ca các hàm s
yx m

24
y xm 32
ct
nhau lại một điểm nằm trên trục tung.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 20. Cho hai đường thẳng
( ):( )d m x my 
1
2 4 10
( ):( )dm x y m 
2
2 2012 5 0
(
m
là tham số).
a) Chứng minh rằng
()d
1
luôn đi qua một điểm cố định khi
m
thay đổi.
b) Tìm
m
để hai dường thng
()d
1
,
()d
2
cắt nhau tại mội điểm thuộc trục hoành.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 126 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Câu 21. Cho hàm số
() ( )y fx m x 22
có đồ th là đường thẳng
()d
.
a) Tìm
m
để
()d
đi qua điểm
( ;)M 11
.
b) Xác định
m
để khoảng cách từ điểm
(;)O 00
đến
()d
có giá tr lớn nhất.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 127 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 4. ĐƯỜNG THẲNG SONG SONG VÀ ĐƯỜNG THẲNG CT NHAU
A. KIN THC TRNG TÂM
Cho hai đường thẳng
:d y ax b a

0
': ' ' 'd y ax b a 0
. Khi đó
Song song:
'
'
'
aa
dd
bb
; Trùng nhau:
'
'
'
aa
dd
bb

;
Cắt nhau:
''dd a a

. Vuông góc:
''d d aa 1
.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Xét v trí tương đi của hai đường thng
Xem phần kiến thức trng tâm.
Ví d 1. Hãy nhận xét về v trí tương đối của hai đường thẳng
d
d
trong các trường hợp sau:
a)
:dy x35
:dy x
32
; ĐS: song song.
b)
:
dy x
41
32
:dy x

35
44
; ĐS: cắt nhau.
c)
:dy x21
:dy x

1
1
2
; ĐS: vuông góc.
d)
:
dy x2 21
:dy x

1
2
. ĐS: trùng nhau.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Cho các đưng thng:
:dy x
1
41
;
:dy x
2
;
:dx y

3
20
;
:dy x
4
3
5
;
:dy x

5
47
:dy x
6
1
1
4
. Trong các đường thẳng trên, hãy chỉ ra các cặp đường thẳng:
a) Song song; ĐS:
d
1
d
5
;
d
2
d
4
.
b) Vuông góc. ĐS:
d
2
d
3
,
d
4
d
3
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 128 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Cho đường thẳng
:( )ym x15
vi
m
là tham số. Tìm
m
để:
a)
song song với đường thẳng
:dy x
1
43
; ĐS:
m 3
.
b)
cắt đường thng
:dy x
2
2
tại điểm có hoành độ bằng
1
; ĐS:
m 7
.
c)
vuông góc với đường thng
:
dy x

3
31
52
. ĐS:
m
8
3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho các đường thẳng:
:( )dy m x m 27
;
:
d y mx m
1
32
;
:d y mx m
2
2
21
;
:dy x
3
25
33
;
: ()dy m x
4
1
34
6
.
Tìm
m
để:
a)
dd
1
; ĐS:
m
1
.
b)
dd
2
; ĐS:
m 2
.
c)
d
ct
d
3
tại điểm có tung độ
y
1
3
; ĐS:
m 
8
9
.
d)
dd
4
. ĐS:
m 3
;
m 4
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 129 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Xác định phương trình đường thng thỏa mãn điều kiện
c 1: Gi
:
d y ax b a
0
là phương trình đường thẳng cần tìm.
c 2: T gi thiết của bài toán, tìm được
,ab
ri viết phương trình đường thng.
u ý:
Hai đường thẳng song song thì có cùng hệ s góc.
Đưng thẳng đi qua một đim thì ta đ ca điểm đó thỏa mãn phương trình đường
thng.
Hai đường thẳng vuông góc khi
'aa 1
.
Ví d 5. Viết phương trình đường thẳng
d
trong các trường hợp sau:
a)
d
đi qua hai điểm
A
,
B
vi
(; )A 13
(; )B 24
; ĐS:
yx2
.
b)
d
đi qua hai điểm
C
,
D
vi
( ;)C 32
(; )D 23
. ĐS:
yx
1 13
55
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Viết phương trình đường thẳng
d
trong các trường hợp sau:
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 130 Toång hôïp: Thaày Hoùa
a)
d
đi qua
(; )M 23
và song song với
:dy x
1
25
; ĐS:
:dy x 21
.
b)
d
đi qua
(; )N 12
và vuông góc với
:dy x
2
8
; ĐS:
:dy x 3
.
c)
d
song song với
:dy x

3
34
đi qua giao điểm ca hai đưng thng
:dy x

4
43
55
;
:dx
5
23
. ĐS:
:dy x
33
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Cho đường thẳng
:d y ax b

vi
a
,
b
là hằng số. Tìm
a
b
biết:
a)
d
ct trục tung tại điểm có tung độ bằng
2
và ct trục hoành tại điểm có hoành độ bằng
4
;
ĐS:
:dy x

1
2
2
.
b)
d
đi qua hai điểm
A
,
B
vi
( ;)A
21
(; )
B
14
. ĐS:
:dy x3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 131 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TP VN DNG
I. TRẮC NGHIỆM
Câu 1. Đường thẳng
( ):d y ax 2011
song song với đường phân giác của góc phần tư (I) và
(III) thì hệ s
a
ca
()d
bằng:
A.
1
. B.
1
. C.
0
. D.
1
2011
.
Câu 2. Cho bốn đường thẳng
( ): ; ( ): ; ( ):dyxdyxdyx  
1 23
1
2 3 34
3
( ):dy x
4
1
2
3
cắt nhau tại bốn điểm phân biệt
, , , M N PQ
.
Khi đó bốn điểm
, , , M N PQ
là bốn đỉnh của:
A. Một hình thang. B. Một hình bình hành.
C. Một hình chữ nhật. D. Một tứ giác không có gì đặc biệt.
II. TỰ LUẬN
Bài 1. Hãy nhận xét về v trí tương đối hai đường thng
d
d
trong các trường hợp sau:
a)
:dy x
2
1
2
:
dx y

2 20
;
b)
:dy x
 33
:dy x

1 22
7
3
;
c)
:dy x 57
:dx y
5 20
;
d)
:dy x2 26
:dy x

1
3
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho các đưng thng:
:d xy
1
2 30
;
:d yx
2
24
;
:dy x
3
52
;
:dx y
4
10
.
Trong các đường thẳng trên, hãy chỉ ra các cặp đường thẳng:
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 132 Toång hôïp: Thaày Hoùa
a) Trong các đưng thẳng trên, hãy chỉ ra các cặp đường thng song song và các cp đường thng
vuông góc với nhau. ĐS:
d
1
d
5
;
d
2
d
4
.
b) Hỏi có bao nhiêu cặp đường thẳng cắt nhau? ĐS:
d
2
d
3
,
d
4
d
3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho các đường thẳng
: ( )( )dy m x m 
1
21 25
:( )dy m x m 
2
11
. Tìm
m
để:
a)
d
1
ct
d
2
; ĐS:
m 2
.
b)
d
1
song song
d
2
; ĐS:
m 
.
c)
d
1
trùng
d
2
; ĐS:
m 2
.
d)
d
1
vuông góc
d
2
; ĐS:
m 0
;
m 
1
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho đường thẳng
:( )y m mx m
2
21
vi
m
là tham số. Tìm
m
để:
a)
song song với đường thẳng
:( )dy m x
1
37
; ĐS:
m 4
.
b)
trùng với đường thng
:dy x m 
2
24
; ĐS:
m 1
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 133 Toång hôïp: Thaày Hoùa
c)
vuông góc với đường thng
:dy x
3
1
2
6
; ĐS:
m 3
hoc
m 2
.
d)
đi qua giao điểm của các đưng thng
:dy x
4
25
:dy x
5
1
. ĐS:
m 1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Viết phương trình đường thẳng
d
trong các trường hợp sau:
a)
d
đi qua
(; )M 15
và song song với
:d xy

