Bài tập Đại số và Giải tích 11 cơ bản học kỳ I – Phùng Hoàng Em

Tài liệu gồm 20 trang tóm tắt lý thuyết, dạng toán và tuyển tập 113 bài toán trắc nghiệm trong chương trình học kỳ I Đại số và Giải tích 11 cơ bản.

BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 1
sin 1 2
2
x x k
(B)
sin 1 2
2
x x k
(B’)
sin 0x x k
(A, A’)
cos 1 2x x k
; (A)
cos 1 2x x k
; (A’)
cos 0
2
x x k
(B, B’)
Dạng toán 1. Tìm tập xác định của hàm số:
Hàm số
u
y
v
: Điều kiện xác định là
0v
Hàm số
y v
: Điều kiện xác định là
0v
Tìm tập xác định của hàm số:
a)
2
2sin 2y x
b)
2sin 1
cos
x
y
x
c)
3cos2
sin
cos 1
x
y x
x
d)
sin 3
sin 1
x
y
x
e)
2
3
sin
y
x
f)
3 cos
sin 1
x
y
x
d)
2sin 1
cos2
x
y
x
e)
3
sin3 1
y
x
f)
1 cos
cos 2 1
x
y
x
Tìm tập xác định của hàm số:
a)
tany x
b)
tan 2y x
c)
cot siny x x
d)
tan
4
y x
e)
tan
3
y x
f)
3cot2 1 y x
Dạng toán 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
Ghi nhớ các chặn cơ bản sau:
1 sin ,cos 1x x
2 2
0 sin ,cos 1x x
0 sin , cos 1x x
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
a)
2sin 3y x
b)
5cos 3y x
c)
2
3sin 1 y x
sin
cos
a
AA'
B'
N
B
M
sin
cos
N
a
AA'
B'
B
M
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 2
d)
2 3cos y x
e)
1 3 cos y x
f)
2
1 2sin
3
x
y
g)
2 cos 1y x
h)
2 sin 2 5y x
i)
2
4 4cos 3y x
k)
3 sin cosy x x
l)
3 cos sin 2y x x
m)
sin 2 3 cos 2 1y x x
Trong đó = shift sin a
2
sin sin
2
A B k
A B
A B k
Lưu ý:
sin sinB B
Trong đó = shift cos a
2
cos cos
2
A B k
A B
A B k
Lưu ý:
cos cosB B
Trong đó
=
shift tan a
Lưu ý: Trong trường hợp
“quá xấu”, ta dùng kí hiệu:
arcsin , arccos , arctana a a
AA
Dạng toán 1. Phương trình bậc nhất đối với một hàm số lượng giác
Bước 1: Đúng dạng
sin ; cos ; tan ; cotu a u a u a u a
Bước 2: Bấm máy quy đổi
a
về
, ráp vào công thức
Bước 3: Thu gọn tìm x
Giải các phương trình sau:
a)
3
sin
2
x
b)
1
sin3
2
x
c)
2
sin 2 1
3
x
x
y
-
B'
A' A
MN
B
a
x
y
-
N
M
B'
A' A
B
a
2
sin 1 1 .
2
ku
k
k
u a
u
a
2
cos 1 1 .
2
k
a k
k
u
u
u
a
tan .a ku ku

BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 3
d)
2
sin
4 2
x
e)
3 1
sin 3
4
2
x
f)
0
2sin 45 1 0 x
Giải các phương trình:
a)
3
cos2
2
x
b)
2 cos2 1 0 x
c)
cos 3 cos 2 0x x
d)
2
2cos 3 0
3
x
e)
2cos 2 1 0
6
x
f)
0
cos 30 1 0x
Giải các phương trình:
a)
tan 1
4
x
b)
3 tan 2 1 0 x
c)
2
tan 0
3
x
d)
cot 2 1 3 x
e)
3 cot 2 1 0 x
f)
3
cot 3
2 3
x
Giải các phương trình:
a)
sin 1 2cos 1 0 x x
b)
cos 1 2cos 1 0 x x
c)
cos 2sin3 1 0 x x
d)
2 2
cos 2cos .sin 0 x x x
Giải các phương trình:
a)
sin3 sin2x x
b)
sin2 sin 0 x x
c)
sin5 sin 0 x x
d)
cos2 cos 0 x x
e)
cos2 cos 0 x x
f)
cos 2 sin 0 x x
Dạng toán 2. Phương trình bậc hai đối với một hàm số lượng giác.
Đặt ẩn phụ
sin ; cos ; tan ; cott x x x x
, giải tìm t. Sau đó thay trở lại, tìm x.
2 2
sin cos 1x x
2 2
sin 1 cosx x
sin2 2sin cosx x x
2 2
cos 1 sinx x
sin
tan
cos
x
x
x
cos
cot
x
x
2
cos2 2cos 1
x x
2
1 cos2
cos
2
x
x
2
2
1
1 tan
cos
x
x
2
2
1
cos
1 tan
x
x
2
cos2 1 2sin
x x
2
1 cos2
sin
2
x
x
2
2
1
1 cot
sin
x
x
2
2
1
sin
x
2
2tan
tan 2
1 tan
x
x
x
Giải các phương trình
a)
2
sin 3sin 2 0 x x
b)
2
2sin 3sin 1 0 x x
c)
2
sin 2 3sin2 0 x x
d)
2
2sin 2sin 0
2 2
x x
e)
2
6sin 2 sin2 1 0 x x
f)
2
3sin 3 4sin3 4 0 x x
Giải các phương trình
a)
2
6cos cos 1 0 x x
b)
2
4cos 2 4cos2 3 0 x x
c)
2
2cos 5cos 3 0 x x
d)
2
2 cos 3 cos 0 x x
e)
2
2cos cos 6 0 x x
f)
2
cos 2cos 1 0
2 2
x x
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 4
Giải các phương trình
a)
2
2tan 5tan 3 0 x x
b)
2
2tan 2 tan2 6 0 x x
c)
2
tan 3 tan 0 x x
d)
2
3cot 4cot 4 0 x x
e)
2
3cot 1 0 x
f)
2
cot cot 6 0 x x
Giải các phương trình
a)
2
2cos 5sin 4 0 x x
b)
2
2sin 5cos 4 0 x x
c)
2tan cot 3 0 x x
d)
3cos2 7cos 4 0x x
e)
2
5sin 2 3(1 sin ) tanx x x
f)
2
cos2 cos 4sin 1
2
x
x x
Dạng toán 3. Phương trình asinx + bcosx = c
Điều kiện có nghiệm:
2 2 2
a b c
Chia hai vế phương trình cho
2 2
a b
Giải các phương trình
a)
sin 3 cos 1 x x
b)
3 sin cos 2x x
c)
3 cos 2 sin 2 1 x x
d)
3 cos sin 0 x x
e)
sin 2 cos2 2 0 x x
f)
cos3 sin3 1 x x
Giải các phương trình
a)
sin 2 cos2 1x x
b)
cos 3 sin 2x x
c)
sin 3 3 cos 3 0x x
Giải các phương trình
a)
3sin 4cos 5 x x
b)
2 cos 2 3sin 2 13 x x
c)
sin 3 cos 2sin 2x x x
d)
2
3 sin 2 2sin 2x x
e)
cos7 cos5 3sin2 1 sin7 sin5x x x x x
Dạng toán 4. Một số phương trình đưa về dạng tích s:
. =
=
=
Giải các phương trình sau bằng cách đưa về dạng tích số.
sin sin3 sin 2 0x x x
b)
sin3 cos2 sin 0x x x
(D.13)
c)
2
sin5 2cos 1x x
(B.13) d)
2
2sin 2 sin7 1 sinx x x
e)
sin 4cos 2 sin2x x x
(A.14) f)
2 sin 2cos 2 sin 2x x x
(B.14)
g)
3
2cos cos2 sin 0x x x
h)
sin2 2cos2 1 sin 4cosx x x x
i)
2 cos4 cos2 3 3cos2 sin 2x x x x
k)
6 6 8 8
cos sin 2 cos sinx x x x
sin .cos cos .sin sin x y x y x y
cos .cos sin .sin cos
x y x y x y
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 5
Dạng toán 6. Phương trình đẳng cấp bậc hai, bậc ba
TH1:
cos x 0 sin x 1
: Thử trực tiếp vào PT
TH2:
cos x 0
: Chia 2 vế PT cho
2
cos x
3
cos x
, đưa PT đã cho theo hàm số tan
Giải phương trình
a)
2 2
2cos 3sin .cos sin 0x x x x b)
2 2
sin sin 2 3cos 2 0x x x
c)
2 2
4sin 3 3 sin 2 2cos 4x x x
d)
2
4cos sin 2 3 0x x
e)
3 3 2 2
sin 3cos 3sin .cos sin .cos 0x x x x x x
f)
sin2 2tan 3x x
Dạng toán 7. Phương trình lượng giác có so sánh điều kiện để nhận, loại nghiệm.
Giải phương trình
2
5sin 2 3 1 sin tanx x x
b)
2
cos 2sin 3 2 2cos 1
1
1 sin 2
x x x
x
c)
sin 2 2cos sin 1
0
tan 3
x x x
x
d)
6 6
2 sin cos sin cos
0
2 2sin
x x x x
x
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 6
Dạng toán 1. Vận dụng hai quy tắc đếm cơ bản
Trên kệ sách có 5 sách Toán, 6 sách Lý và 7 sách Văn học.
a) Có bao nhiêu cách chọn ra một quyển sách từ kệ sách
b) Có bao nhiêu cách chọn ra 3 quyển sách sao cho 3 quyển được chọn có đủ cả ba loại.
Đáp số: a) 18 b) 210
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn, mỗi đội chỉ
được trình diễn 1 vở kịch, 1 điệu múa và 1 bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách
chọn chương trình biểu diễn, biết rằng chất lượng các vở kịch, điệu múa, các bài hát là như
nhau?
Đáp số: 36.
Một người có 7 cái áo trong đó có 3 áo trắng và 5 cái cà vạt trong đó có hai cà vạt màu vàng.
Hỏi người đó có bao nhiêu cách chọn áo – cà vạt nếu:
a) Chọn áo nào cũng được và cà vạt nào cũng được?
b) Đã chọn áo trắng thì không chọn cà vạt u vàng?
Mô tả, liệt kê
Đếm
Suy luận
lôgic
QTĐ cơ
bản
QTĐ nâng
cao
Số kết quả ít, dễ nhìn thấy và mô tả.
Số kết quả nhiều, khó mô tả.
Từ liên kết “hoặc”
Mỗi trường hợp, xong công việc.
Từ liên kết “và”
Kết hợp hết mới xong công việc.
Chọn n phần tử xếp vào n vị trí
Có quan tâm vị trí sắp xếp.
Chọn k phần tử trong n phần tử
Xắp xếp theo vị trí
Chọn k phần tử trong n phần tử đ
tạo thành một nhóm (tập con).
Không quan tâm vị trí xếp
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 7
Đáp số: a) 35. b) 29.
