lOMoARcPSD| 58504431
BÀI TẬP THỐNG KÊ KINH TẾ (KT471) – Phần 2
1. Một nghiên cứu về hiệu quả trong việc hoạch định tài chính của ngân hàng. Một mẫu ngẫu
nhiêngồm 6 nhà hoạch định cho rằng tốc độ tăng thu nhập trung bình hàng năm là 9,972% và độ lệch
chuẩn 7,470. Một mẫu ngẫu nhiên độc lập gồm 9 ngân hàng không hthống hoạch định chính
thức có tốc độ tăng thu nhập trung bình hàng năm là 2,098% và độ lệch chuẩn là 10,834. Giả sử rằng
hai phân phối tổng thể có cùng phương sai, m khoảng n cậy 90% cho sự khác biệt giữa hai trung
bình.
2. Một quy trình sản xuất bóng bàn nếu sản xuất trong một dây chuyền chính xác thì trọng lượng
củacác quả bóng có phân phối chuẩn với µ=5g và độ lệch chuẩn σ=0,1g. Một quản đốc nhà máy nhận
định rằng có một sự tăng lên vtrọng lương trung bình của các quả bóng được sản xuất ra, với đlệch
chuẩn không thay đổi. Một mẫu ngẫu nhiên gồm 16 quả bóng đã được chọn để kiểm tra với trung
bình 5,038g. Kiểm định giả thuyết H
0
cho rằng trung bình toàn bộ các quả bóng bàn được sản xuất ra
của nhà máy có trọng lượng tối đa là 5g ở mức ý nghĩa 5% và 10%.
Tìm mức ý nghĩa α nhnhất mà ở đó giả thuyết H
0
bị bác bỏ (giá trị p của kiểm định).
3. Một máy khoan lỗ trên tấm kim loại, đường kính của những lỗ khoan có phân phối chuẩn với
µ=2cm và có đ lệch chuẩn là 0,06cm. Để kiểm tra nh chất chính xác của máy khoan, đường kính của
các lỗ khoan ngẫu nhiên được chọn ra để đo. Giả sử độ lệch chuẩn không thay đi, mt mẫu gm 9 s
đo với đường kính trung bình 1,95cm. Hãy kiểm định giả thuyết H
0
rằng trung bình tổng thể là 2cm ở
mức ý nghĩa 5%, và m giá trị kiểm định p?
4. Tổng giám đốc công ty kinh doanh khách sạn du lịch của thành phố Y biết rằng doanh thu
trungbình của các khách sạn tháng 12 tăng lên 20% so với tháng 11. Sáu khách sạn ngẫu nhiên được
chọn ra và ghi nhận doanh thu tăng lên như sau (%):
19,2 18,4 19,8 20,2 20,4 19,0
Giả sử phân phối của tổng thể là phân phối chuẩn, hãy kiểm định giả thuyết H
0
rằng tôc độ tăng trung
bình của doanh thu công ty là 20% dựa vào kiểm định 2 đuôi ở mức ý nghĩa 10%.
5. Để đạt được êu chuẩn đã đặt ra cho mức độ tạp chất trong sản phẩm hóa học là không vượt
quá4%. Một mẫu ngẫu nhiên gồm 20 sản phẩm có phương sai mẫu 5,62 trong phần trăm mức độ của
tạp chất. Hãy kiểm định giả thuyết H
0
mức ý nghĩa 10% rằng phương sai chung của tổng thể không
ợt quá 4%.
6. Có một nghiên cứu nhằm mục đích kiểm tra sự gợi nhớ nội dung quảng cáo của các sản phẩm
khixem vi trong 24h. Công ty đưa ra 2 loại nhãn hiệu quảng cáo cho 10 sản phẩm khác nhau. Tài liệu
thu thập sau đây là lượng người sau khi phỏng vấn nhớ hai loại nhãn hiệu khi xem vi:
Sản phẩm
Loại 1
Loại 2
1
137
53
2
135
114
3
83
81
4
125
86
5
47
34
6
46
66
7
114
89
8
157
113
9
57
88
lOMoARcPSD| 58504431
10
144
111
Giả sử phân phi của các chênh lệch này có phân phối chuẩn. Hãy kiểm định giả thuyết rằng không có
sự khác biệt giữa trung bình của hai loại nhãn hiệu của người xem ở mức ý nghĩa 5% và 2,5%.
