MATHEDUCARE.COM
Bài t p Xác su t th ng kê Dip Hoàng Ân
1
BÀI T P
XÁC SU T TH NG KÊ
MATHEDUCARE.COM
Bài t p Xác su t th ng kê Dip Hoàng Ân
2
CHƯƠNG 1: XÁC SU T
1.1.
M t h p có 100 t m th nh nhau c ghi các s t 1 n 100, Rút ng u ư ñư ñ
nhiên hai th r i t theo th t t trái qua ph i. Tính xác su t n ñ ñ
a/ Rút c hai th l p nên m t s có hai ch s . ñư
b/ Rút c hai th l p nên m t s chia h t cho 5. ñư
Gii
a/
A
:“Hai th rút c l p nên m t s có hai ch s ñư
( )
2
9
2
100
9.8
0,0073
100.99
A
P A
A
= =
b/
B
: “Hai th rút c l p nên m t s chia h t cho 5” ñư
S chia h t cho 5 t i là 0 ho c 5. có bi n c n cùng ph Đ
B
thích h p v i ta rút
th th hai m t cách tùy ý trong 20 th mang các s 5;10;15;20;…;95;100, và rút 1
trong 99 th còn l i t vào v trí âu. Do ó s tr ng h p thu n l i cho là 99.20 ñ ñ ñ ư
( )
2
100
99.20
0,20
P B
A
= =
1.2.
Mt h p có ch a 7 qu c u tr ng và 3 qu c u en cùng kích th c. Rút ñ ư
ngu nhiên cùng m t lúc 4 qu c u. Tính xác su t ñ trong 4 qu c u rút ñưc có
a/ Hai qu c u en. ñ
b/ Ít nh t 2 c u en ñ
c/ Toàn c u tr ng
Gii
Rút ng u nhiên cùng 1 lúc 4 trong 10 qu c u nên s tr ng h p ng kh ư ñ
năng là
4
10
C
a/
A
:”trong 4 qu c u rút có 2 qu c u en” ñ
( )
2 2
3 7
4
10
.
C C
P A
C
= =
b/
B
:”trong 4 qu c u c rút có ít nh t 2 qu c u en” ñư ñ
( )
2 2 3 1
3 7 3 7
4
10
. .
1
3
C C C C
P B
C
+
= =
c/
C
:”trong 4 qu c u c ch n có toàn c u tr ng” ñư
MATHEDUCARE.COM
Bài t p Xác su t th ng kê Dip Hoàng Ân
5
(
)
(
)
(
)
(
)
( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2
1 2 1 1 2 1
. / . /
P B P T D D T P T D P DT
P T P D T P D P T D
= + = +
= +
Suy ra:
5 8 8 5 20
13 12 13 12 39
( )P B = + =
c/
2 1 2 1 2
T TT DT
= +
, nên xác su t ph i tính là:
(
)
(
)
(
)
( ) ( ) ( ) ( )
2 1 2 1 2
1 2 1 1 2 1
. / . /
P T P TT P D T
P T P T T P D P D T
= +
= +
suy ra
(
)
5 8 5 5
4
2
13 12 13 12 13
P T
= + =
1.7.
M t công ty c n tuy n 4 nhân viên. Có 8 ng i, g m 5 nam và 3 n n p ư
ñơn xin d tuyn, và m i ng i u có c hư ñ ơ i c tuyñư n như nhau. Tính xác su t
ñ ư ñư trong 4 ng i c tuyn,
a) có duy nh t m t nam;
b) có ít nh t m t n .
Gii
Đt
: “Có
nam c tuy n trong 4 nhân viên” ñư

Gi
: “có duy nh t 1 nam”
( ) ( )
1 3
5 3
1
4
8
.
5
70
= = =
a) Gi
: “có ít nh t 1 n
( )
4
5
4
4
8
13
1 ( ) 1
14
= = =
1.8.
M t công ty c n tuy n 4 nhân viên. Có 8 ng i, g m 5 nam và 3 n n p ư
ñơn xin d tuyn, và m i ng i u có c hư ñ ơ i c tuyñư n như nhau. Tính xác su t
ñ ư ñư trong 4 ng i c tuyn,
a/ có không quá hai nam;
b/ có ba n , bi t r ng có ít nh t m t n ã c tuy n. " ñ ñư
Gii
Đt
: “Có
nam c tuy n trong 4 nhân viên” ñư

a/ G i
: “có không quá 2 nam”
( )
1 3 2 2
5 3 5 3
1 2
4
8
. .
