Tài liệu chung Toán 10

395 tài liệu 0 đề thi 811.2 K

Danh sách Tài liệu

  • Hệ thống bài tập trắc nghiệm chuyên đề hệ phương trình chứa tham số – Lương Tuấn Đức

    158 79 lượt tải 27 trang

    Tài liệu gồm 27 trang được biên soạn bởi thầy Lương Tuấn Đức tuyển chọn hệ thống bài tập trắc nghiệm chuyên đề hệ phương trình chứa tham số, các câu hỏi trong tài liệu phần lớn thuộc mức độ vận dụng và vận dụng bậc cao.

    1 năm trước
  • Sử dụng phân tích nhân tử giải hệ phương trình chứa căn – Lương Tuấn Đức

    163 82 lượt tải 268 trang

    Tài liệu gồm 268 trang được biên soạn bởi thầy Lương Tuấn Đức trình bày một số phương pháp giải hệ phương trình chứa căn thức bằng phương pháp phân tích nhân tử, đây là dạng toán được bắt gặp nhiều trong chương trình Đại số 10 chương 3 và chương 4.

    1 năm trước
  • Sử dụng liên hợp trực tiếp giải phương trình chứa căn (liên hợp 1) – Lương Tuấn Đức

    140 70 lượt tải 127 trang

    Tài liệu gồm 246 trang được biên soạn bởi thầy Lương Tuấn Đức hướng dẫn phương pháp sử dụng liên hợp trực tiếp giải phương trình chứa căn.

    Tổng quan về nội dung tài liệu:
    Phần 1. Sử dụng đại lượng liên hợp – trục căn thức – hệ phương trình tạm thời: Kiến thức chủ đạo là các ví dụ minh họa mở đầu, kỹ thuật liên hợp trực tiếp các biểu thức chứa căn và bài toán liên quan đến tìm nghiệm, liên hợp hằng số. Đây có thể được coi là một phương pháp mạnh, vì bản chất là phân tích nhân tử đưa phương trình chứa căn về một phương trình tích hệ quả.
    + Một số bài toán mở đầu.
    + Liên hợp trực tiếp các biểu thức chứa căn.
    + Bài toán nhiều cách giải.

    1 năm trước
  • Sử dụng hai ẩn phụ đồng bậc giải phương trình chứa căn (ẩn phụ 4) – Lương Tuấn Đức

    209 105 lượt tải 118 trang

    Tài liệu gồm 118 trang hướng dẫn phương pháp sử dụng hai ẩn phụ đồng bậc giải phương trình chứa căn (ẩn phụ 4), các bài toán đều được giải chi tiết, tài liệu được biên soạn bởi thầy Lương Tuấn Đức.

    Nội dung tài liệu chủ yếu xoay quanh lớp các bài toán chứa căn thức được giải thông qua ý tưởng sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp bậc hai cơ bản kết hợp phân tích nhân tử – phương trình tích. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh.

    1 năm trước
  • Một số phương pháp giải hệ phương trình – Nguyễn Văn Thiêm

    192 96 lượt tải 55 trang

    Tài liệu gồm 55 trang hướng dẫn một số phương pháp giải hệ phương trình trong chương trình Đại số 10 chương 3 (phương trình và hệ phương trình), tài liệu được biên soạn bởi thầy Nguyễn Văn Thiêm, giáo viên trường THPT Yên Thành 2 – Nghệ An.

    1 năm trước
  • Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba) – Lương Tuấn Đức

    221 111 lượt tải 121 trang

    Tài liệu gồm 121 trang hướng dẫn sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc ba), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh THPT – Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác.

    1 năm trước
  • Sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc hai) – Lương Tuấn Đức

    198 99 lượt tải 130 trang

    Tài liệu gồm 130 trang được biên soạn bởi thầy Lương Tuấn Đức hướng dẫn sử dụng hai ẩn phụ đưa về hệ phương trình đối xứng (ẩn căn bậc hai), đây là dạng toán thường gặp trong chương trình Đại số 10 chương 3 và chương 4, các bài toán trong tài liệu đều được phân tích và giải quyết chi tiết.

    1 năm trước
  • Sử dụng liên hợp hằng số giải phương trình chứa căn (liên hợp 2) – Lương Tuấn Đức

    227 114 lượt tải 119 trang

    Phương pháp sử dụng biến đổi tương đương – nâng cao lũy thừa là một phương pháp cơ bản, đơn giản nhất, các bạn đã bước đầu làm quen thông qua 7 tiêu mục. Hầu hết các phương pháp khác đều ít nhiều quy về dạng cơ bản nâng lũy thừa, điều quan trọng là quá trình thu gọn bài toán. Tiếp tục dựa trên nền tảng ấy, mang tính kế thừa và phát huy thêm một bậc, phương pháp sử dụng Đại lượng liên hợp – Trục căn thức – Hệ tạm thời là một phương pháp mạnh và có nhiều ưu việt, có hiệu lực với nhiều lớp phương trình, bất phương trình. Tiếp theo phần 1, tài liệu này trân trọng giới thiệu và gửi tới toàn thể bạn đọc Lý thuyết sử dụng đại lượng liên hợp – trục căn thức – hệ tạm thời (phần 2). Nội dung chủ đạo là các ví dụ minh họa mở đầu cho các bài toán liên quan đến xác định nghiệm (trường hợp 1 nghiệm nguyên – nghiệm hữu tỷ), kỹ thuật liên hợp hằng số và xử lý, đánh giá phương trình hệ quả, tạm thời dừng chân với lớp bài toán chứa căn bậc hai.

    1 năm trước
  • Sử dụng hàm số chặn miền giá trị giải hệ chứa căn (hệ chứa căn phần 8) – Lương Tuấn Đức

    149 75 lượt tải 132 trang

    Tài liệu gồm 132 trang hướng dẫn sử dụng hàm số chặn miền giá trị giải hệ chứa căn (hệ chứa căn phần 8), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, tài liệu chủ yếu giới thiệu đến quý bạn đọc Lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số có chặn miền giá trị, các phép ước lượng – đánh giá – bất đẳng thức phần tiếp theo. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức.

    1 năm trước
  • Sử dụng hàm số thuần giải hệ chứa căn (hệ chứa căn phần 7) – Lương Tuấn Đức

    266 133 lượt tải 128 trang

    Tài liệu gồm 128 trang hướng dẫn sử dụng hàm số thuần giải hệ chứa căn (hệ chứa căn phần 7), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, tài liệu chủ yếu giới thiệu đến quý bạn đọc Lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số, các phép ước lượng – đánh giá – bất đẳng thức. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. Các thao tác tính toán và kỹ năng trình bày cơ bản đối với phương trình, hệ phương trình xin không nhắc lại.

    1 năm trước