Bài 33: Đạo hàm cấp hai | Giáo án Toán 11 Kết nối tri thức

Bài 33: Đạo hàm cấp hai | Giáo án Toán 11 Kết nối tri thức được soạn dưới dạng file PDF gồm 7 trang. Các bạn xem và tải về ở bên dưới.

KẾ HOẠCH BÀI DẠY
TÊN BÀI DẠY: ĐẠO HÀM CẤP HAI
Môn học/Hoạt động giáo dục: Toán; lớp: 11
Thời gian thực hiện: (02 tiết)
I. Mục tiêu
1. Về kiến thức:
- Nhận biết khái niệm đạo hàm cấp hai của một số hàm số.
- Biết cách tính đạo hàm cấp hai của một số hàm số đơn giản.
- Biết cách vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn.
2. Về năng lực:
- Năng lực tư duy và lập luận Toán học: Trong các ví dụ, bài tập.
- Năng lực mô hình hóa Toán học: Trong các bài toán thực tế.
- Năng lực giải quyết vấn đề Toán học: Trong các lời giải của các bài tập.
- Năng lực giao tiếp Toán học: Trong các ví dụ, bài tập.
- Năng lực sử dụng công cụ, phương tiện để học Toán: Sử dụng máy tính cầm tay.
3. Về phẩm chất:
- Chăm chỉ, hoàn thành các nhiệm vụ được giao.
- Trách nhiệm, cố gắng chiếm lĩnh kiến thức mới, cố gắng làm đúng các bài tập.
- Có thế giới quan khoa học
II. Thiết bị dạy học và học liệu
- Kế hoạch bài dạy, SGK, phiếu học tập, phấn, thước kẻ, máy chiếu, phần mềm GSP…
III. Tiến trình dạy học
Tiết 1.
1. Hoạt động 1: Khởi động
a) Mục tiêu: Tạo tâm thế học tập cho học sinh, giúp các em ý thức được nhiệm vụ học tập, sự cần
thiết phải tìm hiểu về các vấn đề đã nêu ra, từ đó gây được hứng thú với việc học bài mới.
b) Nội dung:
Chuyển động của mt vật gắn trên con lắc xo (khi bỏ qua ma sát sức cản không khí) được cho bởi
phương trình sau:
ở đó tính bằng centimét và thời gian tính bằng giây. Tìm gia tốc tức thời của vật tại thời điểm
giây (làm tròn kết quả đến hàng đơn vị).
c) Sản phẩm: Câu trả lời của học sinh
d) Tổ chức thực hiện:
Chuyển giao
- Giáo viên trình chiếu nội dung của hoạt động mở đầu
- Giáo viên cho HS thảo luận 2 HS cùng bàn, vận dụng kiến thức đã học
để tìm gia tốc tức thời.
Thực hiện
- HS tìm câu trả lời.
- Mong đợi: Kích thích sự tò mò của HS
+ Huy động các kiến thức đã học để tìm gia tốc tức thời.
Báo cáo thảo luận
* Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
Đánh giá, nhận xét,
tổng hợp
- GV nhận xét thái độ làm việc, phương án trả lời ca học sinh, ghi nhận
và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
- Chốt kiến thức và dẫn dắt vào bài
2. Hoạt động 2: Hình thành kiến thức mới
I. KHÁI NIỆM ĐẠO HÀM CẤP HAI
Hoạt động 2.1. Nhận biết đạo hàm cấp hai của một hàm số
( )
4 cos 2 ,
3
xt t
p
p
æö
=+
ç÷
èø
x
t
5t =
a) Mục tiêu: Học sinh nhận biết được đạo hàm cấp hai của một hàm số.
b) Nội dung: HĐ1. a) Gọi là đạo hàm của hàm số Tính .
b) Tính đạo hàm của hàm số
Gisử hàm số đạo hàm tại mỗi điểm . Nếu hàm số lại đạo
hàm tại thì ta gọi đạo hàm của đạo hàm cấp hai của hàm số tại hiệu
hoc .
c) Sản phẩm: Lời giải của học sinh
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
Chuyển giao
- Giáo viên trình chiếu nội dung hoạt động 1
Thực hiện
- HS nhớ lại công thức đạo hàm của hàm số ợng giác
- HS làm việc cặp đôi theo bàn cùng tìm g(x).
Báo cáo thảo luận
- Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
- Sản phẩm mong muốn:
a)
b) Đạo hàm của hàm số
Đánh giá, nhận xét,
tổng hợp
- GV nhận xét thái độ làm việc, phương án trả lời ca học sinh, ghi nhận
tuyên dương học sinh câu trả lời tốt nhất. Động viên các học sinh
còn lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
- GV chốt kiến thức và dẫn dắt đến khái niệm đạo hàm cấp hai
Hoạt động 2.2. Ví dụ
a) Mục tiêu: Học sinh tính được đạo hàm cấp hai của các hàm số.
b) Nội dung: Ví dụ 1. Tính đạo hàm cấp hai của hàm số . Từ đó tính .
Lời giải
Ta có:
Vậy đạo hàm cấp hai của hàm số đã cho là .
Khi đó ta có: .
c) Sản phẩm: Lời giải của học sinh
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
Chuyển giao
-GV nêu nội dung của ví dụ 1
-GV: Cho HS thảo luận cặp đôi, sử dụng công thức tính đạo hàm tìm lời
giải cho bài toán
Thực hiện
- Tìm câu trả lời
- HS làm việc cặp đôi theo bàn.