Từ các số 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên:
a) gồm 3 chữ số
b) gồm ba chữ số khác nhau
c) gồm ba chữ số khác nhau và số tạo thành là số tự nhiên chẵn
d) gồm 3 chữ số khác nhau và số tạo thành là một số tự nhiên lẻ
e) gồm 3 chữ số khác nhau và số tạo thành luôn có mặt số 1
Đáp số: a) 216 b) 120 c) 60 d) 60 e) 60
Từ các số 0, 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên:
a) gồm 3 chữ số
b) gồm ba chữ số khác nhau
c) gồm ba chữ số khác nhau và số tạo thành là số tự nhiên chẵn
d) gồm 3 chữ số khác nhau và số tạo thành luôn có mặt số 1
Đáp số: a) 294 b) 180 c) 105 d) 80
Dạng toán 2. Các bài toán chọn, rút, phân chia các đối tượng trong tập hợp
Cấu trúc : “Chọn k phần tử trong n phần tử”
Nếu bộ k phần tử chọn ra có xếp vị trí
Số cách:
k
n
A
Nếu bộ k phần tử chọn ra chỉ đơn giản là tạo thành một nhóm
Số cách:
k
n
C
Cho 7 điểm phân biệt trên một đường tròn.
a) Hỏi có bao nhiêu đoạn thẳng được tạo thành
b) Hỏi có bao nhiêu véc tơ (khác
0
) được tạo thành
c) Hỏi có bao nhiêu tam giác được tạo thành.
Đáp số: a) 21 b) 42 c) 35
Một lớp học có 34 học sinh.
a) Có bao nhiêu cách chọn ra 3 học sinh để đi trực trường
b) Có bao nhiêu cách chọn ra 3 học sinh để làm ban cán sự lớp gồm 1 lớp trưởng, 1 lớp phó
và 1 thủ quỹ.
Đáp số: a) 5984 b) 35904
Một lớp học có 40 học sinh trong đó có 25 học sinh nam và 15 học sinh nữ. Cần chọn một
nhóm học sinh gồm 3 người. Hỏi có bao nhiêu cách:
a) chọn 3 học sinh bất kì
b) chọn 3 học sinh gồm 1 học sinh nam và 2 học sinh nữ
c) chọn 3 học sinh trong đó có ít nhất 1 học sinh nam
Đáp số: a) 9880 cách b) 2625 cách c) 9425 cách
Một đội xây dựng gồm 10 công nhân, 3 kĩ sư. Để lập một tổ công tác cần 1 kĩ sư làm tổ
trưởng, 1 công nhân làm tổ phó và 5 công nhân tổ viên. Hỏi có bao nhiêu cách thành lập tổ
công tác
Đáp số: 3780 cách
Có 10 câu hỏi gồm 4 câu lý thuyết và 6 câu bài tập. Có bao nhiêu cách tạo ra một đề thi gồm
3 câu hỏi có đủ cả lý thuyết và bài tập.
Đáp số: 96 đề
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 8
Một hộp đựng 4 viên bi đỏ, 5 viên bi trắng và 6 viên bi vàng. Có bao nhiêu cách chọn ra 4
viên bi từ hộp sao cho:
a) 4 bi được chọn có đủ đủ ba màu.
b) 4 viên bi được chọn không đủ ba màu.
Đáp số: a) 720 cách b) 645 cách
Cho hai đường thẳng song song
1
d
2
d
. Trên
1
d
lấy 17 điểm phân biệt, trên
2
d
lấy 20
điểm phân biệt. Tính số tam giác được tạo thành từ các điểm trên.
Đáp số: 5950 tam giác
Một trường tiểu học có 50 học sinh đạt danh hiệu cháu ngoan Bác Hồ, trong đó có 4 cặp sinh
đôi. Cần chọn một nhóm gồm 3 học sinh trong số 50 học sinh trên để đi dự Đại hội cháu
ngoan Bác Hồ sao cho trong nhóm không có cặp sinh đôi nào. Hỏi có bao nhiêu cách chọn
Đáp số: 19408 cách
Trong một môn học, thầy giáo có 30 câu hỏi khác nhau gồm 5 câu hỏi khó, 10 câu hỏi trung
bình, 15 câu hỏi dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5
câu hỏi khác nhau sao cho trong mỗi đề nhất thiết phải có đủ ba loại câu hỏi (dễ, khó, trung
bình) và số câu hỏi dễ không ít hơn 2.
Đáp số: 56875 đề
Một đội thanh niên tình nguyện có 15 người, gồm 12 nam và 3 nữ. Hỏi có bao nhiêu cách
phân bố đội thanh niên này về 3 tỉnh miền núi sao cho một tỉnh có 4 nam và 1 nữ
Đáp số: 207900 cách
Một lớp gồm có 10 học sinh nam và 15 học sinh nữ. Trong buổi sinh hoạt đầu năm của lớp,
giáo viên chủ nhiệm cần chọn ra 3 học sinh làm cán bộ lớp gồm một lớp trưởng, một lớp phó
và một thủ quỹ. Giáo viên chủ nhiệm có bao nhiêu cách chọn nếu:
a) ba học sinh được chọn là tùy ý (không phân biệt nam, nữ)
b) ba học sinh được chọn thủ quỹ phải là nữ và cán bộ lớp phải có nam.
Đáp số: a)
3
25
A
cách b)
1 1 1 2
15 10 14 10
2 2 5550 C C C C
cách
Trong mặt phẳng cho 8 điểm phân biệt sao cho không có bất kì 3 điểm nào thẳng hàng. Hỏi:
a) Có bao nhiêu đoạn thẳng nối liền các điểm đó
b) Có bao nhiêu tam giác mà các đỉnh là các điểm đó.
c) * Nếu 8 điểm trên tạo thành một đa giác lồi thì số đường chéo của đa giác đó là bao nhiêu.
Đáp số: a) 28 b) 56 c) 20
Một hộp đựng 5 viên bi trắng, 6 viên bi đỏ và 7 viên bi vàng.
a) Có bao nhiêu cách chọn ra một viên bi từ hộp trên
b) Có bao nhiêu cách chọn ra ba viên bi có đầy đủ ba màu
c) Có bao nhiêu cách chọn ra 4 viên bi trong đó có ít nhất 1 viên bi đỏ
Đáp số: a) 18 b) 210 c) 2565
Có bao nhiêu cách tặng 5 món quà cho ba người sao cho người nào cũng có quà.
Đáp số: 150
Có 5 cuốn sach giáo khoa giống nhau và 4 cuốn sách tham khảo đôi một khác nhau. Đem làm
giải thưởng cho 8 học sinh, mỗi học sinh được một cuốn sách (còn thừa lại 1 cuốn). Hỏi có
bao nhiêu cách để phát thưởng.
Đáp số: 3024
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 9
Dạng toán 3. Các bài toán xếp vị trí
Có bao nhiêu cách xếp 5 học sinh A, B, C, D, E vào 1 ghế dài sao cho
a) C ngồi chính giữa
b) A và E ngồi ở hai đầu ghế
Đáp số: a) 24 b) 12
Một nhóm học sinh gồm 7 học sinh nam và 3 học sinh nữ.
a) Có bao nhiêu cách xếp 10 học sinh này thành một hàng dọc
b) Có bao nhiêu cách xếp 10 học sinh này thành hàng học sao cho 7 học sinh nam phải đứng
cạnh nhau.
Đáp số: a)
10! 3628800
b)
4.7!.3! 120960
Có bao nhiêu cách xếp 5 học sinh A, B, C, D, E vào một ghế dài 5 chỗ ngồi sao cho:
a) 5 học sinh này ngồi tùy ý b) A, B ngồi đầu bàn
c) A, B ngồi cạnh nhau d) A, B không ngồi cạnh nhau
Đáp số: a) 120 b) 12 c) 48 d) 120 – 48 = 72
Dạng toán 4. Các bài toán đếm số tự nhiên có k chữ số thỏa điều kiện cho trước
Cho các số 1, 2, 5, 7, 8. Có bao nhiêu cách lập ra một số tự nhiên gồm 3 chữ số khác nhau
(các số lấy ra từ 5 số trên) sao cho:
a) Số tạo thành là một số chẵn
b) Số tạo thành không có chữ số 7
c) Số tạo thành nhỏ hơn 278
Đáp số: a) 24 số b) 24 số c) 20 số
Cho các chữ số 0, 2, 4, 5, 6, 8, 9. Từ các số trên:
a) có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau.
b) có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau, trong đó nhất thiết phải có
mặt chữ số 5.
Đáp số: a) 180 số b) 420 số.
Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số này,
a) có thể lập ra được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau.
b) có thể lập ra được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và chia hết cho 5.
c) có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và không bắt đầu bởi 1
Gọi
abcd...
là dạng số cần lập. Khi tiến hành chọn các vị trí (hàng đơn vị, chục, trăm,...) cần quan
tâm một số ý sau:
Số cần lập các chữ số có khác nhau hay không?
Chữ số đâu tiên phải khác 0
a 0
Thường thì ở vị trí hàng nào bị ràng buộc điều kiện thì ta ưu tiên chọn trước.
Các dấu hiệu chia hết:
Dấu hiệu chia hết cho 2: số tự nhiên có tận cùng là số chẵn
Dấu hiệu chia hết cho 5: Số tự nhiên có tận cùng là số 0 hoặc 5
Dấu hiệu chia hết cho 3: Số tự nhiên có tổng các chữ số chia hết cho 3.
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 10
Đáp số: a) 156 số b) 36 số c) 240 số
Từ các số 0, 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên chẵn, mỗi số có 5 chữ số
khác nhau. Đáp số: 1260 số
Có 100.000 chiếc vé xổ số được đánh số từ 00.000 đến 99.999. Hỏi các vé gồm 5 chữ số khác
nhau là bao nhiêu? Đáp số: 30240 vé
Xét các số tự nhiên gồm 5 chữ số khác nhau, thành lập từ các chữ số 1, 2, 3, 4, 5. Hỏi trong
các số đó có bao nhiêu số không bắt đầu bởi chữ số 1
Đáp số: 96
Xét các số tự nhiên gồm 5 chữ số khác nhau, thành lập từ các chữ số 1, 2, 3, 4, 5. Hỏi trong
các số đó có bao nhiêu số bắt đầu bởi chữ số 5.
Đáp số: 24
Từ 7 chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau
thỏa điều kiện số tạo thành luôn có mặt chữ số 7 và chữ số hàng ngàn là chữ số 1
Đáp số: 60
Cho 7 chữ số 1, 2, 3, 4, 5, 6, 7. Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và luôn có
mặt chữ số 7 được viết từ các chữ số đã cho
Đáp số: 480
Cho các số 1, 2, 5, 7, 8. Có bao nhiêu cách lập ra một số gồm 3 chữ số khác nhau từ 5 chữ số
trên thỏa điều kiện số tạo thành là 1 số chẵn
Đáp số: 24
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 ta có thể thành lập bao nhiêu số tự nhiên có 5 chữ số khác
nhau và trong đó có chữ số 4.
Đáp số: 1560
Với các chữ số 0, 1, 2, 3, 4, 5, 6 ta có thể thành lập bao nhiêu số tự nhiên gồm 5 chữ số khác
nhau trong đó phải có mặt chữ số 5.