1
( ) ( )
2
+
= + = =
b/ G i
: “ch n ra 3 n , bi t r ng có ít nh t 1 n c tuy n”. " ñư
Gi
B
: “Có ít nh t m t n c ch n”. ñư
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
8
Gii
Đt
: “H gia ình c ch n ng u nhiên có máy vi tính” ñ ñư
: “H gia ình c ch n ng u nhiên có thu nh p hàng n m trên 20 tri u” ñ ñư ă %
Theo bài ta có: ñ
(
)
(
)
(
)
0,52; 0,6; / 0,75
= = =
a/ Xác su t h gia ình c ch n có máy vi tính và có thu nh p hàng n m trên ñ ñ ñư ă
20 tri u là: %
(
)
(
)
(
)
. / 0,6.0,75 0,45
P AB P B P A B= = =
b/ Xác su t h gia ình c ch n có thu nh p hàng n m trên 20 tri u nh ñ ñ ñư ă % ưng
không có máy vi tính là:
( )
(
)
( )
( ) ( )
( )
0,6 0, 45
/ 0,3125
1 0,52
= = = =

1.14.
Trong m t i tuy n có hai v n ng viên A và B thi u. A thi u tr c ñ ñ ñ ñ ư
và có hy v ng 80% th ng tr n. Do nh h ng tinh th n, n u A th ng tr n thì có ư'
60% kh n ng B th ng tr n, còn n u A thua thì kh n ng này c a B ch còn 30%. ă ă
Tính xác su t c a các bi n c sau:
a/ i tuyĐ n thng hai trn;
b/ i tuyĐ n thng ít nht mt trn.
Gii
Đt
: “v n ng viên ñ
th ng” v i
{
}
,

Theo bài ta có:ñ
( ) ( )
(
)
0,8; / 0, 6; / 0,3
= = =
a/ Xác su t i tuy n th ng 2 tr n ñ
(
)
(
)
(
)
. / 0,8.0,6 0,48
= = =
b/ i tuyĐ n th ng ít nh t mt tr n nghĩa là có ít nh t mt trong hai v n ng viên ñ
A, ho c B th ng. Xác su t c n tính là:
(
)
(
)
(
)
(
)
.
0,54 0,8 0,48 0,86
A B B A A B
P M M P M P M P M M
= +
= + =
1.15.
Trong m t i tuy n có hai v n ng viên A và B thi u. A thi u tr c ñ ñ ñ ñ ư
và có hy v ng 80% th ng tr n. Do nh h ng tinh th n, n u A th ng tr n thì có ư'
60% kh n ng B th ng tr n, còn n u A thua thì kh n ng này c a B ch còn 30%. ă ă
Tính xác su t c a các bi n c sau:
a/ B th ng tr n;
b/ i tuyĐ n ch thng có mt trn.
Gii
Đt
: “v n ng viên ñ
th ng” v i
{
}
,

Theo bài ta có:ñ
( ) ( )
(
)
0,8; / 0, 6; / 0,3
= = =
a/ Xác su t B th ng tr n là:
( ) ( )
(
)
(
)
( ) | . . | 0,54
B A B A A B A
P M P M P M M P M P M M
= + =
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
9
b/ t Đ
: “ i tuyñ n ch th ng 1 tr n”
Xác su t i tuy n ch th ng 1 tr n là: ñ
(
)
(
)
(
)
(
)
(
)
(
)
(
)
. . . .
B A
A B A A B B A B
P D P M M P M M P M P M M P M P M M
= + = +
(
)
(
)
(
)
2. . 0,8 0,54 2.0,48 0,38
A B A B
P M P M P M M= + = + =
`
1.16.
Đ thành l p i tuy n qu c gia v m t môn h c, ng i ta t ch c m t cu c ñ ư $
thi tuy n gm 3 vòng. Vòng th nh t ly 80% thí sinh; vòng th hai ly 70% thí
sinh ã qua vòng th nh t và vòng th ba l y 45% thí sinh ã qua vòng th hai. ñ ñ Đ
vào c i tuy n, thí sinh ph i v t qua c c 3 vòng thi. Tính xác su t ñư ñ ư ñư ñ
mt thí sinh b t k
a/ c vào i tuy n; Đư ñ
b/ B lo i vòng th ba. '
Gii
Đt
: “thí sinh c ch n vòng ñư '
” v i
{
}
1,2,3
Theo bài ta có: ñ
(
)
(
)
(
)
1 2 1 3 1 2
0,8; | 0,7; | 0, 45
= = =
a/ Xác su t thí sinh ó c vào i tuy n là ñ ñ ñư ñ
(
)
(
)
(
)
(
)
1 2 3 1 2 1 3 1 2
. | . | 0,8.0,7.0,45 0,252
= = =
b/ Xác su t thí sinh ó b lo i vòng th III là ñ ñ '
(
)
( ) ( )
(
)
3 3
1 2 1 2 1 1 2
. / . /=
(
)
(
)
(
)
(
)
1 2 1 3 1 2
. | . 1 | 0,8.0,7.0,55 0,308
= = =
1.17.