7. Một cuộc điều tra trong thực tế các kế toán viên về chuyên môn kế toán được thực hiện
tronghoạt động kinh doanh các công ty. Các ứng viên trlời đánh dấu điểm số từ 1 (hoàn toàn không
đồng ý) đến 5 (hoàn toàn đồng ý) với câu nói sau: phụ nữ nghiệp vụ kế toán thì có nhiệm vụ và vị
trí trong công việc như nam giới. Một mẫu ngẫu nhiên gồm 186 nam kế toán trong thang điểm trả lời
trung bình 4,059 đlệch chuẩn 0,839. Một mẫu ngẫu nhiên khác gồm 172 nữ kế toán
trung bình cho thang điểm trả lời 3,680 và độ lệch chuẩn 0,996. Hãy kiểm định giả thuyết H
0
cho
trung bình hai tổng thể thì bằng nhau trên sở gi thuyết H
1
rằng trung bình thì cao hơn cho các nam
kế toán viên.
8. Một công ty nước giải khát muốn kiểm tra hiệu quả của chiên dịch quảng cáo cho 5 loại thức
uốngtốt nhất của công ty bằng cách điều tra số người sử dụng 5 loại thức uống này tăng lên hay giảm
xuống sau đợt quảng cáo ở mức ý nghĩa 2,5% và 5%. Công ty chọn ngẫu nhiên 10 thành phố mỗi
thành phố chọn ngẫu nhiên 500 người trả lời với kết quả như sau:
Thành
ph
1
2
3
4
6
7
8
9
10
Tc
qung
cáo
95
151
192
71
215
254
123
97
153
Sau
qung
cáo
123
160
180
93
193
311
121
131
169
9. Một công ty dự định đưa ra thị trường một sản phẩm mới với bốn màu sắc khác nhau. Giám
đốccông ty muốn m hiểu thị hiếu khách hàng về màu sắc sản phẩm thích đặc biệt một màu nào
hay sở thích đối với cả bốn màu là ging nhau ở mức ý nghĩa 1%. Một mẫu 80 khách hàng được chọn
ngẫu nhiên. Mỗi khách hàng được xem sản phẩm với màu sắc khác nhau cho ý kiến. Kết qunhư
sau:
Trng
Nâu
Xanh
Đen
Tổng cộng
12
40
8
20
80
thể kết luận sự lựa chọn đối với 4 màu sắc của sản phẩm là như nhau được không mức ý nghĩa
1%.
10. Một quản trị Markeng muốn xem t chi phí bán hàng trung bình trên tháng (1.000 đồng)
củamt sản phẩm điện tử ở ba cửa hàng khác nhau: A, B và C. Số liệu của chỉ êu trên được thu thập
trong 7 tháng cho cửa hàng A, 7 tháng cho B và 6 tháng cho C như sau:
A
B
C
22.2
24.6
22.7
19.9
23.1
21.9
20.3
22
23.3
21.4
23.5
24.1
21.2
23.6
22.1
21
22.1
23.4
lOMoARcPSD| 58504431
20.3
23.5
Kết quả xử lý Excel với α =1% như sau:
ANOVA
Source of Variaon
SS
df
MS F P-value F crit
Between Groups
21.66967
2 10.83483 15.03814 0.000174 6.112114
Within Groups
12.24833
17 0.72049
Total
33.918
19
Giải thích bảng kết quả bằng cách trả lời các câu hỏi sau:
Giả thuyết H
0
là gì?
Kết luận về kiểm định (α=1%)?
