Bài tập véctơ và các phép toán – Diệp Tuân

Tài liệu gồm 171 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và tuyển chọn các bài tập véctơ và các phép toán trong chương trình Hình học 10 chương 1.

BÀI 1. ĐỊNH NGHĨA VÉC TƠ VÀ TỔNG HIỆU HAI VÉC TƠ.
Dạng 1. Xác định một véc tơ, phương, hướng, độ dài.
Dạng 2. Chứng minh hai véc tơ bằng nhau.
BÀI 2. TỔNG VÀ HIỆU HAI VÉC TƠ.
Dạng 1. Xác định độ dài tổng và hiệu hai véc tơ.
Dạng 2. Chứng minh đẳng thức véc tơ.
Dạng 3. Bài toán thực tế (vật lý học).

Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
1
Lớp Toán Thầy-Diệp Tuân Tel: 0935.660.880
1
VÉCC PHÉP TOÁN
A.THUYT
I. Định nghĩa:
1. Vectơ
đoạn thẳng hướng, nghĩa trong hai đim
mút của đoạn thẳng đã chỉ điểm nào đim đầu, điểm
nào là điểm cui.
Vectơ điểm đầu (gc) là
, điểm cui (ngn)
ta
kí hiu :
AB
ng t gốc đến ngn gọi là hướng ca véctơ.
Độ dài đon thng
AB
gọi độ dài véc
AB
, hiu
AB
. Vy
AB AB
.
dụ 1. ở hình vẽ bên thì vectơ
AB
Đim gc
.
Đim ngn là
.
Phương (giá) là đưng thng
.AB
ng t
đến
.B
Độ dài ( môđun)
.AB
2. Nhn xét: Vectơ còn được kí hiu là:
, , , ,...a b x y
Vectơ – không, hiu
0 ...AA BB FF
là vectơ có :
Điểm đầu và đim cui trùng nhau.
Độ dài bng
ng bt k
II. Hai vectơ cùng phương, cùng hướng.
1. Giá của vec tơ là đường thẳng đi qua điểm đầu và điểm cui của vectơ.
2. Hai vectơ cùng phương
là hai vectơ có giá song song hoặc trùng nhau (chúng cùng nm trên
một đường thng hoc nằm trên hai đường thng song song).
dụ 2.
Từ hình vẽ trên ta thấy hai véctơ
AB
CD
có giá nằm trên một đường thẳng(trùng) nên
chúng cùng phương.
Từ hình vẽ trên ta thấy hai véctơ
QP
MN
có giá song song nên chúng cùng phương.
Nhận xét:
AB
cùng phương với
CD
khi và ch khi
AB CD
hoc bốn điểm
, , ,A B C D
thng hàng.
3. ng của hai véc: Hai vectơ cùng phương thì có th cùng hướng hoặc ngược hướng.
Ví dụ 3: Ở hình vẽ dưới thì hai vectơ
AB
CD
cùng hướng còn
EF
HG
ngược hướng.
Đặc biệt: vectơ – không cùng hướng với mọi véc tơ.
3. Hai vectơ bằng nhau
A
B
§BÀI 1. ĐỊNH NGHĨA VÉC TƠ TNG HIU HAI VÉC TƠ
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
2
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Hai vectơ đưc gi là bng nhau nếu chúng cùng
ớng và cùng độ dài.
hiu:
,AB DC cung huong
AB DC
AB DC

Véc tơ
0
cùng hướng vi mọi véc tơ và có độ ln bng
0
.
Hai vectơ được gi là đối nhau nếu cng ngược
ớng và cùng độ dài.
hiu:
,AB CD nguochuong
AB CD
AB CD
B. PHÂN DNG VÀ BÀI TP MINH HA.
Dạng 1. XÁC ĐỊNH MỘT VÉC TƠ, PHƯƠNG, HƯNG, Đ DÀI
1. Phương pháp.
Để xác định mt vectơ ta cần 2 đim
.B
C hai điểm
ta xác định được hai véc tơ đối nhau là
AB
BA
.
Nhn xét: c
n
đim phân bit có
1nn
véctơ khác véctơ-không đưc to thành t các
điểm đó.
S cùng phương, cùng hướng của hai vectơ ta áp dng theo định nghĩa.
Da vào các tính cht hình hc của các hình đã cho biết để tính độ dài ca mt vectơ.
Tính cht hình bình hành, hình vuông, hình ch nht, hình thoi, hình thang, hình tam giác
Áp dụng định lý Pytago, h thức lượng…
2. Bài tập minh họa.
Bài tập 1. Cho tứ giác
ABCD
. bao nhiêu vectơ khác vectơ-không điểm đầu điểm cuối là
đỉnh của tứ giác.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 2. Cho tam giác
ABC
. Gọi
,,M N P
lần lượt là trung điểm của
,,BC CA AB
.
a). Xác định các vectơ khác vectơ - không cùng phương với
MN
có điểm đầu và điểm cuối lấy
trong điểm đã cho.
b). Xác định các vectơ khác vectơ - không cùng hướng với
AB
có điểm đầu và điểm cuối lấy
trong điểm đã cho.
c). Vẽ các vectơ bằng vectơ
NP
mà có điểm đầu
,AB
.
Li gii (Hình 1.4)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
B
D
C
A
B
D
A
C
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
3
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 3. Cho hình vuông
ABCD
tâm
cạnh
a
. Gọi
M
là trung điểm của
AB
,
N
là điểm đối
xứng với
qua
D
. Hãy tính độ dài của vectơ sau
MD
,
MN
.
Li gii (hình 1.5)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 4. Chứng minh ba điểm
,,A B C
phân biệt thẳng hàng khi và chỉ khi hai véc tơ
,AB AC
cùng phương.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập vận dụng.
Bài 1. Cho ngũ giác
ABCDE
. bao nhiêu vectơ khác vectơ-không điểm đầu điểm cuối là
đỉnh của ngũ giác.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
4
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 2. Cho hình bình hành
ABCD
có tâm là
. Tìm các vectơ từ 5 điểm
, , , ,A B C D O
.
a). Bằng vectơ
AB
;
.OB
b). Có độ dài bằng
OB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 3. Cho ba điểm
,,A B C
phân biệt thẳng hàng.
a). Khi nào thì hai vectơ
AB
AC
cùng hướng ?
b). Khi nào thì hai vectơ
AB
AC
ngược hướng ?
