Vở bài tập Toán 9 tập 1 phần Hình học

Tài liệu gồm 103 trang, tuyển tập các dạng bài tập trắc nghiệm và tự luận môn Toán 9 tập 1 phần Hình học. Tài liệu giúp bạn ôn tập kiến thức, chuẩn bị tốt kì thi sắp tới. Mời bạn đọc đón xem.

Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 1 Toång hôïp: Thaày Hoùa
Bài 1. MT S H THỨC V CNH
VÀ ĐƯNG CAO TRONG TAM GIÁC VUÔNG
A. KIẾN THC TRNG TÂM
M đầu
T hình v bên, ta có
Cnh góc vuông:
,
AB AC
.
Cnh huyn:
BC
.
Đưng cao:
AH
.
HA
là hình chiếu ca
AB
trên cnh
BC
.
HC
là hình chiếu ca
AC
trên cnh
BC
.
Định lý Py-ta-go:
222
BC AB AC= +
1. H thc liên h gia cnh góc vuông và hình chiếu ca nó trên cnh huyn
Trong tam giác vuông, bình phương mỗi cnh góc vuông bng tích ca cnh huyn và hình
chiếu ca nó trên cnh huyn.
2
BA BH BC=
hay
;
2
CA CH CB=
hay
2
'b ba=
.
2. H thức liên quan đến đưng cao
Trong mt tam giác vuông
Bình phương độ dài đường cao bng tích hình chiếu ca hai cnh góc vuông trên cnh huyn.
2
AH HB HC=
hay
2
''h bc=
.
Tích độ dài đường cao vi cnh huyn bằng tích độ dài hai cnh góc vuông.
AH BC AB AC
⋅=
hay
ah bc⋅=
.
Nghch đảo bình phương độ dài đường cao bng tng nghch đảo bình phương độ dài hai cnh
góc vuông.
222
1 11
AH AB AC
= +
hay
2 22
111
h ab
= +
.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Tính độ dài đoạn thng và các yếu t khác da vào h thc liên h gia cnh góc vuông
và hình chiếu ca nó trên cnh huyn
Vn dng đnh lý Py-ta-go để tính cnh th ba (nếu cn).
Vn dng các h thc liên h gia cạnh và đường cao trong tam giác.
Ví d 1. Tính các độ dài
x
,
y
trong hình bên.
Chương
1
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 2 Toång hôïp: Thaày Hoùa
a) b) c)
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Mt tam giác vuông có t s hai cnh góc vuông bng
4
9
. Tính t s hai hình chiếu ca hai
cạnh góc vuông đó trên cạnh huyn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 3 Toång hôïp: Thaày Hoùa
Ví d 3. Mt tam giác vuông có t s hai cnh góc vuông bng
3
4
, cnh huyn dài
10
cm. Tính độ
dài các hình chiếu ca hai cnh góc vuông trên cnh huyn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tính độ dài da vào h thức liên quan đến đường cao
Vn dng các h thức liên quan đến đường cao và định lý Py-ta-go.
Ví d 4. Tính độ dài
x
,
y
trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Tính din tích tam giác
ABC
trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 4 Toång hôïp: Thaày Hoùa
Ví d 6. Tính độ dài
AH
trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Tính tích
HA HB HC⋅⋅
trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Chng minh các h thc hình hc
Vn dng linh hot các h thức liên quan đến cạnh và đường cao trong tam giác vuông.
Nếu cn thì có th v thêm đưng ph (tờng đường cao) sao cho hình v xut hin
tam giác vuông để vn dng các h thc.
Ví d 8. Cho hình thang
()
ABCD AB CD
ˆ
90D
°
=
AC BD
. Chng minh rng
AD
trung bình nhân của hai đáy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Cho tam giác
ABC
cân ti
A
. V các đưng cao
BE
CD
. T
B
v mt đưng thng
song song vi
CD
ct tia
AC
ti
F
. Chng minh rng
2
AC AE AF=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 5 Toång hôïp: Thaày Hoùa
Ví d 10. Cho tam giác
ABC
vuông ti
A
, đường cao
AH
. Gi
D
E
lần lượt là hình chiếu ca
H
trên
AB
AC
. Chng minh rng
3
DE BD CE BC= ⋅⋅
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Cho tam giác
ABC
cân ti
A
, hai đường cao
AD
BE
. Cho biết
;
2BC m=
;
AD n=
. Chng minh rng
2 22
111
k mn
= +
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Cho tam giác
ABC
vuông ti
()A AB AC<
, đường cao
AH
. Ly đim
M
trên đoạn thng
HC
sao cho
HM AH=
. Qua
M
v một đường thng vuông góc vi
BC
, ct
AC
ti
D
. Chng
minh rng
2 22
1 11
AH AD AC
= +
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 6 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Tính
x
,
y
trong hình v sau
a) b)
c) d)
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 7 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho tam giác
ABC
vuông ti
A
, đường cao
AH
. V
()
HK AB K AB⊥∈
. Chng minh
rng
a)
AB AK BH HC⋅=
; b)
2
2
AB HB
AC HC
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho tam giác
ABC
vuông ti
A
, cnh
5
BC =
cm và t s hai hình chiếu ca
AB
,
AC
trên
cnh huyn bng
9
16
. Tính din tích tam giác
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho tam giác
ABC
vuông ti
A
,
15AB =
cm;
cm. Tính độ dài hai hình chiếu ca
hai cnh góc vuông trên cnh huyền và tính đường cao tương ứng vi cnh huyn.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 8 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Hình thang
()ABCD AB CD
5AD =
cm;
12AC =
cm và
13CD =
cm. Biết din tích hình
thang là
2
45cm
.
a) Tính chiu cao ca hình thang. b) Chng minh rng
1
2
AB CD=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho tam giác
ABC
vuông ti
A
, đường cao
AH
. V
HD AB
,
HE AC
(, )D AB E AC∈∈
. Chng minh rng
3
3
BD AB
CE AC
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 9 Toång hôïp: Thaày Hoùa
Bài 2. T SỐ LƯỢNG GIÁC CA GÓC NHN
A. KIẾN THC TRNG TÂM
1. Định nghĩa
Vi
α
là góc nhn trong tam giác vuông ta có
sin
α
=
caïnh ñoái
caïnh huyeàn
;
cos
α
=
caïnh keà
caïnh huyeàn
;
tan
α
=
caïnh ñoái
caïnh keà
;
cot
α
=
caïnh keà
caïnh ñoái
.
Cách ghi nh
“Tìm sin ly đối chia huyn,
-sin hai cnh k huyn chia nhau,
Còn tang thì phi tính sao?
Đối trên k dưới chia nhau ra lin,
-tang cũng dễ ăn tiền,
K trên đối dưới chia lin bạn ơi!”
2. Mt s h thc và tính cht cơ bn
Vi hai góc nhn
,
αβ
90
αβ
+=°
thì
sin cos ; cos sin ; tan tan ; cot cot
α βα βα βα β
= = = =
.
Vi góc nhn
( )
0 90
αα
°< < °
, ta có
0 sin 1; 0 cos 1
αα
< << <
.
Nếu
α
tăng thì
sin
α
tan
α
tăng; còn
cos
α
cot
α
gim.
sin
tan
cos
α
α
α
=
;
tan cot 1
αα
⋅=
;
cos
cot
sin
α
α
α
=
;
22
sin cos 1
αα
+=
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 10 Toång hôïp: Thaày Hoùa
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Tính t s ng giác ca góc nhn trong tam giác vuông khi biết độ dài hai cnh
c 1: Tính độ dài cnh th ba theo định lý Py-ta-go (nếu cn).
c 2: Tính các t s ng giác ca góc nhn theo yêu cầu đề bài.
Ví d 1. Tam giác
ABC
vuông ti
A
,
;
3, 5
BC
=
. Tính t s ng giác ca góc
C
ri
suy ra các t s ng giác ca góc
B
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Tính t s ng giác ca góc
B
trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 3.
ABC
vuông ti
A
2BC AB=
. Tính các t s ng giác ca góc
C
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 11 Toång hôïp: Thaày Hoùa
Ví d 4. Tam giác
ABC
cân ti
A
, có
6BC =
, đường cao
4AH =
. Tính các t s ng giác ca
góc
B
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Tính
tan C
trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Tính
sin cosMN+
trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Dng góc nhn
α
khi biết t s ng giác ca góc nhọn đó bằng
m
n
.
Dng mt tam giác vuông có cnh là m và n ri vn dụng định nghĩa để nhn ra góc
α
.
Ví d 7. Dng góc
α
, biết
sin 0,25
α
=
.
Li gii
Ta có
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 12 Toång hôïp: Thaày Hoùa
Dng góc vuông
xOy
;
Trên cnh
Ox
đặt
1OA =
;
Dựng đường tròn
( ; 4)A
ct cnh
Oy
ti
B
.
Khi đó
1
vì sin
4
OA
ABO
AB
αα

= = =


.
Ví d 8. Dng góc
α
, biết
cos 0,75
α
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Dng góc
α
, biết
tan 1, 5
α
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 10. Dng góc
α
, biết
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Chng minh h thc lưng giác
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 13 Toång hôïp: Thaày Hoùa
S dụng định nghĩa và một s h thc lưng giác cơ bản để chng minh.
Ví d 11. Cho góc nhn
α
. Chng minh rng
a)
sin tan
αα
<
; b)
cos cot
αα
<
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 12. Chng minh các h thc
a)
2
2
1
1 tan
cos
α
α
+=
; b)
2
2
1
1 cot
sin
α
α
+=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 13. Chng minh rng
a)
1 cos sin
sin 1 cos
αα
αα
+
=
; b)
tan 1 1 cot
tan 1 1 cot
αα
αα
++
=
−−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 14 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 14. Chng minh rng
2 2 22
tan sin tan sin
α α αα
−=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 15. Chng minh rng
( )
( )
22
2
2
1 4sin cos
sin cos
sin cos
αα
αα
αα
−⋅
= +
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Biết mt giá tr ng giác ca góc nhn, tính các t s ng giác khác của góc đó
Vn dng các h thc cơ bản đã học.
Ví d 16. Cho biết
sin 0, 6
α
=
; tính
cos
α
,
tan
α
,
cot
α
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 15 Toång hôïp: Thaày Hoùa
Ví d 17. Cho biết
2
cos
3
α
=
; tính
sin
α
,
tan
α
,
cot
α
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 18. Cho biết
1
tan
3
α
=
, tính
cot
α
,
sin
α
,
cos
α
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 19. Cho biết
, tính
tan x
,
sin x
,
cos x
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 5: Tính giá tr ng giác vi các góc đc bit (không dùng máy tính hoc bng s)
Căn cứ vào bng giá tr ng giác ca các góc đc bit
30 ;45 ;60
°°°
.
Căn cứ vào t s ng giác ca hai góc ph nhau.
Căn cứ vào các h thc lượng giác cơ bản.
Ví d 20. Tính giá tr ca biu thc
a)
23
4cos 45 3 cot 30 16cos 60M
°° °
=+−
;
b)
2
2sin 30 sin 60
cos 30 cos60
N
°°
°°
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 16 Toång hôïp: Thaày Hoùa
Ví d 21. Tính giá tr ca biu thc
a)
2222
sin 30 sin 40 sin 50 sin 60P
°°°°
=−+
;
b)
22222
cos 25 cos 35 cos 45 cos 55 cos 65Q
°°°°°
=−+−+
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 22. Tính giá tr ca biu thc sau vi
0
0 90
α
°
<<
:
2 22
cos tan 60 cot 45 2 sin 30 cos tanA 


.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 23. Rút gn các biu thc sau vi
0 90
α
°°
<<
a)
4 4 22
sin cos 2sin cosB
α α αα
=++
;
b)
6 6 22
sin cos 3sin cosC
α α αα
=++
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 17 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
Ví d 24. Cho biu thc
22
sin cos
1 2sin cos
A
αα
αα
==
+
.
a) Chng minh rng
sin cos
sin cos
A
αα
αα
=
+
;
b) Tính giá tr ca
A
, biết
2
tan
3
α
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 6: So sánh các t s ng giác mà không dùng máy tính hoc bng s
Ví d 25. Sp xếp các t s ng giác sau theo th t tăng dần
a)
sin 70 ,cos30 ,cos 40 ,sin 51
° ° °°
; b)
cos34 ,sin 57 ,cot 32
°°°
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 26. Sp xếp các t s ng giác sau theo th t tăng dần
a)
cot 40 ,sin 40 ,cot 43 , tan 42
°°° °
; b)
tan 52 ,cot 63 , tan 72 ,cot 31 ,sin 27
°°°°°
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 27. Cho
25 50
α
°°
<<
, hãy sắp xếp các t s ng giác sau theo th t gim dn:
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 18 Toång hôïp: Thaày Hoùa
(
) ( )
sin ; cos 40 ; tan 10
αα α
°°
++
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 28. So sánh hai s
m
n
, biết
sin 50
cos65
m
°
°
=
;
cot 70
tan 35
n
°
°
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 7: Tìm góc nhn
α
tha đng thức cho trước
S dng các h thc lượng giác cơ bản để biến đổi v dạng cơ bản
Dùng MTBT hoc bng giá tr ng giác các góc đặc biệt để tìm.
Cách dùng MTBT tìm
α
khi biết
sin
α
(tương tự đối vi
cos
α
tan
α
)
Nếu
sin m
α
=
thì bm các phím sau
'''m = °shift sin
.
Ví d 29. Tìm góc nhn
x
, biết
a)
4sin 1 1x
−=
; b)
2 3 3tan 3
x−=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Cho hình bên. Tính
sin
C
tan B
.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 19 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Chứng minh đẳng thc
2
1 2 cos sin cos
1 2 sin cos sin cos
α αα
αα α α
−⋅
=
+⋅ +
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho góc nhn
α
.
a) Biết
1
cos
3
α
=
, hãy tính
sin
α
tan
α
.
b) Biết
tan 2
α
=
, hãy tính
sin
α
cos
α
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Không dùng máy tính hoc bng số, hãy
a) Tính giá tr ca biu thc
2 222 22
sin 20 cos 30 sin 40 sin 50 cos 60 sin 70
M
° °°° °°
=+ −+ +
.
b) Sp xếp các t s ng giác sau theo th t tăng dn
sin 41
°
;
cos58
°
;
cot 49
°
;
cos75
°
;
sin 25
°
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 20 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho tam giác nhn
ABC
, độ dài các cnh
BC
,
CA
,
AB
lần lượt bng
a
,
b
,
c
.
a) Chng minh rng
sin sin sin
abc
ABC
= =
.
b) Chng minh rng nếu
2ab c
+=
thì
sin sin 2sinAB C
+=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 21 Toång hôïp: Thaày Hoùa
Bài 4-5. MT S H THỨC V CNH VÀ GÓC TRONG TAM GIÁC VUÔNG
NG DỤNG THỰC T CÁC T SỐ LƯỢNG GIÁC CA GÓC NHN
A. KIẾN THC TRNG TÂM
1. Liên h gia cnh và góc trong tam giác vuông
Trong mt tam giác vuông, mi cnh góc vuông bng
Tích ca cnh huyn vi sin ca góc đi hoc cô-sin
ca góc k.
Tích ca cnh góc vuông kia vi tang góc đi hoc
-tang góc k.
Trong hình bên, ta có
sin cos ;
sin cos ;
ba Ba C
cc Ca B
=⋅=
=⋅=
tan cot ;
tan cot .
bc Bc C
cb Cb B
=⋅=
=⋅=
2. Gii tam giác vuông
Gii tam giác vuông là tìm tt c các cnh và các góc còn li của tam giác vuông đó khi biết
trưc hai cnh hoc mt cnh và mt góc nhn.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Gii tam giác vuông
Vn dng các công thc liên h gia cạnh và góc trong tam giác vuông để tìm cnh.
Vn dng công thc liên h gia cạnh và đường cao trong tam giác vuông để tìm cnh.
Vn dng các t s ng giác ca góc nhọn để tính góc.
Lưu ý:
Nếu cho trước 1 góc nhn thì nên tìm góc nhn còn li.
Nếu cho trước hai cạnh thì dùng định lý Py-ta-go tìm cnh th hai.
Ví d 1. Gii tam giác
ABC
vuông ti
A
, biết
3, 5AB =
4, 2AC =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Gii tam giác
ABC
vuông ti
A
, biết
3, 0AB =
4,5BC =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 22 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Gii tam giác
ABC
vuông ti
A
, biết
ˆ
50B
°
=
3, 7AB =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Gii tam giác
ABC
vuông ti
A
, biết
ˆ
57
B
°
=
4,5BC =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Cho tam giác
ABC
vuông ti
A
, đường cao
AH
. Biết
2,5AB =
,
1, 5BH =
. Tính
ˆ
B
,
ˆ
C
AC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 23 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Gii tam giác nhn
c 1: V đường cao để vn dng các h thc lưng trong tam giác vuông.
ớc 2: Tính đường cao rồi tính các độ dài cạnh hay góc trong tam giác đã cho.
Lưu ý: Dùng đường cao làm trung gian để tính các độ dài cnh hoc s đo góc.
Nếu tam giác cho trưc mt cnh (hoc mt góc) thì khi v đường cao không th chia đôi
cạnh đó (hoặc góc đó) vì như vậy s khó khăn cho việc tính toán.
Ví d 6. Cho tam giác
ABC
ˆ
65B
°
=
,
ˆ
45C
°
=
2,8cm
AB =
. Tính các góc và cnh còn li ca
tam giác đó (gọi là gii tam giác
ABC
).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Gii tam giác
ABC
biết
ˆ
65B
°
=
,
ˆ
40C
°
=
4, 2cmBC =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 24 Toång hôïp: Thaày Hoùa
Ví d 8. Gii tam giác nhn
ABC
biết
,
3,8AC =
ˆ
70B
°
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Tính din tích tam giác, t giác
Tính các yếu t cn thiết ri thay vào công thc tính din tích và thc hin phép tính.
Ví d 9. Cho tam giác
ABC
như hình vẽ bên. Chng minh rng din tích tam giác
ABC
có din
tích là
1
sin
2
S bc
α
= ⋅⋅
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Nhn xét: Qua ví d y ta có thêm mt cách tính din tích tam giác. Din tích tam gc bng na
tích hai cnh nhân vi sin ca góc nhn xen giữa hai đường thng cha hai cạnh đó.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 25 Toång hôïp: Thaày Hoùa
Ví d 10. T giác
ABCD
như hình vẽ phía dưới. Biết
3,8AC =
,
5, 0BD =
65
α
°
=
. Tính din tích ca t giác đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 11. Tam giác
ABC
ˆ
ˆ
60BC
°
+=
,
3AB =
,
6AC =
. Tính độ dài đường phân giác
AD
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 12. Hình bình hành
ABCD
AC AD
3, 5
AD =
,
ˆ
50D
°
=
. Tính din tích ca hình
bình hành.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 26 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: ng dng thc tế ca h thc lưng trong tam giác vuông
V li hình v theo yêu cu bài toán (chú ý to ra tam giác vuông).
Xác đnh các yếu t cn thiết ri tính theo các h thc gia cnh và góc trong tam giác
hoc s dng t s ng giác ca góc nhọn để tìm góc.
Ví d 13. Tính khong cách gia hai đim
A
B
trên
mt b h nước sâu, biết
ˆ
58C
°
=
,
13mCB =
,
44mCH
=
như hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 14. Trong hình v bên dưới, tính chiu rng
AB
ca con sông, biết
47mOC =
,
74AOC
°
=
,
23BOC
°
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 27 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
Ví d 15. Khong cách gia hai chân tháp
AB
MN
là
a
như hình vẽ bên dưới. T đỉnh
A
ca
tháp
AB
nhìn lên đỉnh
M
ca tháp
MN
ta đưc góc
α
. T đỉnh
A
nhìn xung chân
N
ca tháp
MN
ta đưc góc
β
(so vi phương nm ngang
AH
). Hãy tìm chiu cao
MN
nếu
120m
a =
,
30
α
°
=
,
20
β
°
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Gii tam giác
ABC
vuông ti
A
, biết
a)
2,7AB =
4,5AC =
; b)
4,0AC =
4,8
BC =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 28 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
Bài 2. Gii tam giác
ABC
vuông ti
A
, biết
a)
4,5
BC
=
ˆ
35C
°
=
; b)
ˆ
65B
°
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho tam giác
ABC
cân ti
A
, đường cao
BH
. Biết
ˆ
50A
°
=
,
2,3BH =
. Tính chu vi ca
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 29 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
Bài 4. Hình thang
ABCD
ˆ
ˆ
90AD
°
= =
. Biết
2,6AB =
,
4,7CD =
ˆ
35C
°
=
. Tính din tích
hình thang.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho tam giác nhn
ABC
,
AB AC>
, đường cao
AH
đường trung tuyến
AM
. Gi
α
s đo góc
HAM
.
a) Chng minh rng
2HB HC HM−=
;
b) Chng minh rng
cot cot
tan
2
BC
α
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 30 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
Bài 6. Gii tam giác nhn
ABC
biết
ˆ
60B
°
=
,
3, 0AB =
4,5BC =
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Hình thang
ABCD
(
) có
ˆ
90D
°
=
,
ˆ
38C
°
=
,
3, 5AB =
,
. Tính din tích
hình thang đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 31 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP T LUYN
Bài 8. Các cnh ca một tam giác vuông độ dài 4cm; 6cm 6cm. Hãy tính góc nhỏ nht ca
tam giác đó.
Bài 9. Tam giác
ABC
vuông ti
A
21
AB =
cm,
ˆ
40C
°
=
. Hãy tính các độ dài
a)
AC
; b)
BC
; c) Phân giác
BD
.
Bài 10. Cho hình bên, biết:
8AB AC= =
cm,
6
CD =
cm,
34
BAC
°
=
42CAD
°
=
. Hãy tính
a) Độ dài cnh
BC
;
b)
ADC
;
c) Khong cách t điểm
B
đến cnh
AD
.
Bài 11. Trong mt tam giác
ABC
11AB =
cm,
38ABC
°
=
,
30ACB
°
=
,
N
là chân đường vuông góc k t
A
đến
BC
. Hãy tính
AN
,
AC
.
Bài 12. Tìm
x
y
trong các hình sau
Bài 13. Cho tam giác
BCD
đều cnh
5
cm và
40DAB
°
=
. Hãy tính
a)
AD
; b)
AB
.
--- HT ---
Bài. ÔN TP CHƯƠNG I
A. KIẾN THC TRNG TÂM
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 32 Toång hôïp: Thaày Hoùa
Xem li phn kiến thc trng tâm của các bài đã học
H thc liên h gia cạnh và đường cao trong tam giác.
T s ng giác ca góc nhn.
H thc liên h gia cnh và góc trong tam giác.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: So sánh các t s ng giác
Ví d 1. Sp xếp theo th t tăng dần
cos72
°
,
sin 65
°
,
sin10
°
,
cot 25
°
,
sin 40
°
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. So sánh
a)
sin 55
°
;
cos55
°
;
tan 55
°
. b)
cot 20
°
;
sin 20
°
;
cos20
°
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Cho
0 45
α
°°
<<
. Chng minh rng
a)
sin cos
αα
<
. b)
tan cot
αα
<
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho tam giác
ABC
vuông ti
A
ˆ
ˆ
BC>
. Hãy sp xếp theo th t tăng dn
sin B
,
cos B
,
tan B
,
sin C
,
cosC
,
cot C
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Rút gn và tính giá tr ca biu thc lưng giác
Ví d 5. Rút gn các biu thc
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 33 Toång hôïp: Thaày Hoùa
a)
22 2
sin cot cos 1
αα α
⋅−+
. b)
( ) ( )
22
tan cot tan cot
αα αα
−+
.
c)
442 2
sin cos cos 3sin
ααα α
−−−
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Tính giá tr ca biu thc
a)
2
sin 30 cos60 tan 45 4cos 30
°°° °
+−+
. b)
222
cos 30 cot 60 tan 30 1
°°°
−+
.
c)
22
2
cot 45 cos 45
2sin 60
°°
°
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Tính giá tr ca biu thc
a)
222 2
cos 33 cos 41 cos 49 cos 57
°°°°
+++
.
b)
222222
sin 35 sin 39 sin 43 sin 47 sin 51 sin 55
°°°°°°
+++++
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 34 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Tính độ dài đoạn thng, tính s đo góc
Ví d 8. Cho tam giác
ABC
cân ti
A
, đường cao
AH
. Biết
ˆ
44A
°
=
;
9cmAH =
. Tính chu vi
tam giác
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 9. Cho hình thang
ABCD
(
AB CD
),
ˆ
36C
°
=
;
ˆ
50
D
°
=
. Biết
4cmAB =
,
6cmAD =
. Tính
chu vi hình thang.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 35 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
d 10. Cho tam giác
ABC
vuông ti
A
, đường cao
AH
. V
HM AB
;
HN AC
. Biết
3cm
AB =
;
4cmAC =
.
a) Tính độ dài
MN
.
b) Tính s đo các góc ca tam giác
AMN
.
c) Tính din tích t giác
BMNC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 36 Toång hôïp: Thaày Hoùa
Ví d 11. Cho tam giác
ABC
vuông ti
A
,
4cmBC =
. V đường cao
AH
; v
HI AB
,
HK AC
. Tìm giá tr ln nht ca din tích t giác
AIHK
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Chng minh h thc gia các t s ng giác
Ví d 12. Chng minh h thc
224
4
224
cos sin sin
cot .
sin cos cos
ααα
α
ααα
−+
=
−+
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 13. Chứng minh các đẳng thc sau
a)
2
(1 cos )(1 cos ) sin
α αα
+=
; b)
22
sin 1 cos 2
αα
++ =
;
c)
4 4 22
sin cos 2sin cos 1
α α αα
++ =
; d)
23
sin sin cos sin
α αα α
−=
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 37 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
I. PHẦN TRC NGHIM
Câu 1: Cho tam giác
ABC
vuông ti
A
AB 5
cm,
AC
12
cm và
BC 13
cm. Giá tr
ca
sin
C
bng
A.
5
12
. B.
1
13
. C.
12
13
. D.
5
13
.
Câu 2: Cho tam giác
ABC
vuông ti
A
. Khng định nào sau đây đúng?
A.
cos
AB
B
BC
. B.
cos
AC
B
AB
. C.
cos
AB
B
AC
. D.
cos
AC
B
BC
.
Câu 3: Cho tam giác
ABC
vuông ti
A
. H thức nào sau đây đúng?
A.
sin
AB
B
BC
. B.
sin
AB
B
AC
. C.
tan
AB
B
AC
. D.
cos
AB
B
AC
.
Câu 4: Khng định nào sau đây sai?
A.
cos sin