Báo cáo thảo luận
- Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
Đánh giá, nhận xét,
tổng hợp
- GV nhận xét thái độ làm việc, phương án trả lời ca học sinh, ghi nhận
tuyên dương học sinh câu trả lời tốt nhất. Động viên các học sinh
còn lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
- Chốt kiến thức
Hoạt động 3. Luyện tập
( )
gx
sin 2 .
4
yx
p
æö
=+
ç÷
èø
( )
gx
( )
yfx=
( )
yfx
¢¢
=
x
y
¢
( )
yfx=
,x
y
¢¢
( )
fx
¢¢
( )
' sin(2 )' 2cos(2 )
44
gx y x x
pp
== + = +
( ) ( )
' 2cos(2 ) ' 2. 2 '.sin(2 ) 4sin(2 )
444
gx x x x x
ppp
æö
=+=- +=-+
ç÷
èø
221x
yx e
-
=+
( )
0y
¢¢
( )
21 21
221. 22.;
xx
yxx e xe
--
¢
¢
=+ - =+
( )
21 21
222 1. 24. .
xx
yxee
--
¢
¢¢
=+ - =+
21
24
x
ye
-
¢¢
=+
( )
1
024ye
-
¢¢
=+
a) Mục tiêu: Học sinh tính được đạo hàm cấp hai của các hàm số.
b) Nội dung:
Luyện tập 1. Tính đạo hàm cấp hai của các hàm số sau:
a) b) .
Lời giải
a) Ta có:
Vậy đạo hàm cấp hai của hàm số đã cho là .
b) Ta có:
Luyện tập 2. Tính đạo hàm cấp hai của các hàm số sau:
a) Cho . Tính .
b) Cho . Tính .
Lời giải
a) Ta có:
Suy ra
Từ đó: .
b) Ta có: suy ra
Do đó: .
Luyện tập 3. Câu hỏi trắc nghiệm :
Câu 1: Cho . Tính .
A. . B. . C. . D. .
Câu 2: Cho hàm số , giá trị của bằng
A. . B. . C. . D. .
Câu 3: Cho hàm số . Tính .
A. . B. . C. . D. .
Câu 4: Cho hàm số . Tính .
A. B. . C. D. .
Câu 5: Cho hàm số . Tính .
A. . B. . C. . D. .
2
.
x
yxe=
( )
ln 2 3yx=+
( )
2222
''. . ' 2.
xxxx
yxe xe e xe=+ =+
( ) ( ) ( )
( )
22 2
2
'' 2 ' . 2 ' . 2 . 2 ' .
44
xx x
x
yxe xexxe
xe
=++
=+
( )
2
'' 4 4
x
yxe=+
( )
23'
2
'
23 23
x
y
xx
+
==
++
( )
( ) ( )
22
23'
4
'' 2
23 23
x
y
xx
+
=- =-
++
( ) ( )
6
3fx x=-
( )
2f
¢¢
( )
sin 3fx x=
"
2
f
p
æö
-
ç÷
èø
( ) ( )
5
63fx x
¢
=-
( ) ( ) ( )
44
6.5. 3 30 3fx x x
¢¢
=-=-
( ) ( )
4
230.23 30f
¢¢
=-=
( )
3cos3fx x
¢
=
( )
9sin3fx x
¢¢
=-
3
" 9 sin 9
22
f
pp
æö æ ö
-=- - =
ç÷ ç ÷
èø è ø
( )
3
fx x=
( )
1f
¢¢
( )
13f
¢¢
=
( )
12f
¢¢
=
( )
16f
¢¢
=
( )
3
2fx x x=+
( )
1f
¢¢
6
8
3
2
( ) ( )
5
37fx x=-
( )
2f
¢¢
( )
20f
¢¢
=
( )
220f
¢¢
=
( )
2180f
¢¢
=-
( )
230f
¢¢
=
( )
1
21
fx
x
=
-
( )
1f ¢¢ -
8
27
-
2
9
8
27
4
27
-
y
¢¢
( )
3
5
3
y
x
-
¢¢
=
+
( )
2
10
3
y
x
¢¢
=
+
( )
3
10
3
y
x
-
¢¢
=
+
( )
3
5
3
y
x
¢¢
=
+
Bài tập: 9.13
Cho hàm số . Tính .
Lời giải
Ta có:
Vậy
c) Sản phẩm: Lời giải của học sinh
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
Chuyển giao
-Giáo viên nêu nội dung các bài toán
-Giáo viên: Cho HS thảo luận theo cặp đôi, sử dụng các công thức, quy
tắc tính đạo hàm tìm lời giải cho bài toán.
Thực hiện
- Tìm câu trả lời
- HS làm việc cặp đôi theo bàn.
Báo cáo thảo luận
- Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
Đánh giá, nhận xét,
tổng hợp
- GV nhận xét thái độ làm việc, phương án trả lời ca học sinh, ghi nhận
và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
- Chốt kiến thức, chính xác hóa kết quả, cho điểm nhóm HS lên bảng thực
hiện đúng.
Hoạt động 3: ỚNG DẪN VỀ NHÀ
Ghi nhớ kiến thức trong bài.