11. Tương tự câu 10, giả sử người bán hàng được sắp xếp theo 6 nhóm tuổi, chi phí bán
hàng trung bình được thực hiện bởi các nhân viên tuổi khác nhau 3 cửa hàng trong bảng
sau:
Nhóm tuổi nhân
viên
A
B
C
1
25.1
23.9
26.0
2
24.7
23.7
25.4
3
26.0
24.4
25.8
4
24.3
23.3
24.4
5
23.9
23.6
24.2
6
24.2
24.5
25.4
ANOVA
Source of Variaon
SS
df
MS F P-value F crit
Rows
4.98
5
0.996 5.724138 0.009489 5.636326
Columns
5.16
2
2.58 14.82759 0.00102 7.559432
Error
1.74
10
0.174
Total
11.88
17
Giải thích bảng kết quả bằng cách trả lời các câu hỏi sau:
Giả thuyết H
0
là gì?
Kết luận về kiểm định (α=1%)?
12. Tương tự câu 10 11, Thay thu thập một quan sát cho một ô, ta ến hành thu thập ba
quansát trong một ô nhằm tăng khả năng chính xác cho việc suy rng cho tng thể, kết quả như sau:
Nhóm tuổi nhân viên
A
B
C
1
25
24
25.9
25.4
24.4
25.8
25.2
23.9
25.4
lOMoARcPSD| 58504431
2
24.8
23.5
25.2
24.8
23.8
25.2
24.5
23.8
25.4
3
26.1
24.6
25.7
26.3
24.9
25.9
26.2
24.9
25.5
4
24.1
23.9
24
24.4
24
23.6
24.4
23.8
23.5
5
24
24.4
25.1
23.6
24.4
25.2
24.1
24.1
25.3
ANOVA
Source of Variaon
SS
df
MS F
P-value F crit
Sample
13.08222
4 3.270556 88.65964
3.56591E-16 4.017877
Columns
7.315111
2 3.657556 99.1506
6.01445E-14 5.390346
Interacon
6.720444
8 0.840056 22.77259
9.61104E-11 3.172624
Within
1.106667
30 0.036889
Total
28.22444
44
Giải thích bảng kết quả bằng cách trả lời các câu hỏi sau:
Giả thuyết H
0
là gì?
Kết luận về kiểm định (α=1%)?
13. Sau đây là bảng kết quả phân ch hồi quy một chiều được xlý từ Excel/SPSS giữa hai biến:
nhucầu vốn vay (y) và số nhân khẩu/hộ (x):
y:
a. Giải thích hệ số tương quan R
b. Giải thích hệ số xác định R
2
c. Kết luận về kết quả kiểm định của mô hình?
Regression Stascs
Mulple R
0.986111
R Square
0.972415
Adjusted R Square
0.968474
Standard error
0.7533
Observaons
9
ANOVA
lOMoARcPSD| 58504431
df
SS
MS
F
Signicance F
Regression
1
140.0278
140.0278
246.7622
1.02564E-06
Residual
7
3.972222
0.56746
Total
8
144
14. Có sliệu thống kê về số sản phẩm và giá thành đơn vị sản phẩm của các phân xưởng như sau:
Số sản phẩm
Giá thành 1 đv
10
20
15
19
20
17
25
15.5
30
13
Xây dựng phương trình hồi quy tuyến nh biểu hiện ảnh hưởng của số sản phẩm đến giá thành đơn
vị sản phẩm. Giải thích ý nghĩa của các tham số trong phương trình hồi quy đó.
15. Trong kinh doanh ngành ngân hàng, lợi tức (đvt: %) thu được từ vic chênh lệch giữa lãi suất ềngi
và cho vay phụ thuộc ít nhất o hai yếu tố: phần trăm tăng lên trong lượng ền gửi (x
1
)(đvt: %)
số đơn vị ền gửi (x
2
). Để xét mối quan hệ y, cho phương trình hồi quy nhận được tphn
mềm Excel như sau:
Y=1,565+0,237x
1
-0,000249x
2
Giải thích phương trình hồi quy.