35 40
. B.
sin cos

35 40
.
C.
sin sin

35 40
. D.
cos cos

35 40
.
Câu 5: Cho tam giác
ABC
vuông ti
A
, đường cao
AH
. H thức nào đây sai?
A.
.AC BC HC
2
. B.
.AH AB AC
2
.
C.
AH AB AC

222
1 11
. D.
.AH HB HC
2
.
Câu 6: Cho
ABC
vuông ti
,A
đường cao
.AH
Biết
,;cm cmBH BC
32 5
thì đ đài
AB
bng
A.
8
cm. B.
16
cm. C.
,18
cm. D.
4
cm.
Câu 7: Cho tam giác
ABC
vuông ti
A
,
ACB
30
, cnh
AB 5
cm. Độ dài cnh
AC
A.
10
cm. B.
5
3
cm. C.
53
cm. D.
52
2
cm.
Câu 8: Cho tam giác
ABC
vuông ti
.C
Biết
sin ,B
1
3
khi đó
tan A
bng
A.
22
3
. B.
3
. C.
22
. D.
1
22
.
Câu 9: Cho
ABC
cân ti
A
,
BAC
120
,
BC 12
cm
. Tính độ dài đường cao
AH
.
A.
AH 3
cm
. B.
AH
23
cm
. C.
AH 43
cm
. D.
AH 6
cm
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 38 Toång hôïp: Thaày Hoùa
Câu 10: Cho tam giác
ABC
vuông ti
A
, đường cao
AH
(hình
bên). Đẳng thức nào sau đây là sai?
A.
sin
AH
B
AB
. B.
tan
BH
BAH
AH
.
C.
cos
HC
C
AC
. D.
cot
AH
HAC
AC
.
Câu 11: Mt cái thang dài
4
cm
đặt da vào tưng, biết góc
gia thang và mt đt là
60
. Khong cách
d
t chân thang đến
ng bng bao nhiêu?
A.
d
3
2
m
. B.
d 23
m
.
C.
d 22
m
. D.
d
2
m
.
Câu 12: Cho tam giác
ABC
vuông ti
A
AB a
25
,
AC a 53
.
K
AK
vuông góc vi
BC
, vi
K
nm trên cnh
BC
. Tính
AK
theo
a
.
A.
AK a
19 57
10
. B.
AK a
95
2
.
C.
AK a
10 57
19
. D.
AK a
5 57
19
.
Câu 13: Cho tam giác
ABC
vuông ti
A
, đường cao
AH
. Biết
AH
2
,
HC 4
. Đặt
BH x
(hình bên). Tính
x
.
A.
x
1
2
. B.
x
1
.
C.
x
16
3
. D.
x 4
.
Câu 14: Cho
xOy
45
. Trên tia
Oy
lấy hai điểm
A
,
B
sao cho
AB 2
cm. Tính độ dài hình
chiếu vuông góc của đoạn thng
AB
trên
Ox
.
A.
2
2
cm. B.
2
4
cm. C.
1
cm. D.
1
2
cm.
Câu 15: Cho tam giác
ABC
vuông ti
A
, đường cao
AH
đưng trung tuyến
AM
(
,H M BC
). Biết chu vi ca tam giác là
72
cm và
AM AH7
cm. Tính din tích
S
ca tam giác
ABC
.
A.
S 48
cm
2
. B.
S 108
cm
2
. C.
S 148
cm
2
. D.
S 144
cm
2
.
II. PHẦN T LUN
Bài 1. Cho biết
1
cos
4
α
=
.
a) Tính
sin
α
. b) Chng minh rng
tan 4sin
αα
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 39 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Xem hình bên và tính góc to bi hai mái n
AB
và
AC
, biết rng mi máy nhà dài 2,34m
và cao 0,8m.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Tam giác
ABC
ˆ
20A
°
=
,
ˆ
30
B
°
=
,
6
AB =
cm. Đưng vuông góc k t
C
đến
AB
ct
AB
ti
P
(hình v bên). Hãy tìm
a)
AP
,
BP
; b)
CP
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Tính độ dài các cnh và s đo các góc nhọn ca tam giác
ABC
vuông ti
A
trong hình bên
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 40 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hình thang cân
ABCD
(
AB CD
). Biết
2,1cmAD =
;
6,0cm
CD =
ˆ
48D
°
=
.
a) Tính độ dài
AB
. b) Tính din tích hình thang
ABCD
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho tam giác
ABC
vuông ti
A
,
6AB
=
cm,
8AC =
cm.
a) Tính
BC
,
ˆ
B
,
ˆ
C
;
b) Phân giác ca
ˆ
A
ct
BC
ti
D
. Tính
BD
,
CD
.
c) T
D
k
DE
và
DF
lần lượt vuông góc vi
AB
,
AC
. T giác
AEDF
là hình gì? Tính chu vi
và din tích ca t giác
AEDF
?
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 41 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho tam giác
ABC
vuông ti
A
. Chng minh rng
tan
2
B AC
AB BC
=
+
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 42 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 1. SỰ XÁC ĐỊNH CA ĐƯNG TRÒN.
TÍNH CHT ĐI XNG CA ĐƯỜNG TRÒN
A. KIẾN THC TRNG TÂM
1. Khái nim
Đưng tròn tâm O bán kính R
R
0
là hình gm các đim cách đim O mt khong bng
R.
2. V trí tương đối giữa điểm và đường tròn
Đim
M
nằm trong đường tròn
;OR
khi
OM R
.
Đim
M
nằm trên đường tròn
;OR
khi
OM R
.
Đim
M
nằm ngoài đường tròn
;OR
khi
OM R
.
3. Cách xác định đưng tròn
Một đường tròn được xác đnh khi
Biết tâm và bán kính đường tròn.
Biết một đoạn thẳng là đường kính của đường tròn.
Qua ba điểm không thẳng hàng, ta vẽ được một và chỉ một đường tròn.
Đường tròn ngoại tiếp tam giác đường tròn đi qua ba đỉnh của tam giác. Khi đó tam giác
được gọi là tam giác nội tiếp đường tròn.
Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực trong tam giác.
Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền.
Nến tam gc có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác
vuông.
4. Tâm đối xng
Đường tròn hình tâm đối xứng. Tâm đối xng ca đưng tròn là tm đi xng ca hình
tròn đó.
5. Trục đi xng
Đưng tròn là hình có trc đi xng. Bất kì đường kính nào cũng là trục đi xng ca đưng
tròn.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Xác đnh tâm và bán kính của đường tròn đi qua nhiều điểm
Da vào định nghĩa đường tròn: Nếu một điểm cách đu các đim còn li thì đim đó
chính là tâm của đường tròn.
Ví d 1. Cho hình vuông
ABCD
có cnh bng
4
cm. Chng minh rng bốn điểm
A
,
B
,
C
,
D
cùng thuc một đường tròn. Tính bán kính của đường tròn đó.
...........................................................................................................................................................................................................................................................................
Chương
2
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 43 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Cho tam giác đu
ABC
có cnh bng
6
cm. Xác đnh tâm và bán kính ca đưng tròn
ngoi tiếp
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Xác đnh v trí của điểm và đường tn
Muốn xác định v trí của điểm M và đường tròn (O), ta làm như sau
ớc 1: Xác định khong cách t M đến tâm O của đường tròn.
c 2: Da vào kết qu so sánh ca OM và bán kính R của đường tròn mà kết lun.
Ví d 4. Trên mt phng ta đ
Oxy
, hãy xác đnh v trí tương đi ca đim
(;)
M 11
,
(; )N 20
,
(; )P 23
đối vi
(;)
O 2
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Cho hình vuông
ABCD
,
O
giao đim ca hai đưng chéo,
OA 22
cm. V đường
tròn (
A
;
4
cm). Xác định v trí tương đối ca các đim
A
,
B
,
C
,
D
với đường tròn
(;O 4
cm).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 44 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Dựng đường tròn thỏa mãn yêu cầu cho trước
Xem phn kiến thc trng tâm.
Ví d 6. Cho góc
xAy
nhọn hai điểm
B
,
C
thuc tia
Ay
. Dng đưng tròn tâm
O
đi qua hai
điểm
B
,
C
sao cho
O
nm trên tia
Ax
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 7. Mt tm bìa hình tròn không còn du vết ca tâm. Hãy xác đnh li tâm và bán kính ca
hình tròn đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Cho hình ch nht
ABCD
AB 12
cm,
BC 5
cm. Tìm tâm và bán kính ca đưng
tròn đi qua
4
điểm
A
,
B
,
C
,
D
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 45 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho
ABC
vuông ti
A
,
AB
6
cm,
AC 8
cm. Tìm tâm và bán kính ca đưng tròn
ngoi tiếp tam giác
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho na đưng tròn
()O
có đường kính
AB
.
M
đim nằm bên ngoài đường tròn sao cho
MA
,
MB
ct nửa đường tròn lần lượt ti
N
,
P
.
a) Chng minh
BN MA
,
AP MB
;
b) Gi
K
là giao điểm ca
BN
AP
. Chng minh
MK AB
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho
MNP
cân ti
N
, ni tiếp đường tròn
()O
. Đường cao
NH
cắt đường tròn ti
K
.
a) Chng minh
NK
là đường kính ca
()O
;
b) Tính s đo
NPK
;
c) Biết
MP 24
cm,
NP
20
cm. Tính
NH
và bán kính của đường tròn
()O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 46 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho
ABC
cân ti
A
, có
BC 36
cm, đường cao
AH 12
cm. Tính bán kính ca
đường tròn ngoi tiếp
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho hình ch nht
ABCD
AB a
,
BC b
. Chng minh rng bốn điểm
A
,
B
,
C
,
D
cùng thuc mt đường tròn. Xác định tâm và tính bán kính của đường tròn đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 47 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho tam giác
ABC
, các đưng cao
BD
CE
. Trên cnh
AC
ly đim
M
. K tia
Cx
vuông góc vi tia
BM
ti
F
. Chng minh rằng năm điểm
B
,
C
,
D
,
E
,
F
cùng thuc mt
đường tròn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Chng minh rng bốn trung điểm ca bn cnh hình thoi cùng thuc một đường tròn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Tính bán kính đường tròn ngoi tiếp tam giác
ABC
đều, cnh
3
cm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 48 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Trong h trc ta đ
Oxy
cho các đim
(; )M 12
,
(; )N 12
( ;)P 50
. Tính bán kính
đường tròn ngoi tiếp tam giác
MNP
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Cho tam giác
MNP
MN MP a
NMP
120
. Gi
O
là tâm và
r
là bán kính
của đường tròn ngoi tiếp tam giác
MNP
. Tính t s
d
r
vi
d NP
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 49 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Cho đường tròn
(;)
OR
và hai điểm
M
,
N
sao cho
M
nm trong và
N
nm ngoài
(;)
OR
. Hãy so sánh
OMN
ONM
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 13. Cho tam giác
ABC
, đường cao
BH
. Ly một điểm
M
trên cnh
AB
(
MA
,
MB
).
Qua
B
k tia
Bx
vuông góc vi tia
CM
ti
K
. So sánh
BC
HK
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. Cho tam giác
MNP
vuông ti
M
,
NP a
2
. Trên cnh
MN
ly đim
A
(
AM
,
AN
). Qua trung đim
I
ca
NP
v tia
Ix
vuông góc vi
IA
. Tia
Ix
cắt đường thng
MP
ti
B
. Xác định v trí của điểm
A
để độ dài đoạn
AB
nh nht.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 50 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 15. Bốn đỉnh ca mt hình ch nht kích thưc
5 12
cùng nm trên một đường tròn có bán
kính bng bao nhiêu?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. Cho hình thoi
ABCD
. Đưng trung trc ca cnh
BC
ct đưng thng
AC
ti
M
và ct
đường thng
BD
ti
N
. Chng minh rng
M
và
N
lần lượt là tâm ca đưng tròn ngoi tiếp các
tam giác
BCD
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 51 Toång hôïp: Thaày Hoùa
--- HT ---
Bài 2
. ĐƯNG KÍNH VÀ DÂY CA ĐƯỜNG TRÒN
A. KIẾN THC TRNG TÂM
1. So sánh độ dài ca đưng kính và dây
Trong các dây của đường tròn, đường kính là dây ln nht.
2. Quan h vuông góc giữa đường kính và dây cung
Trong một đường tròn, đường kính vuông góc vi một dây thì đi qua trung điểm ca dây y.
Trong một đường tròn, đường kính đi qua trung điểm ca một dây không đi qua tâm thì vuông
góc vi dây y.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: So sánh các đoạn thng
S dng kiến thc liên h gia đường kính và dây.
Ví d 1. Cho tam giác nhn
ABC
, các đường cao
BD
CE
ct nhau ti
H
. Chng minh
a) ốn điểm
B
,
E
,
D
,
C
cùng thuc một đường tròn;
b)
DE BC
<
;
c)
DE AH<
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Chứng minh hai đoạn thng bng nhau
Ví d 2. Cho đường tròn tâm
O
, đường kính
AB
. Dây
CD
cắt đường kính
AB
ti
I
. Gi
H
,
K
theo th t là chân các đưng vuông góc k t
A
B
đến
CD
. Đưng thẳng đi qua
O
vuông góc
vi
CD
ti
M
ct
AK
ti
N
. Chng minh
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 52 Toång hôïp: Thaày Hoùa
a)
AN NK=
; b)
MH MK=
; c)
CH DK=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Cho na đưng tròn tâm
O
, đường kính
MN
, dây
CD
. Các đưng vuông góc vi
CD
ti
C
D
tương ng ct
MN
H
và
K
. Chng minh
MH NK=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Cho đường tròn tâm
O
, có bán kính
4OA
=
cm.y
BC
vuông góc vi
OA
tại trung điểm
ca
OA
. Tính độ dài
BC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 53 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn
(;)
OR
và điểm
I
nằm bên trong đường tròn.
a) Hãy nêu cách dựng dây
CD
nhn
I
làm trung điểm;
b) Tính độ dài dây
CD
khi
5R
=
cm,
3OI =
cm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho đường tròn tâm
O
có bán kính
11OA
=
cm. Ly
M
thuc
OA
sao cho
7OM =
cm.
Qua
M
v y
18CD =
cm. K
OH CD
(
H CD
). Tính
a)
OH
,
HM
; b)
MC
,
MD
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho đường tròn
()O
đường kính
2AB R=
. V cung tròn tâm
B
, bán kính
R
, cung này ct
đường tròn
()O
C
D
.
a) T giác
OCBD
là hình gì? Vì sao?
b) Tính s đo các góc
CDB
,
CDO
,
ODA
;
c) Chng minh
ACD
là tam giác đu.
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 54 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho đường tn
()O
, dây cung
MN
. K
OI MN
(
I MN
), ly hai đim
H
,
K
đối xng
vi nhau qua
I
. Chng minh t giác
MHNK
là hình bình hành.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 6. Cho t giác
ABCD
ˆˆ
90AC
°
= =
.
a) Chng minh bốn điểm
A
,
B
,
C
,
D
cùng thuc một đường tròn;
b) So sánh độ dài
AC
BD
;
c) Nếu
AC BD=
thì t giác
ABCD
là hình gì?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 55 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho đường tròn
()
O
đường kính
AK
, dây
MN
không cắt đường kính
AK
. Gi
I
,
P
ln
ợt là chân đường vuông góc h t
A
K
đến
MN
. Chng minh
MI NP=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho na đưng tròn tâm
O
, đường kính
MN
. Trên
MN
ly đim
H
,
K
sao cho
MH NK=
. Qua
H
,
K
k các đưng thng song song vi nhau, chúng ct na đưng tròn lần lượt
ti
C
D
. Chng minh
HC
KD
vuông góc vi
CD
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 56 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 3. LIÊN H GIA DÂY VÀ KHONG CÁCH T M ĐN DÂY
A. KIẾN THC TRNG TÂM
Trong một đường tròn:
Hai dây bằng nhau thì cách đều tâm.
Hai dây cách đều tâm thì bng nhau.
Trong hai dây ca một đường tròn
Dây nào lớn hơn thì dây đó gần tâm hơn.
Dây nào gn tâm hơn thì dây đó lớn hơn.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Tính độ dài đoạn thng. Chứng minh đoạn thng bng nhau
Áp dng liên h gia dây và khong cách t tâm đến dây.
Ví d 1. Cho đường tròn
(, ) cmO 10
, dây
AB
16
cm.
a) Tính khong cách t
O
đến dây
AB
;
b) Gi
I
là điểm thuc dây
AB
sao cho
AI
2
cm. K y
CD
đi qua
I
và vuông góc vi
AB
.
Chng minh
CD AB
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Cho đường tròn
()
O
có các dây
AB
CD
bng nhau, các tia
AB
CD
ct nhau ti
điểm
M
nằm bên ngoài đường tròn. Gi
H
,
K
lần lượt là trung đim ca
AB
,
CD
.Chng minh
a)
MH MK
; b)
MA MC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
H
K
O
A
B
C
D
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 57 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: So sánh độ dài các đoạn thng
Da vào kiến thc trng tâm.
Ví d 3. Cho đường tròn
()O
điểm
M
nằm bên trong đường tròn. V dây
AB
vuông góc vi
OM
ti
M
. V dây
HK
bt kì qua
M
và không vuông góc vi
OM
. y so sánh độ dàiy
AB
HK
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho
AB
và
CD
là hai dây ca đưng tròn
(;)
OR
sao cho
AB
và
CD
ct nhau tại điểm
I
nằm trong đường tròn. Gi
H
,
K
lần lượt là trung đim ca
AB
,
CD
. Biết
AB CD
, chng
minh
IH IK
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 58 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Cho đường tròn
(; ) cmO 25
. Hai dây
AB
,
CD
song song với nhau độ dài theo th t
bng
40
cm,
48
cm. Tính khong cách gia hai dây y.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn
(;)OR
hai điểm
A
,
B
bt kì nm trên
(;)OR
. Trên cung nh
AB
ly
các đim
M
,
N
sao cho
AM BN
AM
,
BN
ct nhau ti đim
C
nằm trong đường tròn.
Chng minh:
a)
OC
là phân giác ca
AOB
; b)
OC AB
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 59 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho đường tròn
(; ) cmO 10
, điểm
M
cách
O
8
cm.
a) Tính độ dài dây ngn nhất đi qua
M
;
b) Tính độ dài dây dài nhất đi qua
M
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho đường tròn
()O
, các dây
AB 24
cm,
AC
20
cm (
BAC
90
điểm
O
nm
trong
BAC
). Gi
M
là trung điểm ca
AC
. Khong cách t
M
đến
AB
bng
8
cm.
a) Chng minh
ABC
cân ti
C
; b) Tính bán kính của đường tròn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 60 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 5. Cho đường tròn
(, ) cmO 10
, dây
AB 16
cm. V dây
CD
song song vi
AB
. Gi
H
,
K
lần lượt là trung điểm ca
AB
,
CD
.
a) Chứng minh ba điểm
O
,
H
,
K
thng hàng;
b) Biết
O
nm gia
H
,
K
và khong cách gia hai dây
AB
,
CD
bng
14
cm. Tính độ dài dây
CD
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường tròn
()O
, các dây
AB
CD
bng nhau và ct nhau tại điểm
M
nm bên trong
đường tròn. Chng minh:
a)
MO
là tia phân giác ca mt trong hai góc to bi hai dây cung
AB
CD
;
b)
MA MC
MB MD
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 61 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho hai đường tròn
(;)Or
và
(;)OR
vi
Rr
. Hai dây
AB
,
CD
thuc đưng tròn
(;)Or
sao cho
AB CD
. Đưng thng
AB
ct
(;)
OR
ti
M
N
, đường thng
CD
ct
(;)OR
ti
H
K
. K
()
OI AB I AB