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 4. Cho bốn điểm
, , ,A B C D
phân biệt.
a). Nếu
AB BC
thì có nhận xét gì về ba điểm
,,.A B C
b). Nếu
AB DC
thì có nhận xét gì về bốn điểm
, , ,A B C D
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 5. Cho hình thoi
ABCD
có tâm
. Hãy cho biết khẳng định nào sau đây đúng ?
a).
AB BC
b).
AB DC
c).
OA OC
d).
OB OA
e).
AB BC
f).
2 OA BD
.
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
5
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 6. Cho lục giác đều
ABCDEF
tâm
. Hãy m các vectơ khác vectơ-không điểm đầu, điểm
cuối là đỉnh của lc giác và tâm O sao cho
a). Bằng với
AB
b). Ngược hướng với
OC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 7. Cho hình vuông
ABCD
cạnh
a
, tâm
và M là trung điểm AB.
Tính độ dài của các vectơ
, , , , AB AC OA OM OA OB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
6
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 8. Cho tam giác
ABC
đều cạnh
a
G
là trọng tâm. Gọi
I
là trung điểm của
AG
.
Tính độ dài của các vectơ
,,AB AG BI
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 9. Cho trước hai điểm
,AB
phân biệt . Tìm tập hợp các điểm M thoả mãn
MA MB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. u hỏi trắc nghiệm
Mức độ 1. Nhận biết
Câu 1. Vectơ có điểm đầu là
D
, điểm cuối là
được kí hiệu là:
A.
.DE
B.
.DE
C.
.ED
D.
.DE
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 2. Cho tam giác
ABC
, có thể xác định được bao nhiêu vectơ khác vectơ không có điểm đầu và
điểm cuối là các đỉnh
, , ?A B C
A.
B.
C.
D.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 3. Cho tứ giác
ABCD
. bao nhiêu vectơ khác vectơ không điểm đầu cuối các đỉnh
của tứ giác?
A.
B.
C.
D.
12.
Li gii.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
7
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 4. Mệnh đề nào sau đây đúng?
A. Có duy nht một vectơ cùng phương với mọi vectơ.
B. Có ít nhất hai vectơ có cùng phương vi mi vectơ.
C. Có vô s vectơ cùng phương với mọi vectơ.
D. Không có vectơ nào cùng phương với mọi vectơ.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 5. Véctơ có điểm đầu là
A
, điểm cuối là
B
được kí hiệu là
A.
AB
. B.
AB
. C.
BA
. D.
AB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 6. Xét các mệnh đề sau
(I): Véc tơ – không là véc tơ có độ dài bằng
0
.
(II): Véc tơ – không là véc tơ có nhiều phương.
A. Chỉ (I) đúng. B. Chỉ (II) đúng. C. (I) và (II) đúng. D. (I) và (II) sai.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 7. Cho ba đim
A
,
B
,
C
phân bit. tt c bao nhiêu véctơ khác véctơ không điểm
đầu, điểm cui là hai điểm trong ba điểm
A
,
B
,
C
?
A.
3
. B.
4
. C.
5
. D.
6
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 8. Chọn mệnh đề sai trong các mệnh đề sau đây:
A.
0
cùng hướng với mọi vectơ. B.
0
cùng phương với mọi vectơ.
C.
0AA
. D.
0AB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
8
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 9. Cho ba điểm
, , A B C
phân biệt. Khi đó:
A. Điều kiện cần và đủ đ
, , A B C
thẳng hàng là
AB
cùng phương với
.AC
B. Điều kiện đủ để
, , A B C
thẳng hàng là với mọi
,M
MA
cùng phương với
.AB
C. Điều kiện cần để
, , A B C
thẳng hàng là với mọi
,M
MA
cùng phương với
.AB
D. Điều kiện cần để
, , A B C
thẳng hàng là
.AB AC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 10. Gọi
,MN
lần lượt trung điểm của các cạnh
,AB AC
của tam giác đều
ABC
. Hỏi cặp
vectơ nào sau đây cùng hướng?
A.
MN
.CB
B.
AB
.MB
C.
MA
.MB
D.
AN
.CA
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 11. Cho lục giác đều
ABCDEF
tâm
. Số các vectơ khác vectơ không, cùng phương với
OC
có điểm đầu và điểm cuối là các đỉnh của lục giác là:
A.
B.
C.
D.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 2. CHỨNG MINH HAI VÉC TƠ BẰNG NHAU
1. Phương pháp.
Để chứng minh hai vectơ bằng nhau ta chng minh
Chúng có cùng độ dài và cùng hưng.
Hoc da vào nhn xét nếu t giác
ABCD
là hình bình hành thì
AB DC
AD BC
.
2. Bài tập minh họa.
Bài tập 5. Cho tứ giác
ABCD
. Gọi
, , ,M N P Q
lần lượt là trung điểm
, , ,AB BC CD DA
.
Chứng minh rằng
MN QP
.
Li gii (hình 1.6)
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
9
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 6. Cho tam giác
ABC
có trọng tâm
G
. Gọi
I
là trung điểm của
BC
.
Dựng điểm
'B
sao cho
' B B AG
.
a). Chứng minh rằng
BI IC
b). Gọi
J
là trung điểm của
'BB
. Chứng minh rằng
BJ IG
.
Li gii (hình 1.7)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 7. Cho hình bình hành
ABCD
. Trên các đoạn thẳng
,DC AB
theo thứ tự lấy các điểm
,MN
sao cho
DM BN
. Gọi
giao điểm của
,AM DB
giao điểm của
,CN DB
.
Chứng minh rằng
AM NC
và
DP QB
.
Li gii (hình 1.8)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
10
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập vận dụng
Bài 10. Cho tứ giác
ABCD
. Gọi
, , ,M N P Q
lần lượt là trung điểm
, , ,AB BC CD DA
.
Chứng minh rằng
MQ NP
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 11. Cho hình bình hành
ABCD
. Gọi
,MN
lần lượt trung điểm của
,DC AB
;
là giao điểm
của
,AM DB
là giao điểm của
,CN DB
. Chứng minh rằng
DM NB
DP QB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
11
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 12. Cho hình thang
ABCD
có hai đáy là
AB
CD
với
2AB CD
. Từ C vẽ
CI DA
. CM
a).