Preview text:

lOMoAR cPSD| 58504431
BÀI TẬP THỐNG KÊ KINH TẾ (KT471) – Phần 2 1.
Một nghiên cứu về hiệu quả trong việc hoạch định tài chính của ngân hàng. Một mẫu ngẫu
nhiêngồm 6 nhà hoạch định cho rằng tốc độ tăng thu nhập trung bình hàng năm là 9,972% và độ lệch
chuẩn là 7,470. Một mẫu ngẫu nhiên độc lập gồm 9 ngân hàng không có hệ thống hoạch định chính
thức có tốc độ tăng thu nhập trung bình hàng năm là 2,098% và độ lệch chuẩn là 10,834. Giả sử rằng
hai phân phối tổng thể có cùng phương sai, tìm khoảng tin cậy 90% cho sự khác biệt giữa hai trung bình. 2.
Một quy trình sản xuất bóng bàn nếu sản xuất trong một dây chuyền chính xác thì trọng lượng
củacác quả bóng có phân phối chuẩn với µ=5g và độ lệch chuẩn σ=0,1g. Một quản đốc nhà máy nhận
định rằng có một sự tăng lên về trọng lương trung bình của các quả bóng được sản xuất ra, với độ lệch
chuẩn không thay đổi. Một mẫu ngẫu nhiên gồm 16 quả bóng đã được chọn để kiểm tra với trung
bình 5,038g. Kiểm định giả thuyết H0 cho rằng trung bình toàn bộ các quả bóng bàn được sản xuất ra
của nhà máy có trọng lượng tối đa là 5g ở mức ý nghĩa 5% và 10%.
Tìm mức ý nghĩa α nhỏ nhất mà ở đó giả thuyết H0 bị bác bỏ (giá trị p của kiểm định). 3.
Một máy khoan lỗ trên tấm kim loại, đường kính của những lỗ khoan có phân phối chuẩn với
µ=2cm và có độ lệch chuẩn là 0,06cm. Để kiểm tra tính chất chính xác của máy khoan, đường kính của
các lỗ khoan ngẫu nhiên được chọn ra để đo. Giả sử độ lệch chuẩn không thay đổi, một mẫu gồm 9 số
đo với đường kính trung bình 1,95cm. Hãy kiểm định giả thuyết H 0 rằng trung bình tổng thể là 2cm ở
mức ý nghĩa 5%, và tìm giá trị kiểm định p? 4.
Tổng giám đốc công ty kinh doanh khách sạn du lịch của thành phố Y biết rằng doanh thu
trungbình của các khách sạn tháng 12 tăng lên 20% so với tháng 11. Sáu khách sạn ngẫu nhiên được
chọn ra và ghi nhận doanh thu tăng lên như sau (%): 19,2 18,4 19,8 20,2 20,4 19,0
Giả sử phân phối của tổng thể là phân phối chuẩn, hãy kiểm định giả thuyết H0 rằng tôc độ tăng trung
bình của doanh thu công ty là 20% dựa vào kiểm định 2 đuôi ở mức ý nghĩa 10%. 5.
Để đạt được tiêu chuẩn đã đặt ra cho mức độ tạp chất trong sản phẩm hóa học là không vượt
quá4%. Một mẫu ngẫu nhiên gồm 20 sản phẩm có phương sai mẫu 5,62 trong phần trăm mức độ của
tạp chất. Hãy kiểm định giả thuyết H0 ở mức ý nghĩa 10% rằng phương sai chung của tổng thể không vượt quá 4%. 6.
Có một nghiên cứu nhằm mục đích kiểm tra sự gợi nhớ nội dung quảng cáo của các sản phẩm
khixem tivi trong 24h. Công ty đưa ra 2 loại nhãn hiệu quảng cáo cho 10 sản phẩm khác nhau. Tài liệu
thu thập sau đây là lượng người sau khi phỏng vấn nhớ hai loại nhãn hiệu khi xem tivi: Sản phẩm Loại 1 Loại 2 1 137 53 2 135 114 3 83 81 4 125 86 5 47 34 6 46 66 7 114 89 8 157 113 9 57 88 lOMoAR cPSD| 58504431 10 144 111
Giả sử phân phối của các chênh lệch này có phân phối chuẩn. Hãy kiểm định giả thuyết rằng không có
sự khác biệt giữa trung bình của hai loại nhãn hiệu của người xem ở mức ý nghĩa 5% và 2,5%. 7.