Đáp số: 1560
Với các chữ số 0, 1, 2, 3, 4, 5 ta có thể thành lập ra được bao nhiêu số tự nhiên chẵn, mỗi số
gồm 5 chữ số khác nhau.
Đáp số: 312
Cho các số 1, 2, 3, 4, 5, 6, 7. Tìm các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho
các chữ số đều khác nhau
Đáp số: 2520
Cho tập
0,1,2,3,4,5,6,7,8,9E
. Hỏi có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau
được lấy từ
E
mà chia hết cho 5?
Đáp số: 5712
Có bao nhiêu số tự nhiên gồm 5 chữ số mà các chữ số đều lớn hơn 4 và đôi một khác nhau?
Tính tổng của tất cả các số tự nhiên vừa lập được.
Đáp số: Số tự nhiên: 120 số; tổng các số là: 9333240
Từ các số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác
nhau và số tạo thành không chia hết cho 10
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 11
Đáp số: 1260 số
Có bao nhiêu số tự nhiên khác nhau nhỏ hơn 10000 được tạo thành bởi 5 số 0, 1, 2, 3, 4
Đáp số: 625 số
Từ các số 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau sao
cho số cần lập có đúng 2 chữ số chẵn và 2 chữ số lẻ
Đáp số:
2 2
3 3
.4! 216C C
số
Từ các số 0, 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau
sao cho số cần lập có đúng 2 chữ số chẵn và 2 chữ số lẻ
Đáp số: 378
Có bao nhiêu số tự nhiên gồm 4 chữ số có dạng
abcd
với
a b c d
Đáp số: 210
Từ các số 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên gồm sáu chữ số khác nhau
thỏa mãn điều kiện hai chữ số 1 và 6 không đứng cạnh nhau.
Đáp số: 480 số
Từ các số 0, 1, 2, 3, 4, 5 có thể lập ra được bao nhiêu số tự nhiên gồm 8 chữ số, trong đó số 1
có mặt 3 lần, các chữ số còn lại có mặt đúng 1 lần
Đáp số: 5880 số
Từ các số 1, 2, 3, 4, 5, 6,7, 8 có thể lập ra được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau
và số tạo thành luôn có hai chữ số 1 và 2.
Đáp số:
Tìm tất cả các số tự nhiên có 5 chữ số sao cho:
a) trong mỗi số đó chữ số đứng sau lớn hơn chữ số liền trước.
b) trong mỗi số đó chữ số liền trước lớn hơn chữ số liền sau.
Đáp số: a)
5
9
C
số b)
5
10
C
số
Cho mười chữ số 0, 1, 2, 3,…, 9. Có bao nhiêu số tự nhiên lẻ gồm 6 chữ số khác nhau, nhỏ
hơn 600000 được xây dựng từ 10 số trên.
Đáp số: 36960 số
Dạng toán 5. Giải các phương trình tổ hợp
Công thức:
n
P n! 1.2.3... n 2 n 1 n
(
n *
)
k
n
n!
A
n k !
(
n,k *
k n
)
k
n
n!
C
k! n k !
(
n,k *
k n
)
Tính chất:
k k
n n
A C .k!
k n k
n n
C C
k 1 k k
n n n 1
C C C
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 12
Giải các phương trình:
a)
2
45
n
C
b)
3
2 506
n
A
c)
3 2
14
n
n n
A C n
d)
2 2
1
6 5
n
n n
C n A
e)
1 2 3
1 2 1
3 8 3
n
n n n
C C C
f)
1 2 3 2
6 9 14
n n n
C C C n n
Đáp số: a)
10n
b)
9n
c)
5n
d)
10n
e) vô nghiệm f)
7n
Biết
2 2 2 2
1 2 3 4
2 2 149
n n n n
C C C C
, với
*n
. Tính giá trị biểu thức
4 3
1
3
1 !
n n
A A
M
n
3
5
4
n M
Đáp số:
Cho hai đường thẳng song song
1 2
,d d
. Trên
1
d
có 6 điểm phân biệt, trên
2
d
có n điểm phân
biệt
2n
. Biết rằng có 288 tam giác được tạo thành từ
6n
điểm trên
1
d
2
d
. Tìm n
Đáp số:
8n
a) Cho một đa giác đều n đỉnh
3n
. Tìm n, biết rằng đa giác đã cho có 27 đường chéo.
Đáp số:
9n
b) Cho tập A gồm n phần tử
4n
. Tìm n, biết rằng số tập con gồm 4 phần tử của A bằng 20
lần số tập con gồm 2 phần tử của A.
Đáp số:
18n
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 13
0 1 1
0
... ...
n
n
n n k n k k n n k n k k
n n n n n
k
a b C a C a b C a b C b C a b
Dạng toán 1. Khai triển nhị thức
Khai triển các nhị thức:
a)
4
2x
b)
6
2 1x
c)
6
2x
d)
5
2 1x
e)
7
2
x
x
f)
5
2x y
g)
4
2 x
h)
6
2 1x x
i)
5
2
2
x
x
k)
5
2
1 2x x
l)
6
2
2
x
m)
6
1
2
2
x
x
Dạng toán 2. Tìm hệ số (số hạng) ca
trong khai triển P(x) thành đa thức
Cách 1: Khai triển P(x). Từ đó trả lời kết quả hệ số của
k
x
Cách 2: Sử dụng khai triển tổng quát
0
n
k n k k
n
k
C a b
(Nhớ xác định a, b, n cho chính xác)
Bước 1: Xác định a, b, n và ráp vào công thức trên
Bước 2: Thu gọn phần hệ sốphần biến trong công thức vừa lập.
Bước 3: Đồng nhất lũy thừa của biến với yêu cầu đề. Từ đây, suy ra kết quả.
Tìm hệ số của số hạng chứa
12
x
trong khai triển nhị thức Niutơn của
18
2
1
x
x
Lời giải
♥ Khai triển nhị thức Niutơn ta có:
18
18 18
18 18 3
18 18
2 2
0 0
1 1
. . . 1 .
k
k
k k k k
k k
x C x C x
x x
♥ Chọn k thỏa mãn:
18 3 12 2k k
♥ Vậy hệ số của số hạng chứa
12
x
trong khai triển là
2
2
18
1 153C
.
Tìm hệ số của số hạng không chứa
x
trong khai triển nhị thức Niutơn của
18
2
1
x
x
Lời giải
♥ Khai triển nhị thức Niutơn ta có:
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 14
18
18 18
18 18 3
18 18
2 2
0 0
1 1
. . . 1 .
k
k
k k k k
k k
x C x C x
x x
♥ Chọn k thỏa mãn:
18 3 0 6k k
♥ Vậy số hạng không chứa
x
trong khai triển là
6
6
18
1 18564C
.
Tìm hệ số của số hạng chứ
5
x
trong khai triển:
a)
9
3x
b)
12
2 1x
Đáp số: a)
10206
b) 25344
Tìm hệ số của số hạng chứ
15
x
trong khai triển
12
2
3 x x
Đáp số:
9 9
12
3 C
Tìm hệ số của
3
x
trong khai triển:
a)
6
2
2
x
x
b)
12
1
2
x
x
Đáp số: a) 12 b)
8 8
12
2 C
Tìm số hạng không chứa x trong khai triển:
a)
10
4
1
x
x
b)
8
3
1
x
x
Đáp số: a) 45 b) 28
Tìm hệ số của
4 9
x y
trong khai triển
13
2x y
.
Đáp số: -11440
a) Khai triển và rút gọn
4 5
2 1 3x x
thành đa thức.
b) Trong khai triển và rút gọn của
8 10
1 2 1 3x x
, hãy tính hệ số của
3
x
.
Đáp số: b) 2792
Xét khai triển của
15
2
2
x
x
. Tìm hệ số của số hạng chứa
3
x
Đáp số:
9
9
15
C 2
Xét khai triển
2
0 1 2
1 2 ...
n
n
n
x a a x a x a x
. Tìm
5
a
, biết
1 2
71
n
a a a
Đáp số:
5
7 672 n a
Tìm số hạng không chứa x trong khai triển
2
3
1
n
x
x
, biết
1 3
13
n n
C C n
Đáp số:
10n
. Hệ số cần tìm 210
Giả sử khai triển
15
2 15
0 1 2 15
1 2 ...x a a x a x a x
.
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 15
a) Tính
9
a
.
b) Tính
0 1 2 15
...a a a a
.
Đáp số: a)
9 9
15
C 2
b)
15
S 3
a) Biết rằng hệ số của
2
x
trong khai triển của
1 3
n
x
bằng 90. Tìm n.
b) Trong khai triển của
1
n
x
, hệ số của
2n
x
bằng 45. Tính n.
Đáp số: a)
5n
b)
10n
Cho
5 6
2
2 1 2P x x x x x
Khai triển
P x
thành đa thức.
Tìm hệ số chứa
4
x
trong khai triển trên.
Đáp số a)
7 6 5 4 3 2
65 182 280 80 140 20 P x x x x x x x x
b)
80
Tìm hệ số của
7
x
trong khai triển nhị thức Niu-tơn của
2
2
n
x
x
, biết rằng n là số nguyên
dương thỏa mãn
3 2 3
1
4 2
n n n
C C A
.
5
5
11
11, 5, 2 n k C
Đáp số:
Cho n là số nguyên dương thỏa mãn
1 3
5
n
n n
C C
. Tìm số hạng chứa
5
x
trong khai triển nhị
thức Niu-tơn
2
1
14
n
nx
x
, với
0.x
5
35
2
16
n x
Đáp số:
a) Cho khai triển
2
0 1 2
1 2 ...
n
n
n
x a a x a x a x
, trong đó
*
n N
và các hệ số
1 2
, , ...,
n
a a a
thỏa mãn
1 2
0
2
... 4096
2
2 2
n
n
aa a
a
. Tìm
8
a
8
12 126720 n a
Đáp số:
b) Tìm hệ số của số hạng chứa
10
x
trong khai triển
2
n
x
, biết:
0 1 1 2 2 3 3
3 3 3 3 ... 1 2048
n
n n n n n
n n n n n
C C C C C
Đáp số:
11, n
Hệ số cần tìm
22
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 16
Đếm số kết quả của tập không gian mẫu:
n
Đếm số kết quả của tập biến cố A (Tập A là tập con của tập
)
n A
Xác suất cần tìm
n A
p A
n
0 1 p A
Gọi
A
là biến cố đối của A. Khi đó:
1 p A p A
Một hộp đựng 3 viên bi xanh, 4 viên bi đỏ và 5 viên bi vàng. Chọn ngẫu nhiên 3 viên
bi. Tính xác xuất để 3 viên bi được chọn có đủ cả ba màu.
Lời giải
♥ Số phần tử của không gian mẫu là:
3
12
220n C
♥ Gọi A là biến cố: “3 viên bi được chọn có đủ cả ba màu”
Số kết quả thuận lợi cho biến cố A là:
1 1 1
3 4 5
60n A C C C
Vậy xác suất cần tính là
60 3
220 11
n A
P A
n
Trong một lớp học gồm có 15 học sinh nam và 10 học sinh nữ. Giáo viên gọi ngẫu
nhiên 4 học sinh lên bảng giải bài tập. Tính xác suất để 4 học sinh được gọi có cả nam và nữ.