1
25
; ĐS:
:dy x 21
.
b)
d
cắt đường thng
:dxy
2
10
tại điểm tung độ bằng
3
vuông góc với
:dy x
3
1
3
2
; ĐS:
:
dy x 2 11
.
c)
d
đi qua gốc ta đ và đi qua giao điểm của hai đường thẳng
:dy x
4
24
:dy x
5
5
;
ĐS:
:dy x
2
3
.
d)
d
ct trục hoành tại điểm có hoành độ bằng
1
và đi qua điểm
( ;)N 23
. ĐS:
:dy x 33
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 134 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường thẳng
:d y ax b

vi
a
,
b
là hằng số. Tìm
a
b
biết:
a)
d
ct trục hoành tại điểm hoành độ bằng
1
đi qua giao điểm ca đưng thằng
:dy x
23
vi trục tung. ĐS:
a 3
,
b
3
.
b)
d
vuông góc với đường thẳng có hệ s góc bằng
1
3
và đi qua
(; )A 31
. ĐS:
a 3
,
b
8
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho các đường thẳng:
:d y mx m 
1
2
:( )d y nx n
2
12
.
a) Tìm điểm cố định mà
d
1
luôn đi qua với mọi
m
;
b) Gi
I
là điểm cố định mà
d
1
luôn đi qua. Tìm
n
để
d
2
đi qua
I
;
c) Tìm
m
để
d
2
đi qua điểm cố định của
d
2
;
d) Tìm
m
n
để
d
1
d
2
trùng nhau.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 135 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 8. Hãy nhận xét về v trí tương đối của hai đường thẳng
d
d
trong các trường hợp sau:
a)
:dy x 21
:dy x

26
; ĐS: song song.
b)
:dy x

3
3
7
:dy x

72
3 11
; ĐS: cắt nhau.
c)
:dy x 31
:dy x

1
1
3
; ĐS: vuông góc.
d)
:dy x 4 34
:dy x

3
1
4
. ĐS: trùng nhau.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho các đưng thng:
:dy x
1
23
;
:dy x
2
;
:dxy
3
10
;
:dy x
4
2
5
;
:dy x
5
27
:dy x
6
13
24
. Trong các đường thẳng trên, hãy chỉ ra các cặp đường thẳng:
a) Song song; ĐS:
d
1
d
5
;
d
2
d
4
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 136 Toång hôïp: Thaày Hoùa
b) Vuông góc. ĐS:
d
2
d
3
,
d
4
d
3
;
d
1
d
6
;
d
5
d
6
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Cho đường thẳng
:( )y m xm 
2
31
vi
m
là tham số. Tìm
m
để:
a)
song song với đường thẳng
:dy x

1
3
; ĐS:
m
2
hoc
m 2
.
b)
trùng với đường thng
:dy x
2
22
; ĐS:
m 1
.
c)
cắt đường thẳng
:dy x
3
2
tại điểm có hoành độ bằng
2
; ĐS:
m 
1
2
.
d)
vuông góc với đường thng
:dy x
4
41
11 2
. ĐS:
m
1
2
hoc
m 
1
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Cho các đường thẳng:
:( )d y mx m 31
;
:d y mx m 
1
2 23
;
:d y mx m 
2
2
2 32
;
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 137 Toång hôïp: Thaày Hoùa
:dy x
3
12
23
;
: ()dy m x
4
1
26
4
.
Tìm
m
để:
a)
dd
1
; ĐS:
m
1
.
b)
dd
2
; ĐS:
m 
3
2
.
c)
d
ct
d
3
tại điểm có hoành độ
x 
2
3
; ĐS:
m 6
.
d)
dd
4
. ĐS:
m 
1
;
m 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Viết phương trình đường thẳng
d
trong các trường hợp sau:
a)
d
đi qua hai điểm
A
,
B
vi
(; )A 13
(;)B 42
; ĐS:
yx
1 10
33
.
b)
d
đi qua hai điểm
C
,
D
vi
(; )C 12
( ;)D 16
. ĐS:
yx 42
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 138 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 13. Cho đường thẳng
:
d y ax b
vi
a
,
b
là hằng số. Tìm
a
b
biết:
a)
d
đi qua đim
A
nằm trên
Ox
hoành độ bằng
3
song song với đường thẳng
:dy x
1
54
; ĐS:
:
dy x
 5 15
.
b)
d
vuông góc với đường thng
:dy x
2
1
2018
2
và đi qua giao điểm ca
yx 3
vi trc
tung. ĐS:
:dy x23
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. Tìm
a
b
để đường thẳng
:
d y ax b
a) Ct
:dy x
1
4
tại mt đim nm trên trc
Ox
và ct
:dy x
2
53
tại một điểm nm trên
trc
Oy
. ĐS:
:dy x

3
3
4
.
b) Đi qua điểm
(; )M 12
và chắn trên hai trục ta đ những đoạn bằng nhau.
ĐS:
:dy x
1
,
:dy x 3
.
c) Song song với
:dy x
3
6
và khoảng cách từ
O
đến
d
bằng
22
.
ĐS:
:dy x4
,
:dy x4
.
E. BÀI TẬP T LUYỆN
Câu 1. y ch ra các cặp đường thẳng song song với nhau trong các đường thẳng sau:
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 139 Toång hôïp: Thaày Hoùa
a)
( ):dy x
1
21
; b)
( ):
x
dy
2
3
2
; c)
( ):dy x
3
1
2
2
;
d)
( ): ,
dy x

4
05 1
; e)
( ):dy x

5
42
; f)
( ):dy x
6
12
.
Câu 2. y ch ra các cặp đường thẳng vuông góc với nhau trong các đường thẳng sau:
a)
( ):dy x
1
21
; b)
( ):
x
dy
2
3
2
; c)
( ):
dy x

3
1
2
2
;
d)
( ): ,dy x

4
05 1
; e)
( ):dy x

5
42
; f)
( ):dy x
6
12
.
Câu 3. Chứng tỏ rằng hai đường thẳng sau luôn cắt nhau với mọi giá tr ca
m
:
a)
( ): ( )dy m m x 
2
1
11
( ):
xm
dy