Hoàn thành các bài tập trong sách giáo khoa: Bài 9.14; 9.15; 9.16 và làm thêm các bài tập sau:
Bài 1: Tính đạo hàm cấp hai của các hàm số sau:
a)
b)
c)
Bài 2: a) Cho . Tính .
b) Cho . Tính , , .
Bài 3: Câu hỏi trắc nghiệm:
Câu 6: Đạo hàm cấp hai của hàm số với
A. . B. . C. . D. .
Câu 7: Cho hàm số với . Đạo hàm của hàm số
A. . B. .
C. . D. .
Câu 8: Đạo hàm cấp hai của hàm số
( )
2 x
fx xe=
( )
0f
¢¢
( ) ( )
22 2
'' '2
xx xx
fxexe xexe=+=+
( )
( ) ( ) ( )
( )
22
2
2
'' 2 ' 2 ' ' '
22 2
24
xx xx
xxxx
x
fxexexexe
exexexe
xxe
=+++
=+ + +
=++
( )
02f
¢¢
=
( )
6
3fx x=
( ) ( )
4
32fx x=+
( )
2
1
x
fx
x
+
=
-
( ) ( )
6
10fx x=+
( )
"2f
( )
in 3sfx x=
( )
0f
¢¢
18
f
p
æö
¢¢
ç÷
èø
63
422022yx x x=- ++
xRÎ
4
30 24 2yxx
¢¢
=-+
4
30 24yxx
¢¢
=-
52
612 2yx x
¢¢
=- +
52
612yx x
¢¢
=-
54
31yx x x=- ++
x Î °
y
¢¢
32
5121yx x
¢¢
=- +
43
512yx x
¢¢
=-
23
20 36yxx
¢¢
=-
32
20 36yxx
¢¢
=-
31
2
x
y
x
+
=
+
A. B. C. D.
Câu 9: Cho hàm số Đạo hàm cấp hai của hàm số
A. B. C. D.
Câu 10: Cho hàm số . Mệnh đề nào sau đây đúng?
A. . B. . C. . D. .
Chuẩn bị bài mới ''Mục II. Ý nghĩa cơ học của đạo hàm cấp hai”.
---------------------------------------------------------------------
Tiết 2
1. Hoạt động 1: Khởi động
a) Mục tiêu: Tạo tâm thế học tập cho học sinh, giúp các em ý thức được nhiệm vụ học tập, sự cần
thiết phải tìm hiểu về các vấn đề đã nêu ra, từ đó gây được hứng thú với việc học bài mới.
b) Nội dung:
Xét một chuyển động có vận tốc tức thời . Cho số gia tại . Tỉ số
gọi là gia tốc trung bình trong khoảng thời gian . Giới hạn của gia tốc trung bình (nếu có) khi
dần tới 0 được gọi là gia tốc tức thời của chuyền động tại thời điểm , kí hiệu là . Như vậy
c) Sản phẩm:
d) Tổ chức thực hiện:
Chuyển giao
- Giáo viên trình chiếu nội dung lên máy chiếu và yêu cầu HS đọc tình
huống mở đầu
Thực hiện
- HS quan sát.
- Mong đợi: Kích thích sự tò mò của HS
+ HS vận dụng các kiến thức đã học , bước đầu đưa ra nhận định của bản
thân về câu trả lời.
Báo cáo thảo luận
-GV gọi một số HS trả lời, HS khác nhận xét, bổ sung.
Đánh giá, nhận xét,
tổng hợp
- GV đánh giá kết quả của HS, trên cơ sở đó dẫn dắt HS vào bài học mới.
2. Hoạt động 2: Hình thành kiến thức mới
II. Ý nghĩa cơ học của đạo hàm cấp hai
Hoạt động 2.1. Nhận biết ý nghĩa cơ học của đạo hàm cấp hai
a) Mục tiêu: Học sinh nhận biết được ý nghĩa cơ học của đạo hàm cấp hai.
b) Nội dung:
HĐ2. Xét một chuyển động có phương trình .
a) Tìm vận tốc tức thời của chuyển động tại thời điểm .
b) Tính gia tốc tức thời tại thời điểm .
Ý nghĩa cơ học của đạo hàm cấp hai
Một chuyển động có phương trình thì đạo hàm cấp hai (nếu có) của hàm số là gia
tốc tức thời của chuyển động. Ta có:
c) Sản phẩm: câu trả lời của học sinh
( )
2
10
2
y
x
¢¢
=
+
( )
4
5
2
y
x
¢¢
=-
+
( )
3
5
2
y
x
¢¢
=-
+
( )
3
10
2
y
x
¢¢
=-
+
1
.y
x
=-
3
2
.y
x
¢¢
=
2
2
.y
x
-
¢¢
=
3
2
.y
x
-
¢¢
=
2
2
.y
x
¢¢
=
sin 2yx=
( )
2
2'
4yy+=
'
.tan 2yy x=
''
40yy-=
''
40yy+=
( )
vt
tD
t
( ) ( )
vvt t vtD= +D -
v
t
D
D
tD
tD
t
( )
at
( ) ( )
0
lim
t
v
at v t
t
D
¢
==
D
4 cos 2st
p
=
t
t
( )
sft=
( )
ft
( ) ( )
at f t
¢¢
=
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
Chuyển giao
-GV nêu nội dung hoạt động 2 và yêu cầu HS thảo luận theo nhóm 2 HS
cùng bàn
Thực hiện
- Tìm câu trả lời
- HS làm việc cặp đôi theo bàn.