,
()OJ CD J CD
. So sánh các độ dài:
a)
OI
OJ
; b)
MN
HK
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho
MNP
ˆˆˆ
MNP
ni tiếp đường tròn
()
O
. Gi
OH
,
OI
,
OK
theo th t là
khong cách t
O
đến
MN
,
NP
,
MP
. So sánh các độ dài
OH
,
OI
OK
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 62 Toång hôïp: Thaày Hoùa
--- HT ---
Bài 4
. V TRÍ TƯƠNG ĐỐI CA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN
A. KIẾN THC TRNG TÂM
1. V trí tương đối của đường thẳng và đường tròn
Cho đường tròn (O;R) và một đường thng bt kì. Gi d là khong cách t tâm O ca đưng
tròn đến đường thẳng đó. Ta có bảng v trí tương đi của đường thng với đường tròn
V trí tương đối ca đưng thẳng và đường tròn
S điểm chung
H thc gia d và R
Ct nhau
2
dR<
Tiếp xúc nhau
1
dR=
Không giao nhau
0
dR>
2. V trí tương đối của đường thẳng và đường tròn
Nếu một đường thng là tiếp tuyến ca một đường tròn thì nó vuông góc vi bán
kính đi qua tiếp điểm.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Xác đnh v trí tương đối của đường thẳng và đường tn
So sánh d và R ri kết lun da vào phn kiến thc trng tâm.
Ví d 1. Đin vào các ch trng (
) trong bng sau (
R
là bán kính ca đưng tròn,
d
là khong
cách t tâm đến đường thng):
R
d
V trí tương đối ca đưng thẳng và đường tròn
5
cm
3
cm
6
cm
Tiếp xúc nhau
4
cm
8
cm
Ví d 2. Trên mt phng ta đ
Oxy
cho điểm
(3; 4)A
. Hãy xác đnh v trí tương đi ca đưng
tròn
( ;3)A
và các trc ta đ.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Cho điểm
A
cách đưng thng
là
3
cm. V đường tròn tâm
A
, bán kính
3
cm. Chng
minh đường thng
tiếp xúc với đường tròn
()A
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 63 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
Dạng 2: Bài toán liên quan đến tính độ dài
Ni tâm và tiếp điểm để vn dụng định lý v tính cht ca tiếp tuyến và định lý Py-ta-go.
Ví d 4. Cho đường tròn
(;)OR
và điểm
M
nm ngoài
()O
sao cho
2MO R=
. K tiếp tuyến
MA
vi
()
O
(
A
là tiếp điểm). Tính độ dài đoạn thng
MA
theo
R
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 5. Cho đường tròn tâm
O
, đường kính
2AB R=
. T
A
k tiếp tuyến
xy
. Trên
xy
ly đim
C
sao cho
AC R=
. Tính độ dài đoạn thng
BC
theo
R
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Trên mt phng ta đ
Oxy
cho điểm
(;)Aab
. Xác định điều kin ca
,
ab
để đường tròn
( ;5)A
tha mãn:
a) Ct trc
Oy
; b) Ct trc
Ox
; c) Tiếp xúc vi
Ox
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 64 Toång hôïp: Thaày Hoùa
Bài 2. Cho hình thang vuông
ABCD
(
ˆ
ˆ
90AD
°
= =
). Biết
4AB =
cm,
13BC =
cm và
9CD =
cm.
V đường tròn tâm
O
, đường kính
BC
. Chng minh
AD
tiếp xúc vi
()O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho đường tròn
( ;15 cm)O
có dây
24AB =
cm. Gi
H
là trung điểm ca
AB
, tia
OH
ct
()O
ti
C
, tiếp tuyến ca
()O
ti
C
ct
,OA OB
lần lượt ti
,EF
. Tính độ dài
OH
EF
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho điểm
O
cách đưng thng
xy
5
cm.
a) Chng minh
( ;13 cm)O
cắt đường thng
xy
tại hai điểm phân bit;
b) Gọi hai giao điểm ca
()O
vi
xy
,BC
. Tính độ dài đoạn thng
BC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 65 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho đường tròn tâm
O
bán kính
6
cm. Đim
A
nằm ngoài đường tròn và
10OA =
cm. K
tiếp tuyến
AB
vi
()
O
trong đó
B
là tiếp điểm. Tính chu vi tam giác
ABO
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 6. Trên mt phng ta đ
Oxy
cho điểm
(2; 4)B
. Hãy xác đnh v trí tương đi ca đưng tròn
( ;3)B
và các trc ta đ.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho điểm
B
cách đưng thng
a
5
cm. V đường tròn tâm
B
, bán kính
7
cm. Chng
minh đường thng
a
cắt đường tròn
()B
tại hai điểm phân bit.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho đường tròn
()O
bán kính
6
cm điểm
A
cách
O
10
cm. K tiếp tuyến
AB
vi
()O
(
B
là tiếp điểm). Tính độ dài đoạn thng
AB
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 66 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho đường tròn tâm
O
bán kính
3
cm đim
M
nm trên đường tròn đó. Từ
M
v tiếp
tuyến
xy
. Trên
xy
lấy điểm
P
sao cho
4MP =
cm. Tính độ dài đoạn thng
PO
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 67 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 5. DU HIU NHN BIẾT TIẾP TUYN CA ĐƯỜNG TRÒN
A. KIẾN THC TRNG TÂM
Du hiu 1: Nếu mt đường thẳng đi qua một điểm thuc đưng tròn và vuông góc vi bán
kính đi qua điểm đó thì đường thng y là mt tiếp tuyến của đường tròn.
Du hiu 2: Nếu khong cách t tâm ca một đường tròn đến đường thng bng bán kính ca
đường tròn thì đường thẳng đó là tiếp tuyến ca đưng tròn.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Chng minh một đường thng là tiếp tuyến của đường tròn
Để chứng minh đường thng
a
là tiếp tuyến ca đưng tròn
( )
;OR
ti tiếp điểm C, ta có
th làm theo mt trong hai cách
Cách 1: Chng minh C nm trên (O) và
OC a
ti C.
Cách 2: K
OH a
ti H và chng minh
OH OC R= =
.
Ví d 1. Cho tam giác
ABC
có ba góc nhn, k đưng cao
AH
, v đường tròn
(; )A AH
. Chng
minh
BC
là tiếp tuyến ca đưng tròn
()
A
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Cho tam giác
ABC
5
BC =
cm,
4CA =
cm,
3AB =
cm. V đưng tròn
(; )C CA
.
Chng minh
BA
là tiếp tuyến của đưng tròn
()
C
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 3. Cho tam giác
ABC
, các đưng phân giác trong
ˆ
B
,
ˆ
C
ct nhau ti
I
. Gi
H
là hình
chiếu ca
I
trên
BC
, v đường tròn tâm
I
, bán kính
IH
. Chng minh
AB
,
AC
tiếp xúc vi
()I
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 68 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho tam giác
ABC
cân ti
A
có các đường cao
AH
BK
ct nhau ti
I
. Chng minh
a) Đưng tròn tâm
O
đường kính
AI
đi qua
K
;
b)
HK
là tiếp tuyến ca đưng tròn
()O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Bài toán liên quan đến tính độ dài
Ni tâm vi tiếp điểm đ vn dng đnh lý v tính cht ca tiếp tuyến và s dng các
công thc v h thc lượng trong tam giác vuông để tính độ dài.
Ví d 5. Cho đường tròn
(;)OR
đường kính
AB
. V dây
AC
sao cho
30CAB
°
=
. Trên tia đi ca
tia
BA
lấy điểm
M
sao cho
BM R=
. Chng minh
a)
MC
là tiếp tuyến ca
()O
; b)
3MC R=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 69 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 6. Cho đường tròn tâm
O
có bán kính
OA R
=
, dây
BC
vuông góc vi
OA
tại trung điểm
M
ca
OA
.
a) T giác
OCAB
là hình gì? Vì sao?
b) K tiếp tuyến với đường tròn ti
B
, cắt đường thng
OA
ti
E
. Tính độ dài
BE
theo
R
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Cho hình vuông
ABCD
. V đường tròn tâm
A
, bán kính
AB
. Chng minh
a)
CB
là tiếp tuyến của đường tròn
()A
;
b)
CD
là tiếp tuyến ca đưng tròn
()A
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 70 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho tam giác
ABC
cân ti
A
. Gi
M
là trung điểm ca
BC
H
là hình chiếu vuông góc
ca
M
trên
AB
. V đường tròn
(; )M MH
. Chng minh
AC
tiếp xúc vi
()M
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho tam giác
ABC
vuông ti
A
. V đường tròn
(; )B BA
đường tròn
(; )C CA
, chúng ct
nhau tại điểm
D
(
D
khác
A
). Chng minh
CD
là tiếp tuyến của đường tròn
()B
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 71 Toång hôïp: Thaày Hoùa
Bài 4. Cho đường tròn
()
O
điểm
A
nm ngoài
()O
. K tiếp tuyến
AB
vi
()
O
(
B
là tiếp
điểm). Qua
B
k đường thng vuông góc vi
OA
, ct
()O
ti
C
. Chng minh
AC
là tiếp tuyến
của đường tròn
()O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho đường tròn tâm
()
O
, đường kính
2AB R
=
d
là tiếp tuyến ti
B
ca
()O
. Trên
()O
lấy điểm
C
sao cho
BC R=
, tia
AC
ct
d
ti
E
.
a) Tính s đo các góc của tam giác
ABC
;
b) Tính độ dài
BE
theo
R
;
c) Gi
M
là trung điểm ca
BE
. Chng minh
MC
là tiếp tuyến ca
()O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường tròn
(,)OR
điểm
A
nm ngoài
()O
. K các tiếp tuyến
AB
,
AC
(
B
,
C
các tiếp điểm) và đưng kính
BOD
ca
()O
. Đưng thng qua
O
và vuông góc vi
OA
ct
AC
ti
E
. Chng minh
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 72 Toång hôïp: Thaày Hoùa
a)
ABO ACO=
; b)
OE
là tia phân giác ca
COD
; c)
ED
là tiếp tuyến ca
()
O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 7. Cho tam giác
ABC
vuông ti
A
, v đường tròn
(; )B BA
. Chng minh
AC
là tiếp tuyến ca
đường tròn
()B
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho hình ch nht
ABCD
, v đường tròn tâm
O
, đường kính
AB
. Chng minh
DA
,
BC
là
các tiếp tuyến của đường tròn
()O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 73 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho tam giác
ABC
ng ti
B
, tia phân giác góc
A
ct
BC
ti
D
. V đường tròn tâm
D
,
bán kính
DB
. Chng minh
AC
tiếp xúc với đường tròn
()D
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Cho tam giác
ABC
vuông ti
A
, k đường cao
AD
. Gi
M
trung điểm ca
AB
.
Chng minh
a) Đưng tròn tâm
O
đường kính
AC
đi qua
D
;
b)
MD
là tiếp tuyến ca đưng tròn
()O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 74 Toång hôïp: Thaày Hoùa
Bài 11. Cho đường tròn
(,)
OR
có dây
AB
không đường kính. Qua
O
k đường thng vuông
góc vi
AB
, ct tiếp tuyến ti
A
ca
()
O
điểm
C
.
a) Chng minh
CB
là tiếp tuyến ca
()O
;
b) Cho bán kính ca
()O
bng
15
cm và dây
24AB =
cm. Tính độ dài đoạn thng
OC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Cho đường tròn tâm
O
có bán kính
OA R=
, v dây
AB
sao cho
AB R=
. Gi
K
đim
đối xng vi
O
qua
A
.
a) Chng minh
KB
là tiếp tuyến ca
()O
;
b) Tính độ dài đoạn thng
KB
theo
R
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 75 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 6. TÍNH CHT CA HAI TIP TUYN CẮT NHAU
A. KIẾN THC TRNG TÂM
1. Tính chất ca hai tiếp tuyến ct nhau
Nếu hai tiếp tuyến của đường tròn ct nhau ti một điểm
thì
Điểm đó cách đều hai tiếp điểm.
Tia k t điểm đó đi qua tâm tia phân giác của
góc to bi hai tiếp tuyến.
Tia k t tâm đi qua hai điểm đó tia phân giác
ca góc to bởi hai bán kính đi qua tiếp điểm.
2. Đường tròn ni tiếp tam giác
Đưng tròn tiếp xúc vi ba cnh ca mt tam giác gi là
đường tròn ni tiếp tam giác, còn tam giác gi là ngoi tiếp
đường tròn.
Tâm ca đưng tròn ni tiếp tam giác giao đim ca ba
đường phân giác ca tam giác.
Tia k t tâm đi qua điểm đó là tia phân giác của góc to bi
hai bán kính đi qua tiếp điểm.
3. Đường tròn bàng tiếp tam giác
Đưng tròn tiếp xúc vi mt cnh ca tam giác và tiếp xúc vi phn
kéo dài ca hai cnh còn li gọi là đường tròn bàng tiếp tam giác.
Vi mỗi tam giác, có ba đường tròn bàng tiếp.
Tâm ca đưng tròn bàng tiếp góc A là giao đim ca hai đưng
phân giác góc ngoài ti B và C hoc giao đim ca đưng phân
giác trong ca góc A và đường phân giác ngoài ti B (hoc C).
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Chứng minh hai đoạn thng bằng nhau, hai đường thẳng song song, hai đường thng
vuông góc
Vn dng tính cht hai tiếp tuyến ct nhau.
Ví d 1. Cho đường tròn
()O
và điểm
A
nm ngoài
()O
. K các tiếp tuyến
AB
,
AC
vi
()O
(
B
,
C
là các tiếp điểm).
a) Chng minh
AO
là trung trc của đoạn thng
BC
;
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 76 Toång hôïp: Thaày Hoùa
b) V đường kính
CD
ca
()
O
. Chng minh
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Cho na đưng tròn
()
O
đường kính
AB
. Trên na mt phng b
AB
cha na đưng
tròn v các tiếp tuyến
Ax
By
. Đim
M
thuc
()O
sao cho tiếp tuyến ti
M
ct
Ax
,
By
ln
t ti
C
,
D
.
a) Chng minh
CD AC BD= +
; b) Chng minh
OC AM
;
c) Gi
E
là giao đim ca
AM
và
OC
,
F
là giao đim ca
BM
OD
. T giác
MEOF
là hình
gì? Ti sao?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tính độ dài đoạn thng. Tính s đo góc
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 77 Toång hôïp: Thaày Hoùa
Vn dng các kiến thc sau
Tính cht hai tiếp tuyến ct nhau.
Tính cht của đường tròn ni tiếp, đường tròn bàng tiếp.
H thc lưng v cnh và góc trong tam giác vuông.
Ví d 3. Cho đường tròn
(,)OR
điểm
A
nằm ngoài đường tròn
()O
sao cho
. K các
tiếp tuyến
AB
,
AC
vi
()
O
(
B
,
C
là các tiếp điểm).
a) Chng minh tam gc
ABC
đều;
b) Tính chu vi và din tích tam giác
ABC
theo
R
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho tam giác
ABC
vuông ti
A
. Đưng tròn
(,)Ir
ni tiếp tam giác
ABC
tiếp xúc vi
BC
,
CA
,
AB
lần lượt ti
D
,
E
,
F
.
a) T giác
AEIF
là hình gì? Vì sao?
b) Chng minh
BC BF CE= +
;
c) Chng minh
2
AB AC BC
r
+−
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 78 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Hai tiếp tuyến ti
A
B
của đường tròn
()O
ct nhau tại điểm
M
. Qua
O
k đường
thng song song vi
AM
ct
BM
ti
C
.
a) Chng minh
CM CO=
;
b) K
OD BM
vi
D
thuc
AM
. T giác
OCMD
là hình gì? Vì sao?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn
()O
điểm
A
nm ngoài
()O
. K các tiếp tuyến
AB
,
AC
vi
()O
trong
đó
B
,
C
là các tiếp đim.
a) Chng minh
OA
là trung trc của đoạn thng
BC
;
b)
OA
ct
BC
H
. Biết
4
OB =
cm,
2OH =
cm. Tính
i) Chu vi và din tích tam giác
ABC
.
ii) Din tích t giác
ABOC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 79 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. T một điểm
A
nằm ngoài đường tròn
()O
, k các tiếp tuyến
AB
,
AC
vi
()O
(
B
,
C
là
các tiếp điểm). Qua đim
D
thuc cung nh
BC
k tiếp tuyến vi
()O
, tiếp tuyến này ct
AB
,
AC
lần lượt ti
M
,
N
. Chng minh chu vi tam giác
AMN
bng
2AB
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho tam giác
ABC
vuông ti
A
, đường cao
AH
. V đưng tròn
(; )A AH
. T
B
C
k
các tiếp tuyến
BM
,
CN
vi
()A
(
M
,
N
là các tiếp điểm khác
H
). Chng minh
a)
BC BM CN= +
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 80 Toång hôïp: Thaày Hoùa
b)
180MBC NCB
°
+=
, t đó suy ra
BM CN
.
c)
M
,
A
,
N
thng hàng.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 5. Cho na đưng tròn
()O
đường kính
AB
. Trên na mt phng b
AB
cha na đưng tròn
v tiếp tuyến
Ax
. Điểm
M
nm trên
()O
sao cho tiếp tuyến ti
M
ct
Ax
ti
C
.
a) Chng minh
OC
là trung trc của đoạn thng
AM
;
b) Chng minh
BM OC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 81 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường tròn
()O
, các đim
B
,
C
thuc
()O
sao cho
90BOC
°
=
. Hai tiếp tuyến ti
B
C
thuc
()O
ct nhau
A
.
a) T giác
ABOC
là hình gì? Ti sao?
b) Ly đim
M
thuc cung nh
BC
ca
()O
. Tiếp tuyến ti
M
va
()O
ct
AB
,
AC
lần lượt ti
D
,
E
. Chng minh
DE BD CE= +
;
c) Biết bán kính đường tròn
()O
bng
5
cm. Tính chu vi ca tam giác
ADE
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho đường tròn
()O
. T điểm
M
nm ngoài đưng tròn
()O
, v hai tiếp tuyến
ME
,
MF
(
E
,
F
là các tiếp điểm). Biết
3OE
=
cm,
5
OM =
cm.
a) Tính độ dài
EF
;
b) Tính chu vi và din tích tam giác
MEF
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 82 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Đưng tròn
()O
ni tiếp tam giác
ABC
tiếp xúc vi các cnh
BC
,
CA
,
AB
lần lượt ti
M
,
N
,
P
.
a) Chng minh
BC BP CN= +
;
b) Chng minh
2
AB AC BC
AN
+−
=
;
c) Biết
3AB =
cm,
4AC
=
cm,
5BC =
cm. Tính độ dài
CM
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 83 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 7. V TRÍ TƯƠNG ĐI CA HAI ĐƯỜNG TRÒN
A. KIẾN THC TRNG TÂM
1. Ba v trí tương đối của hai đường tròn