Một cuộc điều tra trong thực tế các kế toán viên về chuyên môn kế toán được thực hiện
tronghoạt động kinh doanh ở các công ty. Các ứng viên trả lời đánh dấu điểm số từ 1 (hoàn toàn không
đồng ý) đến 5 (hoàn toàn đồng ý) với câu nói sau: phụ nữ có nghiệp vụ kế toán thì có nhiệm vụ và vị
trí trong công việc như nam giới. Một mẫu ngẫu nhiên gồm 186 nam kế toán trong thang điểm trả lời
có trung bình là 4,059 và độ lệch chuẩn là 0,839. Một mẫu ngẫu nhiên khác gồm 172 nữ kế toán có
trung bình cho thang điểm trả lời là 3,680 và độ lệch chuẩn 0,996. Hãy kiểm định giả thuyết H 0 cho
trung bình hai tổng thể thì bằng nhau trên cơ sở giả thuyết H1 rằng trung bình thì cao hơn cho các nam kế toán viên. 8.
Một công ty nước giải khát muốn kiểm tra hiệu quả của chiên dịch quảng cáo cho 5 loại thức
uốngtốt nhất của công ty bằng cách điều tra số người sử dụng 5 loại thức uống này tăng lên hay giảm
xuống sau đợt quảng cáo ở mức ý nghĩa 2,5% và 5%. Công ty chọn ngẫu nhiên 10 thành phố và mỗi
thành phố chọn ngẫu nhiên 500 người trả lời với kết quả như sau: Thành 1 2 3 4 5 6 7 8 9 10 phố Trước 95 151 192 71 86 215 254 123 97 153 quảng cáo Sau 123 160 180 93 99 193 311 121 131 169 quảng cáo 9.
Một công ty dự định đưa ra thị trường một sản phẩm mới với bốn màu sắc khác nhau. Giám
đốccông ty muốn tìm hiểu thị hiếu khách hàng về màu sắc sản phẩm – thích đặc biệt một màu nào
hay sở thích đối với cả bốn màu là giống nhau ở mức ý nghĩa 1%. Một mẫu 80 khách hàng được chọn
ngẫu nhiên. Mỗi khách hàng được xem sản phẩm với màu sắc khác nhau và cho ý kiến. Kết quả như sau: Trắng Nâu Xanh Đen Tổng cộng 12 40 8 20 80
Có thể kết luận sự lựa chọn đối với 4 màu sắc của sản phẩm là như nhau được không ở mức ý nghĩa 1%. 10.
Một quản trị Marketing muốn xem xét chi phí bán hàng trung bình trên tháng (1.000 đồng)
củamột sản phẩm điện tử ở ba cửa hàng khác nhau: A, B và C. Số liệu của chỉ tiêu trên được thu thập
trong 7 tháng cho cửa hàng A, 7 tháng cho B và 6 tháng cho C như sau: A B C 22.2 24.6 22.7 19.9 23.1 21.9 20.3 22 23.3 21.4 23.5 24.1 21.2 23.6 22.1 21 22.1 23.4 lOMoAR cPSD| 58504431 20.3 23.5
Kết quả xử lý Excel với α =1% như sau: ANOVA Source of Variation SS df MS F P-value F crit Between Groups 21.66967
2 10.83483 15.03814 0.000174 6.112114 Within Groups 12.24833 17 0.72049 Total 33.918 19
Giải thích bảng kết quả bằng cách trả lời các câu hỏi sau: Giả thuyết H0 là gì?
Kết luận về kiểm định (α=1%)? 11.