Đ thành l p i tuy n qu c gia v m t môn h c, ng i ta t ch c m t cu c ñ ư $
thi tuy n gm 3 vòng. Vòng th nh t ly 80% thí sinh; vòng th hai ly 70% thí
sinh ã qua vòng th nh t và vòng th ba l y 45% thí sinh ã qua vòng th hai. ñ ñ Đ
vào c i tuy n, thí sinh ph i v t qua c c 3 vòng thi Tính xác su t ñư ñ ư ñư ñ
mt thí sinh b t k
a/ Đưc vào i tuy n; ñ
b/ B lo i ng th hai, bi t r ng thí sinh này b lo i. ' "
Gii
Đt
: “thí sinh c ch n vòng ñư '
” v i
{
}
1,2,3
Theo bài ta có: ñ
(
)
(
)
(
)
1 2 1 3 1 2
0,8; | 0,7; | 0, 45
= = =
a/ Xác su t thí sinh ó c vào i tuy n là ñ ñ ñư ñ
(
)
(
)
(
)
(
)
1 2 3 1 2 1 3 1 2
. | . | 0,8.0,7.0,45 0,252
= = =
b/ t K: “Thí sinh ó b lo i” Đ ñ
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
1 2 3 3
1 1 2 1 1 1 2 1 2
1= + + = + +
MATHEDUCARE.COM
Bài t
p Xác su
t th
ng kê
Dip Hoàng Ân
10
( ) ( )
(
)
3
1 2 1 1 2
1 . / 1 0,8.0,7 0,308 0,748
= + = + =
Vy, xác su t thí sinh ó b lo i vòng II, bi t r ng thí sinh ó b lo i là: ñ ñ ' " ñ
( )
(
)
( )
(
)
( )
( )
(
)
( )
( )
2 2 2
1 1 1
2
. . . |
0,8 1 0,7
| 0,3209
0,748
= = = = =
1.18.
M t lô hàng có 9 s n ph m gi ng nhau. M i l n ki m tra, ng i ta ch n ( ư
ngu nhiên 3 s n ph m; ki m tra xong tr s n ph m l i lô hàng. Tính xác su t ( ( ñ
sau 3 l n ki m tra, 9 s n ph m u c ki m tra. ( ñ ñư
Gii
Chia 9 s n ph m thành 3 nhóm. G i (
: “Ki m tra nhóm
{
}
1,2,3
Đt
:”Sau 3 l n ki m tra, 9 s n ph m u c ki m tra” ( ñ ñư
( )
  

= = =
1.19.
M t l p h c c a Tr ng i h c AG có 2/3 là nam sinh viên và 1/3 là n ư Đ
sinh viên. S sinh viên quê An Giang chi m t l 40% trong n sinh viên, và ' %
chim t l 60% trong nam sinh viên. %
a)
Chn ng u nhiên m t sinh viên c a l p. Tính xác su t ñ ch n ñưc m t
sinh viên quê An Giang. N u bi t r ng sinh viên v a ch n quê An ' " '
Giang thì xác su t sinh viên ó là nam b ng bao nhiêu? ñ ñ "
b)
Chn ng u nhiên không hoàn l i hai sinh viên c a l p. Tính xác su t ñ
có ít nh t m t sinh viên quê An Giang, bi t r ng l p h c có 60 sinh viên. ' "
Gii
a)
Đt :
: “Ch n c sinh viên nam” ñư
( )
2
3
=
: “Ch n c sinh viên n ñư
( )
1
3
=
: “Ch n c sinh viên q An Giang” ñư '
( ) ( ) ( ) ( ) ( ) ( )
8
( ) | |
15
= + = + =
 
Do ó, ñ
( ) ( ) ( | ) 3
( | )
( ) ( ) 4
= = =
 
 
b)
Lp có 60 sinh viên suy ra có 40 sinh viên nam và 20 sinh viên n
S sinh viên Nam quê An Giang: 24 '
S sinh viên N quê An Giang: 8 '
Nên t ng s sinh viên quê An Giang là 32 sinh viên $ '
: “ít nh t m t sinh viên quê An Giang” '
2
28
2
60
232
( ) 1 ( ) 1
295
= = =
1.20.