Lời giải
♥ Số phần tử của không gian mẫu là:
4
25
12650n C
♥ Gọi A là biến cố: “4 học sinh được gọi có cả nam và nữ”
Mô tả phần tử tập hợp
Đếm
Suy luận (Theo các quy tắc đếm)
Mô tả phần tử tập hợp
Đếm
Suy luận (Theo các quy tắc đếm
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 17
Số kết quả thuận lợi cho biến cố A là:
1 3 2 2 3 1
15 10 15 10 15 10
11075n A C C C C C C
Vậy xác suất cần tính là
11075 443
12650 506
n A
P A
n
.
Gọi S là tập hợp tất cả các số tự nhiên gồm bốn chữ số phân biệt được chọn từ các chữ số
1, 2, 3, 4, 5, 6. Chọn ngẫu nhiên 1 số từ S, tính xác suất để số được chọn có mặt chữ số 6.
Bài giải
♥ Số phần tử của không gian mẫu là:
4
6
360n A
♥ Gọi A là biến cố: “số được chọn có mặt chữ số 6”
Số kết quả thuận lợi cho biến cố A là:
3
5
4. 240n A A
Vậy xác suất cần tính là
240 2
360 3
n A
P A
n
.
Gọi S là tập hợp tất cả các số tự nhiên gồm ba chữ số phân biệt được chọn từ các số 1, 2,
3, 4, 5, 6. Chọn ngẫu nhiên 1 số từ S, tính xác suất để số được chọn có tổng các chữ số bằng 8.
Bài giải
♥ Số phần tử của không gian mẫu là:
3
6
120n A
♥ Gọi A là biến cố: “số được chọn có tổng các chữ số bằng 8”
Số kết quả thuận lợi cho biến cố A là:
12n A
Vậy xác suất cần tính là
12 1
120 10
n A
P A
n
.
------------------------------------------
Chọn một số nguyên dương nhỏ hơn 9. Tính xác suất để
a) Số được chọn là số nguyên tố
b) Số được chọn là một số chia hết cho 3
Đáp số: a)
1
2
b)
1
4
Giem một con xúc sắc cân đối đồng chất 2 lần. Tính xác suất của các biến cố
A: “Lần thứ 2 xuất hiện mặt 6 chấm”
B” Số chấm trong hai lần gieo giống nhau”
C” Tổng số chấm trong 2 lần gieo bằng 8”
D“ Tổng hai lần gieo không vượt qua 10”
E” Tổng số chấm trong hai lần gieo lớn hơn 3”
1
6
p A
Đáp số:
1
6
p B
5
36
p C
11
12
p D
11
12
p E
Cho 8 quả cân có trọng lượng lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu
nhiên 3 quả cân trong số đó. Tính xác suất để 3 quả cân được chọn có trọng lượng không vượt
quá 9kg.
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 18
Đáp số:
1
7
Một lô hàng có 10 sản phẩm, trong đó có 2 phế phẩm. Lấy 6 sản phẩm từ lô hàng đó. Tính xác
suất để trong 6 sản phẩm lấy ra đó có không quá một phế phẩm.
Đáp số:
2
3
Một cái bình đựng 4 quả cầu xanh và 6 quả cầu vàng. Lấy ra 3 quả cầu từ bình. Tính xác suất
để
a) được đúng 2 quả cầu xanh ;
b) được đủ hai màu ;
c) được ít nhất 2 quả cầu xanh.
Đáp số: a)
3
10
b)
4
5
c)
1
3
Có hai hộp đựng các viên bi. Hộp thứ nhất đựng 6 bi đen, 3 bi trắng. Hộp thứ hai đựng 7 bi
đen, 5 bi trắng. Lấy ngẫu nhiên mỗi hộp 2 bi
a) Tính xác suất để 4 bi được chọn có 4 bi trắng.
b) Tính xác suất để 4 bi được chọn có đủ 2 màu.
Đáp số: a)
5
396
b)
677
792
Một hộp có 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên ra hai thẻ rồi nhân hai số ghi trên
hai thẻ với nhau.
a) Tính xác suất để số nhận được là một số lẻ.
b) Tính xác suất để số nhận được là một số chẵn.
Đáp số: a)
5
18
b)
13
18
Một lớp có 30 học sinh, gồm 8 học sinh giỏi, 15 học sinh khá và 7 học sinh trung bình. Chọn
ngẫu nhiên 3 em để dự đại hội. Tính xác suất để
a) 3 học sinh được chọn đều là học sinh giỏi ;
b) có ít nhất một học sinh giỏi ;
c) không có học sinh trung bình.
Đáp số: a)
2
145
b)
18
29
c)
253
580
Một lớp học có 34 học sinh trong đó gồm 7 học sinh giỏi, 13 học sinh khá và 14 học sinh
trung bình. Chọn ngầu nhiên ra 3 bạn đi dự đại hôi. Tính xác suất để:
a) 3 bạn được chọn có đúng 1 học sinh giỏi
b) 3 bạn được chọn không có học sinh trung bình
Đáp số: a)
2457
5984
b)
285
1496
Một hộp đựng 5 bi xanh, 7 bi đỏ và 9 bi vàng. Chọn ngẫu nhiên từ hộp 4 viên bi. Tính xác
suất để:
a) 4 viên bi được chọn có ít nhất 1 viên bi đỏ.
b) 4 viên bi được chọn không đủ ba màu.
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 19
Đáp số: : a)
712
855
b)
10
19
Một hộp đựng 16 thẻ được đánh số từ 1 đến 16. Rút ngẫu nhiên từ hộp ra 7 thẻ. Tính xác suất
để chọn được 3 thẻ mang số lẻ, 4 thẻ mang số chẵn và có đúng 1 thẻ chia hết cho 5.
Đáp số:
203
572
Đội thanh niên xung kích của một trường phổ thông có 12 học sinh gồm 5 học sinh khối 10, 4
học sinh khối 11 và 3 học sinh khối 12. Chọn ngẫu nhiên ra 4 học sinh đi làm nhiệm vụ. Tính
xác suất để 4 học sinh được chọn có không quá 2 khối.
Đáp số:
5
11
Gọi S là tập hợp tất cả các số tự nhiên gồm ba chữ số phân biệt được chọn từ các số 1;
2; 3; 4; 5; 6; 7. Xác định số phần tử của S. Chọn ngẫu nhiên một số từ S, tính xác suất để số
được chọn là số chẵn
Đáp số: Số phần tử của S là 210. Xác suất:
3
7
p
Có hai hộp đựng bi. Hộp thứ nhất chứa 4 bi đỏ và 3 viên bi trắng, hộp thứ hai chứa 2
viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên bi. Tính xác suất để 2
viên bi lấy được có cùng màu.
10
21
p
Đáp số:
Một hộp đựng 16 thẻ được đánh số từ 1 đến 16. Chọn ngẫu nhiên từ hộp 4 thẻ. Tính
xác suất để 4 thẻ được chọn đều đánh số chẵn
Đáp số:
1
26
p
Để kiểm tra chất lượng sản phẩm từ một công ty sữa, người ta đã gửi đến bộ phân
kiểm nghiệm 5 hộp sữa cam, 4 hộp sữa dâu và 3 hộp sữa nho. Bộ phận kiểm nghiệm chọn
ngẫu nhiên 3 hộp sữa để phân tích mẫu. Tính xác suất để 3 hộp sữa được chọn có đủ 3 loại.
3
11
p
Đáp số:
Trong đợt ứng phó dịch MERS-CoV, Sở y tế thành phố đã chọn ngẫu nhiên 3 đội
phòng chống dịch cơ động trong số 5 đội của Trung tâm y tế dự phòng thành phố và 20 đội
của các trung tâm y tế cơ sở để kiểm tra công tác chuẩn bị. Tính xác suất để có ít nhất 2 đội
của các Trung tâm y tế cơ sở được chọn.
Đáp số:
209
230
p
Học sinh A thiết kế bảng điều khiển tự mở cửa phòng học của lớp mình. Bảng gồm
10 nút, mỗi nút được ghi một số từ 0 đến 9 và không có hai nút nào cùng ghi một số. Để mở
cửa cần nhấn liên tiếp 3 nút khác nhau sao cho 3 số ghi trêm 3 nút đó theo thứ tự đã nhấ tạo
thành một dãy số tăng và có tổng bằng 10. Học sinh B không biết quy tắc mở cửa trên, đã
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Trang 20
nhấn liên tiếp 3 nút khác nhau trên bẳng điều khiển. Tính xác suất để B mở được cửa phòng
đó.
Đáp số:
1
90
p
Một tổ gồm 9 học sinh nam và 3 học sinh nữ. Cần chia tổ thành 3 nhóm, mỗi nhóm 4 người đi
làm 3 công việc khác nhau. Hỏi có bao nhiêu cách chia khác nhau ? Tính xác suất để khi chia
ngẫu nhiên ta được mỗi nhóm có đúng 1 nữ.
Đáp số:
16
55
Một hộp chứa
4
quả cầu màu đỏ,
5
quả cầu màu xanh và
7
quả cầu màu vàng. Lấy ngẫu
nhiên cùng lúc ra
4
quả cầu từ hộp đó. Tính xác suất sao cho
4
quả cầu được lấy ra có đúng
một quả cầu màu đỏ và không quá hai quả cầu màu vàng.
740 37
1820 91
p
Đáp số:
Một khối lập phương có các mặt quét sơn được cưa thành 1000 khối lập phương con đều
nhau. Trộn kỹ chúng rồi rút hú họa một khối. Tính xác suất rút được khối có hai mặt đã quét
sơn.
Đáp số:
96
1000
Một học sinh đi thi môn lịch sử chỉ nắm được 20 trong số 25 câu hỏi của chương trình. Mỗi
phiếu thi gồm 3 câu. Tính xác suất để anh ta trả lời được cả 3 câu hỏi
Đáp số:
57
115
Cho E là tập các số tự nhiên gồm 5 chữ số khác nhau được lập từ các chữ số: 0,1,2,3,4,5,6,7.
Lấy ngẫu nhiên một số trong E. Tính xác suất để lấy được số chia hết cho 5.
Đáp số:
1560 13
5880 49
p
Cho tập
1,2,3,4,5E
. Viết ngẫu nhiên lên bảng hai số tự nhiên, mỗi số gồm 3 chữ số đôi
một khác nhau thuộc tập E. Tính xác suất để trong hai số đó có đúng một số có chữ số 5.
Đáp số:
13 12
1
25 25
p
Trong một kì thi, thí sinh được phép thi 3 lần. Xác suất lần đầu vượt qua kì thi là 0,9. Nếu
trượt lần đầu thì xác suất vượt qua kì thi lần hai là 0,7. Nếu trượt cả hai lần thì xác suất vượt
qua kì thi ở lần thứ ba là 0,3. Tính xác suất để thí sinh thi đậu.
0,979.p
Đáp số:
Hai xạ thủ cùng bắn một phát vào bia. Xác suất trúng đích của người thứ nhất là 0,9, của
người thứ hai là 0,7. Tính các xác suất sau đây:
a) Cả hai phát đều trúng. b) Ít nhất một phát trúng.
c) Chỉ một phát trúng.