Hai đường tròn có hai điểm chung gọi là hai đường tròn ct nhau.
Hai đưng tròn ch một điểm chung được gi là hai đưng tròn tiếp xúc nhau. Đim chung
đó gọi là tiếp điểm.
Hai đường tròn không có điểm chung được gọi là hai đường tròn không giao nhau.
2. Tính chất đưng ni tâm
Nếu hai đường tròn cắt nhau thì hai giao điểm đi xng với nhau qua đường ni tâm, tc là
đường nối tâm là đường trung trc ca dây cung y.
Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường ni tâm.
B. CÁC DNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Chng minh song song, vuông góc.
Vn dng tính cht ca đưng ni tâm; các du hiu chứng minh song song; định lí Py-
ta-go; tính cht hình hình thang; tính cht hai tiếp tuyến ct nhau…
Ví d 1. Cho hai đường tròn
(;)OR
( ;)Or
tiếp xúc nhau ti
A
(
A
nm gia
O
O
). Mt
đường thẳng đi qua
A
ct
(;)OR
ti
B
và ct
( ;)
Or
ti
C
. Chng minh
OB O C
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 2. Cho hai đường tròn
()O
()O
ct nhau tại hai điểm
A
B
. K các đưng kính
AOC
,
AO D
. Chng minh:
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 84 Toång hôïp: Thaày Hoùa
a)
AB BC
. b)
C
,
B
,
D
thng hàng. c)
OO CD
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tính độ dài đoạn thng. Chứng minh đoạn thng bng nhau
Vn dng tính cht ca đưng ni tâm; các du hiu chng minh song song; định lí Py-
ta-go; tính cht hình hình thang; tính cht hai tiếp tuyến ct nhau…
Ví d 3. Cho hai đường tròn (
;10O
cm) và (
;8O
cm) ct nhau tại hai điểm
,AB
. Biết
12AB =
cm, tính đoạn ni tâm
OO
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho hai đường tròn
()O
()O
ct nhau ti
A
B
. Gi
I
là trung điểm ca
OO
. Qua
A
v đường thng vuông góc vi
AI
, cắt đường tròn
()O
()O
ti
C
D
(
,CD A
). Chng
minh
AC AD=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 85 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Cho hai đường tròn (
O
) và
()O
tiếp xúc vi nhau tại điểm
A
sao cho
O
nm gia
O
A
. Gi
M
là một điểm bt kì nm trên
()O
(
MA
),
AM
ct
()O
ti
B
. Chng minh rng
O B OM
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho hai đường tròn (
;OR
) và (
;Ir
) ct nhau ti
M
N
, trong đó
I
thuc đưng tròn
()O
Rr>
. K đường kính
IOK
ca đưng tròn
()O
.
a) Chng minh
KM
,
KN
là các tiếp tuyến ca
()I
.
b) Đưng vuông góc vi
MI
ti
I
ct
KN
ti
J
. Chng minh
JI JK=
.
c) Đưng vuông góc vi
KM
ti
K
ct
IN
ti
P
. Chứng minh ba điểm
O
,
J
,
P
thng hàng.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 86 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho hai đường tròn
()
O
()O
ct nhau tại hai điểm
A
B
. Gi
I
trung điểm ca
OO
, gi
C
là điểm đối xng vi
A
qua
I
. Chng minh:
a)
BC AB
. b)
AOCO
là hình bình hành. c)
OO BC
là hình thang cân.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 4. Cho hai đường tròn
()O
()O
tiếp xúc nhau ti
A
(
A
nm gia
O
O
). Một đường
thẳng đi qua
A
ct
()O
ti
B
, ct
()O
ti
C
. V tiếp tuyến
Bx
ti
B
ca
()O
, v tiếp tuyến
Cy
ti
C
ca
()O
. Chng minh
Bx Cy
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 87 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hai đường tròn (
;15O
cm) và (
;13O
cm) ct nhau tại hai điểm
,AB
sao cho
O
O
nằm khác phía đối vi
AB
. Biết
24AB =
cm. Tính độ dài
OO
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 88 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài 8. V TRÍ TƯƠNG ĐI CA HAI ĐƯỜNG TRÒN (TT)
A. KIẾN THC TRNG TÂM
V trí tương đối của hai đường tròn
(
)
;OR
( )( )
';Or R r>
Số đim
chung
H thc gia
'OO
vi
R
r
Số tiếp tuyến
chung
Hai đường tròn ct nhau.
2
'R r OO R r
−< < +
2
Hai đường tròn tiếp xúc nhau
Tiếp xúc ngoài.
Tiếp xúc trong.
1
'OO R r= +
'OO R r=
1
Hai đường tròn không giao nhau.
Ngoài nhau.
Đựng nhau.
Đồng tâm.
0
'OO R r>+
'OO R r<−
' 0OO =
4
0
0
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1: Xác đnh v trí tương đối của hai đường tròn
Vn dng lý thuyết v v trí tương đối của hai đường tròn phn kiến thc trng tâm.
Ví d 1. Đin vào ô trng trong bng, biết rng hai đường tròn
(;)OR
( ;)Or
,OO d R r
= >
.
V trí tương đi ca hai
đường tròn
S điểm chung
H thc liên h gia
,,
dRr
S tiếp tuyến chung
Đựng nhau
d Rr= +
Tiếp xúc trong
Ngoài nhau
Ct nhau
Ví d 2. Đin các t thích hp vào ch trng ():
a) Tâm của đường tròn có bán kính bng
2
cm tiếp xúc ngoài với đường tròn (
;3O
cm) nm trên ...
...............................................................................................................................................................
b) Tâm ca đưng tròn có bán kính bng
5
cm tiếp xúc trong với đường tròn (
;8O
cm) nm trên
...............................................................................................................................................................
Dạng 2: Các bài toán liên quan đến hai đường tròn tiếp xúc nhau
Vn dng tính chất đường ni tâm, tính cht hai tiếp tuyến ct nhau; tính cht tiếp tuyến
chung của hai đường tròn; h thc lưng trong tam giác vuông…
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 89 Toång hôïp: Thaày Hoùa
Ví d 3. Cho hai đường tròn
()
O
và
()
O
tiếp xúc ngoài ti
A
. Gi
MN
tiếp tuyến chung ngoài
của hai đường tròn vi
()MO
.
a) Tính s đo
MAN
.
b) Tính độ dài
MN
biết
9OA =
cm;
4OA
=
cm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví d 4. Cho đường tròn
(; )O OA
và đường tròn tâm
I
có đường kính
.OA
a) Xác đnh v trí tương đối của hai đường tròn.
b) Dây
AD
của đường tròn ln cắt đường tròn nh
M
. Chng minh
.AM MD=
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
C. BÀI TẬP VN DNG
Bài 1. Cho đường tròn (
;9O
cm) và (
;3O
cm) tiếp xúc ngoài ti
.A
V hai bán kính
OB
OC
song song vi nhau và thuc cùng mt na mt phng b
OO
.
a) Tính s đo của
.BAC
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 90 Toång hôïp: Thaày Hoùa
b) Gi
I
là giao điểm ca
BC
OO
. Tính độ dài
OI
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn (
;OR
) điểm
M
nằm bên ngoài đường tròn
( 3)R OM R<<
. V đường
tròn
( ;2 )
MR
.
a) Hai đường tròn
()O
()M
có v trí tướng đối như thế nào vi nhau?
b) Gi
K
là một giao điểm ca hai đưng tròn trên. V đường kính
KOH
ca đưng tròn
()O
.
Chng minh
.NH NM=
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho
ABC
vuông ti
A
, đường cao
AH
. Gi
D
là hình chiếu ca
H
trên
,AB
E
là hình
chiếu ca
H
trên
.AC
Gi (
O
) tâm đưng tròn kính
HB
, (
O
) tâm đường tròn đường kính
.HC
Chng mình:
a) Đim
D
thuộc đường tròn
( ),
O
điểm
E
thuộc đường tròn
()O
;
b) Hai đường tròn
()O
()O
tiếp xúc ngoài;
c)
AH
là tiếp tuyến chung của hai đường tròn đó;
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 91 Toång hôïp: Thaày Hoùa
d)
AH DE=
;
e)
DE
là tiếp tuyến chung của hai đường tròn
()O
()O
;
f) Din tích ca t giác
DEOO
bng na din tích ca tam giác
.ABC
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
D. BÀI TẬP V NHÀ
Bài 4. Cho hai đường tròn
()O
()O
tiếp xúc ngoài ti
A
. K các đưng kính
AOB
,
.AO C
Gi
DE
là tiếp tuyến chung của hai đường tròn,
()DO
()EO
. Gi
M
giao đim ca
BD
.CE
a) Tính s đo của
.DAE
b) T giác
ADME
là hình gì? Vì sao?
c) Chng minh
MA
là tiếp tuyến chung của hai đường tròn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 92 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hai đường tròn đồng tâm
O
. Dây
AB
ca đưng tròn ln cắt đường tròn nh
C
D
. Chng minh
AC BD=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 93 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
Bài. ÔN TP CHƯƠNG II
A. KIẾN THC TRNG TÂM
Xem li kiến thc trng tâm t bài 1 đến bài 8.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
I. TRẮC NGHIM
Câu 1: [TS10 Cần Thơ, 2018-2019]
Cho hai đường tròn
( ;3 cm)J
tiếp xúc ngoài
nhau (như hình bên dưới). Độ dài đoạn ni
IJ
bng
A.
1
cm. B.
5
cm.
C.
10
cm. D.
13
cm.
Câu 2: [TS10 Phú Yên, 2018-2019]
Cho đường tròn tâm
O
đường kính
10
cm. Gi
H
là trung điểm
ca dây
AB
(hình bên). Tính độ dài đoạn
OH
, biết
6AB =
cm.
A.
4OH =
cm. B.
8OH =
cm.
C.
cm. D.
cm.
Câu 3: [TS10 Yên Bái, 2018-2019]
Cho đường tròng (
O
;
2
cm), hai điểm
A
,
B
thuộc đường tròn và sđ
60
AB =
°
. Độ dài
d
ca dây cung
AB
là bao nhiêu?
A.
2d =
cm. B.
4d =
cm. C.
5d =
cm. D.
3d
=
cm.
Câu 4: [TS10 Phú Th, 2018-2019]
Cho đường tròn tâm
I
, bán kính
5R =
cm và dây cung
6AB =
cm. Tính khong cách
d
t
I
tới đường thng
AB
.
A.
d4=
cm. B.
d 34=
cm. C.
d2=
cm. D.
d1=
cm.
Câu 5: [TS10 Yên Bái, 2018-2019]
Cho đường tròn
( ,5 cm)O
và dây cung
8AB =
cm
. Tính khong cách
d
t tâm
O
đến
dây cung
AB
.
A.
3d =
cm
. B.
6d =
cm
. C.
4d =
cm
. D.
5d =
cm
.
Câu 6: [TS10 Yên Bái, 2018-2019]
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 94 Toång hôïp: Thaày Hoùa
Cho đường tròn
( ;15cm)O
, dây
24AB =
cm
. Mt tiếp tuyến của đường tròn song song
vi
AB
ct các tia
OA
,
OB
theo th t
E
,
F
. Tính độ dài
EF
.
A.
40EF =
cm
. B.
38EF =
cm
. C.
36EF =
cm
. D.
42EF =
cm
.
Câu 7: [TS10 Cần Thơ, 2018-2019]
Trong một đường tròn, xét các khng đnh sau:
(I): Đưng kính là dây cung ln nht.
(II): Dây nh hơn thì gần tâm hơn.
(III): Hai dây cách đều tâm thì bng nhau.
(IV): Tiếp tuyến vuông góc vi bán kính ti tiếp điểm.
S khẳng định đúng là
A.
1
. B.
2
. C.
4
. D.
3
.
Câu 8: [TS10 Hưng Yên, 2018-2019]
Có hai đường tròn
( ;4O
cm) và đường tròn
( ;2
I
cm), biết
6OI
=
cm. S tiếp tuyến
chung ca hai đường tròn đó là
A.
4
. B.
3
. C.
2
. D.
1
.
Câu 9: [TS10 Yên Bái, 2018-2019]
Cho hai đường tròn (
O
;
4
cm) và (
O
;
3
cm) có
5OO
=
cm. Hai đường tròn trên ct nhau
ti
A
B
. Tính độ dài
AB
.
A.
3, 2AB =
cm. B.
4,8AB =
cm. C.
2, 4
AB =
cm. D.
3, 6AB =
cm.
Câu 10: [TS10 Hưng Yên, 2018-2019]
T mt miếng tôn có hình dng là na hình tròn bán
kính
1m
, người ta ct ra mt hình ch nht (phn tô
đậm như hình vẽ).
Phn hình ch nht có din tích ln nht có th ct
được là
A.
2
1, 6m
. B.
2
0,5m
. C.
2
1m
. D.
2
2m
.
Câu 11: [TS10 Yên Bái, 2018-2019]
Cho tam giác
ABC
, biết
60B =
°
,
6AB =
cm,
4BC =
cm. Tính độ dài cnh
AC
.
A.
27AC =
cm. B.
52AC =
cm. C.
45AC =
cm. D.
23AC =
cm.
Câu 12: [TS10 Yên Bái, 2018-2019]
Cho nửa đường tròn tâm
O
có đường kính
4AB =
cm
. V các tiếp tuyến
Ax
,
By
(
Ax
,
By
và nửa đường tròn thuc cùng mt na mt phng b
AB
). Gi
M
là một điểm bt
k thuc nửa đường tròn. Tiếp tuyến ti
M
ct
Ax
,
By
theo th t
D
,
C
. Tính din
tích ca hình thang
ABCD
, biết chu vi ca nó bng
14
cm
.
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 95 Toång hôïp: Thaày Hoùa
A.
20S =
2
cm
. B.
10
S =
2
cm
. C.
12S =
2
cm
. D.
16S =
2
cm
.
Câu 13: [TS10 Yên Bái, 2018-2019]
Cho tam giác
ABC
20AB =
cm,
12BC =
cm,
16CA =
cm. Tính chu vi ca đưng
tròn ni tiếp tam giác đã cho
A.
16
π
cm. B.
20
π
cm. C.
13
π
cm. D.
8
π
cm.
Câu 14: [TS10 Phú Yên, 2018-2019]
Cho đường tròn
( ,6 cm)O
và đường tròn
( ,5 cm)O
có đoạn ni tâm
8OO
=
cm. Biết đường tròn
()O
()
O
ct
OO
lần lượt ti
N
,
M
(hình bên). Tính độ
dài
MN
.
A.
4
MN =
cm. B.
3MN =
cm.
C.
2MN =
cm. D.
1
MN
=
cm.
Câu 15: [TS10 Yên Bái, 2018-2019]
Cho hình vuông
ABCD
cnh bng
a
. Gi
E
là trung điểm ca cnh
CD
. Tính độ dài
dây cung chung
CF
của đường tròn đường kính
BE
và đường tròn đường kính
CD
.
A.
CF a=
. B.
25
5
a
CF =
. C.
23
3
a
CF
=
. D.
5
5
a
CF =
.
II. TỰ LUN
Bài 1. Cho na đưng tròn
(;)OR
đường kính
AB
. Trên na mt phng b
AB
cha na đưng
tròn v các tiếp tuyến
Ax
,
By
. Ly đim
M
thuc nửa đưng tròn (
M
khác
A
,
B
). Tiếp tuyến
ti
M
ca
()
O
ct
Ax
,
By
lần lượt ti
C
,
D
.
a) Chng minh
CD AC BD= +
.
b) Tính s đo góc
COD
.
c) Chng minh
2
AC BD R
⋅=
.
d) V đường tròn tâm
I
, đường kính
CD
. Chng minh
AB
là tiếp tuyến ca
()I
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 96 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn
()O
điểm
A
nằm ngoài đường tròn
()O
. T
A
k các tiếp tuyến
AB
,
AC
vi
()O
(
B
,
C
là các tiếp điểm).
a) Chng minh
A
,
B
,
O
,
C
cùng thuc một đường tròn.
b) Chng minh
OA
là đường trung trc của đoạn thng
BC
.
c) Biết
10
OA =
cm,
6
OB =
cm. Tính độ dài đoạn
BC
.
d) Đưng tròn
()O
cắt đoạn
OA
ti
I
. Chng minh
I
là tâm đưng tròn ni tiếp tam giác
ABC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 97 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho hai đường tròn
(;)OR
(;)OR
′′
tiếp xúc ngoài ti
A
. K tiếp tuyến chung ngoài
BC
( ( ), ( ))B OC O
∈∈
với hai đường tròn. Tiếp tuyến chung ti
A
ca
()O
()
O
ct
BC
ti
M
.
a) Chng minh
MA MB MC= =
90BAC
°
=
.
b) Tính s đo của
OMO
.
c) Chng minh
OO
tiếp xúc với đường tròn đường kính
BC
.
d) Biết
9
R =
cm,
4R
=
cm. Tính độ dài đoạn thng
BC
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 98 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho đường tròn tâm
O
, đường kính
2AB R=
. Đim
C
nằm trên đường tròn (
C
khác
A
,
B
). Gi
H
là hình chiếu vuông góc ca
C
lên
AB
. V đưng tròn tâm
I
đường kính
HA
đường tròn tâm
K
đường kính
HB
.
CA
ct
()I
ti
M
(khác
A
),
CB
ct
()
K
ti
N
(khác
B
).
a) T giác
CMHN
là hình gì? Vì sao?
b) Chng minh
MN
là tiếp tuyến chung ca
()I
()K
.
c) Chng minh
AB
tiếp xúc với đường tròn đường kính
MN
.
d) Biết
2
R
HA =
. Tính din tích t giác
IMNK
theo
R
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 99 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho na đưng tròn tâm
O
, đường kính
2AB R=
. Trên na mt phng cha na đưng
tròn, k tiếp tuyến
Ax
. Điểm
C
nm trên na đường tròn sao cho
AC R
=
.
a) Tính s đo các góc của tam giác
ABC
.
b) Tiếp tuyến ti
C
ca
()O
ct
Ax
ti
D
. Chng minh
OD
song song vi
BC
.
c) Tia
BC
ct
Ax
ti
E
. Chng minh
DE DA=
.
d) K
CH AB
vi
H
thuc
AB
,
BD
ct
CH
ti
I
. Chng minh
I
là trung điểm ca
CH
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 100 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường tròn
(;)OR
đưng kính
AB
. Qua
A
B
v lần lượt hai tiếp tuyến
d
d
vi
()O
. Đường thng
thay đổi qua
O
ct
d
ti
M
và ct
d
ti
P
. T
O
v mt tia vuông góc vi
MP
ct
d
ti
N
.
a) Chng minh
OM OP=
và tam giác
MNP
cân.
b) Gi
I
là hình chiếu vuông góc ca
O
lên
MN
. Chng minh
OI R=
MN
là tiếp tuyến ca
đường tròn
()
O
.
c) Chng minh
MN AM BN= +
.
d) Chng minh
AM BN
không đổi khi đường thng
quay quanh
O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 101 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho na đưng tròn
()
O
, đường kính
AB
điểm
C
là một điểm nm trên
()O
(
C
khác
A
,
B
). Tia phân giác ca
ABC
ct
AC
ti
K
và ct
()O
ti
I
(
I
khác
B
). Gi
D
là giao đim
ca
AI
BC
.
a) Chng minh tam gc
ABD
cân.
b) Chng minh
DK
vuông góc vi
AB
.
c) Gi
E
là điểm đối xng ca
K
qua
I
. T giác
AEDK
là hình gì? Vì sao?
d) Chng minh
EA
là tiếp tuyến ca
()O
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 102 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho hai đường tròn
(;)OR
(;)OR
′′
tiếp xúc ngoài ti
A
. K tiếp tuyến chung ngoài
BC
( ( ), ( ))B OC O
∈∈
với hai đường tròn. Tiếp tuyến chung ngoài ti
A
ca
()O
()O
ct
BC
ti
D
.
a) Chng minh
ODO
là tam giác vuông.
b) Gi
E
giao đim ca
OD
AB
, gi
F
giao đim ca
OD
AC
. T giác
AEDF
hình gì? Vì sao?
c) Chng minh
BC
tiếp xúc với đường tròn đường kính
OO
.
d) Chng minh
2BC R R
=
.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Toaùn 9 Taøi lieäu daïy hoïc
ĐT: 0344 083 670 103 Toång hôïp: Thaày Hoùa
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
--- HT ---
| 1/103