-Sản phẩm mong muốn:
+ Vận tốc tức thời của chuyển động là đạo hàm của quãng đường
+ Gia tốc tức thời là đạo hàm cấp một của vận tốc hoặc đạo hàm cấp hai
của quãng đường.
Báo cáo thảo luận
- Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
Đánh giá, nhận xét,
tổng hợp
- GV nhận xét thái độ làm việc, phương án trả lời ca học sinh, ghi nhận
và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
- Chốt kiến thức
Hoạt động 2.2. Luyện tập
a) Mục tiêu: Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn.
b) Nội dung: Ví dụ 2. Giải bài toán trong tình huống mở đầu.
Lời giải
Vận tốc của vật tại thời điểm
Gia tốc tức thời của vật tại thời điểm
Tại thời điểm , gia tốc của vật là
c) Sản phẩm: Lời giải của bài toán
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
Chuyển giao
Giáo viên nêu lại nội dung bài toán mở đầu và yêu cầu HS thảo luận cặp
đôi tìm gia tốc tức thời của vật tại thời điểm giây (làm tròn kết quả
đến hàng đơn vị).
Thực hiện
- Tìm câu trả lời
- HS làm việc cặp đôi theo bàn.
- GV theo dõi, giúp đỡ, hướng dẫn các nhóm.
Báo cáo thảo luận
- Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
Đánh giá, nhận xét,
tổng hợp
- GV nhận xét thái độ làm việc, phương án trả lời ca học sinh, ghi nhận
và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
- Chốt kiến thức
Hoạt động 3. Vận dụng
a) Mục tiêu: Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn.
b) Nội dung:
Vận dụng. Một vật chuyển động thẳng có phương trình ( tính bằng mét, tính bằng giây).
Tìm gia tốc của vật tại thời điểm giây.
Lời giải:
t
( ) ( )
2 .4 sin 2 8 sin 2 .
33 3
vt x t t t t
pp p
pppp
¢
æöæö æö
¢
==-+ +=- +
ç÷ç÷ ç÷
èøèø èø
t
( ) ( )
2
82 .cos2 16cos2 .
33 3
at v t t t t
pp p
pp p p p
¢
æöæö æö
¢
==- + +=- +
ç÷ç÷ ç÷
èøèø èø
5t =
( )
( )
222
516cos10 16cos 79 cm/s.
33
a
pp
pp p
æö
=- + =- »-
ç÷
èø
5t =
24
1
2
2
st t=+
s
t
4t =
Ta có:
Gia tốc của vật là:
Vậy gia tốc của vật tại thời điểm t = 4 giây là
Bài tập: 9.17. Phương trình chuyển động của một hạt được cho bởi , trong đó
tính bằng centimét và tính bằng giây. Tính gia tốc của hạt tại thời điểm giây (làm tròn kết quả
đến chữ số thập phân thứ nhất).
Lời giải:
Ta có:
Gia tốc của hạt được cho bởi phương trình
Gia tốc của hạt tại thời điểm t = 5 là
c) Sản phẩm: Lời giải của học sinh
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
Chuyển giao
-GV nêu nội dung bài toán vận dụng (SGK ) và bài tập 9.17
- GV cho HS thảo luận nhóm 2 HS cùng bàn và vận dụng ý nghĩa cơ học
của đạo hàm cấp hai để giải bài toán.
Thực hiện
- Tìm câu trả lời
- HS làm việc cặp đôi theo bàn.
- GV theo dõi, giúp đỡ, hướng dẫn các nhóm.
Báo cáo thảo luận
- Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
Đánh giá, nhận xét,
tổng hợp
- GV nhận xét thái độ làm việc, phương án trả lời ca học sinh, ghi nhận
và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
- Chốt kiến thức
Hoạt động 3: ỚNG DẪN VỀ NHÀ
Ghi nhớ kiến thức trong bài.
Hoàn thành các bài tập trong sách giáo khoa vào vở và làm thêm các bài tập sau:
Câu 1: Cho chuyển động thẳng xác định bởi phương trình , trong đó tính bằng giây
tính bằng mét. Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu.
Câu 2: Một chuyển động xác định bởi phương trình . Trong đó được tính bằng
giây, được tính bằng mét. Tính gia tốc của chuyển động tại thời điểm ?
Câu 3: Một chất điểm chuyển động phương trình với tính bằng giây (s)
tính bằng mét (m). Hỏi gia tốc của chuyển động tại thời điểm bằng bao nhiêu?
Chuẩn bị bài mới “ Ôn tập chương 9”.
3
'4 2stt=+
2
'' 4 6as t==+
( )
( )
22
446.4100/ams=+ =
( )
10 0,5sin 2
5
st t
p
p
æö
=+ +
ç÷
èø
s
t
5t =
( )
'0,5.2 '.os2 os2
55 5
st t c t c t
pp p
pppp
æöæöæö
=+ += +
ç÷ç÷ç÷
èøèøèø
( ) ( )
2
'' 2 sin 2
5
at s t t
p
pp
æö
==- +
ç÷
èø
( )
( )
22
5 2 sin 10 11,6 /
5
ams
p
pp
æö
=- + »-
ç÷
èø
32
39St t t=- + +
t
S
( )
32
392St t t t=- -+
t
S
3st =
42
2631St t t=+-+
t
S
3( )ts=
| 1/7

Preview text:

KẾ HOẠCH BÀI DẠY
TÊN BÀI DẠY: ĐẠO HÀM CẤP HAI
Môn học/Hoạt động giáo dục: Toán; lớp: 11
Thời gian thực hiện: (02 tiết) I. Mục tiêu 1. Về kiến thức:
- Nhận biết khái niệm đạo hàm cấp hai của một số hàm số.