Đáp số: 1)
0,63
2)
0,97
3)
0,34
.
-----HẾT-----
| 1/20

Preview text:

BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH sin sin B B N M M acoscos A' A a A' A N B' B'  
sin x  1  x   k 2 (B)
 cos x 1 x k2 ; (A) 2    cos x  1
  x    k2 ; (A’)
sin x  1  x    k 2 (B’) 2  
cos x  0  x   k  (B, B’)
 sin x  0  x k (A, A’) 2
Dạng toán 1. Tìm tập xác định của hàm số: u  Hàm số y
: Điều kiện xác định là v  0  Hàm số y
v : Điều kiện xác định là v  0 v
Tìm tập xác định của hàm số: 2sin x 1 3cos 2x a) 2
y  2 sin x  2 b) y
c) y  sin x  cos x cos x 1 sin x  3 2 3  cos x d) y  e) y  3  f) y  sin x 1 sin x sin x 1 2sin x 1 3 1 cos x d) y  e) y  f) y  cos 2x sin 3x 1 cos 2x 1
Tìm tập xác định của hàm số: a) y  tan x
b) y  tan 2x
c) y  cot x  sin x      
d) y  tan x   
e) y  tan x   
f) y  3cot 2x 1  4   3 
Dạng toán 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
Ghi nhớ các chặn cơ bản sau:  1
  sin x, cos x  1  2 2
0  sin x, cos x  1  0  sin x , cos x  1
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
a) y  2sin x  3
b) y  5 cos x  3 c) 2
y  3sin x 1 Trang 1
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH 2 1 2 sin x
d) y  2 3cos x
e) y  1 3  cos x f) y  3 g) y  2  cos x 1
h) y  2 sin 2x  5 i) 2
y  4  4 cos x  3
k) y  3 sin x  cos x
l) y  3 cos x  sin x  2
m) y  sin 2x  3 cos 2x 1 y
u    k 2
sin u a 1  a  1  k   . B      
u      k 2 N a M  - Trong đó = shift sin a  x
A B k 2 A' A
 sin A  sin B  
A    B k 2 
Lưu ý:  sin B  sin BB' y u     k2 B
 cosu a  1   a   1  k   . M
u    k2  Trong đó = shift cos a  x
A B k 2 A' a A
 cos A  cos B - 
A  B k 2 
Lưu ý:  cos B  cos   BN B'
tan u a u    k k . Trong đó = shift tan a
 Lưu ý: Trong trường hợp  “quá xấu”, ta dùng kí hiệu: arcsin a, arccos a, arctan a AA
Dạng toán 1. Phương trình bậc nhất đối với một hàm số lượng giác
 Bước 1: Đúng dạng sin u  ; a cos u  ; a tan u  ;
a cot u a
 Bước 2: Bấm máy quy đổi a về  , ráp vào công thức
 Bước 3: Thu gọn tìm x
Giải các phương trình sau: 3 1  2  a) sin x   b) sin 3x  c) sin 2x   1   2 2  3  Trang 2
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH    2  3  1 d) sin x   0   e) sin 3x    
f) 2 sin  x  45  1  0  4  2  4  2 Giải các phương trình: 3 a) cos 2x   b) 2 cos 2x 1  0
c) cos 3x cos x  2  0 2  2     d) 2 cos x   3  0 0   e) 2 cos  2x  1  0  
f) cos  x  30  1  0  3   6  Giải các phương trình:     2  a) tan x   1   b) 3 tan 2x 1  0 c) tan  x  0    4   3     3 d) cot 2x   1  3
e) 3 cot 2x  1  0 f) cot 3x      2  3 Giải các phương trình: a) sin x   1 2cos x  
1  0 b) cos x   1 2cos x   1  0
c) cos x2sin 3x   1  0 d) 2 2 cos x  2cos . x sin x  0 Giải các phương trình:
a) sin 3x  sin 2x
b) sin 2x  sin x  0
c) sin 5x  sin x  0
d) cos 2x  cos x  0
e) cos 2x  cos x  0
f) cos 2x  sin x  0
Dạng toán 2. Phương trình bậc hai đối với một hàm số lượng giác.
Đặt ẩn phụ t  sin x ; cos x ; tan x ; cot 
x , giải tìm t. Sau đó thay trở lại, tìm x. 2 2
sin x  1 cos x  2 2
sin x  cos x  1
 sin 2x  2sin xcos x 2 2
cos x  1 sin x sin x cos x 1 cos 2x  tan x  cot x   2 2
cos 2x  2 cos x 1 cos x  cos x sin x 2 1 1 1 cos 2x  2 1 tan x  2 cos x   2 2
cos 2x  1 2sin x sin x  2 cos x 2 1 tan x 2 1 1 2tan x  2 1 cot x  2 sin x   tan 2x  2 sin x 2 1 cot x 2 1 tan x Giải các phương trình a) 2
sin x  3sin x  2  0 b) 2
2sin x 3sin x 1 0 c) 2
sin 2x 3sin 2x  0 x x d) 2 2sin  2 sin  0 e) 2
6sin 2x sin 2x 1  0 f) 2
3sin 3x  4sin 3x  4  0 2 2 Giải các phương trình a) 2
6cos x  cos x 1  0 b) 2
4cos 2x  4cos 2x 3  0 c) 2
2cos x  5cos x  3  0 x x d) 2
2 cos x  3 cos x  0 e) 2
2cos x  cos x  6  0 f) 2 cos  2cos 1  0 2 2 Trang 3
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH Giải các phương trình a) 2
2 tan x  5tan x  3  0 b) 2
2 tan 2x  tan 2x  6  0 c) 2
tan x  3 tan x  0 d) 2
3cot x  4cot x  4  0 e) 2 3cot x 1 0 f) 2
cot x  cot x  6  0 Giải các phương trình a) 2
2cos x  5sin x  4  0 b) 2
2sin x 5cos x  4  0
c) 2 tan x  cot x  3  0
d) 3cos 2x  7 cos x  4  0 2 x e) 2
5 sin x  2  3(1  sin x) tan x
f) cos 2x  cos x  4sin 1 2
Dạng toán 3. Phương trình asinx + bcosx = c
 Điều kiện có nghiệm: 2 2 2
a b c
 Chia hai vế phương trình cho 2 2 a b  sin .
x cos y  cos .
x sin y  sin  x y   cos .
x cos y  sin .
x sin y  cos  x y Giải các phương trình
a) sin x  3 cos x  1
b) 3 sin x  cos x  2
c) 3 cos 2x  sin 2x  1
d) 3 cos x  sin x  0
e) sin 2x  cos 2x  2  0
f) cos 3x  sin 3x  1 Giải các phương trình
a) sin 2x  cos 2x  1
b)  cos x  3 sin x  2
c) sin 3x  3 cos 3x  0 Giải các phương trình
a) 3sin x  4 cos x  5
b) 2 cos 2x  3sin 2x  13
c) sin x  3 cos x  2 sin 2x d) 2
3 sin 2x  2 sin x  2
e) cos 7x cos 5x  3 sin 2x  1 sin 7x sin 5x =
Dạng toán 4. Một số phương trình đưa về dạng tích số: . = ⇔ ⬚ =
Giải các phương trình sau bằng cách đưa về dạng tích số.
sin x  sin 3x  sin 2x  0
b) sin 3x  cos 2x  sin x  0 (D.13) c) 2
sin 5x  2 cos x  1 (B.13) d) 2
2 sin 2x  sin 7x 1  sin x
e) sin x  4cos x  2  sin 2x (A.14)
f) 2 sin x  2cos x  2  sin 2x (B.14) g) 3
2cos x  cos 2x  sin x  0
h) sin 2x  2cos 2x  1 sin x  4cos x
i) 2cos 4x  cos 2x  3  3 cos 2x  sin 2x k) 6 6 x x   8 8 cos sin
2 cos x  sin x Trang 4
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Dạng toán 6. Phương trình đẳng cấp bậc hai, bậc ba
 TH1: cos x  0  sin x  1
  : Thử trực tiếp vào PT
 TH2: cos x  0 : Chia 2 vế PT cho 2 cos x  3
cos x , đưa PT đã cho theo hàm số tan Giải phương trình a) 2 2 2 cos x  3sin .
x cos x  sin x  0 b) 2 2
sin x  sin 2x  3cos x  2  0 c) 2 2
4 sin x  3 3 sin 2x  2 cos x  4 d) 2
4 cos x  sin 2x  3  0 e) 3 3 2 2
sin x  3cos x  3sin . x cos x  sin .
x cos x  0 f) sin 2x  2 tan x  3
Dạng toán 7. Phương trình lượng giác có so sánh điều kiện để nhận, loại nghiệm. Giải phương trình x x   2 cos 2 sin 3 2  2 cos x 1 x     x  2 5 sin 2 3 1 sin tan x b)  1 1 sin 2x 6 6
sin 2x  2 cos x  sin x 1
2sin x  cos x  sin x cos x c)  0 d)  0 tan x  3 2  2 sin x Trang 5
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Mô tả, liệt kê  Đếm
 Từ liên kết “hoặc”
Số kết quả ít, dễ nhìn thấy và mô tả.
 Mỗi trường hợp, xong công việc. QTĐ cơ bản
 Từ liên kết “và”
Số kết quả nhiều, khó mô tả.
 Kết hợp hết mới xong công việc. Suy luận lôgic
 Chọn n phần tử xếp vào n vị trí
 Có quan tâm vị trí sắp xếp. QTĐ nâng cao
 Chọn k phần tử trong n phần tử
 Xắp xếp theo vị trí
 Chọn k phần tử trong n phần tử để
tạo thành một nhóm (tập con).
 Không quan tâm vị trí xếp
Dạng toán 1. Vận dụng hai quy tắc đếm cơ bản
Trên kệ sách có 5 sách Toán, 6 sách Lý và 7 sách Văn học.
a) Có bao nhiêu cách chọn ra một quyển sách từ kệ sách
b) Có bao nhiêu cách chọn ra 3 quyển sách sao cho 3 quyển được chọn có đủ cả ba loại. Đáp số: a) 18 b) 210
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn, mỗi đội chỉ
được trình diễn 1 vở kịch, 1 điệu múa và 1 bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách
chọn chương trình biểu diễn, biết rằng chất lượng các vở kịch, điệu múa, các bài hát là như nhau? Đáp số: 36.
Một người có 7 cái áo trong đó có 3 áo trắng và 5 cái cà vạt trong đó có hai cà vạt màu vàng.
Hỏi người đó có bao nhiêu cách chọn áo – cà vạt nếu:
a) Chọn áo nào cũng được và cà vạt nào cũng được?
b) Đã chọn áo trắng thì không chọn cà vạt màu vàng? Trang 6
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH Đáp số: a) 35. b) 29.