Preview text:

Bài tp Xác sut thng kê Dip Hoàng Ân BÀI TP
XÁC SUT THNG KÊ 1 MATHEDUCARE.COM
Bài tp Xác sut thng kê Dip Hoàng Ân
CHƯƠNG 1: XÁC SUT 1.1.
Mt hp có 100 tm th như nhau ñưc ghi các s t 1 ñn 100, Rút ngu
nhiên hai th ri ñt theo th t t trái qua phi. Tính xác sut ñn
a/ Rút ñưc hai th lp nên mt s có hai ch s.
b/ Rút ñưc hai th lp nên mt s chia ht cho 5. Gii
a/ A :“Hai th rút ñưc lp nên mt s có hai ch s” 2 A 9.8 P ( A) 9 = = ≈ 0,0073 2 A 100.99 100
b/ B : “Hai th rút ñưc lp nên mt s chia ht cho 5”
S chia ht cho 5 tn cùng phi là 0 hoc 5. Đ có bin c B thích hp vi ta rút
th th hai mt cách tùy ý trong 20 th mang các s 5;10;15;20;…;95;100, và rút 1
trong 99 th còn li ñt vào v trí ñâu. Do ñó s trưng hp thun li cho là 99.20 99.20 P (B) = = 0, 20 2 A100 1.2.
Mt hp có cha 7 qu cu trng và 3 qu cu ñen cùng kích thưc. Rút
ngu nhiên cùng mt lúc 4 qu cu. Tính xác sut ñ trong 4 qu cu rút ñưc có a/ Hai qu cu ñen. b/ Ít nht 2 cu ñen c/ Toàn cu trng Gii
Rút ngu nhiên cùng 1 lúc 4 trong 10 qu cu nên s trưng hp ñng kh năng là 4 C 10
a/ A :”trong 4 qu cu rút có 2 qu cu ñen” 2 2 C .C P ( A) 3 7 = = 0,30 4 C10
b/ B :”trong 4 qu cu ñưc rút có ít nht 2 qu cu ñen” 2 2 3 1
C .C +C .C 1 P (B) 3 7 3 7 = = 4 C 3 10
c/ C:”trong 4 qu cu ñưc chn có toàn cu trng” 2 MATHEDUCARE.COM
Bài tp Xác sut thng kê Dip Hoàng Ân P (B ) =P (T D + D T = P T D + P D T 1 2 1 2 ) ( 1 2 ) ( 1 2 )
= P (T .P D / T + P D .P T / D 1 ) ( 2 1 ) ( 1 ) ( 2 1 ) Suy ra: 5 8 8 5 20
P(B) = 1312 + 1312 = 39
c/ T = TT + D T , nên xác sut phi tính là: 2 1 2 1 2
P (T = P TT + P D T 2 ) ( 1 2 ) ( 1 2 ) = P (T P T T + P D P D T 1 ). ( 2 / 1 ) ( 1 ). ( 2 / 1 ) suy ra P (T2) 5 4 8 5 5 = 13 12 + 13 12 = 13 1.7.
Mt công ty cn tuyn 4 nhân viên. Có 8 ngưi, gm 5 nam và 3 n np
ñơn xin d tuyn, và m i ngưi ñu có cơ hi ñưc tuyn như nhau. Tính xác sut
ñ trong 4 ngưi ñưc tuyn, a) có duy nht mt nam;
b) có ít nht mt n. Gii Đt
: “Có nam ñưc tuyn trong 4 nhân viên” ∈ 1 3
Gi : “có duy nht 1 nam” . 5 ( ) = ( ) 5 3 = = 1 4 70 8
a) Gi : “có ít nht 1 n” 4 13 ( ) 5 = 1− ( ) = 1 4 − = 4 14 8 1.8.
Mt công ty cn tuyn 4 nhân viên. Có 8 ngưi, gm 5 nam và 3 n np
ñơn xin d tuyn, và m i ngưi ñu có cơ hi ñưc tuyn như nhau. Tính xác sut
ñ trong 4 ngưi ñưc tuyn, a/ có không quá hai nam;
b/ có ba n, bit r"ng có ít nht mt n ñã ñưc tuyn. Gii Đt
: “Có nam ñưc tuyn trong 4 nhân viên” ∈
a/ Gi : “có không quá 2 nam” 1 3 2 2 . + . 1 ( ) 5 3 5 3 = ( )+ ( ) 1 2 = = 4 2 8
b/ Gi : “chn ra 3 n, bit r"ng có ít nht 1 n ñưc tuyn”.