Preview text:

Toaùn 9
Taøi lieäu daïy hoïc Chương 1
Bài 1. MỘT SỐ HỆ THỨC VỀ CẠNH
VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG
A. KIẾN THỨC TRỌNG TÂM Mở đầu
Từ hình vẽ bên, ta có
 Cạnh góc vuông: AB, AC .
 Cạnh huyền: BC .
 Đường cao: AH .
HA là hình chiếu của AB trên cạnh BC .
HC là hình chiếu của AC trên cạnh BC .  Định lý Py-ta-go: 2 2 2
BC = AB + AC
1. Hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền
 Trong tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền và hình
chiếu của nó trên cạnh huyền. 2
BA = BH BC hay 2
c = c'⋅a ; 2
CA = CH CB hay 2
b = b'⋅a .
2. Hệ thức liên quan đến đường cao
Trong một tam giác vuông
 Bình phương độ dài đường cao bằng tích hình chiếu của hai cạnh góc vuông trên cạnh huyền. 2
AH = HB HC hay 2
h = b'⋅c' .
 Tích độ dài đường cao với cạnh huyền bằng tích độ dài hai cạnh góc vuông.
AH BC = AB AC hay a h = bc .
 Nghịch đảo bình phương độ dài đường cao bằng tổng nghịch đảo bình phương độ dài hai cạnh góc vuông. 1 1 1 = + hay 1 1 1 = + . 2 2 2 AH AB AC 2 2 2 h a b
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Tính độ dài đoạn thẳng và các yếu tố khác dựa vào hệ thức liên hệ giữa cạnh góc vuông
và hình chiếu của nó trên cạnh huyền
 Vận dụng định lý Py-ta-go để tính cạnh thứ ba (nếu cần).
 Vận dụng các hệ thức liên hệ giữa cạnh và đường cao trong tam giác.
Ví dụ 1. Tính các độ dài x , y trong hình bên. ĐT: 0344 083 670 1
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc a) b) c)
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 2. Một tam giác vuông có tỉ số hai cạnh góc vuông bằng 4 . Tính tỉ số hai hình chiếu của hai 9
cạnh góc vuông đó trên cạnh huyền.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 2
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 3. Một tam giác vuông có tỉ số hai cạnh góc vuông bằng 3 , cạnh huyền dài 10cm. Tính độ 4
dài các hình chiếu của hai cạnh góc vuông trên cạnh huyền.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tính độ dài dựa vào hệ thức liên quan đến đường cao
 Vận dụng các hệ thức liên quan đến đường cao và định lý Py-ta-go.
Ví dụ 4. Tính độ dài x , y trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 5. Tính diện tích tam giác ABC trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 3
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 6. Tính độ dài AH trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 7. Tính tích HAHB HC trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Chứng minh các hệ thức hình học
 Vận dụng linh hoạt các hệ thức liên quan đến cạnh và đường cao trong tam giác vuông.
 Nếu cần thì có thể vẽ thêm đường phụ (thường là đường cao) sao cho hình vẽ xuất hiện
tam giác vuông để vận dụng các hệ thức.
Ví dụ 8. Cho hình thang ABCD (AB CD) có ˆD 90° =
AC BD . Chứng minh rằng AD
trung bình nhân của hai đáy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 9. Cho tam giác ABC cân tại A . Vẽ các đường cao BE CD . Từ B vẽ một đường thẳng
song song với CD cắt tia AC tại F . Chứng minh rằng 2
AC = AE AF .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 4
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 10. Cho tam giác ABC vuông tại A , đường cao AH . Gọi D E lần lượt là hình chiếu của
H trên AB AC . Chứng minh rằng 3
DE = BD CE BC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 11. Cho tam giác ABC cân tại A , hai đường cao AD BE . Cho biết BE = 2k ; BC = 2m ;
AD = n . Chứng minh rằng 1 1 1 = + . 2 2 2 k m n
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH . Lấy điểm M trên đoạn thẳng
HC sao cho HM = AH . Qua M vẽ một đường thẳng vuông góc với BC , cắt AC tại D . Chứng minh rằng 1 1 1 = + . 2 2 2 AH AD AC
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 5
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Tính x , y trong hình vẽ sau a) b) c) d)
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 6
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho tam giác ABC vuông tại A , đường cao AH . Vẽ HK AB (K AB). Chứng minh rằng 2
a) AB AK = BH HC ; b) AB HB = . 2 AC HC
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho tam giác ABC vuông tại A , cạnh BC = 5 cm và tỉ số hai hình chiếu của AB , AC trên
cạnh huyền bằng 9 . Tính diện tích tam giác ABC . 16
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho tam giác ABC vuông tại A , AB =15cm; BC = 25 cm. Tính độ dài hai hình chiếu của
hai cạnh góc vuông trên cạnh huyền và tính đường cao tương ứng với cạnh huyền. ĐT: 0344 083 670 7
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Hình thang ABCD (AB CD) có AD = 5cm; AC =12cm và CD =13cm. Biết diện tích hình thang là 2 45cm .
a) Tính chiều cao của hình thang. b) Chứng minh rằng 1 AB = CD . 2
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho tam giác ABC vuông tại A , đường cao AH . Vẽ HD AB , HE AC 3
(DAB, E AC) . Chứng minh rằng BD AB = . 3 CE AC
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... --- HẾT --- ĐT: 0344 083 670 8
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Bài 2. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN
A. KIẾN THỨC TRỌNG TÂM 1. Định nghĩa
 Với α là góc nhọn trong tam giác vuông ta có caïnh ñoái caïnh ñoái  sinα = ;  tanα = ; caïnh huyeàn caïnh keà caïnh keà caïnh keà  cosα = ;  cotα = . caïnh huyeàn caïnh ñoái Cách ghi nhớ
“Tìm sin lấy đối chia huyền,
Cô-sin hai cạnh kề huyền chia nhau,
Còn tang thì phải tính sao?
Đối trên kề dưới chia nhau ra liền,
Cô-tang cũng dễ ăn tiền,
Kề trên đối dưới chia liền bạn ơi!”
2. Một số hệ thức và tính chất cơ bản
 Với hai góc nhọn α, β và α + β = 90° thì
sinα = cos β; cosα = sin β; tanα = tan β; cotα = cot β .
Với góc nhọn α (0° < α < 90°) , ta có
 0 < sinα < 1;0 < cosα < 1.
 Nếu α tăng thì sinα và tanα tăng; còn cosα và cotα giảm. α  sin tanα = ; cosα  tanα ⋅cotα = 1; α  cos cotα = ; sinα  2 2 sin α + cos α =1. ĐT: 0344 083 670 9
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Tính tỉ số lượng giác của góc nhọn trong tam giác vuông khi biết độ dài hai cạnh
 Bước 1: Tính độ dài cạnh thứ ba theo định lý Py-ta-go (nếu cần).
 Bước 2: Tính các tỉ số lượng giác của góc nhọn theo yêu cầu đề bài.
Ví dụ 1. Tam giác ABC vuông tại A , AB =1,5; BC = 3,5. Tính tỉ số lượng giác của góc C rồi
suy ra các tỉ số lượng giác của góc B .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 2. Tính tỉ số lượng giác của góc B trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 3.ABC vuông tại A BC = 2AB . Tính các tỉ số lượng giác của góc C .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 10
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 4. Tam giác ABC cân tại A , có BC = 6 , đường cao AH = 4. Tính các tỉ số lượng giác của góc B .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 5. Tính tan C trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 6. Tính sin M + cos N trong hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Dựng góc nhọn α khi biết tỉ số lượng giác của góc nhọn đó bằng m . n
 Dựng một tam giác vuông có cạnh là m và n rồi vận dụng định nghĩa để nhận ra góc α .
Ví dụ 7. Dựng góc α , biết sinα = 0,25. Lời giải Ta có 1 0,25 = . 4 ĐT: 0344 083 670 11
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Dựng góc vuông xOy ;
Trên cạnh Ox đặt OA =1; Dựng đường tròn ( ;
A 4) cắt cạnh Oy tại B . Khi đó   OA 1 ABO α vì sinα  = = =  . AB 4   
Ví dụ 8. Dựng góc α , biết cosα = 0,75 .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 9. Dựng góc α , biết tanα =1,5.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 10. Dựng góc α , biết cotα = 2.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Chứng minh hệ thức lượng giác ĐT: 0344 083 670 12
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
 Sử dụng định nghĩa và một số hệ thức lượng giác cơ bản để chứng minh.
Ví dụ 11. Cho góc nhọn α . Chứng minh rằng a) sinα < tanα ; b) cosα < cotα .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 12. Chứng minh các hệ thức a) 2 1 1+ tan α = ; b) 2 1 1+ cot α = . 2 cos α 2 sin α
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 13. Chứng minh rằng a) 1+ cosα sinα α + + α = ; b) tan 1 1 cot = . sinα 1− cosα tanα −1 1− cotα
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 13
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 14. Chứng minh rằng 2 2 2 2
tan α − sin α = tan α ⋅sin α .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... 2 2
Ví dụ 15. Chứng minh rằng 1− 4sin α ⋅cos α = sinα + cosα . 2 ( )2 (sinα −cosα )
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Biết một giá trị lượng giác của góc nhọn, tính các tỉ số lượng giác khác của góc đó
 Vận dụng các hệ thức cơ bản đã học.
Ví dụ 16. Cho biết sinα = 0,6; tính cosα , tanα , cotα .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 14
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 17. Cho biết 2
cosα = ; tính sinα , tanα , cotα . 3
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 18. Cho biết 1 tanα =
, tính cotα , sinα , cosα . 3
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 19. Cho biết cot x = 2, tính tan x , sin x , cos x .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 5: Tính giá trị lượng giác với các góc đặc biệt (không dùng máy tính hoặc bảng số)
 Căn cứ vào bảng giá trị lượng giác của các góc đặc biệt 30°;45°;60° .
 Căn cứ vào tỉ số lượng giác của hai góc phụ nhau.
 Căn cứ vào các hệ thức lượng giác cơ bản.
Ví dụ 20. Tính giá trị của biểu thức a) 2 ° ° 3 M 4cos 45 3 cot 30 16cos 60° = + − ; ° ° b) 2sin 30 − sin 60 N = . 2 cos 30° − cos60°
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 15
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 21. Tính giá trị của biểu thức a) 2 ° 2 ° 2 ° 2
P sin 30 sin 40 sin 50 sin 60° = − − + ; b) 2 ° 2 ° 2 ° 2 ° 2
Q cos 25 cos 35 cos 45 cos 55 cos 65° = − + − + .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 22. Tính giá trị của biểu thức sau với 0 0 α 90° < < : 2    2 2
A  cos  tan 60  cot 45  2 sin 30  cos  tan .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 23. Rút gọn các biểu thức sau với 0° α 90° < < a) 4 4 2 2
B = sin α + cos α + 2sin α cos α ; b) 6 6 2 2
C = sin α + cos α + 3sin α cos α .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 16
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
........................................................................................................................................................................................................................................................................... 2 2
Ví dụ 24. Cho biểu thức sin α − cos α A == . 1+ 2sinα cosα a) Chứng minh rằng sinα − cosα A = ; sinα + cosα
b) Tính giá trị của A , biết 2 tanα = . 3
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 6: So sánh các tỉ số lượng giác mà không dùng máy tính hoặc bảng số 
Ví dụ 25. Sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần
a) sin 70°,cos30°,cos 40°,sin 51° ; b) cos34°,sin 57°,cot 32°.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 26. Sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần
a) cot 40°,sin 40°,cot 43°, tan 42°;
b) tan 52°,cot 63°, tan 72°,cot 31°,sin 27° .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 27. Cho 25° α 50° < <
, hãy sắp xếp các tỉ số lượng giác sau theo thứ tự giảm dần: ĐT: 0344 083 670 17
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
sinα; cos(α 40° ); tan(α 10° + + ).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ° °
Ví dụ 28. So sánh hai số m n , biết sin 50 m = ; cot 70 n = . cos65° tan 35°
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 7: Tìm góc nhọn α thỏa đẳng thức cho trước
 Sử dụng các hệ thức lượng giác cơ bản để biến đổi về dạng cơ bản
 Dùng MTBT hoặc bảng giá trị lượng giác các góc đặc biệt để tìm.
Cách dùng MTBT tìm α khi biết sinα (tương tự đối với cosα và tanα )
Nếu sinα = m thì bấm các phím sau shift sin m = °' ' .
Ví dụ 29. Tìm góc nhọn x , biết a) 4sin x −1 =1;
b) 2 3 − 3tan x = 3 .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Cho hình bên. Tính sinC và tan B .
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 18
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... 2 Bài 2. − ⋅ α α − α
Chứng minh đẳng thức 1 2 cos sin cos = .
1+ 2⋅sinα cosα sinα + cosα
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho góc nhọn α . a) Biết 1
cosα = , hãy tính sinα và tanα . 3
b) Biết tanα = 2 , hãy tính sinα và cosα .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Không dùng máy tính hoặc bảng số, hãy
a) Tính giá trị của biểu thức 2 ° 2 ° 2 ° 2 ° 2 ° 2
M sin 20 cos 30 sin 40 sin 50 cos 60 sin 70° = + − − + + .
b) Sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần sin 41° ; cos58° ; cot 49° ; cos75° ; sin 25° .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 19
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho tam giác nhọn ABC , độ dài các cạnh BC , CA , AB lần lượt bằng a , b , c .
a) Chứng minh rằng a b c = = .
sin A sin B sin C
b) Chứng minh rằng nếu a + b = 2c thì sin A + sin B = 2sin C .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... --- HẾT --- ĐT: 0344 083 670 20
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Bài 4-5. MỘT SỐ HỆ THỨC VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG
ỨNG DỤNG THỰC TẾ CÁC TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN
A. KIẾN THỨC TRỌNG TÂM
1. Liên hệ giữa cạnh và góc trong tam giác vuông
Trong một tam giác vuông, mỗi cạnh góc vuông bằng
 Tích của cạnh huyền với sin của góc đối hoặc cô-sin của góc kề.
 Tích của cạnh góc vuông kia với tang góc đối hoặc cô-tang góc kề. Trong hình bên, ta có
b = a ⋅sin B = a ⋅cosC;
b = c ⋅ tan B = c ⋅cot C;
c = c⋅sin C = a ⋅cos ; B
c = b⋅ tan C = b⋅cot . B
2. Giải tam giác vuông
 Giải tam giác vuông là tìm tất cả các cạnh và các góc còn lại của tam giác vuông đó khi biết
trước hai cạnh hoặc một cạnh và một góc nhọn.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Giải tam giác vuông
 Vận dụng các công thức liên hệ giữa cạnh và góc trong tam giác vuông để tìm cạnh.
 Vận dụng công thức liên hệ giữa cạnh và đường cao trong tam giác vuông để tìm cạnh.
 Vận dụng các tỉ số lượng giác của góc nhọn để tính góc. Lưu ý:
 Nếu cho trước 1 góc nhọn thì nên tìm góc nhọn còn lại.
 Nếu cho trước hai cạnh thì dùng định lý Py-ta-go tìm cạnh thứ hai.
Ví dụ 1. Giải tam giác ABC vuông tại A , biết AB = 3,5 và AC = 4,2 .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 2. Giải tam giác ABC vuông tại A , biết AB = 3,0 và BC = 4,5 .
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 21
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 3. Giải tam giác ABC vuông tại A , biết ˆB 50° = và AB = 3,7 .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 4. Giải tam giác ABC vuông tại A , biết ˆB 57° = và BC = 4,5 .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 5. Cho tam giác ABC vuông tại A , đường cao AH . Biết AB = 2,5, BH =1,5. Tính ˆB , ˆC AC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 22
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Giải tam giác nhọn
 Bước 1: Vẽ đường cao để vận dụng các hệ thức lượng trong tam giác vuông.
 Bước 2: Tính đường cao rồi tính các độ dài cạnh hay góc trong tam giác đã cho.
Lưu ý: Dùng đường cao làm trung gian để tính các độ dài cạnh hoặc số đo góc.
 Nếu tam giác cho trước một cạnh (hoặc một góc) thì khi vẽ đường cao không thể chia đôi
cạnh đó (hoặc góc đó) vì như vậy sẽ khó khăn cho việc tính toán.
Ví dụ 6. Cho tam giác ABC có ˆB 65° = , ˆC 45° =
AB = 2,8cm . Tính các góc và cạnh còn lại của
tam giác đó (gọi là giải tam giác ABC ).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 7. Giải tam giác ABC biết ˆB 65° = , ˆC 40° = và BC = 4,2cm .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 23
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 8. Giải tam giác nhọn ABC biết AB = 2,1, AC = 3,8 và ˆB 70° = .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Tính diện tích tam giác, tứ giác
 Tính các yếu tố cần thiết rồi thay vào công thức tính diện tích và thực hiện phép tính.
Ví dụ 9. Cho tam giác ABC như hình vẽ bên. Chứng minh rằng diện tích tam giác ABC có diện tích là 1
S = ⋅bc ⋅sinα . 2
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Nhận xét: Qua ví dụ này ta có thêm một cách tính diện tích tam giác. Diện tích tam giác bằng nửa
tích hai cạnh nhân với sin của góc nhọn xen giữa hai đường thẳng chứa hai cạnh đó. ĐT: 0344 083 670 24
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 10. Tứ giác ABCD như hình vẽ phía dưới. Biết AC = 3,8 , BD = 5,0 và α 65° =
. Tính diện tích của tứ giác đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 11. Tam giác ABC có ˆ ˆ B C 60° + =
, AB = 3, AC = 6 . Tính độ dài đường phân giác AD .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 12. Hình bình hành ABCD AC AD AD = 3,5 , ˆD 50° =
. Tính diện tích của hình bình hành.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 25
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Ứng dụng thực tế của hệ thức lượng trong tam giác vuông
 Vẽ lại hình vẽ theo yêu cầu bài toán (chú ý tạo ra tam giác vuông).
 Xác định các yếu tố cần thiết rồi tính theo các hệ thức giữa cạnh và góc trong tam giác
hoặc sử dụng tỉ số lượng giác của góc nhọn để tìm góc.
Ví dụ 13. Tính khoảng cách giữa hai điểm A B trên
một bờ hồ nước sâu, biết ˆC 58° = , CB =13m ,
CH = 44m như hình bên.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 14. Trong hình vẽ bên dưới, tính chiều rộng AB của con sông, biết OC = 47m ,  AOC 74° = ,  BOC 23° = .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 26
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
Ví dụ 15. Khoảng cách giữa hai chân tháp AB MN a như hình vẽ bên dưới. Từ đỉnh A của
tháp AB nhìn lên đỉnh M của tháp MN ta được góc α . Từ đỉnh A nhìn xuống chân N của tháp
MN ta được góc β (so với phương nằm ngang AH ). Hãy tìm chiều cao MN nếu a =120m , α 30° = , β 20° = .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Giải tam giác ABC vuông tại A , biết
a) AB = 2,7 và AC = 4,5 ;
b) AC = 4,0 và BC = 4,8 .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 27
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
Bài 2. Giải tam giác ABC vuông tại A , biết
a) BC = 4,5 và ˆC 35° = ;
b) AB = 3,1 và ˆB 65° = .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho tam giác ABC cân tại A , đường cao BH . Biết ˆA 50° =
, BH = 2,3. Tính chu vi của ABC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 28
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
Bài 4. Hình thang ABCD có ˆA ˆD 90° = =
. Biết AB = 2,6 , CD = 4,7 và ˆC 35° = . Tính diện tích hình thang.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho tam giác nhọn ABC , AB > AC , đường cao AH và đường trung tuyến AM . Gọi α là số đo góc  HAM .
a) Chứng minh rằng HB HC = 2HM ; b) Chứng minh rằng cot B cot tan C α − = . 2
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 29
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
Bài 6. Giải tam giác nhọn ABC biết ˆB 60° =
, AB = 3,0 và BC = 4,5 .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Hình thang ABCD ( AB CD ) có ˆD 90° = , ˆC 38° =
, AB = 3,5 , AD = 3,1. Tính diện tích hình thang đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 30
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
........................................................................................................................................................................................................................................................................... D. BÀI TẬP TỰ LUYỆN
Bài 8.
Các cạnh của một tam giác vuông có độ dài 4cm; 6cm và 6cm. Hãy tính góc nhỏ nhất của tam giác đó.
Bài 9. Tam giác ABC vuông tại A AB = 21cm, ˆC 40° = . Hãy tính các độ dài a) AC ; b) BC ; c) Phân giác BD .
Bài 10. Cho hình bên, biết: AB = AC = 8 cm, CD = 6cm,  BAC 34° = và  CAD 42° = . Hãy tính
a) Độ dài cạnh BC ; b)  ADC ;
c) Khoảng cách từ điểm B đến cạnh AD .
Bài 11. Trong một tam giác ABC AB =11cm,  ABC 38° = ,  ACB 30° =
, N là chân đường vuông góc kẻ từ A đến BC . Hãy tính AN , AC .
Bài 12. Tìm x y trong các hình sau
Bài 13. Cho tam giác BCD đều cạnh 5cm và  DAB 40° = . Hãy tính a) AD ; b) AB . --- HẾT ---
Bài. ÔN TẬP CHƯƠNG I
A. KIẾN THỨC TRỌNG TÂM ĐT: 0344 083 670 31
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Xem lại phần kiến thức trọng tâm của các bài đã học
 Hệ thức liên hệ giữa cạnh và đường cao trong tam giác.
 Tỉ số lượng giác của góc nhọn.
 Hệ thức liên hệ giữa cạnh và góc trong tam giác.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
So sánh các tỉ số lượng giác
Ví dụ 1. Sắp xếp theo thứ tự tăng dần cos72° , sin 65° , sin10° , cot 25° , sin 40°.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... Ví dụ 2. So sánh
a) sin 55° ; cos55° ; tan 55° .
b) cot 20° ; sin 20°; cos 20° .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 3. Cho 0° α 45° < < . Chứng minh rằng a) sinα < cosα . b) tanα < cotα .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 4. Cho tam giác ABC vuông tại A có ˆ > ˆ
B C . Hãy sắp xếp theo thứ tự tăng dần sin B ,
cos B , tan B , sin C , cosC , cot C .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Rút gọn và tính giá trị của biểu thức lượng giác
Ví dụ 5. Rút gọn các biểu thức ĐT: 0344 083 670 32
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc a) 2 2 2
sin α ⋅cot α − cos α +1. b) ( α − α )2 −( α + α )2 tan cot tan cot . c) 4 4 2 2
sin α − cos α − cos α −3sin α .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 6. Tính giá trị của biểu thức a) ° ° ° 2 sin 30 cos60 tan 45 4cos 30° + − + . b) 2 ° 2 ° 2 cos 30 cot 60 tan 30° − + −1. 2 ° 2 ° c) cot 45 − cos 45 . 2 2sin 60°
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 7. Tính giá trị của biểu thức a) 2 ° 2 ° 2 ° 2 cos 33 cos 41 cos 49 cos 57° + + + . b) 2 ° 2 ° 2 ° 2 ° 2 ° 2
sin 35 sin 39 sin 43 sin 47 sin 51 sin 55° + + + + + .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 33
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Tính độ dài đoạn thẳng, tính số đo góc
Ví dụ 8. Cho tam giác ABC cân tại A , đường cao AH . Biết ˆA 44° =
; AH = 9cm . Tính chu vi tam giác ABC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 9. Cho hình thang ABCD ( AB CD ), ˆC 36° = ; ˆD 50° =
. Biết AB = 4cm , AD = 6cm . Tính chu vi hình thang.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 34
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 10. Cho tam giác ABC vuông tại A , đường cao AH . Vẽ HM AB ; HN AC . Biết
AB = 3cm ; AC = 4cm .
a) Tính độ dài MN .
b) Tính số đo các góc của tam giác AMN .
c) Tính diện tích tứ giác BMNC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 35
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 11. Cho tam giác ABC vuông tại A , BC = 4cm . Vẽ đường cao AH ; vẽ HI AB ,
HK AC . Tìm giá trị lớn nhất của diện tích tứ giác AIHK .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 4: Chứng minh hệ thức giữa các tỉ số lượng giác 2 2 4 Ví dụ 12. α − α + α Chứng minh hệ thức cos sin sin 4 = cot α. 2 2 4 sin α − cos α + cos α
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 13. Chứng minh các đẳng thức sau a) 2
(1− cosα)(1+ cosα) = sin α ; b) 2 2 sin α +1+ cos α = 2; c) 4 4 2 2
sin α + cos α + 2sin α cos α =1; d) 2 3
sinα −sinα cos α = sin α . ĐT: 0344 083 670 36
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG I. PHẦN TRẮC NGHIỆM
Câu 1:
Cho tam giác ABC vuông tại A AB  5 cm, AC 12 cm và BC 13 cm. Giá trị của sinC bằng A. 5 . B. 1 . C. 12 . D. 5 . 12 13 13 13
Câu 2: Cho tam giác ABC vuông tại A . Khẳng định nào sau đây đúng? A. cos AB B  . B. cos AC B  . C. cos AB B  . D. cos AC B  . BC AB AC BC
Câu 3: Cho tam giác ABC vuông tại A . Hệ thức nào sau đây đúng? A. sin AB B  . B. sin AB B  . C. tan AB B  . D. cos AB B  . BC AC AC AC
Câu 4: Khẳng định nào sau đây sai? A. cos  35 sin   40 . B. sin  35 cos   40 . C. sin  35 sin   40 . D. cos  35 cos   40 .
Câu 5: Cho tam giác ABC vuông tại A , đường cao AH . Hệ thức nào đây sai?
A. AC 2  BC.HC .
B. AH 2  AB.AC . C. 1 1 1   .
D. AH 2  HB.HC . AH 2 AB2 AC 2 Câu 6: Cho ABC vuông tại ,
A đường cao AH. Biết BH  ,
3 2cm;BC  5cm thì độ đài AB bằng A. 8 cm. B. 16 cm. C. , 1 8 cm. D. 4 cm.
Câu 7: Cho tam giác ABC vuông tại A ,  ACB
 30 , cạnh AB  5 cm. Độ dài cạnh AC A. 10 cm. B. 5 cm. C. 5 3 cm. D. 5 2 cm. 3 2 Câu 8: Cho tam giác 1
ABC vuông tại C. Biết sin B  , khi đó tanA bằng 3 A. 2 2 . B. 3 . C. 2 2 . D. 1 . 3 2 2 Câu 9: Cho A
BC cân tại A ,  BAC
 120 , BC  12 cm . Tính độ dài đường cao AH .
A. AH  3 cm .
B. AH  2 3 cm . C. AH  4 3 cm . D. AH  6 cm . ĐT: 0344 083 670 37
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Câu 10: Cho tam giác ABC vuông tại A , đường cao AH (hình
bên). Đẳng thức nào sau đây là sai? A. sin AH B  . B.  tan BH BAH  . AB AH C. cos HC C  . D.  cot AH HAC  . AC AC
Câu 11: Một cái thang dài 4 cm đặt dựa vào tường, biết góc
giữa thang và mặt đất là 
60 . Khoảng cách d từ chân thang đến
tường bằng bao nhiêu? A. 3 d  m .
B. d  2 3 m . 2
C. d  2 2 m . D. d  2 m .
Câu 12: Cho tam giác ABC vuông tại A AB  2 a 5 , AC  5 a 3 .
Kẻ AK vuông góc với BC , với K nằm trên cạnh BC . Tính AK theo a . A. 19 57 95 AK a . B. AK a . 10 2 C. 10 57 5 57 AK a . D. AK a . 19 19
Câu 13: Cho tam giác ABC vuông tại A , đường cao AH . Biết
AH  2 , HC  4 . Đặt BH x (hình bên). Tính x . A. 1 x  . B. x 1. 2 C. 16 x  . D. x  4 . 3 Câu 14: Cho  xOy
 45 . Trên tia Oy lấy hai điểm A , B sao cho AB  2 cm. Tính độ dài hình
chiếu vuông góc của đoạn thẳng AB trên Ox . A. 2 cm. B. 2 cm. C. 1 cm. D. 1 cm. 2 4 2
Câu 15: Cho tam giác ABC vuông tại A , đường cao AH và đường trung tuyến AM (
H ,M BC ). Biết chu vi của tam giác là 72 cm và AM AH  7 cm. Tính diện tích
S của tam giác ABC .
A. S  48 cm 2 .
B. S 108 cm 2 .
C. S 148 cm 2 .
D. S 144 cm 2 . II. PHẦN TỰ LUẬN Bài 1. Cho biết 1 cosα = . 4 a) Tính sinα .
b) Chứng minh rằng tanα = 4sinα .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 38
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Xem hình bên và tính góc tạo bởi hai mái nhà AB AC , biết rằng mỗi máy nhà dài 2,34m và cao 0,8m.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Tam giác ABC có ˆA 20° = , ˆB 30° =
, AB = 6cm. Đường vuông góc kẻ từ C đến AB cắt
AB tại P (hình vẽ bên). Hãy tìm a) AP , BP ; b) CP .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Tính độ dài các cạnh và số đo các góc nhọn của tam giác ABC vuông tại A trong hình bên
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 39
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hình thang cân ABCD ( AB CD ). Biết AD = 2,1cm ; CD = 6,0cm và ˆD 48° = .
a) Tính độ dài AB .
b) Tính diện tích hình thang ABCD .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho tam giác ABC vuông tại A , AB = 6cm, AC = 8cm.
a) Tính BC , ˆB , ˆC ;
b) Phân giác của ˆA cắt BC tại D . Tính BD , CD .
c) Từ D kẻ DE DF lần lượt vuông góc với AB , AC . Tứ giác AEDF là hình gì? Tính chu vi
và diện tích của tứ giác AEDF ?
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 40
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... Bài 8. Cho tam giác B AC
ABC vuông tại A . Chứng minh rằng tan = . 2 AB + BC
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 41
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
........................................................................................................................................................................................................................................................................... --- HẾT --- Chương 2
Bài 1. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN.
TÍNH CHẤT ĐỐI XỨNG CỦA ĐƯỜNG TRÒN
A. KIẾN THỨC TRỌNG TÂM 1. Khái niệm
 Đường tròn tâm O bán kính R R  0 là hình gồm các điểm cách điểm O một khoảng bằng R.
2. Vị trí tương đối giữa điểm và đường tròn
 Điểm M nằm trong đường tròn O;R khi OM R .
 Điểm M nằm trên đường tròn O;R khi OM R .
 Điểm M nằm ngoài đường tròn O;R khi OM R .
3. Cách xác định đường tròn
Một đường tròn được xác định khi
 Biết tâm và bán kính đường tròn.
 Biết một đoạn thẳng là đường kính của đường tròn.
 Qua ba điểm không thẳng hàng, ta vẽ được một và chỉ một đường tròn.
 Đường tròn ngoại tiếp tam giác là đường tròn đi qua ba đỉnh của tam giác. Khi đó tam giác
được gọi là tam giác nội tiếp đường tròn.
 Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực trong tam giác.
 Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền.
 Nến tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông. 4. Tâm đối xứng
 Đường tròn là hình có tâm đối xứng. Tâm đối xứng của đường tròn là tầm đối xứng của hình tròn đó.
5. Trục đối xứng
 Đường tròn là hình có trục đối xứng. Bất kì đường kính nào cũng là trục đối xứng của đường tròn.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Xác định tâm và bán kính của đường tròn đi qua nhiều điểm
 Dựa vào định nghĩa đường tròn: Nếu một điểm cách đều các điểm còn lại thì điểm đó
chính là tâm của đường tròn.
Ví dụ 1. Cho hình vuông ABCD có cạnh bằng 4 cm. Chứng minh rằng bốn điểm A , B , C , D
cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 42
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 2. Cho tam giác đều ABC có cạnh bằng 6 cm. Xác định tâm và bán kính của đường tròn ngoại tiếp ABC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Xác định vị trí của điểm và đường tròn
Muốn xác định vị trí của điểm M và đường tròn (O), ta làm như sau
 Bước 1: Xác định khoảng cách từ M đến tâm O của đường tròn.
 Bước 2: Dựa vào kết quả so sánh của OM và bán kính R của đường tròn mà kết luận.
Ví dụ 4. Trên mặt phẳng tọa độ Oxy , hãy xác định vị trí tương đối của điểm M ( ; 1 ) 1 , N ( ; 2 ) 0 , P( ; 2 ) 3 đối với (O;2) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 5. Cho hình vuông ABCD , O là giao điểm của hai đường chéo, OA  2 2 cm. Vẽ đường
tròn (A ; 4 cm). Xác định vị trí tương đối của các điểm A , B , C , D với đường tròn (O;4 cm).
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 43
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 3: Dựng đường tròn thỏa mãn yêu cầu cho trước
 Xem phần kiến thức trọng tâm.
Ví dụ 6. Cho góc xAy nhọn và hai điểm B , C thuộc tia Ay . Dựng đường tròn tâm O đi qua hai
điểm B , C sao cho O nằm trên tia Ax .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 7. Một tấm bìa hình tròn không còn dấu vết của tâm. Hãy xác định lại tâm và bán kính của hình tròn đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Cho hình chữ nhật ABCD AB 12 cm, BC  5 cm. Tìm tâm và bán kính của đường
tròn đi qua 4 điểm A , B , C , D .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 44
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... Bài 2. Cho A
BC vuông tại A , AB  6 cm, AC  8 cm. Tìm tâm và bán kính của đường tròn
ngoại tiếp tam giác ABC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho nửa đường tròn (O) có đường kính AB . M là điểm nằm bên ngoài đường tròn sao cho
MA, MB cắt nửa đường tròn lần lượt tại N , P .
a) Chứng minh BN MA, AP MB ;
b) Gọi K là giao điểm của BN AP . Chứng minh MK AB .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... Bài 4. Cho MN
P cân tại N , nội tiếp đường tròn (O) . Đường cao NH cắt đường tròn tại K .
a) Chứng minh NK là đường kính của (O); b) Tính số đo  NPK ;
c) Biết MP  24 cm, NP  20 cm. Tính NH và bán kính của đường tròn (O).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 45
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... Bài 5. Cho A
BC cân tại A , có BC  36 cm, đường cao AH 12 cm. Tính bán kính của
đường tròn ngoại tiếp ABC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho hình chữ nhật ABCD AB a , BC b . Chứng minh rằng bốn điểm A , B , C , D
cùng thuộc một đường tròn. Xác định tâm và tính bán kính của đường tròn đó.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 46
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho tam giác ABC , các đường cao BD CE . Trên cạnh AC lấy điểm M . Kẻ tia Cx
vuông góc với tia BM tại F . Chứng minh rằng năm điểm B , C , D , E , F cùng thuộc một đường tròn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Chứng minh rằng bốn trung điểm của bốn cạnh hình thoi cùng thuộc một đường tròn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Tính bán kính đường tròn ngoại tiếp tam giác ABC đều, cạnh 3 cm.
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 47
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Trong hệ trục tọa độ Oxy cho các điểm M ( ; 1 2) , N ( ; 1 ) 2 và P( ; 5 ) 0 . Tính bán kính
đường tròn ngoại tiếp tam giác MNP .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 11. Cho tam giác MNP MN MP a và  NMP
 120 . Gọi O là tâm và r là bán kính
của đường tròn ngoại tiếp tam giác MNP . Tính tỉ số d với d NP . r
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 48
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Cho đường tròn (O;R) và hai điểm M , N sao cho M nằm trong và N nằm ngoài (O;R) . Hãy so sánh  OMN và  ONM .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... D. BÀI TẬP VỀ NHÀ
Bài 13.
Cho tam giác ABC , đường cao BH . Lấy một điểm M trên cạnh AB (M A , M B ).
Qua B kẻ tia Bx vuông góc với tia CM tại K . So sánh BC HK .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 14. Cho tam giác MNP vuông tại M , NP a
2 . Trên cạnh MN lấy điểm A (A M ,
A N ). Qua trung điểm I của NP vẽ tia Ix vuông góc với IA. Tia Ix cắt đường thẳng MP tại
B . Xác định vị trí của điểm A để độ dài đoạn AB nhỏ nhất.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 49
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 15. Bốn đỉnh của một hình chữ nhật kích thước 512 cùng nằm trên một đường tròn có bán kính bằng bao nhiêu?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 16. Cho hình thoi ABCD . Đường trung trực của cạnh BC cắt đường thẳng AC tại M và cắt
đường thẳng BD tại N . Chứng minh rằng M N lần lượt là tâm của đường tròn ngoại tiếp các
tam giác BCD ABC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 50
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc --- HẾT ---
Bài 2. ĐƯỜNG KÍNH VÀ DÂY CỦA ĐƯỜNG TRÒN
A. KIẾN THỨC TRỌNG TÂM
1. So sánh độ dài của đường kính và dây