AD IC
DI CB
b).
AI IB DC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 13. Cho tam giác
ABC
trực tâm
H
tâm đường tròn ngoại tiếp . Gọi
B
điểm đối
xứng
qua
. Chứng minh :
'AH B C
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. u hỏi trắc nghiệm
Mức độ 1. Nhận biết
Câu 12. Với
DE
(khác vectơ không) thì độ dài đoạn
ED
được gọi là
A. Phương của
.ED
B. Hướng của
.ED
C. Giá của
.ED
D. Độ dài của
.ED
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 13. Mệnh đề nào sau đây sai?
A.
0.AA
B.
0
cùng hướng với mọi vectơ.
C.
0.AB
D.
0
cùng phương với mọi vectơ.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
12
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 14. Hai vectơ được gọi là bằng nhau khi và chỉ khi
A. Giá của chúng trùng nhau và độ dài của chúng bằng nhau.
B. Chúng trùng với một trong các cặp cạnh đối của một hình bình hành.
C. Chúng trùng với một trong các cặp cạnh đối của một tam giác đều.
D. Chúng cùng hướng và độ dài của chúng bằng nhau.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 15. Gọi
là trung điểm của đoạn thẳng
AB
. Khẳng định nào sau đây là đúng?
A.
.CA CB
B.
AB
AC
cùng phương.
C.
AB
CB
ngược hướng. D.
.AB BC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 16. Cho tứ giác
ABCD
. Điều kiện nào là điều kiện cần và đủ để
AB CD
?
A.
ABCD
là hình bình hành. B.
ABDC
là hình bình hành.
C.
AD
BC
có cùng trung điểm. D.
.AB CD
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 17. Từ mệnh đề
AB CD
, ta suy ra
A.
AB
cùng hướng
.CD
B.
AB
cùng phương
.CD
C.
.AB CD
D.
ABCD
là hình bình hành.
Hỏi khẳng định nào là sai?
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 18. Gọi
giao điểm của hai đường chéo của hình bình hành
ABCD
. Đẳng thức nào sau
đây sai?
A.
.AB DC
B.
.OB DO
C.
.OA OC
D.
.CB DA
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
13
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 19. Cho 4 điểm
A
,
B
,
C
,
D
. Khẳng định nào sau đây sai?
A. Điều kiện cần và đủ đ
NA MA
NM
.
B. Điều kiện cần và đủ để
AB CD
là tứ giác
ABDC
là hình bình hành.
C. Điều kiện cần và đủ đ
0AB
AB
.
D. Điều kiện cần và đủ để
AB
CD
là hai vectơ đối nhau là
0AB CD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 20. Cho ba điểm
M
,
N
,
P
thẳng hàng, trong đó điểm
N
nằm giữa hai điểm
M
P
. Khi đó
các cặp vectơ nào sau đây cùng hướng?
A.
MP
PN
. B.
MN
PN
. C.
NM
NP
. D.
MN
MP
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 21. Cho tứ giác
.ABCD
Gọi
, , , M N P Q
lần lượt là trung điểm của
,AB
,BC
,CD
.DA
Khẳng
định nào sau đây là sai?
A.
.MN QP
B.
.QP MN
C.
.MQ NP
D.
.MN AC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 22. Cho hình vuông
ABCD
. Khẳng định nào sau đây là đúng?
A.
.AC BD
B.
.AB CD
C.
.AB BC
D.
, AB AC
cùng hướng.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 23. Gọi
là giao điểm của hai đường chéo hình chữ nhật
ABCD
.
Mệnh đề nào sau đây đúng?
A.
.OA OC
B.
OB
OD
cùng hướng.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
14
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
C.
AC
BD
cùng hướng. D.
.AC BD
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 24. Gọi
,MN
lần lượt là trung điểm của các cạnh
,AB AC
của tam giác đều
ABC
. Đẳng thức
nào sau đây đúng?
A.
.MA MB
B.
.AB AC
C.
.MN BC
D.
2.BC MN
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 25. Cho tam giác
ABC
đều cạnh
a
. Gọi
M
là trung điểm
BC
. Khẳng định nào sau đây đúng?
A.
.MB MC
B.
3
.
2
a
AM
C.
.AM a
D.
3
.
2
a
AM
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 26. Cho hình thoi
ABCD
cạnh
a
60BAD 
. Đẳng thức nào sau đây đúng?
A.
.AB AD
B.
.BD a
C.
.BD AC
D.
.BC DA
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 27. Cho lục giác đều
ABCDEF
có tâm
. Đẳng thức nào sau đây là sai?
A.
.AB ED
B.
.AB AF
C.
.OD BC
D.
.OB OE
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
15
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 28. Cho lục giác đều
ABCDEF
tâm
. Số các vectơ bằng
OC
có điểm đầu và điểm cuối là các
đỉnh của lục giác là
A.
B.
C.
D.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 29. Cho tam giác
ABC
trực tâm
H
. Gọi
D
là điểm đối xứng với
qua tâm
của đường
tròn ngoại tiếp tam giác
ABC
. Khẳng định nào sau đây là đúng?
A.
HA CD
AD CH
. B.
HA CD
AD HC
.
C.
HA CD
AC CH
. D.
HA CD
AD HC
OB OD
.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 30. Cho
0AB
và một điểm
. Có bao nhiêu điểm
D
thỏa mãn
?AB CD
A.
B.
1.
C.
D. Vô số.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 31. Cho
0AB
và một điểm
, có bao nhiêu điểm
D
thỏa mãn
.AB CD
A.
1.
B.
C.
D. Vô số.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 32. Cho tam giác đều
ABC
cạnh
a
, mệnh đề nào sau đây đúng?
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
16
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
A.
AC BC
. B.
AC a
. C.
AB AC
. D.
AB a
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 33. Cho lục giác đều
ABCDEF
tâm
O
. Ba vectơ bằng vectơ
BA
A.
OF
,
DE
,
OC
. B.
CA
,
OF
,
DE
. C.
OF
,
DE
,
CO
. D.