- Biết cách tính đạo hàm cấp hai của một số hàm số đơn giản.
- Biết cách vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn. 2. Về năng lực:
- Năng lực tư duy và lập luận Toán học: Trong các ví dụ, bài tập.
- Năng lực mô hình hóa Toán học: Trong các bài toán thực tế.
- Năng lực giải quyết vấn đề Toán học: Trong các lời giải của các bài tập.
- Năng lực giao tiếp Toán học: Trong các ví dụ, bài tập.
- Năng lực sử dụng công cụ, phương tiện để học Toán: Sử dụng máy tính cầm tay. 3. Về phẩm chất:
- Chăm chỉ, hoàn thành các nhiệm vụ được giao.
- Trách nhiệm, cố gắng chiếm lĩnh kiến thức mới, cố gắng làm đúng các bài tập.
- Có thế giới quan khoa học
II. Thiết bị dạy học và học liệu
- Kế hoạch bài dạy, SGK, phiếu học tập, phấn, thước kẻ, máy chiếu, phần mềm GSP…
III. Tiến trình dạy học Tiết 1.
1. Hoạt động 1: Khởi động
a) Mục tiêu: Tạo tâm thế học tập cho học sinh, giúp các em ý thức được nhiệm vụ học tập, sự cần
thiết phải tìm hiểu về các vấn đề đã nêu ra, từ đó gây được hứng thú với việc học bài mới. b) Nội dung:
Chuyển động của một vật gắn trên con lắc lò xo (khi bỏ qua ma sát và sức cản không khí) được cho bởi phương trình sau: æ p ö
x (t) = 4cos 2pt + , ç ÷ è 3 ø
ở đó x tính bằng centimét và thời gian t tính bằng giây. Tìm gia tốc tức thời của vật tại thời điểm t = 5
giây (làm tròn kết quả đến hàng đơn vị).
c) Sản phẩm: Câu trả lời của học sinh
d) Tổ chức thực hiện:
- Giáo viên trình chiếu nội dung của hoạt động mở đầu
Chuyển giao
- Giáo viên cho HS thảo luận 2 HS cùng bàn, vận dụng kiến thức đã học
để tìm gia tốc tức thời. - HS tìm câu trả lời.
Thực hiện
- Mong đợi: Kích thích sự tò mò của HS
+ Huy động các kiến thức đã học để tìm gia tốc tức thời.
Báo cáo thảo luận * Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
- GV nhận xét thái độ làm việc, phương án trả lời của học sinh, ghi nhận
Đánh giá, nhận xét, và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
tổng hợp
lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
- Chốt kiến thức và dẫn dắt vào bài
2. Hoạt động 2: Hình thành kiến thức mới

I. KHÁI NIỆM ĐẠO HÀM CẤP HAI
Hoạt động 2.1. Nhận biết đạo hàm cấp hai của một hàm số

a) Mục tiêu: Học sinh nhận biết được đạo hàm cấp hai của một hàm số. æ p ö
b) Nội dung: HĐ1. a) Gọi g (x) là đạo hàm của hàm số y = sin 2x + . Tính g ( x). ç ÷ è 4 ø
b) Tính đạo hàm của hàm số y = g (x)
Giả sử hàm số y = f (x) có đạo hàm tại mỗi điểm xÎ( ;
a b). Nếu hàm số y¢ = f ¢(x) lại có đạo
hàm tại x thì ta gọi đạo hàm của y¢ là đạo hàm cấp hai của hàm số y = f (x) tại x, kí hiệu là
y¢¢ hoặc f ¢¢(x).
c) Sản phẩm: Lời giải của học sinh
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
Chuyển giao
- Giáo viên trình chiếu nội dung hoạt động 1
- HS nhớ lại công thức đạo hàm của hàm số lượng giác
Thực hiện
- HS làm việc cặp đôi theo bàn cùng tìm g(x).
- Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận. - Sản phẩm mong muốn: p p
a) g (x) = y ' = sin(2x + )' = 2cos(2x + )
Báo cáo thảo luận 4 4
b) Đạo hàm của hàm số y = g (x)là æ p ö p p
g ( x)' = 2cos(2x + ) ' = 2 - . ç ÷
(2x)'.sin(2x + ) = 4 - sin(2x + ) è 4 ø 4 4
- GV nhận xét thái độ làm việc, phương án trả lời của học sinh, ghi nhận
Đánh giá, nhận xét,
và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh
tổng hợp
còn lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
- GV chốt kiến thức và dẫn dắt đến khái niệm đạo hàm cấp hai
Hoạt động 2.2. Ví dụ
a) Mục tiêu: Học sinh tính được đạo hàm cấp hai của các hàm số.
b) Nội dung: Ví dụ 1. Tính đạo hàm cấp hai của hàm số 2 2x 1 y x e - = +
. Từ đó tính y¢¢(0). Lời giải
Ta có: y¢ = x + ( x - )¢ 2x 1- 2x 1 2 2 1 .e = 2x + 2.e - ;
y¢¢ = + ( x - )¢ 2x 1- 2x 1 2 2 2 1 .e = 2 + 4.e - .