Gi B : “Có ít nht mt n ñưc chn”. 5 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân Gii
Đt : “H gia ñình ñưc chn ngu nhiên có máy vi tính”
: “H gia ñình ñưc chn ngu nhiên có thu nhp hàng năm trên 20 tri%u”
Theo ñ bài ta có: ( ) = 0,52; ( ) = 0,6; ( / ) = 0,75
a/ Xác sut ñ h gia ñình ñưc chn có máy vi tính và có thu nhp hàng năm trên 20 tri%u là:
P ( AB) = P( )
B .P( A / B) = 0,6.0,75 = 0, 45
b/ Xác sut ñ h gia ñình ñưc chn có thu nhp hàng năm trên 20 tri%u nhưng không có máy vi tính là: ( ) ( ) ( ) − ( ) 0,6 −0,45 / = = = = 0,3125 ( ) ( ) 1 0 − ,52 1.14.
Trong mt ñi tuyn có hai vn ñng viên A và B thi ñu. A thi ñu trưc
và có hy vng 80% thng trn. Do nh hư'ng tinh thn, nu A thng trn thì có
60% kh năng B thng trn, còn nu A thua thì kh năng này ca B ch còn 30%.
Tính xác sut ca các bin c sau:
a/ Đi tuyn thng hai trn;
b/ Đi tuyn thng ít nht mt trn. Gii Đt
: “vn ñng viên thng” vi ∈{ , } Theo ñ bài ta có: ( ) = 0,8; ( / ) = 0,6; ( / )= 0,3
a/ Xác sut ñi tuyn thng 2 trn là ( ) = ( ) . ( / ) = 0,8.0,6 = 0,48
b/ Đi tuyn thng ít nht mt trn nghĩa là có ít nht mt trong hai vn ñng viên
A, hoc B thng. Xác sut cn tính là: P (M M = P M + P MP M M A B ) ( B ) ( A) ( . A B ) = 0,54 + 0,8 − 0,48 = 0,86 1.15.
Trong mt ñi tuyn có hai vn ñng viên A và B thi ñu. A thi ñu trưc
và có hy vng 80% thng trn. Do nh hư'ng tinh thn, nu A thng trn thì có
60% kh năng B thng trn, còn nu A thua thì kh năng này ca B ch còn 30%.
Tính xác sut ca các bin c sau: a/ B thng trn;
b/ Đi tuyn ch thng có mt trn. Gii Đt
: “vn ñng viên thng” vi ∈{ , } Theo ñ bài ta có: ( ) = 0,8; ( / ) = 0,6; ( / )= 0,3
a/ Xác sut B thng trn là: P( M ) = (
P M ) P( M | M .) + P(M ).P (M | M ) = 0,54 B A B A A B A 8 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân
b/ Đt : “ñi tuyn ch thng 1 trn”
Xác sut ñi tuyn ch thng 1 trn là:
P (D) = P (M .M B + P M M = P M P M M + P M P M M A
) ( A. B ) ( A) ( .A B) ( B) ( .A B ) = P (M + P MP M M A) ( B) 2. (
.A B)= 0,8 + 0,54 − 2.0,48 = 0,38 ` 1.16.
Đ thành lp ñi tuyn quc gia v mt môn hc, ngưi ta t$ chc mt cuc
thi tuyn gm 3 vòng. Vòng th nht ly 80% thí sinh; vòng th hai ly 70% thí
sinh ñã qua vòng th nht và vòng th ba ly 45% thí sinh ñã qua vòng th hai. Đ
vào ñưc ñi tuyn, thí sinh phi vưt qua ñưc c 3 vòng thi. Tính xác sut ñ mt thí sinh bt kỳ
a/ Đưc vào ñi tuyn;
b/ B loi ' vòng th ba. Gii
Đt : “thí sinh ñưc chn ' vòng ” vi { ∈ 1, 2, } 3 Theo ñ bài ta có: ( = 0,8; | = 0,7; | = 0, 45 1 ) ( 2 1) ( 3 1 2 )
a/ Xác sut ñ thí sinh ñó ñưc vào ñi tuyn là ( = . | . | = 0,8.0,7.0, 45 = 0,252 1 2 3 ) ( 1) ( 2 1 ) ( 3 1 2)
b/ Xác sut ñ thí sinh ñó b loi ' vòng th III là ( 3 ) = ( ). ( / ). ( 3 / 1 2 1 2 1 1 2 ) = ( . | . 1− | = 0,8.0, 7.0,55 = 0,308 1 ) ( 2 1 ) ( ( 3 1 2 )) 1.17.