OF
,
ED
,
OC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 34. Hai vectơ có cùng độ dài và ngược hướng gọi là
A. Hai vectơ cùng hướng. B. Hai vectơ cùng phương.
C. Hai vectơ đối nhau. D. Hai vectơ bằng nhau.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 35. Gọi
O
là giao điểm của hai đường chéo hình bình hành
ABCD
.
Đẳng thức nào sau đây sai?
A.
BA CD
. B.
AB CD
. C.
OA OC
. D.
AO OC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 36. Cho hình bình hành
ABCD
. Đẳng thức nào sau đây sai.
A.
AC BD
. B.
BC DA
. C.
AD BC
. D.
AB CD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 1. Véc Tơ-Định nghĩa c tơ
17
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 37. Cho
AB
khác
0
và cho điểm
C
. Có bao nhiêu điểm
D
thỏa
AB CD
?
A. Vô số. B.
1
điểm.
C.
2
điểm. D. Không có điểm nào.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 38. Cho t giác
ABCD
AB DC
AB BC
. Khẳng định nào sau đây sai?
A.
AD BC
. B.
ABCD
là hình thoi.
C.
CD BC
. D.
ABCD
là hình thang cân.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
18
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
A. TÓM TT LÝ THUYT
I. Tng hai vec
1) Định nghĩa. Cho hai vectơ
;ab
.
T đim
tùy ý v
AB a
ri t
v
BC b
khi đó vectơ
AC
đưc gi là tng của hai vectơ
;ab
.
hiu
AC a b
(Hình 1.9)
2) Tính cht :
Giao hoán :
a b b a
.
Kết hp :
( ) ( ) a b c a b c
.
Tính chất vectơ – không:
0 , a a a
.
dụ 1. Tính tổng
MN PQ RN NP QR
.
A.
.MR
B.
.MN
C.
.PR
D.
.MP
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
dụ 2. Cho 6 điểm
, , , , ,A B C D E F
. Đẳng thức nào sau đây đúng.
A.
0AB CD FA BC EF DE
.
B.
AB CD FA BC EF DE AF
.
C.
AB CD FA BC EF DE AE
.
D.
AB CD FA BC EF DE AD
.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
§BI 2. TNG-HIU HAI VÉC TƠ
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
19
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
II. Hiu hai vec
1). Vectơ đối ca một vectơ.
Vectơ
đối
của vectơ
a
là vectơ ngược hướng và cùng độ dài với vectơ
a
.
hiu
a
Như vậy
0, a a a
AB BA
2). Định nghĩa hiệu hai vectơ:
Hiu của hai vectơ
a
b
là tng của vectơ
a
và vectơ đối của vectơ
b
.
Kí hiu
a b a b
Nhn xét: Cho
,,O A B
tùy ý ta có :
OB OA AB
dụ 3. Cho 6 điểm
, , , , ,A B C D E F
. Chứng minh
AB CD EF AD CF EB
.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
dụ 4. Cho các điểm phân biệt
, , , , ,A B C D E F
. Đẳng thức nào sau đây sai ?
A.
AB CD EF AF ED BC
. B.
AB CD EF AF ED CB
.
C.
AE BF DC DF BE AC
. D.
AC BD EF AD BF EC
.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
III. Các quy tc:
1. Quy tắc ba điểm : Cho
,,A B C
tùy ý, ta có :
AB BC AC
2. Quy tc hình bình hành : Nếu
ABCD
là hình bình hành thì
AB AD AC
3. Quy tc v hiu vectơ : Cho
,,O A B
tùy ý ta có :
OB OA AB
Chú ý: Ta có thể mở rộng quy tắc ba điểm cho
n
điểm
12
, ,...,
n
A A A
thì
1 2 2 3 1 1
...
n n n
A A A A A A A A
B. PHÂN DNG VÀ BÀI TP MINH HA.
A
C
B
D
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
20
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Dạng 1. XÁC ĐỊNH Đ DI TỔNG V HIỆU HAI VÉC TƠ
1. Phương pháp.
Để c định độ dài ca mt tng hoc hiu của các vectơ ta làm hai bước sau:
c 1. Trước tiên ta s dng định nghĩa về tng, hiệu hai vectơ các tính cht, quy tắc để
xác định định phép toán vectơ đó( biến đi v mt véctơ duy nht).
c 2. Da vào tính cht ca hình, s dụng định lí Pitago, h thức lượng trong tam giác
vuông đ xác định độ dài vectơ đó.
Đặt bit. Ta phi chú ý ĐỈNH CHUNG (đỉnh đầu
Hiu, đỉnh gia
tng) để áp đụng.
2. Bài tập minh họa.
Bài tập 1.
Cho tam giác
ABC
vuông tại
0
30ABC
5BC a
.
Tính độ dài của các vectơ
AB BC
,
AC BC
AB AC
.
Li gii (hình 1.10)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 2.
Cho hình vuông
ABCD
có tâm là
và cạnh
a
.
M
là một điểm bất kỳ.
a). Tính
,, AB AD OA CB CD DA
b). Chứng minh rằng
u MA MB MC MD
không phụ thuộc vị trí điểm
M
.
Tính độ dài vectơ
u
Li gii (hình 1.11)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
21
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập vận dụng.
Bài 1. Cho tam giác
ABC
đều cạnh
a
. Tính độ dài của các vectơ sau
,AB AC AB AC
.
Li gii (hình 1.11)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 2. Cho hình vng
ABCD
có tâm là
và cạnh
a
.
M
là một điểm bất kỳ.
a). Tính
, AB OD AB OC OD
b). Tính độ dài vectơ
MA MB MC MD
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
22
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 3. Cho hình thoi
ABCD
cạnh a và
0
60BCD
. Gọi O là tâm hình thoi.
Tính
,AB AD OB DC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 4. Cho bốn điểm
, , ,A B C O
phân biệt có độ dài ba vectơ
,,OA OB OC
cùng bằng
a
thỏa
0 OA OB OC
.
a). Tính các góc
,,AOB BOC COA
b). Tính
OB AC OA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
23
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Bài 5. Cho góc
Oxy
. Trên
,Ox
Oy
lấy hai điểm
,AB
. Tìm điều kiện của
,AB
sao cho
OA OB
nằm
trên phân giác của góc
Oxy
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. u hỏi trắc nghiệm
Mức độ 2. Thông hiểu
Câu 1. Cho tam giác
ABC
đều cạnh
a
. Tính
.AB AC
A.