Vậy đạo hàm cấp hai của hàm số đã cho là 2 1 2 4 x y e - ¢¢ = + . Khi đó ta có: y ( ) 1 0 2 4e- ¢¢ = + .
c) Sản phẩm: Lời giải của học sinh
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
-GV nêu nội dung của ví dụ 1
Chuyển giao
-GV: Cho HS thảo luận cặp đôi, sử dụng công thức tính đạo hàm tìm lời giải cho bài toán - Tìm câu trả lời
Thực hiện
- HS làm việc cặp đôi theo bàn.
Báo cáo thảo luận - Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
- GV nhận xét thái độ làm việc, phương án trả lời của học sinh, ghi nhận
Đánh giá, nhận xét,
và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh
tổng hợp
còn lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo - Chốt kiến thức
Hoạt động 3. Luyện tập
a) Mục tiêu: Học sinh tính được đạo hàm cấp hai của các hàm số. b) Nội dung:
Luyện tập 1. Tính đạo hàm cấp hai của các hàm số sau: a) 2 = . x y x e
b) y = ln (2x + 3). Lời giải a) Ta có: 2x = + ( 2x ) 2x 2 ' '. . ' = + 2 . x y x e x e e x e y '' = (2x) 2 '. x e + (2x) 2 '. x e + 2 . x (2x) 2 '. x e = (4+ 4x) 2x e
Vậy đạo hàm cấp hai của hàm số đã cho là = ( + ) 2 '' 4 4 x y x e . (2x +3)' 2 b) Ta có: y ' = = 2x + 3 2x + 3 (2x +3)' 4 y '' = 2 - = - (2x +3)2 (2x +3)2
Luyện tập 2. Tính đạo hàm cấp hai của các hàm số sau:
a) Cho f (x) = (x - )6 3 . Tính f ¢¢(2) . æ p ö
b) Cho f (x) = sin3x . Tính f " - . ç ÷ è 2 ø Lời giải
a) Ta có: f ¢(x) = (x - )5 6 3
Suy ra f ¢¢(x) = (x- )4 = (x- )4 6.5. 3 30 3 Từ đó: f ¢¢( ) = ( - )4 2 30. 2 3 = 30.
b) Ta có: f ¢(x) = 3cos3x suy ra f ¢¢(x) = 9s - in3x æ p ö æ 3p ö Do đó: f " - = 9 - sin - = 9. ç ÷ ç ÷ è 2 ø è 2 ø
Luyện tập 3. Câu hỏi trắc nghiệm : Câu 1: Cho ( ) 3
f x = x . Tính f ¢¢( ) 1 . A. f ¢¢( ) 1 = 3. B. f ¢¢( ) 1 = 2. C. f ¢¢( ) 1 = 6. D. f ¢¢( ) 1 = . 1
Câu 2: Cho hàm số f (x) 3
= x + 2x, giá trị của f ¢¢( ) 1 bằng A. 6 . B. 8 . C. 3 . D. 2 .
Câu 3: Cho hàm số f (x) ( = x - )5 3 7 . Tính f ¢¢(2). A. f ¢ (2)=0. B. f ¢ (2)=20.
C. f ¢ (2)= -180.
D. f ¢ (2)= 30.
Câu 4: Cho hàm số f (x) 1 = . Tính f ¢( ¢ - ) 1 . 2x -1 8 8 4 A. - B. 2 . C. D. - . 27 9 27 27 x - 2
Câu 5: Cho hàm số y = . Tính y¢¢. x + 3 5 - 10 10 - 5 A. y¢ = . B. y¢ = . C. y¢ = . D. y¢ = . (x +3)3 (x +3)2 (x +3)3 (x +3)3 Bài tập: 9.13 Cho hàm số ( ) 2 x
f x = x e . Tính f ¢¢(0). Lời giải Ta có: = ( 2) x 2 + ( x ) x 2 ' ' ' = 2 x f x e x e xe + x e
f '' = (2x)' x
e + 2x ( x e )'+ ( 2 x ) x 2
'e + x ( x e )' x x x 2 = 2e + 2xe + 2 x xe + x e = ( 2
2 + 4x + x ) x e f ¢ (0) = 2 Vậy
c) Sản phẩm: Lời giải của học sinh
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
-Giáo viên nêu nội dung các bài toán
Chuyển giao
-Giáo viên: Cho HS thảo luận theo cặp đôi, sử dụng các công thức, quy
tắc tính đạo hàm tìm lời giải cho bài toán. - Tìm câu trả lời
Thực hiện
- HS làm việc cặp đôi theo bàn.
Báo cáo thảo luận - Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
- GV nhận xét thái độ làm việc, phương án trả lời của học sinh, ghi nhận
và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
Đánh giá, nhận xét, lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo
tổng hợp
- Chốt kiến thức, chính xác hóa kết quả, cho điểm nhóm HS lên bảng thực hiện đúng.
Hoạt động 3: HƯỚNG DẪN VỀ NHÀ
• Ghi nhớ kiến thức trong bài.