2
2
.
b)
( ): ( )dy m x 
2
3
1 2012
( ):d y mx
4
2012
.
Câu 4. Tìm
m
để đường thẳng
( ): ( )d y mx m 
2
1
25
song song với đường thng
( ):dy x m
2
22 1
.
Câu 5. Cho đường thẳng
( ):d xy2 30
và điểm
( ;)M 11
. Viết phương trình đường thẳng
()
d
đi qua điểm
M
và song song với
()d
.
Câu 6. Cho
( ; ), ( ; ), ( ; )MNP02 10 1 1
lần lượt là trung điểm của các cạnh
,BC CA
AB
ca
tam giác
ABC
. Viết phương trình đường thẳng
AB
.
Câu 7. Tìm
m
để đường thẳng
( ):d y mx m 
2
1
vuông góc với đường thng
( ):dy x

1
2012
4
.
Câu 8. Tìm
a
b
, biết đường thẳng
( ):d y ax b
1
vuông góc với đường thẳng
( ):dy x

2
1
3
()d
1
đi qua điểm
(; )P 11
.
Câu 9. Cho ba điểm
( ; ), ( ; ), ( ; )AB C123001
.
a) Chứng minh rằng
,,ABC
là ba đỉnh của mt tam giác.
b) Viết phương trình đường thẳng chứa đường cao
AH
ca
ABC
.
Câu 10. Cho
( ; ), ( ; ), ( ; )MNP
02 10 1 1
lần lượt là trung điểm của các cạnh
, , BC CA AB
ca tam
giác
ABC
. Viết phương trình đường trung trực của đoạn thẳng
AB
.
Câu 11. Đường thẳng
y kx
1
2
song song với đường thẳng
x
y 
25
37
khi
k
có giá trị
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 140 Toång hôïp: Thaày Hoùa
Câu 12. Đường thẳng
m
yx

234
57
song song với đường thẳng
m
yx

521
32
khi
m
giá tr
Câu 13. Hai đường thẳng
()y mx 
2
21
3
()y mx

3
53
5
cắt nhau khi
m
có giá tr
Câu 14. Cho đường thẳng
( ):
d y ax b
. Tìm giá trị ca
a
b
trong mỗi trưng hợp sau:
a)
( ) ( ):d dy x
1
23
; b)
()d
trùng
( ):dy x
2
1
;
c)
()d
ct
( ):dy x
3
1
2
; d)
( ) ( ):d dy x 
4
1
2
.
Câu 15. Viết phương trình đường thẳng
()d
song song với đường thng
( ):dy x 45
và đi
qua điểm
(; )M 11
.
Câu 16. Xác định
a
b
để đường thẳng
( ):d y ax b
1
vuông góc với đường thẳng
( ):dy x
2
1
2
và đi qua điểm
( ;)P
12
.
Câu 17. Cho tam giác
ABC
( ; ), ( ; ), ( ; )AB C15 31 53
.
a) Viết phương trình đường trung trực ca cạnh
BC
.
b) Viết phương trình đường trung bình
MN
ca tam giác
( )ABC MN BC
.
Câu 18. Cho
( ; ), ( ; ), ( ; )MNP04 20 1 2
lần lượt là trung điểm của các cạnh
, , BC CA AB
ca tam
giác
ABC
. Viết phương trình đường thẳng
AB
.
Câu 19. Cho hai đường thẳng
( ):d y mx m
1
( ):d y xm 
2
2
33
.
Chứng minh rằng
()d
1
()d
2
không trùng nhau với mọi giá trị ca
m
.
Câu 20. Cho ba điểm không thẳngng
( ; ), ( ; ), ( ; )
A BC30 02 10
. Xác định điểm
D
trên mặt phẳng
tọa đ sao cho
ABCD
là hình bình hành.
--- HT ---
Bài 5. H S GÓC CỦA ĐƯỜNG THẲNG
y ax b a 0
A. KIN THC TRNG TÂM
Góc tạo bởi đường thng
y ax b a 0
trc
Ox
: Trong mặt phẳng ta đ
Oxy
, khi
nói góc
là góc tạo bởi đường thng
y ax b
và trc
Ox
(hoặc nói rằng đường thẳng
y ax b
tạo vi trc
Ox
mộtc
), ta cn hiểu rng đó là góc tạo bởi tia
Ax
tia
AT
,
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 141 Toång hôïp: Thaày Hoùa
trong đó
A
giao đim ca hai đưng thng
y ax b
vi trc
Ox
,
T
đim thuc
đường thẳng
y ax b
và có tung độ dương.
Cho đường thẳng
y ax b a
 0
. Khi đó, hệ s góc của đường thẳng đã cho là
ka
.
Cho đường thng
y ax b a 0
; vi
là góc tạo bởi đường thng
y ax b
và trc
Ox
. Khi đó
Nếu
a 0
thì
là góc nhọn. Hệ s
a
càng lớn thì góc càng lớn nhưng vẫn nhỏ hơn
90
.
Nếu
a 0
thì
là góc tù. Hệ s
a
càng lớn thì góc càng lớn nhưng vẫn nhỏ hơn
180
.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Dạng 1: Tìm h s góc của đường thẳng
S dụng kiến thức liên quan đế v trí tương đi ca hai đưng thẳng hệ s góc ca hai
đường thẳng.
Ví d 1. Xác đnh hệ s góc ca các đường thẳng sau:
a)
:dy x
1
21
; b)
:dy x
2
34
;
c)
:
dy x
3
1
3
2
; d)
:dy x
4
32
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Cho đường thẳng
:d y ax b
. Xác định hệ s góc ca
d
biết:
a)
d
song song với đường thẳng
:d xy