3.AB AC a
B.
3
.
2
a
AB AC
C.
2.AB AC a
D.
2 3.AB AC a
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 2. Cho tam giác
ABC
vuông cân tại
AB a
. Tính
.AB AC
A.
2.AB AC a
B.
2
.
2
a
AB AC
C.
2.AB AC a
D.
.AB AC a
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
24
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 3. Cho tam giác
ABC
vuông cân tại
2.AB
Tính độ dài của
.AB AC
A.
5.AB AC
B.
2 5.AB AC
C.
3.AB AC
D.
2 3.AB AC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 4. Cho tam giác
ABC
vuông tại
và có
3, 4AB AC
. Tính
CA AB
.
A.
2.CA AB
B.
2 13.CA AB
C.
5.CA AB
D.
13.CA AB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 5. Tam giác
ABC
AB AC a
120BAC 
. Tính
.AB AC
A.
3.AB AC a
B.
.AB AC a
C.
.
2
a
AB AC
D.
2.AB AC a
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
25
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 6. Cho tam giác
ABC
đều cạnh
,a
H
là trung điểm của
BC
. Tính
.CA HC
A.
.
2
a
CA HC
B.
3
.
2
a
CA HC
C.
23
.
3
a
CA HC
D.
7
.
2
a
CA HC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 7. Gọi
G
trọng tâm tam giác vuông
ABC
với cạnh huyền
12.BC
Tính độ dài của vectơ
v GB GC
.
A.
2.v
B.
2 3.v
C.
8.v
D.
4.v
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 8. Cho hình thoi
ABCD
2AC a
.BD a
Tính
AC BD
.
A.
3.AC BD a
B.
3.AC BD a
C.
5.AC BD a
D.
5.AC BD a
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
26
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 9. Cho hình vuông
ABCD
cạnh
Tính
.AB DA
A.
0.AB DA
B.
.AB DA a
C.
2.AB DA a
D.
2.AB DA a
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 10. Cho hình vuông
ABCD
cạnh
a
, tâm
.O
Tính
OB OC
.
A.
.OB OC a
B.
2.OB OC a
C.
.
2
a
OB OC
D.
2
.
2
a
OB OC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 11.Cho hình vuông
ABCD
có cạnh bằng
a
. Độ dài
AD AB
bằng
A.
2a
B.
2
2
a
. C.
3
2
a
. D.
2a
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
27
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 12.Cho tam giác
OAB
vuông cân tại
O
, cạnh
4OA
. Tính
2OA OB
.
A.
24OA OB
. B. Đáp án khác.
C.
2 12OA OB
. D.
2 4 5OA OB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 13.Gọi
G
trọng tâm tam giác vuông
ABC
với cạnh huyền
12BC
. Tổng hai ctơ
GB GC
có độ dài bằng bao nhiêu?
A.
2
. B.
4
. C.
8
. D.
23
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 14. Cho tam giác
ABC
đều có cạnh
5AB
,
H
là trung điểm của
BC
. Tính
CA HC
.
A.
53
2
CA HC
. B.
5CA HC
.
C.
57
4
CA HC
. D.
57
2
CA HC
.
Lời giải
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
28
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 2. CHỨNG MINH ĐẲNG THỨC VÉC TƠ
1. Phương pháp.
Để chứng minh đng thức vectơ ta có các cách biển đổi:
Biến vế này thành vế kia. (phương pháp chèn điểm)
Biến đổi tương đương. (chuyn v cùng mt vế chứng minh đng thc cuối cùng đúng)
Biến đổi hai vế cùng bng một đại lương trung gian.
Trong quá trình biến đổi ta cn s dng linh hot ba quy tắc tính vectơ.
2. Lưu ý:
Khi biến đổi cn phi
ng đích
, chng hn biến đổi vế phi, ta cn xem vế trái có đại lượng
nào để t đó liên tưởng đến kiến thức đã có đểm sao xut hiện các đại lượng vế trái.
Và ta thường biến đổi vế phc tp v vế đơn giản hơn.
3. Bài tập minh họa.
Bài tập 3. Cho năm điểm
, , , ,A B C D E
. Chứng minh rằng
a).
AB CD EA CB ED
b).
AC CD EC AE DB CB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 4. Cho hình bình hành
ABCD
tâm
.
M
là một điểm bất kì trong mặt phẳng.
Chứng minh
a).
0 BA DA AC
b).
0 OA OB OC OD
c).
MA MC MB MD
.
Li gii (Hình 1.12)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
29
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 5. Cho tam giác
ABC
. Gọi
,,M N P
lần lượt là trung điểm của
,,BC CA AB
.
Chứng minh rằng
a).
0 BM CN AP
b).
0 AP AN AC BM
c).
OA OB OC OM ON OP
với
là điểm bất kì.
Li gii (Hình 1.13)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
30
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. Bài tập vận dụng.
Bài 6. Cho bốn điểm
, , ,A B C D
. Chứng minh rằng
a).
DA CA DB CB
.
b).
AC DA BD AD CD BA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 7. Cho các điểm
, , , , ,A B C D E F
. Chứng minh rằng
AD BE CF AE BF CD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
31
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Bài 8. Cho hình bình hành
ABCD
tâm
.
M
là một điểm bất kì trong mặt phẳng.
Chứng minh rằng
a).
AB OD OC AC
b).
BA BC OB OD
c).
BA BC OB MO MB
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 9. Cho tam giác
ABC
. Gọi
,,M N P
lần lượt là trung điểm của
,,BC CA AB
. Chứng minh rằng
a).
0 NA PB MC
b).
MC BP NC BC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 10. Cho hai hình bình hành
ABCD
' ' 'AB C D
có chung đỉnh
.
Chứng minh rằng
' ' ' 0 B B CC D D
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
32
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Bài 11. Cho ngũ giác đều
ABCDE
tâm O. Chứng minh rằng
0 OA OB OC OE OF
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 12. Cho hình bình hành
ABCD
. Dựng
, , , AM BA MN DA NP DC
PQ BC
.
Chứng minh rằng:
0AQ
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
5. u hỏi trắc nghiệm
Mức độ 1. Nhận biết
Câu 15. Khẳng định nào sau đây đúng?