• Hoàn thành các bài tập trong sách giáo khoa: Bài 9.14; 9.15; 9.16 và làm thêm các bài tập sau:
Bài 1: Tính đạo hàm cấp hai của các hàm số sau: a) f (x) 6 = 3x b)
f (x) = ( x + )4 3 2 x + c) f ( x) 2 = x -1
Bài 2: a) Cho f (x) = (x + )6 10 . Tính f "(2) . æ p ö æ p ö
b) Cho f (x) = in
s 3x. Tính f ¢¢ -
, f ¢¢(0), f ¢¢ . ç ÷ ç ÷ è 2 ø è18 ø
Bài 3: Câu hỏi trắc nghiệm:
Câu 6: Đạo hàm cấp hai của hàm số 6 3
y = x - 4x + 2x + 2022 với x Î R A. 4
y¢¢ = 30x - 24x + 2. B. 4
y¢¢ = 30x - 24x . C. 5 2
y¢¢ = 6x -12x + 2. D. 5 2
y¢¢ = 6x -12x . Câu 7: Cho hàm số 5 4
y = x - 3x + x +
1 với xΰ . Đạo hàm y¢¢ của hàm số là A. 3 2
y¢¢ = 5x -12x + . 1 B. 4 3
y¢¢ = 5x -12x . C. 2 3
y¢¢ = 20x - 36x . D. 3 2
y¢¢ = 20x - 36x . 3x +1
Câu 8: Đạo hàm cấp hai của hàm số y = là x + 2 A. 10 5 5 10 y¢¢ = B. y¢ = - C. y¢ = - D. y¢ = - (x + 2)2 (x + 2)4 (x + 2)3 (x + 2)3 1
Câu 9: Cho hàm số y = - .Đạo hàm cấp hai của hàm số là x 2 2 - 2 - 2 A. y¢¢ = . B. y¢ = . C. y¢ = . D. y¢¢ = . 3 x 2 x 3 x 2 x
Câu 10: Cho hàm số y = sin 2x . Mệnh đề nào sau đây đúng?
A. y + ( y )2 2 ' = 4. B. '
y = y .tan 2x. C. ''
4y - y = 0. D. '' 4y + y = 0.
• Chuẩn bị bài mới ''Mục II. Ý nghĩa cơ học của đạo hàm cấp hai”.
--------------------------------------------------------------------- Tiết 2
1. Hoạt động 1: Khởi động
a) Mục tiêu: Tạo tâm thế học tập cho học sinh, giúp các em ý thức được nhiệm vụ học tập, sự cần
thiết phải tìm hiểu về các vấn đề đã nêu ra, từ đó gây được hứng thú với việc học bài mới. b) Nội dung:
Xét một chuyển động có vận tốc tức thời v(t) . Cho số gia t D tại t v
D = v(t + t
D )-v(t). Tỉ số v
D gọi là gia tốc trung bình trong khoảng thời gian tD . Giới hạn của gia tốc trung bình (nếu có) khi tD t D
dần tới 0 được gọi là gia tốc tức thời của chuyền động tại thời điểm t , kí hiệu là a(t). Như vậy ( ) v D a t = lim = v¢(t) t D ®0 t D c) Sản phẩm:
d) Tổ chức thực hiện:
- Giáo viên trình chiếu nội dung lên máy chiếu và yêu cầu HS đọc tình
Chuyển giao huống mở đầu - HS quan sát.
- Mong đợi: Kích thích sự tò mò của HS
Thực hiện
+ HS vận dụng các kiến thức đã học , bước đầu đưa ra nhận định của bản thân về câu trả lời.
Báo cáo thảo luận -GV gọi một số HS trả lời, HS khác nhận xét, bổ sung.
Đánh giá, nhận xét, - GV đánh giá kết quả của HS, trên cơ sở đó dẫn dắt HS vào bài học mới.
tổng hợp
2. Hoạt động 2: Hình thành kiến thức mới
II. Ý nghĩa cơ học của đạo hàm cấp hai
Hoạt động 2.1. Nhận biết ý nghĩa cơ học của đạo hàm cấp hai
a) Mục tiêu: Học sinh nhận biết được ý nghĩa cơ học của đạo hàm cấp hai. b) Nội dung:
HĐ2. Xét một chuyển động có phương trình s = 4cos 2pt .
a) Tìm vận tốc tức thời của chuyển động tại thời điểm t .
b) Tính gia tốc tức thời tại thời điểm t .
Ý nghĩa cơ học của đạo hàm cấp hai
Một chuyển động có phương trình s = f (t) thì đạo hàm cấp hai (nếu có) của hàm số f (t) là gia
tốc tức thời của chuyển động. Ta có: a(t) = f ¢¢(t)
c) Sản phẩm: câu trả lời của học sinh
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
-GV nêu nội dung hoạt động 2 và yêu cầu HS thảo luận theo nhóm 2 HS
Chuyển giao cùng bàn - Tìm câu trả lời
- HS làm việc cặp đôi theo bàn. -Sản phẩm mong muốn:
Thực hiện
+ Vận tốc tức thời của chuyển động là đạo hàm của quãng đường
+ Gia tốc tức thời là đạo hàm cấp một của vận tốc hoặc đạo hàm cấp hai của quãng đường.
