Bài giảng Vật lý điện tử __vector-analysis-formulas-(electromagnetic-fields) | Môn Vật lý điện tử | Trường Đại học Bách Khoa Hà Nội

Bài giảng Vật lý điện tử __vector-analysis-formulas-(electromagnetic-fields) | Môn Vật lý điện tử | Trường Đại học Bách Khoa Hà Nội. Tài liệu gồm 2 trang giúp bạn tham khảo ôn tập đạt kết quả cao trong kỳ thi sắp tới. Mời bạn đọc đón xem.

PHY2206 (Electromagnetic Fields) Vector Analysis Formulae
1
Vector Analysis Formulae
Identities
1
A × B
()
C=AB×C
()
2A×B×C
()
=BAC
()
CAB
()
3 A×B
()
C×D
()
=AC
()
BD
()
AD
()
BC
()
4 A×B
()
×C×D
()
=CAB×D
()
{}
DAB×C
()
{}
5A×B
()
×C×D
()
=BAC×D
()
{}
ABC×D
()
{}
6fg
()
=fg+gf
7 fg
()
=1g
()
ffg
2
()
g
8 AB
()
=B⋅∇
()
A+A⋅∇
()
B+B×∇×A
()
+A×∇×B
()
9 ∇⋅ fA
()
=∇f
()
A+f∇⋅A
()
10 ∇⋅ A×B
()
=B⋅∇×A
()
A⋅∇×B
()
11 ∇⋅∇
()
f=∇
2
f
12 ∇× f
()
=0
13 ∇⋅ ×A
()
=0
14 ∇× fA
()
=∇f
()
×A+f∇×A
()
15 ∇× A×B
()
=B⋅∇
()
AA⋅∇
()
B+∇B
()
A−∇A
()
B
16a ∇× ∇×A
()
=∇A
()
−∇
2
A
16b
2
A =∇ A
()
−∇× ∇×A
()
17 1/r
()
=−
ˆ
r/r
2
If S is the closed surface that encloses the volume V and C is the closed curve that bounds an open
surface A then:
18
f
()
dl
a
b
=fb
()
fa
()
19 f
()
dV
V
=fdS
S
20 ∇×B
()
dV
V
=− B×dS
S
21 BdS
S
=∇B
()
dV
V
(The Divergence Theorem)
22 Bdl
C
=∇×B
()
dA
A
(Stokes’s Theorem)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
cuu duong than cong . com
PHY2206 (Electromagnetic Fields) Vector Analysis Formulae
2
© Copyright CDH Williams
Exeter 1996, CW000127/1
Special Coordinate Systems
Cartesian Coordinates x,y,z
()
f=
f
x
ˆ
x+
f
y
ˆ
y+
f
z
ˆ
z
∇⋅A=
A
x
x
+
A
y
y
+
A
z
z
∇×A=
A
z
y
A
y
z
ˆ
x+
A
x
z
A
z
x
ˆ
y+
A
y
x
A
x
y
ˆ
z
2
f =
2
f
x
2
+
2
f
y
2
+
2
f
z
2
2
A=∇
2
A
x
ˆ
x+∇
2
A
y
ˆ
y+∇
2
A
z
ˆ
z=∇A
()
−∇× ∇×A
()
Cylindrical Polar Coordinates r,
θ
,z
()
f=
f
r
ˆ
r+
1
r
f
θ
ˆ
θθ
+
f
z
ˆ
z
∇⋅A=
1
r
r
rA
r
()
+
1
r
A
θ
θ
+
A
z
z
∇×A=
1
r
A
z
θ
A
θ
z
ˆ
r+
A
r
z
A
z
r
ˆ
θθ
+
1
r
r
rA
θ
()
A
r
θ
ˆ
z
2
f=
1
r
r
r
f
r
+
1
r
2
2
f
θ
2
+
2
f
z
2
Spherical Polar Coordinates r,
θ
,
ϕ
()
f=
f
r
ˆ
r+
1
r
f
θ
ˆ
θθ
+
1
rsin
θ
f
ϕ
ˆ
ϕϕ
∇⋅A=
1
r
2
r
r
2
A
r
()
+
1
rsin
θ
θ
A
θ
sin
θ
()
+
1
rsin
θ
A
ϕ
ϕ
∇×A=
1
rsin
θ
θ
A
ϕ
sin
θ
()
A
θ
ϕ
ˆ
r+
1
r
1
sin
θ
A
r
ϕ
r
rA
ϕ
()
ˆ
θ
+
1
r
r
rA
θ
()
A
r
θ
ˆ
ϕ
2
f=
1
r
2
r
r
2
f
r
+
1
r
2
sin
θ
θ
sin
θ
f
θ
+
1
r
2
sin
2
θ
2
f
ϕ
2
CuuDuongThanCong.com https://fb.com/tailieudientucntt
cuu duong than cong . com
| 1/2

Preview text:

PHY2206 (Electromagnetic Fields) Vector Analysis Formulae Vector Analysis Formulae Identities 1
(A × B)⋅C = A⋅(B × C) 2
• A × (B × C) = B(AC) − C(AB) 3
(A × B)⋅(C × D) = (AC)(BD) − (AD)(BC) 4
(A × B) × (C × D) = C A
{ ⋅(B× D)}− D A { ⋅(B× C)} 5
(A × B) × (C × D) = B A
{ ⋅(C× D)}− A B { ⋅(C× D)} 6
∇( fg) = f g + gf 7 ∇( f g) = 1
( g)∇f f g2 ( )∇g 8
∇(AB) = (B⋅∇)A + (A⋅∇)B + B × (∇ × A) + A × (∇ × B) 9
∇⋅( fA) = (∇f )⋅A + f (∇⋅A)
10 ∇⋅(A × B) = B⋅(∇ × A) − A ⋅(∇ × B)
11 (∇⋅ ∇) f = ∇2 f
12 ∇ × (∇f ) = 0
13 ∇⋅(∇ × A) = 0 14
∇ × ( fA) = (∇f ) × A + f (∇ × A) 15
∇ × (A × B) = (B⋅∇)A − (A ⋅∇)B + (∇ ⋅ B)A − (∇ ⋅ A)B
16a ∇ × (∇ × A) = ∇(∇ ⋅ A) − ∇2A 16b
∇2A = ∇ ⋅(∇ ⋅ A) − ∇ × (∇ × A) 17 ∇ 1
( / r) = −ˆr / r2 cuu duong than cong . com
If S is the closed surface that encloses the volume V and C is the closed curve that bounds an open surface A then: b 18
∫ (∇f )⋅ dl = f(b) − f(a) a 19
∫ (∇f) dV = f dS ∫ V S 20
∫ (∇ × B)dV = − B× dS ∫ V S 21 • B⋅ dS
= ∫ (∇⋅B) dV (The Divergence Theorem) S V 22 • B⋅ dl
= ∫ (∇ × B)⋅dA (Stokes’s Theorem) C A 1 CuuDuongThanCong.com
https://fb.com/tailieudientucntt
PHY2206 (Electromagnetic Fields) Vector Analysis Formulae Special Coordinate Systems
Cartesian Coordinates (x, y, z)
f = ∂f ˆ ˆ ˆ
x + ∂f y + ∂f z xyz∇ ⋅ A A = ∂Ax + y + ∂Az ∂xyz  ∂  ∂   ∇ × A   A A = ∂Az − y − ∂Az y − ∂Ax  ∂y
z  ˆx + ∂Ax  ∂z
x  ˆy +  ∂xy  ˆz ∂2 ∂2 ∂2 ∇2 f f f f = + + ∂x2 ∂y2 ∂z2
∇2A = ∇2A ˆx + ∇2A ˆy + ∇2A ˆz = ∇(∇ ⋅ A) − ∇ × (∇ × A) x y z
Cylindrical Polar Coordinates (r,θ, z) ∇ ∂f f = ∂f ˆ ˆθ + ∂f ˆ ∂ r + 1 z r r ∂θ ∂z ∇⋅ ∂ ∂A A = 1
(rA )+ 1 θ + ∂Az r r r r ∂θ ∂z ∇ ×  ∂A    ∂  A = 1 z − ∂Aθ ˆ ( )   − ∂Az θ + 1 rAθ − ∂Ar r ∂θ
z  ˆr + ∂Ar  ∂zr r ∂r ∂θ ˆz ∇ ∂  ∂ ∂2 2 f f f = 1 r + ∂2 f
r r  ∂r  + 1 r2 ∂θ 2 ∂z2
Spherical Polar Coordinates (r,θ,ϕ) ∇ ∂ff f = ∂f ˆ ˆθ + 1 ˆ ϕ ∂ r + 1 r r ∂θ r sin θ ∂ϕ cuu duong than cong . com ∂ ∇ ⋅ ∂ ∂ Aϕ A = 1 (r2A )+ 1 (Aθsinθ) + 1 r2 ∂r r r sin θ ∂θ r sin θ ∂ϕ ∇ ×  ∂   1 ∂A   ∂  A = 1 A ( r ϕ sin θ ) − ∂Aθ − ∂ rA ( ϕ) (rAθ)− ∂Ar r sin θ ∂θ
∂ϕ ˆr + 1r sin  θ ∂ϕ ∂r
ˆθ + 1r ∂r ∂θ  ˆϕ ∇ ∂  ∂ ∂  ∂ ∂2 2 f f f f = 1 r2 sin θ r2 ∂r  ∂r + 1 r2 sin θ ∂θ  ∂θ  + 1 r2 sin2 θ ∂ϕ 2 © Copyright CDH Williams Exeter 1996, CW000127/1 2 CuuDuongThanCong.com
https://fb.com/tailieudientucntt