A.
.AB AC BC
B.
.MP NM NP
C.
.CA BA CB
D.
.AA BB AB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 16. Cho
a
b
là các vectơ khác
0
với
a
là vectơ đối của
b
. Khẳng định nào sau đây sai?
A. Hai vectơ
,ab
cùng phương. B. Hai vectơ
,ab
ngược hướng.
C. Hai vectơ
,ab
cùng độ dài. D. Hai vectơ
,ab
chung điểm đầu.
Li gii.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
33
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 17. Cho ba điểm phân biệt
,,A B C
. Đẳng thức nào sau đây đúng?
A.
.CA BA BC
B.
.AB AC BC
C.
.AB CA CB
D.
.AB BC CA
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 18. Cho
AB CD
. Khẳng định nào sau đây đúng?
A.
AB
CD
cùng hướng. B.
AB
CD
cùng độ dài.
B.
ABCD
là hình bình hành. D.
0.AB DC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 19. Tính tổng
MN PQ RN NP QR
.
A.
.MR
B.
.MN
C.
.PR
D.
.MP
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 20. Cho hai điểm
phân biệt. Điều kiện đ
I
là trung điểm
AB
là:
A.
.IA IB
B.
.IA IB
C.
.IA IB
D.
.AI BI
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 21. Điều kiện nào là điều kiện cần và đủ để
I
là trung điểm của đoạn thẳng
AB
?
A.
.IA IB
B.
0.IA IB
C.
0.IA IB
D.
.IA IB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
34
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 22. Cho
ABC
cân ở
, đường cao
AH
. Khẳng định nào sau đây sai?
A.
.AB AC
B.
.HC HB
C.
.AB AC
D.
2.BC HC
Li gii.
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 23. Cho hình vuông
ABCD
. Khẳng định nào sau đây đúng?
A.
.AB BC
B.
.AB CD
C.
.AC BD
D.
.AD CB
Li gii.
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 24. Mệnh đề nào sau đây sai?
A. Nếu
M
là trung điểm đoạn thẳng
AB
thì
0.MA MB
B. Nếu
G
là trọng tâm tam giác
ABC
thì
0.GA GB GC
C. Nếu
ABCD
là hình bình hành thì
.CB CD CA
D. Nếu ba điểm phân biệt
,,A B C
nằm tùy ý trên một đường thẳng thì
.AB BC AC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 25. Mệnh đề nào sau đây sai?
A.
G
là trọng tâm
ABC
thì
0GA GB GC
.
B. Ba điểm
A
,
B
,
C
bất kì thì
AC AB BC
.
C.
I
là trung điểm
AB
thì
MI MA MB
với mọi điểm
M
.
D.
ABCD
là hình bình hành thì
AC AB AD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
35
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 26.Cho tam giác
.ABC
Khẳng định nào sau đây đúng?
A.
AB AC BC
. B.
AB CA CB
. C.
CA BA CB
.
D.
AA BB AB
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 27. Gọi
là tâm hình vuông
ABCD
. Tính
OB OC
.
A.
ADC
B.
.DA
C.
.OD OA
D.
.AB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 28. Cho tam giác
ABC
đều cạnh
a
. Mệnh đề nào sau đây đúng?
A.
.AB BC CA
B.
.CA AB
C.
.AB BC CA a
D.
.CA BC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 29. Cho ba điểm
,,A B C
. Mệnh đề nào sau đây đúng?
A.
.AB BC AC
B.
0.AB BC CA
C.
.AB BC CA BC
D.
.AB CA BC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Mức độ 2. Thông hiểu
Câu 30. Gọi
là tâm hình bình hành
ABCD
. Đẳng thức nào sau đây sai?
A.
.OA OB CD
B.
.OB OC OD OA
C.
.AB AD DB
D.
.BC BA DC DA
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
36
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 31. Cộng các vectơ có cùng độ dài 5 và cùng giá. Khẳng định nào sau đây đúng?
A. Cộng 5 vectơ ta được kết quả là
0.
B. Cộng 4 vectơ đôi một ngược hướng ta được kết quả là
0.
C. Cộng 121 vectơ ta được kết quả là
0.
D. Cộng 25 vectơ ta được vectơ có độ dài là
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 32. Cho tam giác
ABC
, với
M
là trung điểm
BC
. Mệnh đề nào sau đây đúng?
A.
0.AM MB BA
B.
.MA MB AB
C.
.MA MB MC
D.
.AB AC AM
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 33. Cho tam giác
ABC
, với
,,M N P
lần lượt trung điểm của
,,BC CA AB
. Khẳng định nào
sau đây sai?
A.
0.AB BC AC
B.
0.AP BM CN
C.
0.MN NP PM
D.
.PB MC MP
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 34. Cho
ABC
có trng tâm
G
. Khẳng định nào sau đây đúng?
A.
AG AB AC
. B.
2AG AB AC
.
C.
1
3
AG AB AC
. D.
2
3
AG AB AC
.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
37
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 35. Cho
5
đim phân bit
M
,
N
,
P
,
Q
,
R
. Mệnh đề nào sau đây đúng?
A.
MN PQ RN NP QR MP
. B.
MN PQ RN NP QR PR
.
C.
MN PQ RN NP QR MR
. D.
MN PQ RN NP QR MN
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 36. Cho hình bình hành
ABCD
, đẳng thức véctơ nào sau đây đúng?
A.
CD CB CA
. B.
AB AC AD
.
C.
BA BD BC
. D.
CD AD AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 37. Cho
u DC AB BD
với
4
điểm bất kì
A
,
B
,
C
,
D
. Chọn khẳng định đúng?
A.
0u
. B.
2u DC
. C.
u AC
. D.
u BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 38. Tổng
MN PQ RN NP QR
bằng
A.
MR
. B.
MN
. C.
MP
. D.
MQ
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 39. Cho hình bình hành
ABCD
. Gi
G
là trng tâm ca tam giác
ABC
. Mệnh đ nào sau đây
đúng?
A.
GA GC GD CD
. B.
GA GC GD BD
.
C.
0GA GC GD
. D.
GA GC GD DB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
38
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 40. Cho hình bình hành
ABCD
với
I
là giao điểm của hai đường chéo.
Khẳng định nào sau đây là khẳng định sai?