 Trong các dây của đường tròn, đường kính là dây lớn nhất.
2. Quan hệ vuông góc giữa đường kính và dây cung
 Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.
 Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
So sánh các đoạn thẳng
 Sử dụng kiến thức liên hệ giữa đường kính và dây.
Ví dụ 1. Cho tam giác nhọn ABC , các đường cao BD CE cắt nhau tại H . Chứng minh
a) ốn điểm B , E , D , C cùng thuộc một đường tròn; b) DE < BC ; c) DE < AH .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Chứng minh hai đoạn thẳng bằng nhau
Ví dụ 2. Cho đường tròn tâm O , đường kính AB . Dây CD cắt đường kính AB tại I . Gọi H , K
theo thứ tự là chân các đường vuông góc kẻ từ A B đến CD . Đường thẳng đi qua O vuông góc
với CD tại M cắt AK tại N . Chứng minh ĐT: 0344 083 670 51
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc a) AN = NK ; b) MH = MK ; c) CH = DK .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 3. Cho nửa đường tròn tâm O , đường kính MN , dây CD . Các đường vuông góc với CD tại
C D tương ứng cắt MN H K . Chứng minh MH = NK .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Cho đường tròn tâm O , có bán kính OA = 4 cm. Dây BC vuông góc với OA tại trung điểm
của OA. Tính độ dài BC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 52
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn ( ;
O R) và điểm I nằm bên trong đường tròn.
a) Hãy nêu cách dựng dây CD nhận I làm trung điểm;
b) Tính độ dài dây CD khi R = 5 cm, OI = 3 cm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho đường tròn tâm O có bán kính OA =11cm. Lấy M thuộc OA sao cho OM = 7 cm.
Qua M vẽ dây CD =18 cm. Kẻ OH CD ( H CD ). Tính a) OH , HM ; b) MC , MD .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho đường tròn (O) đường kính AB = 2R . Vẽ cung tròn tâm B , bán kính R , cung này cắt
đường tròn (O) ở C D .
a) Tứ giác OCBD là hình gì? Vì sao?
b) Tính số đo các góc  CDB ,  CDO ,  ODA ;
c) Chứng minh ACD là tam giác đều.
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 53
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho đường tròn (O) , dây cung MN . Kẻ OI MN ( I MN ), lấy hai điểm H , K đối xứng
với nhau qua I . Chứng minh tứ giác MHNK là hình bình hành.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... D. BÀI TẬP VỀ NHÀ
Bài 6.
Cho tứ giác ABCD có ˆ ˆ A C 90° = = .
a) Chứng minh bốn điểm A , B , C , D cùng thuộc một đường tròn;
b) So sánh độ dài AC BD ;
c) Nếu AC = BD thì tứ giác ABCD là hình gì?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 54
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho đường tròn (O) đường kính AK , dây MN không cắt đường kính AK . Gọi I , P lần
lượt là chân đường vuông góc hạ từ A K đến MN . Chứng minh MI = NP .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho nửa đường tròn tâm O , đường kính MN . Trên MN lấy điểm H , K sao cho
MH = NK . Qua H , K kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt
tại C D . Chứng minh HC KD vuông góc với CD .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 55
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
........................................................................................................................................................................................................................................................................... --- HẾT ---
Bài 3. LIÊN HỆ GIỮA DÂY VÀ KHOẢNG CÁCH TỪ TÂM ĐẾN DÂY
A. KIẾN THỨC TRỌNG TÂM
 Trong một đường tròn: B C
 Hai dây bằng nhau thì cách đều tâm.
 Hai dây cách đều tâm thì bằng nhau. H
 Trong hai dây của một đường tròn K O
 Dây nào lớn hơn thì dây đó gần tâm hơn. A
 Dây nào gần tâm hơn thì dây đó lớn hơn. D
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau
 Áp dụng liên hệ giữa dây và khoảng cách từ tâm đến dây.
Ví dụ 1. Cho đường tròn (O,10 cm) , dây AB 16 cm.
a) Tính khoảng cách từ O đến dây AB ;
b) Gọi I là điểm thuộc dây AB sao cho AI  2 cm. Kẻ dây CD đi qua I và vuông góc với AB .
Chứng minh CD AB .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 2. Cho đường tròn (O) có các dây AB CD bằng nhau, các tia AB CD cắt nhau tại
điểm M nằm bên ngoài đường tròn. Gọi H , K lần lượt là trung điểm của AB , CD .Chứng minh a) MH MK ; b) MA MC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 56
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: So sánh độ dài các đoạn thẳng
 Dựa vào kiến thức trọng tâm.
Ví dụ 3. Cho đường tròn (O) và điểm M nằm bên trong đường tròn. Vẽ dây AB vuông góc với
OM tại M . Vẽ dây HK bất kì qua M và không vuông góc với OM . Hãy so sánh độ dài dây AB HK .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 4. Cho AB CD là hai dây của đường tròn (O;R) sao cho AB CD cắt nhau tại điểm
I nằm trong đường tròn. Gọi H , K lần lượt là trung điểm của AB , CD . Biết AB CD , chứng
minh IH IK .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 57
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Cho đường tròn (O;25 cm) . Hai dây AB , CD song song với nhau và có độ dài theo thứ tự
bằng 40 cm, 48 cm. Tính khoảng cách giữa hai dây ấy.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn (O;R) và hai điểm A , B bất kì nằm trên (O;R). Trên cung nhỏ AB lấy
các điểm M , N sao cho AM BN AM , BN cắt nhau tại điểm C nằm trong đường tròn. Chứng minh:
a) OC là phân giác của  AOB ; b) OC AB .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 58
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho đường tròn (O;10 cm) , điểm M cách O là 8 cm.
a) Tính độ dài dây ngắn nhất đi qua M ;
b) Tính độ dài dây dài nhất đi qua M .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho đường tròn (O), các dây AB  24 cm, AC  20 cm (  BAC
 90 và điểm O nằm trong 
BAC ). Gọi M là trung điểm của AC . Khoảng cách từ M đến AB bằng 8 cm. a) Chứng minh A
BC cân tại C ;
b) Tính bán kính của đường tròn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 59
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... D. BÀI TẬP VỀ NHÀ
Bài 5.
Cho đường tròn (O,10 cm) , dây AB 16 cm. Vẽ dây CD song song với AB . Gọi H , K
lần lượt là trung điểm của AB , CD .
a) Chứng minh ba điểm O , H , K thẳng hàng;
b) Biết O nằm giữa H , K và khoảng cách giữa hai dây AB , CD bằng 14 cm. Tính độ dài dây CD .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường tròn (O), các dây AB CD bằng nhau và cắt nhau tại điểm M nằm bên trong
đường tròn. Chứng minh:
a) MO là tia phân giác của một trong hai góc tạo bởi hai dây cung AB CD ;
b) MA MC MB MD .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 60
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho hai đường tròn (O;r) và (O;R) với R r . Hai dây AB , CD thuộc đường tròn (O;r)
sao cho AB CD . Đường thẳng AB cắt (O;R) tại M N , đường thẳng CD cắt (O;R) tại H
K . Kẻ OI AB(I AB) , OJ CD(J CD) . So sánh các độ dài: a) OI OJ ; b) MN HK .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... Bài 8. Cho MNP có ˆ M  ˆ N  ˆ
P nội tiếp đường tròn (O). Gọi OH , OI , OK theo thứ tự là
khoảng cách từ O đến MN , NP , MP . So sánh các độ dài OH , OI OK .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 61
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc --- HẾT ---
Bài 4. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN
A. KIẾN THỨC TRỌNG TÂM
1. Vị trí tương đối của đường thẳng và đường tròn