Từ các số 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên: a) gồm 3 chữ số
b) gồm ba chữ số khác nhau
c) gồm ba chữ số khác nhau và số tạo thành là số tự nhiên chẵn
d) gồm 3 chữ số khác nhau và số tạo thành là một số tự nhiên lẻ
e) gồm 3 chữ số khác nhau và số tạo thành luôn có mặt số 1 Đáp số: a) 216 b) 120 c) 60 d) 60 e) 60
Từ các số 0, 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên: a) gồm 3 chữ số
b) gồm ba chữ số khác nhau
c) gồm ba chữ số khác nhau và số tạo thành là số tự nhiên chẵn
d) gồm 3 chữ số khác nhau và số tạo thành luôn có mặt số 1 Đáp số: a) 294 b) 180 c) 105 d) 80
Dạng toán 2. Các bài toán chọn, rút, phân chia các đối tượng trong tập hợp
Cấu trúc : “Chọn k phần tử trong n phần tử”
 Nếu bộ k phần tử chọn ra có xếp vị trí  Số cách: k A n
 Nếu bộ k phần tử chọn ra chỉ đơn giản là tạo thành một nhóm  Số cách: k C n
Cho 7 điểm phân biệt trên một đường tròn.
a) Hỏi có bao nhiêu đoạn thẳng được tạo thành 
b) Hỏi có bao nhiêu véc tơ (khác 0 ) được tạo thành
c) Hỏi có bao nhiêu tam giác được tạo thành. Đáp số: a) 21 b) 42 c) 35
Một lớp học có 34 học sinh.
a) Có bao nhiêu cách chọn ra 3 học sinh để đi trực trường
b) Có bao nhiêu cách chọn ra 3 học sinh để làm ban cán sự lớp gồm 1 lớp trưởng, 1 lớp phó và 1 thủ quỹ. Đáp số: a) 5984 b) 35904
Một lớp học có 40 học sinh trong đó có 25 học sinh nam và 15 học sinh nữ. Cần chọn một
nhóm học sinh gồm 3 người. Hỏi có bao nhiêu cách:
a) chọn 3 học sinh bất kì
b) chọn 3 học sinh gồm 1 học sinh nam và 2 học sinh nữ
c) chọn 3 học sinh trong đó có ít nhất 1 học sinh nam Đáp số: a) 9880 cách b) 2625 cách c) 9425 cách
Một đội xây dựng gồm 10 công nhân, 3 kĩ sư. Để lập một tổ công tác cần 1 kĩ sư làm tổ
trưởng, 1 công nhân làm tổ phó và 5 công nhân tổ viên. Hỏi có bao nhiêu cách thành lập tổ công tác Đáp số: 3780 cách
Có 10 câu hỏi gồm 4 câu lý thuyết và 6 câu bài tập. Có bao nhiêu cách tạo ra một đề thi gồm
3 câu hỏi có đủ cả lý thuyết và bài tập. Đáp số: 96 đề Trang 7
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Một hộp đựng 4 viên bi đỏ, 5 viên bi trắng và 6 viên bi vàng. Có bao nhiêu cách chọn ra 4 viên bi từ hộp sao cho:
a) 4 bi được chọn có đủ đủ ba màu.
b) 4 viên bi được chọn không đủ ba màu. Đáp số: a) 720 cách b) 645 cách
Cho hai đường thẳng song song d d . Trên d lấy 17 điểm phân biệt, trên d lấy 20 1 2 1 2
điểm phân biệt. Tính số tam giác được tạo thành từ các điểm trên. Đáp số: 5950 tam giác
Một trường tiểu học có 50 học sinh đạt danh hiệu cháu ngoan Bác Hồ, trong đó có 4 cặp sinh
đôi. Cần chọn một nhóm gồm 3 học sinh trong số 50 học sinh trên để đi dự Đại hội cháu
ngoan Bác Hồ sao cho trong nhóm không có cặp sinh đôi nào. Hỏi có bao nhiêu cách chọn Đáp số: 19408 cách
Trong một môn học, thầy giáo có 30 câu hỏi khác nhau gồm 5 câu hỏi khó, 10 câu hỏi trung
bình, 15 câu hỏi dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5
câu hỏi khác nhau sao cho trong mỗi đề nhất thiết phải có đủ ba loại câu hỏi (dễ, khó, trung
bình) và số câu hỏi dễ không ít hơn 2. Đáp số: 56875 đề
Một đội thanh niên tình nguyện có 15 người, gồm 12 nam và 3 nữ. Hỏi có bao nhiêu cách
phân bố đội thanh niên này về 3 tỉnh miền núi sao cho một tỉnh có 4 nam và 1 nữ Đáp số: 207900 cách
Một lớp gồm có 10 học sinh nam và 15 học sinh nữ. Trong buổi sinh hoạt đầu năm của lớp,
giáo viên chủ nhiệm cần chọn ra 3 học sinh làm cán bộ lớp gồm một lớp trưởng, một lớp phó
và một thủ quỹ. Giáo viên chủ nhiệm có bao nhiêu cách chọn nếu:
a) ba học sinh được chọn là tùy ý (không phân biệt nam, nữ)
b) ba học sinh được chọn thủ quỹ phải là nữ và cán bộ lớp phải có nam. Đáp số: a) 3 A cách b) 1 C  1 1 2 2C C  2C  5550 cách 15 10 14 10  25
Trong mặt phẳng cho 8 điểm phân biệt sao cho không có bất kì 3 điểm nào thẳng hàng. Hỏi:
a) Có bao nhiêu đoạn thẳng nối liền các điểm đó
b) Có bao nhiêu tam giác mà các đỉnh là các điểm đó.
c) * Nếu 8 điểm trên tạo thành một đa giác lồi thì số đường chéo của đa giác đó là bao nhiêu. Đáp số: a) 28 b) 56 c) 20
Một hộp đựng 5 viên bi trắng, 6 viên bi đỏ và 7 viên bi vàng.
a) Có bao nhiêu cách chọn ra một viên bi từ hộp trên
b) Có bao nhiêu cách chọn ra ba viên bi có đầy đủ ba màu
c) Có bao nhiêu cách chọn ra 4 viên bi trong đó có ít nhất 1 viên bi đỏ Đáp số: a) 18 b) 210 c) 2565
Có bao nhiêu cách tặng 5 món quà cho ba người sao cho người nào cũng có quà. Đáp số: 150
Có 5 cuốn sach giáo khoa giống nhau và 4 cuốn sách tham khảo đôi một khác nhau. Đem làm
giải thưởng cho 8 học sinh, mỗi học sinh được một cuốn sách (còn thừa lại 1 cuốn). Hỏi có
bao nhiêu cách để phát thưởng. Đáp số: 3024 Trang 8
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Dạng toán 3. Các bài toán xếp vị trí
Có bao nhiêu cách xếp 5 học sinh A, B, C, D, E vào 1 ghế dài sao cho a) C ngồi chính giữa
b) A và E ngồi ở hai đầu ghế Đáp số: a) 24 b) 12
Một nhóm học sinh gồm 7 học sinh nam và 3 học sinh nữ.
a) Có bao nhiêu cách xếp 10 học sinh này thành một hàng dọc
b) Có bao nhiêu cách xếp 10 học sinh này thành hàng học sao cho 7 học sinh nam phải đứng cạnh nhau.
Đáp số: a) 10! 3628800 b) 4.7!.3!120960
Có bao nhiêu cách xếp 5 học sinh A, B, C, D, E vào một ghế dài 5 chỗ ngồi sao cho:
a) 5 học sinh này ngồi tùy ý b) A, B ngồi đầu bàn c) A, B ngồi cạnh nhau
d) A, B không ngồi cạnh nhau Đáp số: a) 120 b) 12 c) 48 d) 120 – 48 = 72
Dạng toán 4. Các bài toán đếm số tự nhiên có k chữ số thỏa điều kiện cho trước
Gọi abcd... là dạng số cần lập. Khi tiến hành chọn các vị trí (hàng đơn vị, chục, trăm,...) cần quan tâm một số ý sau:
 Số cần lập các chữ số có khác nhau hay không?
 Chữ số đâu tiên phải khác 0 a  0
 Thường thì ở vị trí hàng nào bị ràng buộc điều kiện thì ta ưu tiên chọn trước.
 Các dấu hiệu chia hết:
 Dấu hiệu chia hết cho 2: số tự nhiên có tận cùng là số chẵn
 Dấu hiệu chia hết cho 5: Số tự nhiên có tận cùng là số 0 hoặc 5
 Dấu hiệu chia hết cho 3: Số tự nhiên có tổng các chữ số chia hết cho 3.
Cho các số 1, 2, 5, 7, 8. Có bao nhiêu cách lập ra một số tự nhiên gồm 3 chữ số khác nhau
(các số lấy ra từ 5 số trên) sao cho:
a) Số tạo thành là một số chẵn
b) Số tạo thành không có chữ số 7
c) Số tạo thành nhỏ hơn 278 Đáp số: a) 24 số b) 24 số c) 20 số
Cho các chữ số 0, 2, 4, 5, 6, 8, 9. Từ các số trên:
a) có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau.
b) có thể lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau, trong đó nhất thiết phải có mặt chữ số 5. Đáp số: a) 180 số b) 420 số.
Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số này,
a) có thể lập ra được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau.
b) có thể lập ra được bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và chia hết cho 5.
c) có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và không bắt đầu bởi 1 Trang 9
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH Đáp số: a) 156 số b) 36 số c) 240 số
Từ các số 0, 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên chẵn, mỗi số có 5 chữ số
khác nhau. Đáp số: 1260 số
Có 100.000 chiếc vé xổ số được đánh số từ 00.000 đến 99.999. Hỏi các vé gồm 5 chữ số khác
nhau là bao nhiêu? Đáp số: 30240 vé
Xét các số tự nhiên gồm 5 chữ số khác nhau, thành lập từ các chữ số 1, 2, 3, 4, 5. Hỏi trong
các số đó có bao nhiêu số không bắt đầu bởi chữ số 1 Đáp số: 96
Xét các số tự nhiên gồm 5 chữ số khác nhau, thành lập từ các chữ số 1, 2, 3, 4, 5. Hỏi trong
các số đó có bao nhiêu số bắt đầu bởi chữ số 5. Đáp số: 24
Từ 7 chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau
thỏa điều kiện số tạo thành luôn có mặt chữ số 7 và chữ số hàng ngàn là chữ số 1 Đáp số: 60
Cho 7 chữ số 1, 2, 3, 4, 5, 6, 7. Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và luôn có
mặt chữ số 7 được viết từ các chữ số đã cho Đáp số: 480
Cho các số 1, 2, 5, 7, 8. Có bao nhiêu cách lập ra một số gồm 3 chữ số khác nhau từ 5 chữ số
trên thỏa điều kiện số tạo thành là 1 số chẵn Đáp số: 24
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 ta có thể thành lập bao nhiêu số tự nhiên có 5 chữ số khác
nhau và trong đó có chữ số 4. Đáp số: 1560
Với các chữ số 0, 1, 2, 3, 4, 5, 6 ta có thể thành lập bao nhiêu số tự nhiên gồm 5 chữ số khác
nhau trong đó phải có mặt chữ số 5. Đáp số: 1560
Với các chữ số 0, 1, 2, 3, 4, 5 ta có thể thành lập ra được bao nhiêu số tự nhiên chẵn, mỗi số
gồm 5 chữ số khác nhau. Đáp số: 312
Cho các số 1, 2, 3, 4, 5, 6, 7. Tìm các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho
các chữ số đều khác nhau Đáp số: 2520
Cho tập E  0,1, 2,3, 4,5,6, 7,8, 
9 . Hỏi có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau
được lấy từ E mà chia hết cho 5? Đáp số: 5712
Có bao nhiêu số tự nhiên gồm 5 chữ số mà các chữ số đều lớn hơn 4 và đôi một khác nhau?