A.
0IA IC
. B.
AB AD AC
. C.
AB DC
. D.
AC BD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 41. Cho
ABC
M
,
Q
,
N
lần lượt là trung điểm của
AB
,
BC
,
CA
.
Khi đó vectơ
AB BM NA BQ
là vectơ nào sau đây?
A.
0
. B.
BC
. C.
AQ
. D.
CB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 42. Cho tam giác
ABC
có trọng tâm
G
. Khi đó:
A.
11
22
AG AB AC
. B.
11
33
AG AB AC
.
C.
11
32
AG AB AC
. D.
22
33
AG AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 43. Cho hình bình hành
ABCD
có tâm
O
. Khẳng định nào sau đây là đúng:
A.
AB AC DA
. B.
AO AC BO
.
C.
AO BO CD
. D.
AO BO BD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
39
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 44. Cho 4 điểm bất kì
A
,
B
,
C
,
O
. Đẳng thức nào sau đây đúng?
A.
OA OB BA
. B.
OA CA CO
. C.
AB AC BC
. D.
AB OB OA
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Mức độ 3. Vận dụng
Câu 45. Cho tam gc
ABC
có
AB AC
và đường cao
.AH
Đẳng thc o sau đây đúng?
A.
.AB AC AH
B.
0.HA HB HC
C.
0.HB HC
D.
.AB AC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 46. Cho tam giác
ABC
vuông cân đỉnh
, đường cao
AH
. Khẳng định nào sau đây sai?
A.
.AH HB AH HC
B.
.AH AB AH AC
C.
.BC BA HC HA
D.
.AH AB AH
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
40
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 47. Gọi
,,M N P
lần lượt trung điểm các cạnh
,,AB BC CA
của tam giác
.ABC
Hỏi vectơ
MP NP
bằng vectơ nào trong các vectơ sau?
A.
.AP
B.
.BP
C.
.MN
D.
.MB NB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 48. Cho đường tròn
hai tiếp tuyến song song với nhau tiếp xúc với
O
tại hai điểm
.B
Mệnh đề nào sau đây đúng?
A.
.OA OB
B.
.AB OB
C.
.OA OB
D.
.AB BA
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 49. Cho đường tròn
và hai tiếp tuyến
,MT MT
(
T
T
là hai tiếp điểm).
Khẳng định nào sau đây đúng?
A.
.MT MT
B.
.MT MT TT


C.
.MT MT
D.
.OT OT

Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
41
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 50. Cho bốn điểm phân biệt
, , , .A B C D
Mệnh đề nào sau đây đúng?
A.
.AB CD AD CB
B.
.AB BC CD DA
C.
.AB BC CD DA
D.
.AB AD CD CB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 51. Gọi
là tâm của hình vuông
ABCD
. Vectơ nào trong các vectơ dưới đây bằng
?CA
A.
.BC AB
B.
.OA OC
C.
.BA DA
D.
.DC CB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 52. Cho lục giác đều
ABCDEF
có tâm
.O
Đẳng thức nào sau đây sai?
A.
0.OA OC OE
B.
.OA OC OB EB
C.
0.AB CD EF
D.
.BC EF AD
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
42
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 53. Cho hình bình hành
ABCD
là giao điểm của hai đường chéo. Hỏi vectơ
AO DO
bằng vectơ nào trong các vectơ sau?
A.
.BA
B.
.BC
C.
.DC
D.
.AC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 54. Cho hình bình hành
ABCD
là giao điểm của hai đường chéo. Đẳng thức nào sau đây
sai?
A.
0.OA OB OC OD
B.
.AC AB AD
C.
.BA BC DA DC
D.
.AB CD AB CB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 55. Cho hình bình hành
ABCD
giao điểm của hai đường chéo. Gọi
,EF
lần lượt
trung điểm của
,AB BC
. Đẳng thức nào sau đây sai?
A.
.DO EB EO
B.
.OC EB EO
C.
0.OA OC OD OE OF
D.
0.BE BF DO
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
43
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 56. Cho hình bình hành
.ABCD
Gọi
G
là trọng tâm của tam giác
.ABC
Mệnh đề nào sau đây
đúng?
A.
.GA GC GD BD
B.
.GA GC GD CD
C.
.GA GC GD O
D.
.GA GD GC CD
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 57. Cho hình chữ nhật
.ABCD
Khẳng định nào sau đây đúng?
A.
.AC BD
B.
0.AB AC AD
C.
.AB AD AB AD
D.
.BC BD AC AB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Mức độ 4. Vận dụng cao
Câu 58. Cho tam giác
ABC
M
thỏa mãn điều kiện
0MA MB MC
. Xác định vị trí điểm
.M
A.
M
là điểm thứ tư của hình bình hành
.ACBM
B.
M
là trung điểm của đoạn thẳng
.AB
C.
M
trùng với
.C
D.
M
là trọng tâm tam giác
.ABC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 59. Cho tam giác
.ABC
Tập hợp tất cả các điểm
M
thỏa mãn đẳng thức
MB MC BM BA
A. đường thẳng
.AB
B. trung trực đoạn
.BC
C. đường tròn tâm
,A
bán kính
.BC
D. đường thẳng qua
và song song với
.BC
Li gii.
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
44
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 60. Cho hình bình hành
ABCD
.
Tập hợp tất cả các điểm
M
thỏa mãn đẳng thức
MA MB MC MD
A. một đường tròn. B. một đường thẳng.
C. tập rỗng. D. một đoạn thẳng.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 61. Cho tam giác
ABC
và đim
M
thỏa mãn
MB MC AB
. Tìm vtrí điểm
.M
A.
M
là trung điểm ca
.AC
B.
M
là trung điểm của
.AB
C.
M
là trung đim của
.BC
D.
M
là đim thứ của nh bình hành
.ABCM
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 62. Cho tam giác
ABC
điểm
M
thỏa mãn điều kiện
0MA MB MC
. Mệnh đề nào sau
đây sai?
A.
MABC
là hình bình hành. B.
.AM AB AC
C.
.BA BC BM
D.
.MA BC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
45
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 63. Cho tam giác
ABC
. Tp hp những điểm
M
sao cho:
26MA MB MA MB
A.