1
32
; ĐS:
k 3
.
b)
d
tạo vi tia
Ox
một góc
60
. ĐS:
k
3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Cho đường thẳng
:( )dy m x m 2532
vi
m
là tham số. Tìm hệ s góc ca
d
biết
a)
d
ct trục hoành tại điểm có hoành độ bằng
2
; ĐS:
k 11
.
b)
d
ct trục tung tại điểm có tung độ bằng
5
; ĐS:
k 
7
.
c)
d
đi qua điểm
(;)A 22
. ĐS:
k 1
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 142 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho đưng thng
:dy m m x m 
2
22 57
vi
m
tham s. Tìm
m
để
d
h
s góc nhỏ nhất. ĐS:
m 1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Xác định góc tạo bởi đường thẳng và trục
Ox
Cách 1: Gọi
là góc tạo bi trc
Ox
và đường thng
d
. Ta có
Nếu
90
thì
a 0
tana
.
Nếu
90
thì
a 0
tana
180
.
Cách 2: V đường thẳng
d
trên mặt phẳng tọa đ và s dng t s ng giác ca góc
nhọn của tam giác vuông một cách hợp lý.
Ví d 4. Tìm góc tạo bởi tia
Ox
và đường thẳng
d
(làm tròn đến độ) biết:
a)
:dy x21
; ĐS:
63
.
b)
:dy x
4
; ĐS:
135
.
c)
:d xy3 10
; ĐS:
60
.
d)
:dx y10
. ĐS:
45
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 143 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Tìm góc tạo bởi tia
Ox
và đường thẳng
d
biết:
a)
d
có phương trình là
yx 32
; ĐS:
120
.
b)
d
ct
Oy
tại điểm có tung độ bằng
1
và ct
Ox
tại điểm có hoành độ bằng
1
. ĐS:
45
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Cho các đường thẳng
:dy x
1
2
:dx y
2
3
.
a) V
d
1
d
2
trên cùng một mặt phẳng tọa đ;
b) Gi
A
,
B
lần lượt giao đim ca
d
1
và
d
2
vi trục hoành. Gọi
C
là giao đim ca
d
1
và
d
2
.
Tính số đo các góc ca tam giác
ABC
;
c) Tính diện tích tam giác
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 144 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Xác định phương trình đường thẳng khi biết hệ s c
c 1: Gi
:d y ax b
là phương trình đường thẳng cần tìm (
,ab
là các hng s).
c 2: Da vào kiến thức đã học v góc và hệ s góc để tìm
,ab
.
Ví d 7. Viết phương trình đường thẳng
d
trong các trường hợp sau:
a)
d
đi qua
( ;)M 31
và có hệ s góc bng
2
5
; ĐS:
( ):dy x
2 11
55
.
b)
d
đi qua
(; )N 12
và tạo vi tia
Ox
một góc
60
; ĐS:
( ):dy x 323
.
c)
d
đi qua điểm
(; )P 02
và tạo vi tia
Ox
một góc
135
. ĐS:
( ):dy x 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 8. Xác định đường thng
d
biết
d
đi qua đim
(; )A 11
sao cho
d
tạo vi tia
Ox
một c
tan
1
3
. ĐS:
( ):dy x
14
33
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
I. TRẮC NGHIỆM
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 145 Toång hôïp: Thaày Hoùa
Câu 1. Đưng thng
()d
đi qua giao điểm ca hai đưng thng
, yx y x 12
song song với
đường thẳng
yx 
22 2
A.
yx
422
. B.
()yx 22 1
.
C.
yx 222
. D.
yx2
.
Câu 2. Đường thẳng
yx

13
22
vuông góc với đường thẳng nào dưới đây?
A.
yx
13
22
. B.
yx

3
2
2
.
C.
yx
3
2
2
. D.
yx
13
22
.
Câu 3. Đường thẳng
()
ym x
12
vuông góc với đường thẳng
yx
1
2011
2
thì
m
bằng
A.
2
. B.
3
. C.
1
. D.
1
.
II. TỰ LUẬN
Bài 1. Xác định hệ s c của đường thẳng sau:
a)
:dy x
1
31
; b)
:dy x

2
37
;
c)
:
dy x
3
1
3
5
; d)
:dy x
4
3 22
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường thẳng
:d y ax5
. Xác định hệ s góc ca
d
biết:
a)
d
song song với đường thẳng
:
1
22d xy
; ĐS:
k 2
.
b)
d
tạo vi
Ox
một góc
60
. ĐS:
k
3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 146 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho đường thẳng
:( )d y mx m 32 1
vi
m
tham s. Tìm h s góc ca
d
biết
rng
a)
d
ct trục hoành tại điểm có hoành độ bằng
1
; ĐS:
k 1
.
b)
d
ct trục tung tại điểm có tung độ bằng
4
; ĐS:
k 9
.
c)
d
đi qua điểm
(;)A
33
. ĐS:
k
1
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho đường thẳng
:dy m m x m 
2
9 62 3
, vi
m
là tham số. Tìm
m
để
d
có hệ s
nhỏ nhất. ĐS:
m
1
3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Tìm góc tạo bởi tia
Ox
và các đường thẳng sau (làm tròn đến độ) biết:
a)
:dy x
1
21
; ĐS:
117
.
b)
:dy x
2
1
4
3
; ĐS:
162
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 147 Toång hôïp: Thaày Hoùa
c)
:
d xy

3
31
0
22
; ĐS:
41
.
d)
:dx y
4
40
. ĐS:
14
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Tìm góc tạo bởi tia
Ox
và đường thng
d
biết:
a)
d
có phương trình là
yx

31
; ĐS:
72
.
b)
d
ct tia
Oy
tại điểm có tung độ bằng
4
và ct
Ox
tại điểm có hoành độ bằng
3
. ĐS:
53
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho các đường thẳng
:dy x
1
23
:dy x
2
1
2
.
a) V
d
1
d
2
trên cùng một mặt phẳng tọa đ;
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 148 Toång hôïp: Thaày Hoùa
b) Gi
A
là giao đim ca
d
1
vi trục tung,
B
là giao đim ca
d
1
và
d
2
. Tính số đo các góc ca
tam giác
OAB
; ĐS:
ˆ
ˆˆ
,,ABO

34 63 83
.
c) Tính diện tích tam giác
. ĐS: 3.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Viết phương trình đường thẳng
d
trong các trường hợp sau:
a)
d
đi qua
(;)M
43
và có hệ s góc bng
1
4
; ĐS:
( ):dy x
1
2
4
.
b)
d
đi qua
;N
34
và tạo vi tia
Ox
một góc
30
; ĐS:
( ):dy x
3
5
3
.
c)
d
đi qua
(;)P 04
và tạo vi tia
Ox
một góc
45
. ĐS:
( ):dy x4
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 149 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Xác định đường thẳng
d
, biết
d
đi qua điểm
(; )A 73
sao cho
d
tạo vi tia
Ox
mộtc
tan
5
7
. ĐS:
( ):dy x

5
8
7
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 10. Xác định hệ s góc của các đường thẳng sau:
a)
:dy x

1
54
; b)
:dy x
2
1
;
c)
:dy x
3
3
2
5
; d)
:d yx
4
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Cho đường thẳng
:d y ax b
. Xác định hệ s góc ca
d
biết:
a)
d
vuông góc với đường thng
:d xy
1
4 30
; ĐS:
k 
1
4
.
b)
d
tạo vi tia
Ox
một góc
150
. ĐS:
k 
1
3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 150 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Cho đường thng
:d y m mx m 
2
25 4
vi
m
tham s. Tìm h s góc ca
d
biết rằng
a)
d
ct trục hoành tại điểm có hoành độ bằng
3
; ĐS:
,kk 
13
2
9
.
b)
d
ct trục tung tại điểm có tung độ bằng
2
; ĐS:
k 102
.
c)
d
đi qua điểm
(;)A 22
. ĐS:
,kk 
9
2
8
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 13. Tìm
m
để đường thẳng
:dy m m x m
2
42 21
vi
m
tham s h s góc
lớn nhất. ĐS:
m 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. Tìm góc tạo bởi tia
Ox
và đường thng
d
(làm tròn đến độ) biết:
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 151 Toång hôïp: Thaày Hoùa
a)
:dy x
1
31
; ĐS:
108
.
b)
:dy x
2
1
2
; ĐS:
45
.
c)
:d yx
3
32
; ĐS:
30
.
d)
:dx y