Tính tổng của tất cả các số tự nhiên vừa lập được.
Đáp số: Số tự nhiên: 120 số; tổng các số là: 9333240
Từ các số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác
nhau và số tạo thành không chia hết cho 10 Trang 10
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH Đáp số: 1260 số
Có bao nhiêu số tự nhiên khác nhau nhỏ hơn 10000 được tạo thành bởi 5 số 0, 1, 2, 3, 4 Đáp số: 625 số
Từ các số 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau sao
cho số cần lập có đúng 2 chữ số chẵn và 2 chữ số lẻ Đáp số: 2 2 C C .4!  216 số 3 3
Từ các số 0, 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau
sao cho số cần lập có đúng 2 chữ số chẵn và 2 chữ số lẻ Đáp số: 378
Có bao nhiêu số tự nhiên gồm 4 chữ số có dạng abcd với a b c d Đáp số: 210
Từ các số 1, 2, 3, 4, 5, 6 có thể lập ra được bao nhiêu số tự nhiên gồm sáu chữ số khác nhau
thỏa mãn điều kiện hai chữ số 1 và 6 không đứng cạnh nhau. Đáp số: 480 số
Từ các số 0, 1, 2, 3, 4, 5 có thể lập ra được bao nhiêu số tự nhiên gồm 8 chữ số, trong đó số 1
có mặt 3 lần, các chữ số còn lại có mặt đúng 1 lần Đáp số: 5880 số
Từ các số 1, 2, 3, 4, 5, 6,7, 8 có thể lập ra được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau
và số tạo thành luôn có hai chữ số 1 và 2. Đáp số:
Tìm tất cả các số tự nhiên có 5 chữ số sao cho:
a) trong mỗi số đó chữ số đứng sau lớn hơn chữ số liền trước.
b) trong mỗi số đó chữ số liền trước lớn hơn chữ số liền sau. Đáp số: a) 5 C số b) 5 C số 9 10
Cho mười chữ số 0, 1, 2, 3,…, 9. Có bao nhiêu số tự nhiên lẻ gồm 6 chữ số khác nhau, nhỏ
hơn 600000 được xây dựng từ 10 số trên. Đáp số: 36960 số
Dạng toán 5. Giải các phương trình tổ hợp  Công thức:
 P  n!  1.2.3... n  2 n 1 n ( n   *) n    n! k  A 
( n, k   * và k  n ) n n  k! n!  k C 
( n, k   * và k  n ) n k  ! n  k!  Tính chất:  k k A  C .k!  k n k C C    k 1  k k C  C  C n n n n n n n 1  Trang 11
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH Giải các phương trình: a) 2 C  45 b) 3 A  2  506 c) 3 n 2 A C  14n n n n n d) n2 2 C
 6n  5  A e) 1 n2 3 3C  8C  3C f) 1 C C C n n n  2 3  n n  2 6  9 14 n n 1  n 1  n 2 n 1  Đáp số: a) n 10 b) n  9 c) n  5 d) n 10 e) vô nghiệm f) n  7 4 3 A  3A Biết 2 2 2 2 C  2C  2CC
 149 , với n*. Tính giá trị biểu thức n 1  M n n 1  n 2 n3 n 4 n   1 ! 3
Đáp số: n  5  M  4
Cho hai đường thẳng song song d , d . Trên d có 6 điểm phân biệt, trên d có n điểm phân 1 2 1 2
biệt n  2 . Biết rằng có 288 tam giác được tạo thành từ n6 điểm trên d d . Tìm n 1 2 Đáp số: n  8
a) Cho một đa giác đều n đỉnh n  3 . Tìm n, biết rằng đa giác đã cho có 27 đường chéo. Đáp số: n  9
b) Cho tập A gồm n phần tử n  4 . Tìm n, biết rằng số tập con gồm 4 phần tử của A bằng 20
lần số tập con gồm 2 phần tử của A. Đáp số: n 18 Trang 12
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH nn a b 0 n 1 n 1   C a C a b  ... k n  k k C a b  ... n n k n  C b   k k C a b n n n n n k 0
Dạng toán 1. Khai triển nhị thức
Khai triển các nhị thức: a)  x  4 2 b)  x  6 2 1 c)  x  6 2 7  2  d)  x  5 2 1 e) x   
f)  x y5 2  x  5  2  g)  4 2  x
h) x x  6 2 1 i) 2 x     x  6 6  x   1 
k) x   x5 2 1 2 l) 2    m)  2  x   2   2x
Dạng toán 2. Tìm hệ số (số hạng) của
trong khai triển P(x) thành đa thức
Cách 1: Khai triển P(x). Từ đó trả lời kết quả hệ số của k x n k nk k
Cách 2: Sử dụng khai triển tổng quát C a b n
(Nhớ xác định a, b, n cho chính xác) k 0
 Bước 1: Xác định a, b, n và ráp vào công thức trên
 Bước 2: Thu gọn phần hệ số và phần biến trong công thức vừa lập.
 Bước 3: Đồng nhất lũy thừa của biến với yêu cầu đề. Từ đây, suy ra kết quả. 18  1   
Tìm hệ số của số hạng chứa 12
x trong khai triển nhị thức Niutơn của x  2    x  Lời giải
♥ Khai triển nhị thức Niutơn ta có: 18 k 18 18  1    k k  1 k 18 x
   C .x . k    
 C .  18 3 1 .  k x 2 18   2 18     x   k0 x k0
♥ Chọn k thỏa mãn: 18 3
k 12 k 2
♥ Vậy hệ số của số hạng chứa 12
x trong khai triển là  2 2 1 C 153 .  18 18  1   
Tìm hệ số của số hạng không chứa x trong khai triển nhị thức Niutơn của x  2    x  Lời giải
♥ Khai triển nhị thức Niutơn ta có: Trang 13
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH 18 k 18 18  1    k k  1 k 18 x
   C .x . k    
 C .  18 3 1 .  k x 2 18   2 18     x    x k 0 k0
♥ Chọn k thỏa mãn: 183k  0  k  6
♥ Vậy số hạng không chứa x trong khai triển là  6 6 1 C 18564 .  18
Tìm hệ số của số hạng chứ 5 x trong khai triển: a)  x  9 3 b)  x  12 2 1 Đáp số: a) 10206 b) 25344
Tìm hệ số của số hạng chứ 15
x trong khai triển  x x 12 2 3  Đáp số: 9 9 3  C 12 Tìm hệ số của 3 x trong khai triển: 6 12  2   1  a) x   b) 2x  2     x   x  Đáp số: a) 12 b) 8 8 2 C 12
Tìm số hạng không chứa x trong khai triển: 10 8  1   1  a) x  3  b) x  4     x   x  Đáp số: a) 45 b) 28 Tìm hệ số của 4 9
x y trong khai triển   13 2x y . Đáp số: -11440 4 5
a) Khai triển và rút gọn 2x  
1  3  x thành đa thức. 8 10
b) Trong khai triển và rút gọn của 1 2x  1 3x , hãy tính hệ số của 3 x . Đáp số: b) 2792 15  2  Xét khai triển của 2 x  
 . Tìm hệ số của số hạng chứa 3 x x  Đáp số: C  2  9 9 15 n
Xét khai triển 1 2x 2
a a x a x  ...  n
a x . Tìm a , biết a a a  71 0 1 2 n 5 n 1 2
Đáp số: n  7  a  672 5 n  1 
Tìm số hạng không chứa x trong khai triển 2 x   , biết 1 3
C C  13n 3  n nx
Đáp số: n 10 . Hệ số cần tìm 210
Giả sử khai triển 1 2x15 2 15
a a x a x  ...  a x . 0 1 2 15 Trang 14
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH a) Tính a . 9
b) Tính a a a  ...  a . 0 1 2 15 Đáp số: a) 9 9 C 2 b) 15 S  3 15 n
a) Biết rằng hệ số của 2
x trong khai triển của 1 3x bằng 90. Tìm n. n
b) Trong khai triển của  x   1 , hệ số của n 2
x  bằng 45. Tính n.
Đáp số: a) n  5 b) n  10 5 6 Cho Px 2
x x  2  x1 2x
Khai triển Px thành đa thức. Tìm hệ số chứa 4
x trong khai triển trên.