 Cho đường tròn (O;R) và một đường thẳng bất kì. Gọi d là khoảng cách từ tâm O của đường
tròn đến đường thẳng đó. Ta có bảng vị trí tương đối của đường thẳng với đường tròn
Vị trí tương đối của đường thẳng và đường tròn Số điểm chung Hệ thức giữa d và R Cắt nhau 2 d < R Tiếp xúc nhau 1 d = R Không giao nhau 0 d > R
2. Vị trí tương đối của đường thẳng và đường tròn
Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Xác định vị trí tương đối của đường thẳng và đường tròn
 So sánh d và R rồi kết luận dựa vào phần kiến thức trọng tâm.
Ví dụ 1. Điền vào các chỗ trống (…) trong bảng sau ( R là bán kính của đường tròn, d là khoảng
cách từ tâm đến đường thẳng): R d
Vị trí tương đối của đường thẳng và đường tròn 5 cm 3 cm 6 cm Tiếp xúc nhau 4 cm 8 cm
Ví dụ 2. Trên mặt phẳng tọa độ Oxy cho điểm (
A 3;4) . Hãy xác định vị trí tương đối của đường tròn ( ;
A 3) và các trục tọa độ.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 3. Cho điểm A cách đường thẳng ∆ là 3 cm. Vẽ đường tròn tâm A , bán kính 3 cm. Chứng
minh đường thẳng ∆ tiếp xúc với đường tròn ( ) A .
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 62
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
Dạng 2: Bài toán liên quan đến tính độ dài
 Nối tâm và tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và định lý Py-ta-go.
Ví dụ 4. Cho đường tròn ( ;
O R) và điểm M nằm ngoài (O) sao cho MO = 2R . Kẻ tiếp tuyến MA
với (O) ( A là tiếp điểm). Tính độ dài đoạn thẳng MA theo R .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 5. Cho đường tròn tâm O , đường kính AB = 2R . Từ A kẻ tiếp tuyến xy . Trên xy lấy điểm
C sao cho AC = R . Tính độ dài đoạn thẳng BC theo R .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Trên mặt phẳng tọa độ Oxy cho điểm ( A ;
a b) . Xác định điều kiện của a,b để đường tròn ( ; A 5) thỏa mãn: a) Cắt trục Oy ; b) Cắt trục Ox ;
c) Tiếp xúc với Ox .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 63
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Bài 2. Cho hình thang vuông ABCD ( ˆA ˆD 90° = =
). Biết AB = 4 cm, BC =13 cm và CD = 9 cm.
Vẽ đường tròn tâm O , đường kính BC . Chứng minh AD tiếp xúc với (O) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho đường tròn ( ;
O 15 cm) có dây AB = 24 cm. Gọi H là trung điểm của AB , tia OH cắt
(O) tại C , tiếp tuyến của (O) tại C cắt ,
OA OB lần lượt tại E, F . Tính độ dài OH EF .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho điểm O cách đường thẳng xy là 5 cm. a) Chứng minh ( ;
O 13 cm) cắt đường thẳng xy tại hai điểm phân biệt;
b) Gọi hai giao điểm của (O) với xy B,C . Tính độ dài đoạn thẳng BC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 64
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho đường tròn tâm O bán kính 6 cm. Điểm A nằm ngoài đường tròn và OA =10 cm. Kẻ
tiếp tuyến AB với (O) trong đó B là tiếp điểm. Tính chu vi tam giác ABO .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... D. BÀI TẬP VỀ NHÀ
Bài 6.
Trên mặt phẳng tọa độ Oxy cho điểm B(2;4) . Hãy xác định vị trí tương đối của đường tròn ( ;
B 3) và các trục tọa độ.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho điểm B cách đường thẳng a là 5 cm. Vẽ đường tròn tâm B , bán kính 7 cm. Chứng
minh đường thẳng a cắt đường tròn (B) tại hai điểm phân biệt.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho đường tròn (O) bán kính 6 cm và điểm A cách O là 10 cm. Kẻ tiếp tuyến AB với
(O) ( B là tiếp điểm). Tính độ dài đoạn thẳng AB .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 65
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho đường tròn tâm O bán kính 3 cm và điểm M nằm trên đường tròn đó. Từ M vẽ tiếp
tuyến xy . Trên xy lấy điểm P sao cho MP = 4 cm. Tính độ dài đoạn thẳng PO .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 66
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
........................................................................................................................................................................................................................................................................... --- HẾT ---
Bài 5. DẤU HIỆU NHẬN BIẾT TIẾP TUYẾN CỦA ĐƯỜNG TRÒN
A. KIẾN THỨC TRỌNG TÂM
Dấu hiệu 1: Nếu một đường thẳng đi qua một điểm thuộc đường tròn và vuông góc với bán
kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn.
Dấu hiệu 2: Nếu khoảng cách từ tâm của một đường tròn đến đường thẳng bằng bán kính của
đường tròn thì đường thẳng đó là tiếp tuyến của đường tròn.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Chứng minh một đường thẳng là tiếp tuyến của đường tròn
 Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có
thể làm theo một trong hai cách
 Cách 1: Chứng minh C nằm trên (O) và OC a tại C.
 Cách 2: Kẻ OH a tại H và chứng minh OH =OC = R .
Ví dụ 1. Cho tam giác ABC có ba góc nhọn, kẻ đường cao AH , vẽ đường tròn ( ; A AH ) . Chứng
minh BC là tiếp tuyến của đường tròn ( ) A .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 2. Cho tam giác ABC BC = 5 cm, CA = 4 cm, AB = 3cm. Vẽ đường tròn (C; ) CA .
Chứng minh BA là tiếp tuyến của đường tròn (C).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 3. Cho tam giác ABC , các đường phân giác trong ˆB , ˆC cắt nhau tại I . Gọi H là hình
chiếu của I trên BC , vẽ đường tròn tâm I , bán kính IH . Chứng minh AB , AC tiếp xúc với (I) . ĐT: 0344 083 670 67
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 4. Cho tam giác ABC cân tại A có các đường cao AH BK cắt nhau tại I . Chứng minh
a) Đường tròn tâm O đường kính AI đi qua K ;
b) HK là tiếp tuyến của đường tròn (O) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Bài toán liên quan đến tính độ dài
 Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các
công thức về hệ thức lượng trong tam giác vuông để tính độ dài.
Ví dụ 5. Cho đường tròn ( ;
O R) đường kính AB . Vẽ dây AC sao cho  CAB 30° = . Trên tia đối của
tia BA lấy điểm M sao cho BM = R . Chứng minh
a) MC là tiếp tuyến của (O) ; b) MC = R 3 .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 68
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 6. Cho đường tròn tâm O có bán kính OA = R , dây BC vuông góc với OA tại trung điểm M của OA.
a) Tứ giác OCAB là hình gì? Vì sao?
b) Kẻ tiếp tuyến với đường tròn tại B , cắt đường thẳng OA tại E . Tính độ dài BE theo R .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Cho hình vuông ABCD . Vẽ đường tròn tâm A , bán kính AB . Chứng minh
a) CB là tiếp tuyến của đường tròn ( ) A ;
b) CD là tiếp tuyến của đường tròn ( ) A .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 69
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho tam giác ABC cân tại A . Gọi M là trung điểm của BC H là hình chiếu vuông góc
của M trên AB . Vẽ đường tròn (M ;MH ) . Chứng minh AC tiếp xúc với (M ) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho tam giác ABC vuông tại A . Vẽ đường tròn ( ; B B )
A và đường tròn (C; ) CA , chúng cắt
nhau tại điểm D ( D khác A ). Chứng minh CD là tiếp tuyến của đường tròn (B) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 70
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Bài 4. Cho đường tròn (O) và điểm A nằm ngoài (O) . Kẻ tiếp tuyến AB với (O) ( B là tiếp
điểm). Qua B kẻ đường thẳng vuông góc với OA, cắt (O) tại C . Chứng minh AC là tiếp tuyến
của đường tròn (O) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho đường tròn tâm (O) , đường kính AB = 2R d là tiếp tuyến tại B của (O) . Trên (O)
lấy điểm C sao cho BC = R , tia AC cắt d tại E .
a) Tính số đo các góc của tam giác ABC ;
b) Tính độ dài BE theo R ;
c) Gọi M là trung điểm của BE . Chứng minh MC là tiếp tuyến của (O) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường tròn (O, R) và điểm A nằm ngoài (O) . Kẻ các tiếp tuyến AB , AC ( B , C
các tiếp điểm) và đường kính BOD của (O) . Đường thẳng qua O và vuông góc với OA cắt AC tại E . Chứng minh ĐT: 0344 083 670 71
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
a) ABO =ACO ;
b) OE là tia phân giác của  COD ;
c) ED là tiếp tuyến của (O) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... D. BÀI TẬP VỀ NHÀ
Bài 7.
Cho tam giác ABC vuông tại A , vẽ đường tròn ( ; B B )
A . Chứng minh AC là tiếp tuyến của đường tròn (B) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho hình chữ nhật ABCD , vẽ đường tròn tâm O , đường kính AB . Chứng minh DA , BC
các tiếp tuyến của đường tròn (O) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 72
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 9. Cho tam giác ABC vông tại B , tia phân giác góc A cắt BC tại D . Vẽ đường tròn tâm D ,
bán kính DB . Chứng minh AC tiếp xúc với đường tròn (D).
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 10. Cho tam giác ABC vuông tại A , kẻ đường cao AD . Gọi M là trung điểm của AB . Chứng minh
a) Đường tròn tâm O đường kính AC đi qua D ;
b) MD là tiếp tuyến của đường tròn (O) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 73
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Bài 11. Cho đường tròn (O, R) có dây AB không là đường kính. Qua O kẻ đường thẳng vuông
góc với AB , cắt tiếp tuyến tại A của (O) ở điểm C .
a) Chứng minh CB là tiếp tuyến của (O) ;
b) Cho bán kính của (O) bằng 15cm và dây AB = 24 cm. Tính độ dài đoạn thẳng OC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 12. Cho đường tròn tâm O có bán kính OA = R , vẽ dây AB sao cho AB = R . Gọi K là điểm
đối xứng với O qua A .
a) Chứng minh KB là tiếp tuyến của (O) ;
b) Tính độ dài đoạn thẳng KB theo R .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 74
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... --- HẾT ---
Bài 6. TÍNH CHẤT CỦA HAI TIẾP TUYẾN CẮT NHAU
A. KIẾN THỨC TRỌNG TÂM
1. Tính chất của hai tiếp tuyến cắt nhau
Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì
 Điểm đó cách đều hai tiếp điểm.
 Tia kẻ từ điểm đó đi qua tâm là tia phân giác của
góc tạo bởi hai tiếp tuyến.
 Tia kẻ từ tâm đi qua hai điểm đó là tia phân giác
của góc tạo bởi hai bán kính đi qua tiếp điểm.
2. Đường tròn nội tiếp tam giác
 Đường tròn tiếp xúc với ba cạnh của một tam giác gọi là
đường tròn nội tiếp tam giác, còn tam giác gọi là ngoại tiếp đường tròn.
 Tâm của đường tròn nội tiếp tam giác là giao điểm của ba
đường phân giác của tam giác.
 Tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi
hai bán kính đi qua tiếp điểm.
3. Đường tròn bàng tiếp tam giác
 Đường tròn tiếp xúc với một cạnh của tam giác và tiếp xúc với phần
kéo dài của hai cạnh còn lại gọi là đường tròn bàng tiếp tam giác.
 Với mỗi tam giác, có ba đường tròn bàng tiếp.
 Tâm của đường tròn bàng tiếp góc A là giao điểm của hai đường
phân giác góc ngoài tại B và C hoặc là giao điểm của đường phân
giác trong của góc A và đường phân giác ngoài tại B (hoặc C).
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Chứng minh hai đoạn thẳng bằng nhau, hai đường thẳng song song, hai đường thẳng vuông góc
 Vận dụng tính chất hai tiếp tuyến cắt nhau.
Ví dụ 1. Cho đường tròn (O) và điểm A nằm ngoài (O) . Kẻ các tiếp tuyến AB , AC với (O) ( B ,
C là các tiếp điểm).
a) Chứng minh AO là trung trực của đoạn thẳng BC ; ĐT: 0344 083 670 75
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
b) Vẽ đường kính CD của (O) . Chứng minh BD OA.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 2. Cho nửa đường tròn (O) đường kính AB . Trên nửa mặt phẳng bờ AB chứa nửa đường
tròn vẽ các tiếp tuyến Ax By . Điểm M thuộc (O) sao cho tiếp tuyến tại M cắt Ax , By lần
lượt tại C , D .
a) Chứng minh CD = AC + BD ;
b) Chứng minh OC AM ;
c) Gọi E là giao điểm của AM OC , F là giao điểm của BM OD . Tứ giác MEOF là hình gì? Tại sao?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tính độ dài đoạn thẳng. Tính số đo góc ĐT: 0344 083 670 76
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Vận dụng các kiến thức sau
 Tính chất hai tiếp tuyến cắt nhau.
 Tính chất của đường tròn nội tiếp, đường tròn bàng tiếp.
 Hệ thức lượng về cạnh và góc trong tam giác vuông.
Ví dụ 3. Cho đường tròn (O, R) và điểm A nằm ngoài đường tròn (O) sao cho OA = 2R . Kẻ các
tiếp tuyến AB , AC với (O) ( B , C là các tiếp điểm).
a) Chứng minh tam giác ABC đều;
b) Tính chu vi và diện tích tam giác ABC theo R .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 4. Cho tam giác ABC vuông tại A . Đường tròn (I,r) nội tiếp tam giác ABC tiếp xúc với
BC , CA , AB lần lượt tại D , E , F .
a) Tứ giác AEIF là hình gì? Vì sao?
b) Chứng minh BC = BF + CE ; c) Chứng minh AB AC BC r + − = . 2
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 77
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Hai tiếp tuyến tại A B của đường tròn (O) cắt nhau tại điểm M . Qua O kẻ đường
thẳng song song với AM cắt BM tại C .
a) Chứng minh CM = CO ;
b) Kẻ OD BM với D thuộc AM . Tứ giác OCMD là hình gì? Vì sao?
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn (O) và điểm A nằm ngoài (O) . Kẻ các tiếp tuyến AB , AC với (O) trong
đó B , C là các tiếp điểm.
a) Chứng minh OA là trung trực của đoạn thẳng BC ;
b) OA cắt BC H . Biết OB = 4 cm, OH = 2 cm. Tính
i) Chu vi và diện tích tam giác ABC .
ii) Diện tích tứ giác ABOC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 78
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Từ một điểm A nằm ngoài đường tròn (O) , kẻ các tiếp tuyến AB , AC với (O) ( B , C
các tiếp điểm). Qua điểm D thuộc cung nhỏ BC kẻ tiếp tuyến với (O) , tiếp tuyến này cắt AB ,
AC lần lượt tại M , N . Chứng minh chu vi tam giác AMN bằng 2AB .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho tam giác ABC vuông tại A , đường cao AH . Vẽ đường tròn ( ;
A AH ) . Từ B C kẻ
các tiếp tuyến BM , CN với ( )
A ( M , N là các tiếp điểm khác H ). Chứng minh
a) BC = BM + CN . ĐT: 0344 083 670 79
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc b)   MBC NCB 180° + =
, từ đó suy ra BM CN .
c) M , A , N thẳng hàng.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... D. BÀI TẬP VỀ NHÀ
Bài 5.
Cho nửa đường tròn (O) đường kính AB . Trên nửa mặt phẳng bờ AB chứa nửa đường tròn
vẽ tiếp tuyến Ax . Điểm M nằm trên (O) sao cho tiếp tuyến tại M cắt Ax tại C .
a) Chứng minh OC là trung trực của đoạn thẳng AM ;
b) Chứng minh BM OC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 80
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường tròn (O) , các điểm B , C thuộc (O) sao cho  BOC 90° =
. Hai tiếp tuyến tại B
C thuộc (O) cắt nhau ở A .
a) Tứ giác ABOC là hình gì? Tại sao?
b) Lấy điểm M thuộc cung nhỏ BC của (O) . Tiếp tuyến tại M vủa (O) cắt AB , AC lần lượt tại
D , E . Chứng minh DE = BD + CE ;
c) Biết bán kính đường tròn (O) bằng 5 cm. Tính chu vi của tam giác ADE .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho đường tròn (O) . Từ điểm M nằm ngoài đường tròn (O) , vẽ hai tiếp tuyến ME , MF (
E , F là các tiếp điểm). Biết OE = 3 cm, OM = 5 cm.
a) Tính độ dài EF ;
b) Tính chu vi và diện tích tam giác MEF .
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 81
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với các cạnh BC , CA , AB lần lượt tại M , N , P .
a) Chứng minh BC = BP + CN ; b) Chứng minh AB AC BC AN + − = ; 2
c) Biết AB = 3 cm, AC = 4 cm, BC = 5 cm. Tính độ dài CM .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 82
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... --- HẾT ---
Bài 7. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN
A. KIẾN THỨC TRỌNG TÂM
1. Ba vị trí tương đối của hai đường tròn