4
0
. ĐS:
135
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 15. Tìm góc tạo bởi tia
Ox
và đường thng
d
biết:
a)
d
có phương trình là
yx
25
; ĐS:
63
.
b)
d
đi qua hai điểm
( ;)
A
10
(; )
B 03
. ĐS:
60
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. Cho các đường thẳng
:dy x
1
24
:dy x
2
12
99
.
a) V các đưng thng
d
1
d
2
trên cùng một mặt phẳng ta đ và chứng minh chúng cắt nhau tại
điểm
A
nằm trên trục hoành;
b) Gọi giao đim ca
d
1
d
2
vi trục hoành lần lượt
B
C
. Tính các góc của tam giác
ABC
;
c) Tính chu vi và diện tích của tam giác
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 152 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 17. Viết phương trình đường thẳng
d
trong các trường hợp sau:
a)
d
đi qua điểm
;A


1
1
2
và có hệ s góc bằng
3
; ĐS:
( ):dy x
1
3
2
.
b)
d
đi qua điểm
(;)B 01
và tạo vi tia
Ox
một góc
150
; ĐS:
( ):
dy x
3
1
3
.
c)
d
đi qua điểm
( ;)C 10
và tạo vi tia
Ox
một góc
30
. ĐS:
( ):dy x
33
33
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 18. Viết phương trình đường thẳng
d
trong các trường hợp sau:
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 153 Toång hôïp: Thaày Hoùa
a)
d
có hệ s góc bng
3
2
và chắn trên hai trục ta đ một tam giác có diện tích bằng
12
;
ĐS:
( ):dy x
3
6
2
hoc
( ):dy x
3
6
2
.
b)
d
có hệ s góc bằng
4
3
và khoảng cách từ
O
đến
d
bằng
3
5
.
ĐS:
( ):dy x
4
1
3
hoc
( ):dy x
4
1
3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
E. BÀI TẬP T LUYỆN
Câu 1. Đường thẳng
()ym x15
đi qua điểm
( ;)F 13
thì có hệ s c bằng bao nhiêu?
Câu 2. Tính h s góc ca đưng thng
( ): ( )dy m x23
, biết song song với đường thẳng
( ):d xy
2 10
. V đường thng
()d
vừa tìm được.
Câu 3. Tính h s góc ca đưng thng
( ): ( )d y mx 11
, biết vuông góc với đường thẳng
( ):dx y
2 40
. V đồ th
()d
vừa tìm được.
Câu 4. Tính hệ s góc của đường thẳng đi qua hai điểm
( ;)A 11
(; )B
23
.
Câu 5. Tính góc tạo bởi đường thẳng
yx 23
và trục
Ox
.
Câu 6. Cho đường thẳng
( ):d y mx3
. Tính góc tạo bởi
()d
vi trc
Ox
, biết
()d
đi qua
điểm
( ;)A 30
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 154 Toång hôïp: Thaày Hoùa
Câu 7. Cho hai đường thng
( ):dy x
1
2
( ):dy x
2
1
2
. Gi
()d
3
đưng thẳng song song
vi trc
Ox
và ct trc
Oy
tại điểm có tung độ bằng
3
;
()d
3
ct
()d
1
()d
2
lần lượt ti
A
B
.
Chứng minh rằng
AOB
90
.
Câu 8. Xác định đường thng
()d
đi qua điểm
( ;)A 23
và có hệ s góc bng
2
.
Câu 9. Xác định đường thng
()d
đi qua điểm
( ;)A 11
và tạo vi trc
Ox
một góc bằng
45
.
Câu 10. Xác định đường thng
()d
đi qua điểm
(;)A 01
to với đường thng
y
2
một góc
bằng
60
.
Câu 11. H s góc ca đường thẳng
x
y
35
2
Câu 12. H s góc ca đường thẳng
x
y
33
5
Câu 13. H s góc ca đường thẳng đi qua gốc ta đ và điểm
;
M


3
3
2
Câu 14. H s góc ca đường thẳng đi qua hai điểm
(; )P 13 2
(; )Q 33 2
Câu 15. Góc tạo bởi đường thẳng
yx

13
25
và trục
Ox
Câu 16. Góc hợp bởi đường thẳng
x
y
72
5
và trục
Ox
Câu 17. Xác định đường thẳng
()d
biết nó có hệ s góc bằng
2
và đi qua điểm
( ;)A 32
.
Câu 18. Tính hệ s góc của đường thẳng đi qua hai điểm
(; )A 12
(;)B 34
.
Câu 19. Cho đường thẳng
( ):
d y mx

3
. Tính góc
tạo bởi
()d
vi trc
Ox
, biết:
a)
()d
đi qua điểm
( ;)A 30
; b)
()d
đi qua điểm
(; )
B 63
.
Câu 20. Xác định đường thẳng
()d
đi qua điểm
(;)A
03
và to với đường thng
y
2
mt c
bằng
60
.
--- HT ---
Bài. ÔN TP CHƯƠNG II
A. KIN THC TRNG TÂM
Xem li kiến thức trọng tâm từ bài 1 đến bài 5.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GII
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 155 Toång hôïp: Thaày Hoùa
Dạng 1: Tìm điều kiện của biến
x
để hàm số được xác định
Ví d 1. Tìm tất cả các giá tr ca
x
để hàm số sau được xác đnh
a)
yx1
; b)
x
y
x
1
4
; c)
yx 2 11
; d)
yx
x

5
2
3
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tìm giá tr của tham số để hàm số là hàm số bậc nhất
Ví d 2. m các giá tr của tham số
m
để các hàm s sau đây là hàm số bậc nhất
a)
()ym x32
; ĐS:
m 3
.
b)
ym x 
2
11
; ĐS: với mọi
m
.
c)
x
y
m
3
; ĐS:
m 3
.
d)
()y m x mx 
22
41 1
. ĐS:
m
m

1
2
1
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Xét s đồng biến nghịch biến rồi tính giá trị của hàm số
Ví d 3. Cho hàm số
()y fx k k x k

2
22 31
vi
k
là tham số.
a) Chứng minh
()y fx
luôn là hàm số bậc nhất và đồng biến với mọi
k
;
b) Không cần tính, hãy so sánh
()f 2
()f 3
. ĐS:
( ) ()ff23
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 156 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho hàm số
()
y fx k k x k