Tương tự câu 10, giả sử người bán hàng được sắp xếp theo 6 nhóm tuổi, chi phí bán
hàng trung bình được thực hiện bởi các nhân viên ở tuổi khác nhau ở 3 cửa hàng trong bảng sau: Nhóm tuổi nhân A B C viên 1 25.1 23.9 26.0 2 24.7 23.7 25.4 3 26.0 24.4 25.8 4 24.3 23.3 24.4 5 23.9 23.6 24.2 6 24.2 24.5 25.4 ANOVA Source of Variation SS df MS F P-value F crit Rows 4.98 5
0.996 5.724138 0.009489 5.636326 Columns 5.16 2 2.58 14.82759 0.00102 7.559432 Error 1.74 10 0.174 Total 11.88 17
Giải thích bảng kết quả bằng cách trả lời các câu hỏi sau: Giả thuyết H0 là gì?
Kết luận về kiểm định (α=1%)? 12.
Tương tự câu 10 và 11, Thay vì thu thập một quan sát cho một ô, ta tiến hành thu thập ba
quansát trong một ô nhằm tăng khả năng chính xác cho việc suy rộng cho tổng thể, kết quả như sau: Nhóm tuổi nhân viên A B C 1 25 24 25.9 25.4 24.4 25.8 25.2 23.9 25.4 lOMoAR cPSD| 58504431 2 24.8 23.5 25.2 24.8 23.8 25.2 24.5 23.8 25.4 3 26.1 24.6 25.7 26.3 24.9 25.9 26.2 24.9 25.5 4 24.1 23.9 24 24.4 24 23.6 24.4 23.8 23.5 5 24 24.4 25.1 23.6 24.4 25.2 24.1 24.1 25.3 ANOVA Source of Variation SS df MS F P-value F crit Sample 13.08222 4 3.270556 88.65964 3.56591E-16 4.017877 Columns 7.315111 2 3.657556 99.1506 6.01445E-14 5.390346 Interaction 6.720444 8 0.840056 22.77259 9.61104E-11 3.172624 Within 1.106667 30 0.036889 Total 28.22444 44
Giải thích bảng kết quả bằng cách trả lời các câu hỏi sau: Giả thuyết H0 là gì?
Kết luận về kiểm định (α=1%)? 13.
Sau đây là bảng kết quả phân tích hồi quy một chiều được xử lý từ Excel/SPSS giữa hai biến:
nhucầu vốn vay (y) và số nhân khẩu/hộ (x): Hãy:
a. Giải thích hệ số tương quan R
b. Giải thích hệ số xác định R2
c. Kết luận về kết quả kiểm định của mô hình? Regression Statistics Multiple R 0.986111 R Square 0.972415 Adjusted R Square 0.968474 Standard error 0.7533 Observations 9 ANOVA lOMoAR cPSD| 58504431 df SS MS F Significance F Regression 1 140.0278 140.0278 246.7622 1.02564E-06 Residual 7 3.972222 0.56746 Total 8 144
14. Có số liệu thống kê về số sản phẩm và giá thành đơn vị sản phẩm của các phân xưởng như sau: Số sản phẩm Giá thành 1 đv 10 20 15 19 20 17 25 15.5 30 13
Xây dựng phương trình hồi quy tuyến tính biểu hiện ảnh hưởng của số sản phẩm đến giá thành đơn
vị sản phẩm. Giải thích ý nghĩa của các tham số trong phương trình hồi quy đó.
15. Trong kinh doanh ngành ngân hàng, lợi tức (đvt: %) thu được từ việc chênh lệch giữa lãi suất tiềngửi
và cho vay phụ thuộc ít nhất vào hai yếu tố: phần trăm tăng lên trong lượng tiền gửi (x 1)(đvt: %)
và số đơn vị tiền gửi (x2). Để xét mối quan hệ này, cho phương trình hồi quy nhận được từ phần mềm Excel như sau: Y=1,565+0,237x1-0,000249x2
Giải thích phương trình hồi quy.