 Hai đường tròn có hai điểm chung gọi là hai đường tròn cắt nhau.
 Hai đường tròn chỉ có một điểm chung được gọi là hai đường tròn tiếp xúc nhau. Điểm chung
đó gọi là tiếp điểm.
 Hai đường tròn không có điểm chung được gọi là hai đường tròn không giao nhau.
2. Tính chất đường nối tâm
 Nếu hai đường tròn cắt nhau thì hai giao điểm đối xứng với nhau qua đường nối tâm, tức là
đường nối tâm là đường trung trực của dây cung ấy.
 Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Chứng minh song song, vuông góc.
 Vận dụng tính chất của đường nối tâm; các dấu hiệu chứng minh song song; định lí Py-
ta-go; tính chất hình hình thang; tính chất hai tiếp tuyến cắt nhau…
Ví dụ 1. Cho hai đường tròn ( ;
O R) và (O ;′r) tiếp xúc nhau tại A ( A nằm giữa O O′ ). Một
đường thẳng đi qua A cắt ( ;
O R) tại B và cắt (O ;′r) tại C . Chứng minh OB O C ′ .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 2. Cho hai đường tròn (O) và (O )′ cắt nhau tại hai điểm A B . Kẻ các đường kính AOC , AO D ′ . Chứng minh: ĐT: 0344 083 670 83
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc a) AB BC .
b) C , B , D thẳng hàng.
c) OO′  CD .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Dạng 2: Tính độ dài đoạn thẳng. Chứng minh đoạn thẳng bằng nhau
 Vận dụng tính chất của đường nối tâm; các dấu hiệu chứng minh song song; định lí Py-
ta-go; tính chất hình hình thang; tính chất hai tiếp tuyến cắt nhau…
Ví dụ 3. Cho hai đường tròn ( ;
O 10 cm) và (O ;8
′ cm) cắt nhau tại hai điểm ,
A B . Biết AB =12
cm, tính đoạn nối tâm OO′ .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 4. Cho hai đường tròn (O) và (O )′ cắt nhau tại A B . Gọi I là trung điểm của OO′ . Qua
A vẽ đường thẳng vuông góc với AI , cắt đường tròn (O) và (O )′ tại C D (C, D A). Chứng minh AC = AD .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 84
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Cho hai đường tròn (O ) và (O )′ tiếp xúc với nhau tại điểm A sao cho O′ nằm giữa O A
. Gọi M là một điểm bất kì nằm trên (O) ( M A), AM cắt (O )′ tại B . Chứng minh rằng O B ′  OM .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho hai đường tròn ( ;
O R ) và ( I;r ) cắt nhau tại M N , trong đó I thuộc đường tròn
(O) và R > r . Kẻ đường kính IOK của đường tròn (O) .
a) Chứng minh KM , KN là các tiếp tuyến của (I) .
b) Đường vuông góc với MI tại I cắt KN tại J . Chứng minh JI = JK .
c) Đường vuông góc với KM tại K cắt IN tại P . Chứng minh ba điểm O , J , P thẳng hàng.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 85
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho hai đường tròn (O) và (O )′ cắt nhau tại hai điểm A B . Gọi I là trung điểm của
OO′ , gọi C là điểm đối xứng với A qua I . Chứng minh: a) BC AB .
b) AOCO′ là hình bình hành. c) OO B
C là hình thang cân.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... D. BÀI TẬP VỀ NHÀ
Bài 4.
Cho hai đường tròn (O) và (O )′ tiếp xúc nhau tại A ( A nằm giữa O O′ ). Một đường
thẳng đi qua A cắt (O) tại B , cắt (O )′ tại C . Vẽ tiếp tuyến Bx tại B của (O) , vẽ tiếp tuyến Cy
tại C của (O )′ . Chứng minh Bx Cy .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 86
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hai đường tròn ( ;
O 15 cm) và (O ;′13 cm) cắt nhau tại hai điểm ,
A B sao cho O O
nằm khác phía đối với AB . Biết AB = 24 cm. Tính độ dài OO′ .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 87
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... --- HẾT ---
Bài 8. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN (TT)
A. KIẾN THỨC TRỌNG TÂM
Vị trí tương đối của hai đường tròn Số điểm
Hệ thức giữa OO ' với Số tiếp tuyến
(O;R)(O ';r )(R > r ) chung
R r chung
Hai đường tròn cắt nhau. 2
R r <OO ' < R + r 2
Hai đường tròn tiếp xúc nhau 1  Tiếp xúc ngoài.
OO ' = R + r 1  Tiếp xúc trong.
OO ' = R r
Hai đường tròn không giao nhau. 0  Ngoài nhau.
OO ' > R + r 4  Đựng nhau.
OO ' < R r 0  Đồng tâm. OO ' = 0 0
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI
Dạng 1:
Xác định vị trí tương đối của hai đường tròn
 Vận dụng lý thuyết về vị trí tương đối của hai đường tròn ở phần kiến thức trọng tâm.
Ví dụ 1. Điền vào ô trống trong bảng, biết rằng hai đường tròn ( ;
O R) và (O ;′r) có OO′ = d,R > r .
Vị trí tương đối của hai Số điểm chung
Hệ thức liên hệ giữa Số tiếp tuyến chung đường tròn d, R,r Đựng nhau
d = R + r Tiếp xúc trong Ngoài nhau Cắt nhau
Ví dụ 2. Điền các từ thích hợp vào chỗ trống (…):
a) Tâm của đường tròn có bán kính bằng 2 cm tiếp xúc ngoài với đường tròn ( ;
O 3 cm) nằm trên ...
...............................................................................................................................................................
b) Tâm của đường tròn có bán kính bằng 5 cm tiếp xúc trong với đường tròn ( ;8 O cm) nằm trên …
...............................................................................................................................................................
Dạng 2: Các bài toán liên quan đến hai đường tròn tiếp xúc nhau
 Vận dụng tính chất đường nối tâm, tính chất hai tiếp tuyến cắt nhau; tính chất tiếp tuyến
chung của hai đường tròn; hệ thực lượng trong tam giác vuông… ĐT: 0344 083 670 88
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
Ví dụ 3. Cho hai đường tròn (O) và (O )′ tiếp xúc ngoài tại A . Gọi MN là tiếp tuyến chung ngoài
của hai đường tròn với M ∈(O) và N ∈(O )′ . a) Tính số đo  MAN .
b) Tính độ dài MN biết OA = 9 cm; O A ′ = 4 cm.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Ví dụ 4. Cho đường tròn ( ; O )
OA và đường tròn tâm I có đường kính . OA
a) Xác định vị trí tương đối của hai đường tròn.
b) Dây AD của đường tròn lớn cắt đường tròn nhỏ ở M . Chứng minh AM = . MD
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... C. BÀI TẬP VẬN DỤNG
Bài 1.
Cho đường tròn ( ;
O 9 cm) và (O ;′3 cm) tiếp xúc ngoài tại .
A Vẽ hai bán kính OB O C
song song với nhau và thuộc cùng một nửa mặt phẳng bờ OO′ . a) Tính số đo của  BAC. ĐT: 0344 083 670 89
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
b) Gọi I là giao điểm của BC OO′ . Tính độ dài OI .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn ( ;
O R ) và điểm M nằm bên ngoài đường tròn (R < OM < 3R). Vẽ đường tròn (M ;2R) .
a) Hai đường tròn (O) và (M ) có vị trí tướng đối như thế nào với nhau?
b) Gọi K là một giao điểm của hai đường tròn trên. Vẽ đường kính KOH của đường tròn (O) .
Chứng minh NH = NM.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho ABC vuông tại A , đường cao AH . Gọi D là hình chiếu của H trên AB, E là hình
chiếu của H trên AC. Gọi (O ) là tâm đường tròn kính HB , (O′ ) là tâm đường tròn đường kính HC. Chứng mình:
a) Điểm D thuộc đường tròn (O), điểm E thuộc đường tròn (O )′ ;
b) Hai đường tròn (O) và (O )′ tiếp xúc ngoài;
c) AH là tiếp tuyến chung của hai đường tròn đó; ĐT: 0344 083 670 90
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc d) AH = DE ;
e) DE là tiếp tuyến chung của hai đường tròn (O) và (O )′ ;
f) Diện tích của tứ giác DEOO′ bằng nửa diện tích của tam giác ABC.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... D. BÀI TẬP VỀ NHÀ
Bài 4.
Cho hai đường tròn (O) và (O )′ tiếp xúc ngoài tại A . Kẻ các đường kính AOB , AO C ′ . Gọi
DE là tiếp tuyến chung của hai đường tròn, D∈(O) và E ∈(O )′ . Gọi M là giao điểm của BD CE. a) Tính số đo của  DAE.
b) Tứ giác ADME là hình gì? Vì sao?
c) Chứng minh MA là tiếp tuyến chung của hai đường tròn.
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 91
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho hai đường tròn đồng tâm O . Dây AB của đường tròn lớn cắt đường tròn nhỏ ở C D
. Chứng minh AC = BD .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 92
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... --- HẾT ---
Bài. ÔN TẬP CHƯƠNG II
A. KIẾN THỨC TRỌNG TÂM
 Xem lại kiến thức trọng tâm từ bài 1 đến bài 8.
B. CÁC DẠNG BÀI TẬP VÀ PHƯƠNG PHÁP GIẢI I. TRẮC NGHIỆM
Câu 1:
[TS10 Cần Thơ, 2018-2019]
Cho hai đường tròn (I;2 cm) và (J;3 cm) tiếp xúc ngoài
nhau (như hình bên dưới). Độ dài đoạn nối IJ bằng A. 1 cm. B. 5 cm. C. 10 cm. D. 13 cm.
Câu 2: [TS10 Phú Yên, 2018-2019]
Cho đường tròn tâm O đường kính 10 cm. Gọi H là trung điểm
của dây AB (hình bên). Tính độ dài đoạn OH , biết AB = 6 cm. A. OH = 4 cm. B. OH = 8 cm. C. OH =16 cm. D. OH = 64 cm.
Câu 3: [TS10 Yên Bái, 2018-2019]
Cho đường tròng (O ; 2 cm), hai điểm A , B thuộc đường tròn và sđ  AB = 60°. Độ dài
d của dây cung AB là bao nhiêu? A. d = 2 cm. B. d = 4 cm. C. d = 5cm. D. d = 3cm.
Câu 4: [TS10 Phú Thọ, 2018-2019]
Cho đường tròn tâm I , bán kính R = 5 cm và dây cung AB = 6 cm. Tính khoảng cách d
từ I tới đường thẳng AB . A. d = 4 cm. B. d = 34 cm. C. d = 2 cm. D. d =1 cm.
Câu 5: [TS10 Yên Bái, 2018-2019]
Cho đường tròn (O,5 cm) và dây cung AB = 8 cm . Tính khoảng cách d từ tâm O đến dây cung AB . A. d = 3 cm . B. d = 6 cm . C. d = 4 cm . D. d = 5 cm .
Câu 6: [TS10 Yên Bái, 2018-2019] ĐT: 0344 083 670 93
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc Cho đường tròn ( ;
O 15cm) , dây AB = 24 cm . Một tiếp tuyến của đường tròn song song
với AB cắt các tia OA, OB theo thứ tự ở E , F . Tính độ dài EF . A. EF = 40 cm . B. EF = 38 cm . C. EF = 36 cm . D. EF = 42 cm .
Câu 7: [TS10 Cần Thơ, 2018-2019]
Trong một đường tròn, xét các khẳng định sau:
(I): Đường kính là dây cung lớn nhất.
(II): Dây nhỏ hơn thì gần tâm hơn.
(III): Hai dây cách đều tâm thì bằng nhau.
(IV): Tiếp tuyến vuông góc với bán kính tại tiếp điểm.
Số khẳng định đúng là A. 1. B. 2 . C. 4 . D. 3.
Câu 8: [TS10 Hưng Yên, 2018-2019] Có hai đường tròn ( ;4
O cm) và đường tròn (I;2 cm), biết OI = 6 cm. Số tiếp tuyến
chung của hai đường tròn đó là A. 4 . B. 3. C. 2 . D. 1.
Câu 9: [TS10 Yên Bái, 2018-2019]
Cho hai đường tròn (O ; 4 cm) và (O′ ;3cm) có OO′ = 5cm. Hai đường tròn trên cắt nhau
tại A B . Tính độ dài AB . A. AB = 3,2cm. B. AB = 4,8cm. C. AB = 2,4 cm. D. AB = 3,6 cm.
Câu 10: [TS10 Hưng Yên, 2018-2019]
Từ một miếng tôn có hình dạng là nửa hình tròn bán
kính 1m , người ta cắt ra một hình chữ nhật (phần tô đậm như hình vẽ).
Phần hình chữ nhật có diện tích lớn nhật có thể cắt được là A. 2 1,6m . B. 2 0,5m . C. 2 1m . D. 2 2m .
Câu 11: [TS10 Yên Bái, 2018-2019]
Cho tam giác ABC , biết B = 60°, AB = 6 cm, BC = 4cm. Tính độ dài cạnh AC . A. AC = 2 7 cm. B. AC = 52 cm. C. AC = 4 5 cm. D. AC = 2 3 cm.
Câu 12: [TS10 Yên Bái, 2018-2019]
Cho nửa đường tròn tâm O có đường kính AB = 4 cm . Vẽ các tiếp tuyến Ax , By ( Ax ,
By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB ). Gọi M là một điểm bất
kỳ thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax , By theo thứ tự ở D , C . Tính diện
tích của hình thang ABCD , biết chu vi của nó bằng 14 cm . ĐT: 0344 083 670 94
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc A. S = 20 2 cm . B. S =10 2 cm . C. S =12 2 cm . D. S =16 2 cm .
Câu 13: [TS10 Yên Bái, 2018-2019]
Cho tam giác ABC AB = 20 cm, BC =12 cm, CA =16 cm. Tính chu vi của đường
tròn nội tiếp tam giác đã cho A. 16π cm. B. 20π cm. C. 13π cm. D. 8π cm.
Câu 14: [TS10 Phú Yên, 2018-2019]
Cho đường tròn (O,6 cm) và đường tròn (O ,′5 cm)
có đoạn nối tâm OO′ = 8 cm. Biết đường tròn (O) và
(O )′ cắt OO′ lần lượt tại N , M (hình bên). Tính độ dài MN . A. MN = 4 cm. B. MN = 3 cm. C. MN = 2 cm. D. MN =1 cm.
Câu 15: [TS10 Yên Bái, 2018-2019]
Cho hình vuông ABCD cạnh bằng a . Gọi E là trung điểm của cạnh CD . Tính độ dài
dây cung chung CF của đường tròn đường kính BE và đường tròn đường kính CD . A. a a a CF = a . B. 2 5 CF = . C. 2 3 CF = . D. 5 CF = . 5 3 5 II. TỰ LUẬN
Bài 1.
Cho nửa đường tròn ( ;
O R) đường kính AB . Trên nửa mặt phẳng bờ AB chứa nửa đường
tròn vẽ các tiếp tuyến Ax , By . Lấy điểm M thuộc nửa đường tròn ( M khác A , B ). Tiếp tuyến
tại M của (O) cắt Ax , By lần lượt tại C , D .
a) Chứng minh CD = AC + BD . b) Tính số đo góc  COD . c) Chứng minh 2
AC BD = R .
d) Vẽ đường tròn tâm I , đường kính CD . Chứng minh AB là tiếp tuyến của (I) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 95
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 2. Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O) . Từ A kẻ các tiếp tuyến AB ,
AC với (O) ( B , C là các tiếp điểm).
a) Chứng minh A , B , O , C cùng thuộc một đường tròn.
b) Chứng minh OA là đường trung trực của đoạn thẳng BC .
c) Biết OA =10 cm, OB = 6 cm. Tính độ dài đoạn BC .
d) Đường tròn (O) cắt đoạn OA tại I . Chứng minh I là tâm đường tròn nội tiếp tam giác ABC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 96
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 3. Cho hai đường tròn ( ;
O R) và (O ;′ R )′ tiếp xúc ngoài tại A . Kẻ tiếp tuyến chung ngoài BC
(B∈(O),C ∈(O ))
′ với hai đường tròn. Tiếp tuyến chung tại A của (O) và (O )′ cắt BC tại M .
a) Chứng minh MA = MB = MC và  BAC 90° = . b) Tính số đo của  OMO′ .
c) Chứng minh OO′ tiếp xúc với đường tròn đường kính BC .
d) Biết R = 9 cm, R′ = 4 cm. Tính độ dài đoạn thẳng BC .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 97
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 4. Cho đường tròn tâm O , đường kính AB = 2R . Điểm C nằm trên đường tròn (C khác A ,
B ). Gọi H là hình chiếu vuông góc của C lên AB . Vẽ đường tròn tâm I đường kính HA
đường tròn tâm K đường kính HB . CA cắt (I) tại M (khác A ), CB cắt (K) tại N (khác B ).
a) Tứ giác CMHN là hình gì? Vì sao?
b) Chứng minh MN là tiếp tuyến chung của (I) và (K) .
c) Chứng minh AB tiếp xúc với đường tròn đường kính MN . d) Biết R
HA = . Tính diện tích tứ giác IMNK theo R . 2
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 98
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 5. Cho nửa đường tròn tâm O , đường kính AB = 2R . Trên nửa mặt phẳng chứa nửa đường
tròn, kẻ tiếp tuyến Ax . Điểm C nằm trên nửa đường tròn sao cho AC = R .
a) Tính số đo các góc của tam giác ABC .
b) Tiếp tuyến tại C của (O) cắt Ax tại D . Chứng minh OD song song với BC .
c) Tia BC cắt Ax tại E . Chứng minh DE = DA .
d) Kẻ CH AB với H thuộc AB , BD cắt CH tại I . Chứng minh I là trung điểm của CH .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 99
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 6. Cho đường tròn ( ;
O R) đường kính AB . Qua A B vẽ lần lượt hai tiếp tuyến d d′ với
(O) . Đường thẳng ∆ thay đổi qua O cắt d tại M và cắt d′ tại P . Từ O vẽ một tia vuông góc với
MP cắt d′ tại N .
a) Chứng minh OM = OP và tam giác MNP cân.
b) Gọi I là hình chiếu vuông góc của O lên MN . Chứng minh OI = R MN là tiếp tuyến của đường tròn (O) .
c) Chứng minh MN = AM + BN .
d) Chứng minh AM BN không đổi khi đường thẳng ∆ quay quanh O .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 100
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 7. Cho nửa đường tròn (O) , đường kính AB và điểm C là một điểm nằm trên (O) (C khác
A , B ). Tia phân giác của 
ABC cắt AC tại K và cắt (O) tại I ( I khác B ). Gọi D là giao điểm
của AI BC .
a) Chứng minh tam giác ABD cân.
b) Chứng minh DK vuông góc với AB .
c) Gọi E là điểm đối xứng của K qua I . Tứ giác AEDK là hình gì? Vì sao?
d) Chứng minh EA là tiếp tuyến của (O) .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 101
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
Bài 8. Cho hai đường tròn ( ;
O R) và (O ;′ R )′ tiếp xúc ngoài tại A . Kẻ tiếp tuyến chung ngoài BC
(B∈(O),C ∈(O ))
′ với hai đường tròn. Tiếp tuyến chung ngoài tại A của (O) và (O )′ cắt BC tại D . a) Chứng minh ODO  ′ là tam giác vuông.
b) Gọi E là giao điểm của OD AB , gọi F là giao điểm của O D
′ và AC . Tứ giác AEDF là hình gì? Vì sao?
c) Chứng minh BC tiếp xúc với đường tròn đường kính OO′ .
d) Chứng minh BC = 2 R R′ .
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... ĐT: 0344 083 670 102
Toång hôïp: Thaày Hoùa Toaùn 9
Taøi lieäu daïy hoïc
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
...........................................................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................................................... --- HẾT --- ĐT: 0344 083 670 103
Toång hôïp: Thaày Hoùa