2
45 21
vi
k
là tham số
a) Chứng minh
()
y fx
luôn là hàm số bậc nhất và nghịch biến với mọi
k
;
b) Không cần tính, hãy so sánh
()
f
2
()f 5
. ĐS:
( ) ()ff25
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Xác định giao điểm của hai đường thng
Ví d 5. Cho hai hàm số
yx2
yx
24
có đồ th lần lượt là hai đường thẳng
d
1
d
2
.
a) V
d
1
d
2
trên cùng một hệ trc ta đ;
b) Tìm ta đ giao điểm của
d
1
d
2
. ĐS:
(; )20
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 5: Xác định phương trình đường thng
y ax b
thỏa mãn điều kiện cho trước
Ví d 6. Xác đnh phương trình đường thng
d
biết
a)
d
đi qua điểm
( ;)A 41
(;)B 23
; ĐS:
( ):dy x 27
.
b)
d
đi qua
( ;)C 22
và có hệ s góc bng
2
; ĐS:
:dy x 22
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 157 Toång hôïp: Thaày Hoùa
c)
d
đi qua
( ;)D 12
và cắt đường thng
:dy x
1
22
tại một điểm trên trục tung;
ĐS:
:dy x 42
.
d)
d
đi qua
(; )E 45
và đi qua giao điểm của hai đường thng
:dy x
2
43
:dy x
3
34
.
ĐS:
:dy x 4 11
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Cho đường thẳng
:( )dy m x m
4527
vi
m
là tham số.
a) Tìm các gtr ca
m
để
d
cùng với hai đường thẳng
:dy x
1
31
và
:dy x
2
21
đồng
quy; ĐS:
m 2
.
b) Tìm
m
để
d
song song với đường thẳng
:dy x
3
32
. ĐS:
m 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 158 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 6: Xác định góc tạo bởi đường thẳng và trục
Ox
Ví d 8. Cho đường thẳng
3
( ): 3
4
dy x
.
a) V đường thẳng
()d
.
b) Tính góc tạo bởi đường thng
()d
và trục
Ox
.
c) Tính diện tích tam giác do đường thng
()d
tạo với hai trục ta đ.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
I. TRẮC NGHIỆM
Câu 1: Đường thẳng
yxm 2
đi qua điểm
E
(1; 0)
khi
A.
1m 
. B.
3m
. C.
0m
. D.
1m
.
Câu 2: Hàm s nào dưới đây là hàm số bậc nhất?
A.
2
2yx
. B.
1
y
x

. C.
2yx
. D.
2
3yx
.
Câu 3: Một hàm số bậc nhất được cho bằng bảng bên dưới. Hàm số đó là hàm số nào sau đây?
x
2
1
0
1
2
y
5
3
1
1
3
A.
31yx
. B.
21yx
. C.
31yx

. D.
21yx
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 159 Toång hôïp: Thaày Hoùa
Câu 4: Tìm
m
để hàm số
3
1
2
yx
m

đồng biến trên tập số thc
.
A.
2
m

. B.
2m 
. C.
2m
. D.
2m 
.
Câu 5: Cặp số nào sau đây là nghiệm của phương trình
3 1?xy 
A.
(2; 0)
. B.
(2; 1)
. C.
(1; 2)
. D.
(2; 11)
.
Câu 6: Hàm s nào sau đây là hàm số bậc nhất?
A.
y ax b

. B.
12yx

. C.
2
1yx
. D.
1
y
x
.
Câu 7: Trong các hàm số sau, hàm số nào đồng biến với mi
x
?
A.
24yx
. B.
32yx
. C.
7
2
2
yx
. D.
1
3
x
y
.
Câu 8: Trong mặt phng
,Oxy
tập nghiệm của phương trình
41xy
được biu diễn bởi đ
th hàm số nào dưới đây?
A.
41yx
. B.
41yx
. C.
41yx

. D.
41
yx

.
Câu 9: Trên mặt phẳng ta đ
Oxy
, đồ th hàm số
24
yx
ct trục hoành tại điểm
A.
(0; 2)M
. B.
(2; 0)
N
. C.
(4; 0)P
. D.
(0; 4)Q
.
Câu 10: Tìm
m
biết điểm
(1; 2)A
thuộc đường thẳng có phương trình
(2 1) 3y mx m 
.
A.
5
3
m 
. B.
5
3
m
. C.
4
3
m
. D.
4
3
m 
.
Câu 11: Xác định giá trị ca
m
để các đưng thng
yx
24
,
yx
35
,
y mx
cùng đi
qua một điểm.
A.
1
2
m
. B.
1
2
m 
. C.
2m
. D.
2m 
.
Câu 12: Xác định tọa đ giao điểm của hai đường thng
23
yx
1, 5yx
.
A.
3
;0
2


. B.
3
3;
2


. C.
3
0;
2


. D.
3
;3
2


.
Câu 13: Tìm giá tr ca
m
để đồ th hàm s
(2 1) 2y m xm 
ct trục hoành tại điểm
hoành độ bằng
2
3
.
A.
1
2
m
. B.
1
2
m
. C.
8
m 
. D.
8m
.
Câu 14: Tìm các giá tr ca
m
để hàm s
(2 3) 2y mx

đ th mt đưng thẳng song
song với trục hoành
A.
3
2
m 
. B.
3
2
m
. C.
3
2
m
. D.
3
2
m 
.
Câu 15: Tính góc nhọn
tạo bởi đường thẳng
3
1
3
yx
và trục
Ox
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 160 Toång hôïp: Thaày Hoùa
A.
45
. B.
75
. C.
30
. D.
60
.
Câu 16: Trên cùng mặt phẳng ta đ
Oxy
cho ba đường thng
2;yx
21yx
2
( 1) 2 1.ym xm 
Tìm giá tr ca
m
để ba đường thẳng cùng đi qua một điểm.
A.
3m 
. B.
{ 1; 1}m 
. C.
{ 1; 3}m 
. D.
1m
.
Câu 17: Cho hai đường thẳng
1
: 23dy x
2
1
: 3.
2
dy x
Khẳng định nào sau đấy
đúng?
A.
1
d
2
d
trùng nhau.
B.
1
d
2
d
cắt nhau tại một điểm trên trục tung.
C.
1
d
2
d
song song với nhau.
D.
1
d
2
d
cắt nhau tại một điểm trên trục hoành.
Câu 18: Tt c các giá tr ca
m
để hai đường thng
22y xm 
2
11ym x 
song song với nhau là
A.
1m
. B.
1m 
. C.
1m 
. D.
m 
.
Câu 19: H s góc của đường thng
57yx
A.
5x
. B.
5
. C.
5
. D.
7
.
Câu 20: Xác định hệ s c
a
của đường thẳng
23yx
.
A.
1
3
a 
. B.
3a 
. C.
2a
. D.
1
2
a
.
Câu 21: Bạn An chơi thả diu. Ti thi điểm dây diều dài
80
m và to với phương thẳng đứng một góc
50
. Tính
khong cách
d
từ diều đến mặt đt ti thời điểm đó
(gi s y diều căng và không giãn; kết quả làm
tròn đến chữ s thập phân thứ hai).
A.
51, 42d
m. B.
57,14d
m.
C.
54,36d
m. D.
61,28d
m.
Câu 22: Hình nào dưới đây là đồ th của hàm số
2yx
A. B. C. D.
Câu 23: Tìm điều kiện của
m
để hàm số
(2 1) 2y mx 
luôn đồng biến.
A.
1
2
m
. B.
1
2
m
. C.
1
2
m
. D.
1
2
m
.
Câu 24: Hàm s nào dưới đây là hàm số bậc nhất?
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 161 Toång hôïp: Thaày Hoùa
A.
2yx

. B.
2
1y
x

. C.
21yx
. D.
2
yx
.
Câu 25: Tìm tất cả các giá tr ca
m
để hàm số
(2 1) 2y mx m 
đồng biến trên
.
A.
0m
. B.
0m
. C.
1
2
m
. D.
1
2
m
.
Câu 26: Hàm s
47ym x

đồng biến trên
, vi
A.
4m
. B.
4m
. C.
4m
. D.
4m
.
Câu 27: Cho hàm số
y ax2
. Xác định
a
để khi
2x
thì
y
4.
A.
3a 
. B.
3a
. C.
2a
. D.
2a 
.
Câu 28: Hàm s nào sau đây là hàm số bậc nhất
A.
1
2
y
x
. B.
1yx
. C.
4
2y xx
. D.
35yx