Đáp số a) P x 7 6 5 4 3 2
 65x 182x  280x  80x 140x  20x x b) 80  n   Tìm hệ số của 7
x trong khai triển nhị thức Niu-tơn của 2 2 x  
 , biết rằng n là số nguyên  x  dương thỏa mãn 3 2 3 4C  2C A . n1 n n
Đáp số: n  11, k  5,C  2  5 5 11
Cho n là số nguyên dương thỏa mãn 1 3 5 n C
C . Tìm số hạng chứa 5
x trong khai triển nhị n n n 2  nx 1  thức Niu-tơn    , với x  0. 14 x   35 5
Đáp số: n  2   x 16 n
a) Cho khai triển 1  2x 2
a a x a x  ... na x , trong đó *
nN và các hệ số 0 1 2 n a a a
a , a , ..., a thỏa mãn 1 2 a    ... n   4096 . Tìm a 1 2 n 0 2 2 2 2n 8
Đáp số: n  12  a  126720 8
b) Tìm hệ số của số hạng chứa 10 n
x trong khai triển 2  x , biết: n 0 n 1  1 n2 2 n3 3 n 3 C  3 C  3 C  3 C  ...  C n n n n   1 n  2048 n
Đáp số: n  11, Hệ số cần tìm 22 Trang 15
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
 Đếm số kết quả của tập không gian mẫu:
Mô tả phần tử tập hợp  Đếm n 
Suy luận (Theo các quy tắc đếm)
 Đếm số kết quả của tập biến cố A (Tập A là tập con của tập  )
Mô tả phần tử tập hợp  Đếm n A
Suy luận (Theo các quy tắc đếm nA
 Xác suất cần tìm p A  n 
 0  p A  1
 Gọi A là biến cố đối của A. Khi đó: p A  1 p A
Một hộp đựng 3 viên bi xanh, 4 viên bi đỏ và 5 viên bi vàng. Chọn ngẫu nhiên 3 viên
bi. Tính xác xuất để 3 viên bi được chọn có đủ cả ba màu. Lời giải
♥ Số phần tử của không gian mẫu là: n  3   C  220 12
♥ Gọi A là biến cố: “3 viên bi được chọn có đủ cả ba màu”
Số kết quả thuận lợi cho biến cố A là: n  1 1 1
A C C C  60 3 4 5 n  A 60 3
♥ Vậy xác suất cần tính là P  A     n   220 11
Trong một lớp học gồm có 15 học sinh nam và 10 học sinh nữ. Giáo viên gọi ngẫu
nhiên 4 học sinh lên bảng giải bài tập. Tính xác suất để 4 học sinh được gọi có cả nam và nữ. Lời giải
♥ Số phần tử của không gian mẫu là: n  4   C 12650 25
♥ Gọi A là biến cố: “4 học sinh được gọi có cả nam và nữ” Trang 16
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
Số kết quả thuận lợi cho biến cố A là: n  1 3 2 2 3 1
A C C C C C C 11075 15 10 15 10 15 10 n  A 11075 443
♥ Vậy xác suất cần tính là P  A    .  n   12650 506
Gọi S là tập hợp tất cả các số tự nhiên gồm bốn chữ số phân biệt được chọn từ các chữ số
1, 2, 3, 4, 5, 6. Chọn ngẫu nhiên 1 số từ S, tính xác suất để số được chọn có mặt chữ số 6. Bài giải
♥ Số phần tử của không gian mẫu là: n  4   A  360 6
♥ Gọi A là biến cố: “số được chọn có mặt chữ số 6”
Số kết quả thuận lợi cho biến cố A là: n  3
A  4.A  240 5 n  A 240 2
♥ Vậy xác suất cần tính là P  A    .  n   360 3
Gọi S là tập hợp tất cả các số tự nhiên gồm ba chữ số phân biệt được chọn từ các số 1, 2,
3, 4, 5, 6. Chọn ngẫu nhiên 1 số từ S, tính xác suất để số được chọn có tổng các chữ số bằng 8. Bài giải
♥ Số phần tử của không gian mẫu là: n  3   A 120 6
♥ Gọi A là biến cố: “số được chọn có tổng các chữ số bằng 8”
Số kết quả thuận lợi cho biến cố A là: n  A 12 n  A 12 1
♥ Vậy xác suất cần tính là P  A    .  n   120 10
------------------------------------------
Chọn một số nguyên dương nhỏ hơn 9. Tính xác suất để
a) Số được chọn là số nguyên tố
b) Số được chọn là một số chia hết cho 3 1 1 Đáp số: a) b) 2 4
Giem một con xúc sắc cân đối đồng chất 2 lần. Tính xác suất của các biến cố
A: “Lần thứ 2 xuất hiện mặt 6 chấm”
B” Số chấm trong hai lần gieo giống nhau”
C” Tổng số chấm trong 2 lần gieo bằng 8”
D“ Tổng hai lần gieo không vượt qua 10”
E” Tổng số chấm trong hai lần gieo lớn hơn 3” 1 1 5 11 11
Đáp số: p A  p B  p C   p D  p E   6 6 36 12 12
Cho 8 quả cân có trọng lượng lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu
nhiên 3 quả cân trong số đó. Tính xác suất để 3 quả cân được chọn có trọng lượng không vượt quá 9kg. Trang 17
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH 1 Đáp số: 7
Một lô hàng có 10 sản phẩm, trong đó có 2 phế phẩm. Lấy 6 sản phẩm từ lô hàng đó. Tính xác
suất để trong 6 sản phẩm lấy ra đó có không quá một phế phẩm. 2 Đáp số: 3
Một cái bình đựng 4 quả cầu xanh và 6 quả cầu vàng. Lấy ra 3 quả cầu từ bình. Tính xác suất để
a) được đúng 2 quả cầu xanh ; b) được đủ hai màu ;
c) được ít nhất 2 quả cầu xanh. 3 4 1 Đáp số: a) b) c) 10 5 3
Có hai hộp đựng các viên bi. Hộp thứ nhất đựng 6 bi đen, 3 bi trắng. Hộp thứ hai đựng 7 bi
đen, 5 bi trắng. Lấy ngẫu nhiên mỗi hộp 2 bi
a) Tính xác suất để 4 bi được chọn có 4 bi trắng.
b) Tính xác suất để 4 bi được chọn có đủ 2 màu. 5 677 Đáp số: a) b) 396 792
Một hộp có 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên ra hai thẻ rồi nhân hai số ghi trên hai thẻ với nhau.
a) Tính xác suất để số nhận được là một số lẻ.
b) Tính xác suất để số nhận được là một số chẵn. 5 13 Đáp số: a) b) 18 18
Một lớp có 30 học sinh, gồm 8 học sinh giỏi, 15 học sinh khá và 7 học sinh trung bình. Chọn
ngẫu nhiên 3 em để dự đại hội. Tính xác suất để
a) 3 học sinh được chọn đều là học sinh giỏi ;
b) có ít nhất một học sinh giỏi ;
c) không có học sinh trung bình. 2 18 253 Đáp số: a) b) c) 145 29 580
Một lớp học có 34 học sinh trong đó gồm 7 học sinh giỏi, 13 học sinh khá và 14 học sinh
trung bình. Chọn ngầu nhiên ra 3 bạn đi dự đại hôi. Tính xác suất để:
a) 3 bạn được chọn có đúng 1 học sinh giỏi
b) 3 bạn được chọn không có học sinh trung bình 2457 285 Đáp số: a) b) 5984 1496
Một hộp đựng 5 bi xanh, 7 bi đỏ và 9 bi vàng. Chọn ngẫu nhiên từ hộp 4 viên bi. Tính xác suất để:
a) 4 viên bi được chọn có ít nhất 1 viên bi đỏ.
b) 4 viên bi được chọn không đủ ba màu. Trang 18
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH 712 10 Đáp số: : a) b) 855 19
Một hộp đựng 16 thẻ được đánh số từ 1 đến 16. Rút ngẫu nhiên từ hộp ra 7 thẻ. Tính xác suất
để chọn được 3 thẻ mang số lẻ, 4 thẻ mang số chẵn và có đúng 1 thẻ chia hết cho 5. 203 Đáp số: 572
Đội thanh niên xung kích của một trường phổ thông có 12 học sinh gồm 5 học sinh khối 10, 4
học sinh khối 11 và 3 học sinh khối 12. Chọn ngẫu nhiên ra 4 học sinh đi làm nhiệm vụ. Tính
xác suất để 4 học sinh được chọn có không quá 2 khối. 5 Đáp số: 11
Gọi S là tập hợp tất cả các số tự nhiên gồm ba chữ số phân biệt được chọn từ các số 1;
2; 3; 4; 5; 6; 7. Xác định số phần tử của S. Chọn ngẫu nhiên một số từ S, tính xác suất để số
được chọn là số chẵn 3
Đáp số: Số phần tử của S là 210. Xác suất: p  7
Có hai hộp đựng bi. Hộp thứ nhất chứa 4 bi đỏ và 3 viên bi trắng, hộp thứ hai chứa 2
viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên từ mỗi hộp ra một viên bi. Tính xác suất để 2
viên bi lấy được có cùng màu. 10 Đáp số: p  21
Một hộp đựng 16 thẻ được đánh số từ 1 đến 16. Chọn ngẫu nhiên từ hộp 4 thẻ. Tính
xác suất để 4 thẻ được chọn đều đánh số chẵn 1 Đáp số: p  26
Để kiểm tra chất lượng sản phẩm từ một công ty sữa, người ta đã gửi đến bộ phân
kiểm nghiệm 5 hộp sữa cam, 4 hộp sữa dâu và 3 hộp sữa nho. Bộ phận kiểm nghiệm chọn
ngẫu nhiên 3 hộp sữa để phân tích mẫu. Tính xác suất để 3 hộp sữa được chọn có đủ 3 loại. 3 Đáp số: p  11
Trong đợt ứng phó dịch MERS-CoV, Sở y tế thành phố đã chọn ngẫu nhiên 3 đội
phòng chống dịch cơ động trong số 5 đội của Trung tâm y tế dự phòng thành phố và 20 đội
của các trung tâm y tế cơ sở để kiểm tra công tác chuẩn bị. Tính xác suất để có ít nhất 2 đội
của các Trung tâm y tế cơ sở được chọn. 209 Đáp số: p  230
Học sinh A thiết kế bảng điều khiển tự mở cửa phòng học của lớp mình. Bảng gồm
10 nút, mỗi nút được ghi một số từ 0 đến 9 và không có hai nút nào cùng ghi một số. Để mở
cửa cần nhấn liên tiếp 3 nút khác nhau sao cho 3 số ghi trêm 3 nút đó theo thứ tự đã nhấ tạo
thành một dãy số tăng và có tổng bằng 10. Học sinh B không biết quy tắc mở cửa trên, đã Trang 19
BÀI TẬP TOÁN HKI KHỐI 11 CB (2017 – 2018) ĐẠI SỐ VÀ GIẢI TÍCH
nhấn liên tiếp 3 nút khác nhau trên bẳng điều khiển. Tính xác suất để B mở được cửa phòng đó. 1 Đáp số: p  90
Một tổ gồm 9 học sinh nam và 3 học sinh nữ. Cần chia tổ thành 3 nhóm, mỗi nhóm 4 người đi
làm 3 công việc khác nhau. Hỏi có bao nhiêu cách chia khác nhau ? Tính xác suất để khi chia
ngẫu nhiên ta được mỗi nhóm có đúng 1 nữ. 16 Đáp số: 55
Một hộp chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu
nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng
một quả cầu màu đỏ và không quá hai quả cầu màu vàng. 740 37 Đáp số: p   1820 91
Một khối lập phương có các mặt quét sơn được cưa thành 1000 khối lập phương con đều
nhau. Trộn kỹ chúng rồi rút hú họa một khối. Tính xác suất rút được khối có hai mặt đã quét sơn. 96 Đáp số: 1000
Một học sinh đi thi môn lịch sử chỉ nắm được 20 trong số 25 câu hỏi của chương trình. Mỗi
phiếu thi gồm 3 câu. Tính xác suất để anh ta trả lời được cả 3 câu hỏi 57 Đáp số: 115
Cho E là tập các số tự nhiên gồm 5 chữ số khác nhau được lập từ các chữ số: 0,1,2,3,4,5,6,7.
Lấy ngẫu nhiên một số trong E. Tính xác suất để lấy được số chia hết cho 5. 1560 13 Đáp số: p   5880 49
Cho tập E  1, 2,3, 4, 
5 . Viết ngẫu nhiên lên bảng hai số tự nhiên, mỗi số gồm 3 chữ số đôi
một khác nhau thuộc tập E. Tính xác suất để trong hai số đó có đúng một số có chữ số 5. 13 12 Đáp số: p  1   25 25
Trong một kì thi, thí sinh được phép thi 3 lần. Xác suất lần đầu vượt qua kì thi là 0,9. Nếu
trượt lần đầu thì xác suất vượt qua kì thi lần hai là 0,7. Nếu trượt cả hai lần thì xác suất vượt
qua kì thi ở lần thứ ba là 0,3. Tính xác suất để thí sinh thi đậu.
Đáp số: p  0, 979.
Hai xạ thủ cùng bắn một phát vào bia. Xác suất trúng đích của người thứ nhất là 0,9, của
người thứ hai là 0,7. Tính các xác suất sau đây:
a) Cả hai phát đều trúng.
b) Ít nhất một phát trúng. c) Chỉ một phát trúng. Đáp số: 1) 0, 63 2) 0,97 3) 0, 34 . -----HẾT----- Trang 20