Báo cáo thảo luận - Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
- GV nhận xét thái độ làm việc, phương án trả lời của học sinh, ghi nhận
Đánh giá, nhận xét, và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
tổng hợp
lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo - Chốt kiến thức
Hoạt động 2.2. Luyện tập
a) Mục tiêu: Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn.
b) Nội dung: Ví dụ 2. Giải bài toán trong tình huống mở đầu. Lời giải
Vận tốc của vật tại thời điểm t là p ¢ æ ö æ p ö æ p ö
v (t) = x¢(t) = - 2pt + .4sin 2pt + = 8 - p sin 2pt + . ç ÷ ç ÷ ç ÷ è 3 ø è 3 ø è 3 ø
Gia tốc tức thời của vật tại thời điểm t là p ¢ æ ö æ p ö æ p ö
a (t) = v¢(t) 2 = 8 - p 2pt + .cos 2pt + = 1 - 6p cos 2pt + . ç ÷ ç ÷ ç ÷ è 3 ø è 3 ø è 3 ø
Tại thời điểm t = 5 , gia tốc của vật là æ p ö p a ( ) 2 2 = - p p + = - p » - ç ÷ ( 2 5 16 cos 10 16 cos 79 cm / s ). è 3 ø 3
c) Sản phẩm: Lời giải của bài toán
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
Giáo viên nêu lại nội dung bài toán mở đầu và yêu cầu HS thảo luận cặp
Chuyển giao
đôi tìm gia tốc tức thời của vật tại thời điểm t = 5 giây (làm tròn kết quả đến hàng đơn vị). - Tìm câu trả lời
Thực hiện
- HS làm việc cặp đôi theo bàn.
- GV theo dõi, giúp đỡ, hướng dẫn các nhóm.
Báo cáo thảo luận - Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
- GV nhận xét thái độ làm việc, phương án trả lời của học sinh, ghi nhận
Đánh giá, nhận xét, và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
tổng hợp
lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo - Chốt kiến thức
Hoạt động 3. Vận dụng
a) Mục tiêu: Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn. b) Nội dung: 1
Vận dụng. Một vật chuyển động thẳng có phương trình 2 4
s = 2t + t ( s tính bằng mét, t tính bằng giây). 2
Tìm gia tốc của vật tại thời điểm t = 4 giây. Lời giải: Ta có: 3
s ' = 4t + 2t Gia tốc của vật là: 2
a = s '' = 4 + 6t
Vậy gia tốc của vật tại thời điểm t = 4 giây là a( ) 2 = + = ( 2 4 4 6.4 100 m / s ) æ p ö
Bài tập: 9.17. Phương trình chuyển động của một hạt được cho bởi s (t) =10 + 0,5sin 2pt + , trong đó ç ÷ è 5 ø
s tính bằng centimét và t tính bằng giây. Tính gia tốc của hạt tại thời điểm t = 5 giây (làm tròn kết quả
đến chữ số thập phân thứ nhất). Lời giải: æ p ö æ p ö æ p ö
Ta có: s '(t) = 0,5. 2pt + '. o c s 2pt + = p o c s 2pt + ç ÷ ç ÷ ç ÷ è 5 ø è 5 ø è 5 ø æ p ö
Gia tốc của hạt được cho bởi phương trình a (t) = s (t) 2 ' = 2 - p sin 2pt + ç ÷ è 5 ø æ p ö
Gia tốc của hạt tại thời điểm t = 5 là a ( ) 2 = - p p + » - ç ÷ ( 2 5 2 sin 10 11,6 m / s ) è 5 ø
c) Sản phẩm: Lời giải của học sinh
d) Tổ chức thực hiện: Học sinh thảo luận cặp đôi
-GV nêu nội dung bài toán vận dụng (SGK ) và bài tập 9.17
Chuyển giao
- GV cho HS thảo luận nhóm 2 HS cùng bàn và vận dụng ý nghĩa cơ học
của đạo hàm cấp hai để giải bài toán. - Tìm câu trả lời
Thực hiện
- HS làm việc cặp đôi theo bàn.
- GV theo dõi, giúp đỡ, hướng dẫn các nhóm.
Báo cáo thảo luận - Đại diện nhóm báo cáo, các nhóm còn lại theo dõi thảo luận.
- GV nhận xét thái độ làm việc, phương án trả lời của học sinh, ghi nhận
Đánh giá, nhận xét, và tuyên dương học sinh có câu trả lời tốt nhất. Động viên các học sinh còn
tổng hợp
lại tích cực, cố gắng hơn trong các hoạt động học tiếp theo - Chốt kiến thức
Hoạt động 3: HƯỚNG DẪN VỀ NHÀ
• Ghi nhớ kiến thức trong bài.
• Hoàn thành các bài tập trong sách giáo khoa vào vở và làm thêm các bài tập sau:
Câu 1: Cho chuyển động thẳng xác định bởi phương trình 3 2 S = t
- + 3t + 9t , trong đó t tính bằng giây
S tính bằng mét. Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu.
Câu 2: Một chuyển động xác định bởi phương trình S (t) 3 2
= t -3t -9t + 2. Trong đó t được tính bằng
giây, S được tính bằng mét. Tính gia tốc của chuyển động tại thời điểm t = 3s ?
Câu 3: Một chất điểm chuyển động có phương trình 4 2
S = 2t + 6t - 3t +1 với t tính bằng giây (s) và S
tính bằng mét (m). Hỏi gia tốc của chuyển động tại thời điểm t = 3(s) bằng bao nhiêu?
• Chuẩn bị bài mới “ Ôn tập chương 9”.