.
Câu 29: Hàm s
11
22
y
xx


không xác định với
A.
2x
. B.
2
x
. C.
2x
. D. mọi
x
.
Câu 30: Vi giá tr nào của
m
thì hàm số
2
( 2) 1ym x 
là hàm số bậc nhất đồng biến?
A.
22
m
. B.
2m
hoc
2m 
.
C.
2m 
. D. Với mọi giá tr ca
m
thuc
.
II. TỰ LUẬN
Bài 1. Tìm điều kiện của
x
để hàm số sau được xác đnh
a)
yx38
; ĐS: Luôn xác định.
b)
x
y
x
2
; ĐS:
x 2
.
c)
yx x
3
; ĐS:
x 0
.
d)
yx
x

3
4
1
. ĐS:
x 4
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Tìm các giá tr của tham số
m
để các hàm s sau đây là hàm số bậc nhất
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 162 Toång hôïp: Thaày Hoùa
a)
()ym x23
; ĐS:
m 2
.
b)
m
yx
m

2
1
1
1
; ĐS:
m 1
.
c)
m
yx
m

3
12
27
; ĐS:
m 3
m
7
2
.
d)
()y m x mx 
22
11
. ĐS:
m 
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho hàm số
()y fx m m x 
2
13
vi
m
là tham số
a) Chứng minh
()y fx
luôn là hàm số bậc nhất và đồng biến với mọi
m
; ĐS: mọi
m
.
b) Không cần tính, hãy so sánh
()f 4
()f 9
. ĐS:
() ()ff49
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho hai hàm số
yx42
yx
21
có đồ th lần lượt là hai đường thẳng
d
1
d
2
.
a) V
d
1
d
2
trên cùng một hệ trc ta đ;
b) Tìm ta đ giao điểm của
d
1
d
2
. ĐS:
;


14
63
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 163 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Xác định đường thẳng
d
trong các trường hợp sau
a)
d
ct đưng thng
:d xy
1
2 40
tại một điểm thuc trục hoành cắt đường thẳng
:dy x
2
2
tại một điểm thuộc trục tung; ĐS:
:dy x 2
.
b)
d
đi qua điểm
;A


1
5
2
và song song với đường thng
:dy x
3
24
; ĐS:
:dy x 24
.
c)
d
đi qua điểm
;B


3
3
5
và tạo vi tia
Ox
một góc
60
. ĐS:
:dy x
18
3
5
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường thẳng
:( )dy m x m 42
vi
m
là tham số.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 164 Toång hôïp: Thaày Hoùa
a) Tìm
m
để
d
cùng với các đường thẳng
:dy x

1
46
:
dy x

2
2
đồng quy; ĐS:
m

2
.
b) Tìm
m
để
d
vuông góc với đường thẳng
:dx y 
3
2 10
. ĐS:
m 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 7. Tìm
x
để các hàm s sau có nghĩa
a)
yx1
; b)
x
y
x
1
3
; c)
yx 3 21
; d)
x
y
x

3 11
23
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Tìm các giá tr của tham số
m
để các hàm s sau đây là hàm số bậc nhất
a)
()y m xm
5
; ĐS:
m 5
.
b)
ym x 
2
3
43
7
; ĐS:
m 
3
2
.
c)
yx
m
2
2
; ĐS:
m 2
.
d)
()ym x m x 
22
16 4
. ĐS:
m 
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 165 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho hai đường thẳng
:dy x
1
23
:
dy x

2
3
.
a) V
d
1
d
2
trên cùng một hệ trc ta đ;
b) Tìm ta đ giao điểm của
d
1
d
2
. ĐS:
(;)21
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Cho đường thẳng
:( )dy m x m 21
vi
m
là tham số.
a) Tìm các giá tr ca
m
để
d
cùng vi hai đưng thẳng
:dy x
1
21
:dy x
2
4
đồng
quy; ĐS:
m 1
.
b) Tìm
m
để
d
vuông góc với đường thẳng
:dy x
3
21
52
. ĐS:
m
1
2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 166 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
E. BÀI TẬP T LUYỆN
Câu 1: Cho các hàm s
dy x( ): 1
dy x
 ( ): 3
. V đồ th
d()
d
()
trên cùng
một hệ trc ta độ. Xác định tọa đ giao điểm ca
d()
d
()
.
Câu 2: Tìm
m
n
để đường thng
dy m x n ( ) : ( 1) 2
đi qua hai điểm
A (2; 1)
B ( 3; 6)
.
Câu 3: Viết phương trình đường thẳng
()
d
ct
( ): 3dyx

tại điểm tung độ bằng
1
biết
()d
có hệ s góc bằng
2
.
Câu 4: Cho đường thng
dy x
( ): 3 2
điểm
M ( 1; 1)
. Viết phương trình đường thẳng
d
()
đi qua điểm
M
và song song với
d()
.
Câu 5: Trên mặt phẳng ta đ
Oxy
cho
MN(2; 4), (0; 2)
. Tìm các đim
A
trên mặt phẳng ta đ
Oxy
sao cho
AM AN
.
Câu 6: a) Vi giá tr nào của
m
thì hàm số
( 6) 7ym x
đồng biến?
b) Với giá tr nào của
k
thì hàm số
( 9) 100y kx
nghch biến?.
Câu 7: Vi giá tr nào của
m
thì đ th ca các hàm s
12 (5 )
yx m

3 (3 )
yx m

cắt nhau tại một điểm trên trục tung?.
Câu 8: Tìm giá tr ca
a
để hai đưng thng
( 1) 2ya x
(3 ) 1y ax
song song
với nhau.
Câu 9: Vi giá tr nào của
k
m
thì hai đường thẳng
( 2)y kx m
(5 ) (4 )y kx m 
trùng nhau?.
Câu 10: Cho đường thẳng
d y mx m ( ) : (1 4 ) 2
.
a) Vi giá tr nào của
m
thì đường thẳng
d
đi qua gốc ta đ?
b) Với giá tr nào của
m
thì đường thẳng
d
tạo vi trc
Ox
một góc nhọn? Góc tù?
c) Tìm giá trị ca
m
để đường thẳng
()d
ct trục tung tại điểm có tung độ bằng
3
2
?
d) Tìm giá trị ca
m
để đường thẳng
()d
ct trục hoành tại một điểm có hoành độ bằng
1
2
?.
Câu 11: V đồ th ca các hàm s sau trên cùng một mặt phẳng tọa đ
a)
1
: 36dy x
; b)
2
: 24dy x
; c)
3
:2dyx
; d)
4
1
:1
2
dy x
;.
Câu 12: Cho đường thng
( ) : ( 2) ( 2)d y m x nm
. Tìm giá tr ca
m
n
trong các
trường hợp sau?
a) Đưng thng
()d
đi qua hai điểm
( 1; 2)A
,
(3; 4)B
;
b) Đưng thng
()
d
ct trục tung tại điểm tung độ bằng
12
và ct trc hoành ti
điểm có hoành độ bằng
22
;
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 167 Toång hôïp: Thaày Hoùa
c) Đưng thng
()d
cắt đường thẳng
13
22
yx
;
d) Đường thng
()d
song song với đường thng
31
22
yx
;
e) Đưng thng
()d
trùng với đường thẳng
23yx
.
Câu 13: Cho hàm số
y f x ax bx x