Đ thành lp ñi tuyn quc gia v mt môn hc, ngưi ta t$ chc mt cuc
thi tuyn gm 3 vòng. Vòng th nht ly 80% thí sinh; vòng th hai ly 70% thí
sinh ñã qua vòng th nht và vòng th ba ly 45% thí sinh ñã qua vòng th hai. Đ
vào ñưc ñi tuyn, thí sinh phi vưt qua ñưc c 3 vòng thi Tính xác sut ñ mt thí sinh bt kỳ
a/ Đưc vào ñi tuyn;
b/ B loi ' vòng th hai, bit r"ng thí sinh này b loi. Gii
Đt : “thí sinh ñưc chn ' vòng ” vi { ∈ 1, 2, } 3 Theo ñ bài ta có: ( = 0,8; | = 0,7; | = 0, 45 1 ) ( 2 1) ( 3 1 2 )
a/ Xác sut ñ thí sinh ñó ñưc vào ñi tuyn là ( = . | . | = 0,8.0,7.0, 45 = 0,252 1 2 3 ) ( 1) ( 2 1 ) ( 3 1 2)
b/ Đt K: “Thí sinh ñó b loi” ( ) = ( 1) + ( 2 ) + ( 3 ) = 1− ( ) + ( ) − ( ) + ( 3 1 1 2 1 1 1 2 1 2 ) 9 MATHEDUCARE.COM
Bài tp Xác sut th ng kê Dip Hoàng Ân =1 − ( ). ( / )+ (
3 =1 − 0,8.0, 7 + 0, 308 = 0, 748 1 2 1 1 2 )
Vy, xác sut ñ thí sinh ñó b loi ' vòng II, bit r"ng thí si nh ñó b loi là: ( 2. ) ( . 2 ) ( ) . ( 2 | 1 1 1 ) ( 0,8 1− 0,7 2 | ) ( ) = = = = = 0,3209 ( ) ( ) ( ) 0,748 1.18.
Mt lô hàng có 9 sn ph(m ging nhau. M i ln kim tra, ngưi ta chn
ngu nhiên 3 sn ph(m; kim tra xong tr sn ph(m li lô hàng. Tính xác sut ñ
sau 3 ln kim tra, 9 sn ph(m ñu ñưc kim tra. Gii
Chia 9 sn ph(m thành 3 nhóm. Gi : “Kim tra nhóm ” { ∈ 1, 2, } 3
Đt :”Sau 3 ln kim tra, 9 sn ph(m ñu ñưc kim tra” ( ) = = = 1.19.
Mt lp hc ca Trưng Đi hc AG có 2/3 là nam sinh viên và 1/3 là n
sinh viên. S sinh viên quê ' An Giang chim t l% 40% trong n sinh viên, và
chim t l% 60% trong nam sinh viên.
a) Chn ngu nhiên mt sinh viên ca lp. Tính xác sut ñ chn ñưc mt
sinh viên quê ' An Giang. Nu bit r"ng sinh viên va chn quê ' An
Giang thì xác sut ñ sinh viên ñó là nam b"ng bao nhiêu?
b) Chn ngu nhiên không hoàn li hai sinh viên ca lp. Tính xác sut ñ
có ít nht mt sinh viên quê ' An Giang, bit r"ng lp hc có 60 sinh viên. Gii a) Đt :
: “Chn ñưc sinh viên nam” 2 ( )= 3
: “Chn ñưc sinh viên n” 1 ( ) = 3
: “Chn ñưc sinh viên quê ' An Giang” 8 ( ) = ( ) + ( ) = ( ) ( | ) + ( ) ( | ) = 15 Do ñó, ( ) ( ) ( | ) 3 ( | ) = = = ( ) ( ) 4
b) Lp có 60 sinh viên suy ra có 40 sinh viên nam và 20 sinh viên n
S sinh viên Nam quê ' An Giang: 24
S sinh viên N quê ' An Giang: 8
Nên t$ng s sinh viên quê ' An Giang là 32 sinh viên
: “ít nht mt sinh viên quê ' An Giang” 2 232 28 ( ) = 1− ( ) = 1− = 2 295 60 1.20. 10 MATHEDUCARE.COM