53
( ) 2007 1
vi
ab,
, biết
f ( 2) 2
. Tính
f ( 2)
.
Câu 14: Cho hàm số
y m x mx 
2
( 3) ( 1) 2
.
a) Vi giá tr nào của
m
thì hàm số đã cho là hàm số bậc nhất?
b) Vi giá tr va tìm đưc ca
m
câu a, thì hàm số đã cho đồng biến hay nghịch
biến?.
Câu 15: Xác định hàm số
y ax b
, biết rng đ th của song song với đ th ca hàm s
2yx
và đi qua điểm
(1; 3)
A
.
Câu 16: Cho các đưng thng
1 23
1
( ): 2 3; ( ): 1; ( ): 2 1
2
dyxdyxdyx 
. Không
v đồ th của các hàm số đó, hãy cho biết vị trí tương đối gia các đưng thẳng đó đối vi
nhau như thế nào?.
Câu 17: Cho các đường thng
dy m xm d y m x  
2
12
( ): (2 1) 1; ( ): ( 3) 3
.
a) Tìm các giá tr ca
m
để
12
()()dd
.
b) Tìm các giá tr ca
m
để
1
()d
đi qua gốc ta đ.
Câu 18: Tìm đim
M
trên đường thẳng
( ) : 2 25dy x
sao cho khong cách
OM
nhỏ nhất,
vi
O
là gc ta đ.
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 168 Toång hôïp: Thaày Hoùa
ĐỀ KIM TRA CHƯƠNG II ĐỀ S 1
I. PHN TRC NGHIM
Câu 1. Trong các hàm s sau, hàm số bậc nhất là
A.
2
5y
x
= +
. B.
2
2
2
3
yx=
. C.
32xy+=
. D.
31yx=−+
.
Câu 2. Hàm s
(
)
22
4 (2 ) 3
y m x mx
= +− +
là hàm số bậc nhất khi và chỉ khi
A.
. B.
. C.
2m =
. D.
2m =
.
Câu 3. Điểm thuộc đ th hàm số
23yx=
A.
(0;3)
. B.
(3; 0)
. C.
(0; 3)
. D.
( 3; 0)
.
Câu 4. Cho đường thẳng
: 34dy x=
. Đường thẳng
d
nào sau đây song song với đường thẳng
d
?
A.
: 24dy x
=
. B.
: 43dy x
=−+
. C.
: 32
dy x
=
. D.
: 31dy x
=−+
.
Câu 5. Đường thẳng nào sau đây có hệ s góc là
1
2
?
A.
23yx= +
. B.
3
2
x
y
+
=
. C.
20xy+=
. D.
1
2
2
yx=−+
.
Câu 6. Góc tạo bởi đường thẳng
32yx=
và tia
Ox
A.
60
°
. B.
30
°
. C.
120
°
. D.
150
°
.
Câu 7. Đường thẳng
( 1) 3ym x=−−
đi qua
(2;3)A
thì giá tr ca
m
A.
2m
=
. B.
4m
=
. C.
. D.
.
Câu 8. Đồ th trong hình vẽ sau đây là của hàm số nào?
A.
21
yx=
. B.
41
yx=−+
.
C.
1
1
3
yx= +
. D.
31yx=−+
.
II. PHN T LUẬN
Câu 9. Gi
1
d
,
2
d
lần lượt là đ th ca các hàm s
43yx= +
2yx=−−
.
a) V
1
d
2
d
trên cùng một mặt phẳng tọa đ.
b) Tìm ta đ giao điểm
M
ca
1
d
2
d
.
c) Tính góc tạo bởi
2
d
và tia
Ox
.
Câu 10. Viết phương trình đường thẳng
:d y ax b= +
biết
a)
d
có hệ s góc là
3
và đi qua điểm
( 1; 4)A
.
b)
d
song song với đường thng
3yx=
và đi qua một điểm trên trục hoành có hoành độ bằng
5
.
Câu 11. Tìm
m
để đường thẳng
2
: (2 1) 2dy m x= ++
tạo với hai trục ta đ một tam giác có diện tích
bằng
2
19
.
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 169 Toång hôïp: Thaày Hoùa
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 170 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................................
ĐỀ KIM TRA CHƯƠNG II ĐỀ S 2
I. PHN TRC NGHIM
Câu 1. Trong các hàm s sau, hàm số bậc nhất là
A.
2
21yx x=+−
. B.
21yx=−+
. C.
32yx=−−
. D.
3
y =
.
Câu 2. Tìm
m
để hàm số
( )
22
1 ( 1) 100ym x m x
= +−
là hàm số bậc nhất?
A.
. B.
1m =
. C.
1m =
. D.
.
Câu 3. Cho hàm số
() 3
2
x
y fx= =−+
. Câu nào sau đây sai?
A.
( 2) 4
f
−=
. B.
5
(1)
2
f =
. C.
(4) 1f =
. D.
( 4) 1f −=
.
Câu 4. Góc tạo bởi đường thẳng
: 31dy x
=−+
vi tia
Ox
A. Góc nhọn. B. Góc vuông. C. Góc tù. D. Góc bẹt.
Câu 5. Đường thẳng nào sau đây vuông góc với đường thẳng
13
24
yx=
?
A.
21yx= +
. B.
3
2
x
y
+
=
. C.
2 10xy
+ +=
. D.
1
2
2
yx=−+
.
Câu 6. Điu kiện xác định của hàm số
2
3
1
1
x
x
y
x
+
=
A.
1x
. B.
. C.
1x ≠−
. D.
1x >
.
Câu 7. Vi giá tr nào của
m
thì đường thẳng
( 1) 1ym x=−+
(3 ) 5y mx=−−
song song với nhau?
A.
. B.
2m =
. C.
4m =
. D.
.
Câu 8. Đồ th trong hình vẽ sau đây là của hàm số nào?
A.
21yx=
. B.
22
yx
=−+
.
C.
1
1
2
yx= +
. D.
21yx=−+
.
II. PHN T LUẬN
Câu 9. Cho đường thẳng
:3dy x= +
.
a) Biu diễn
d
trên mặt phẳng tọa đ;
b) Gi
A
,
B
là giao điểm của
d
với hai trục
Ox
,
Oy
. Tìm tọa đ ca
A
B
.
c) Tính diện tích tam giác
OAB
.
Câu 10. Cho đường thẳng
: ( 2) 3dy a x a= +−
vi
a
là tham số.
a) Tìm
a
để
d
đi qua điểm
(1; 3)A
;
b) Tìm
a
để
d
song song với đường thng
23yx=−+
.
Câu 11. Tìm
m
để khong cách t gốc ta đ đến đường thẳng
: ( 2) 1dy m x=−−
bằng
4
5
.
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 171 Toång hôïp: Thaày Hoùa
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
..........................................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 172 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................................
| 1/172