M
nằm trên đường tròn tâm
I
, bán kính
2R AB
với
I
nằm trên cạnh
AB
sao cho
2IA IB
.
B.
M
nằm trên đường trung trực của
BC
.
C.
M
nằm trên đường tròn tâm
I
, bán kính
2R AC
với
I
nằm trên cạnh
AB
sao cho
2IA IB
.
D.
M
nằm trên đường thẳng qua trung điểm
AB
và song song với
BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 3. BI TOÁN THỰC TẾ( VẬT LÝ HỌC).
1. Phương pháp.
Để tính hp lc ca hai hay nhiều véctơ ta áp dụng:
Quy tắc hình bình hành để tìm véc tơ tổng.
Sau đó ta áp dụng định lý Py ta go, h thức lượng…để tính tng ca hp lc.
2. Bài tập minh họa.
Bài tập 6. Cho hai lực
1
F
2
F
có điểm đặt
O
và tạo với nhau góc
0
60
.
Cường độ của hai lực
1
F
2
F
đều là
100N
. Cường độ tổng hợp lực của hai lực đó là
A.
100N
B.
100 3N
C.
50N
D.
50 3N
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Hc Amsterdam Bài 2. Tng Hiệu của hai c tơ
46
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 7. Cho hai lực
1
F
2
F
điểm đặt
O
vuông c với nhau. Cường độ của hai lực
1
F
2
F
lần lượt là
80 ,60NN
. Cường độ tổng hợp lực của hai lực đó
A.
100N
B.
100 3N
C.
50N
D.
50 3N
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 8. Cho hai lực
1
F
2
F
có điểm đặt
O
hợp với nhau một góc
0
120
.
Cường độ của hai lực
1
F
2
F
đều là
50N
. Cường độ tổng hợp lực của hai lực đó là
A.
100N
B.
100 3N
C.
50N
D.
50 3N
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 9. hai lực
1
F
,
2
F
cùng tác động vào một vật đứng tại điểm
O
, biết hai lực
1
F
,
2
F
đều có
cường độ
50 N
chúng hợp với nhau một góc
60
. Hỏi vật đó phải chịu một lực tổng hợp
có cường độ bằng bao nhiêu?
A.
100 N
. B.
50 3 N
. C.
100 3 N
. D. Đáp án khác.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 2. Tng Hiệu ca hai Véc tơ
47
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Bài tập 10. Cho ba lực
1 2 3
,,F MA F MB F MC
cùng tác động vào một vật tại điểm
M
vật đứng yên. Cho biết cường độ của
12
,FF
đều bằng
50N
c
0
60AMB
. Khi đó cường độ
lực của
3
F
là:
A.
100 3 N
. B.
25 3 N
. C.
50 3 N
. D.
50 2 N
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 11. Cho ba lực
1
F MA
,
2
F MB
,
3
F MC
cùng tác động vào một vật tại điểm
M
vật
đứng yên. Cho biết cường độ
1
F
,
2
F
đều bằng
25N
và góc
60AMB 
.
Khi đó cường độ lực
3
F
là:
A.
25 3N
. B.
50 3N
.
C.
50 2N
. D.
100 3N
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
F3
F2
F1
M
A
C
B
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
48
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
A.THUYT
1. Định nghĩa:
Tích của vectơ
a
vi s thc
0k
là một vectơ, Kí hiu
ka
,
Cùng hướng vi
a
nếu
0k
.
Ngược hướng vi
a
nếu
0.k
Và có độ dài bng
ka
Quy ước:
00a
00k
.
dụ 1. Cho tam giác
ABC
. Điểm
M
trên cạnh
BC
sao cho
2MB MC
.
a). Tìm mối quan hệ của hai véc tơ
,MB MC
.
b).
Cho
N
trên cạnh
AC
sao cho
1
4
AN AC
. Xác định điểm
N
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
2. Tính cht :
( ) k m a ka ma
() k a b ka kb
( ) ( )k ma km a
0
0
0

k
ka
a
1,
( 1)
aa
aa
3. Điều kiện để hai vectơ cùng phương
b
cùng phương với
a
0a
khi và ch khi có s
k
tha
b ka
.
Nhn xét:
Cùng ng vi
a
nếu
0k
.
Ngược hướng vi
a
nếu
0.k
ng dng: chứng minh ba điểm thng hàng
Điu kin cần và đủ đ
,,A B C
thng hàng là có s
k
sao cho
AB k AC
.
Vi
0k
thì
,AB AC
cùng hưng .
dụ 2. Cho hai điểm
A
B
. Tìm điểm
I
sao cho
30IA IB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
B'
B
k
a
a
A
A'
B'
B
a
a
k
A
A'
b
a
k
B
B'
A'
A
k
b
a
B
B'
A'
A
A
C
B
§BI 3. TÍCH CA MT VÉC TƠ VI MT S
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
49
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. Phân tích một vectơ theo hai vectơ không cùng phương.
Cho
a
không cùng phương
b
.
Vi mọi vectơ
x
luôn được biu din
x ma nb
vi
,mn
là các s thc duy nht.
dụ 3. Cho tam giác
ABC
. Đặt
, a AB b AC
.
a). Hãy dựng các điểm
M
,
N
thỏa mãn:
1
, 2
3
AM AB CN BC
.
b). Hãy phân tích
, , CM AN MN
qua các véc tơ
a
b
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
5. ng dng
Tính chất trung điểm:
I
là trung điểm đoạn thng
AB
0 IA IB
I
là trung điểm đoạn thng
AB
2 MA MB IM
(
M
là điểm bt k)
Tính cht trng tâm:
G
là trng tâm ca tam giác
ABC
0 GA GB GC
G
là trng tâm ca tam giác
ABC
3 MA MB MC MG
(
M
là điểm bt k)
dụ 4. Cho hình bình hành
ABCD
O
là giao điểm của hai đường chéo. Chứng minh
a). Với điểm
M
bất kì ta
4 MA MB MC MD MO
.
b).
23 AB AC AD AC
.
Lời giải
I
A
B
I
A
B
M
G
B
C
A
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
50
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
dụ 5. Cho tứ giác
ABCD
. Xác định điểm
P
sao cho
30 PA PB PC PD
.
Lời giải
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
B. PHÂN DNG VÀ BÀI TP MINH HA.
Dạng 1. DỰNG V TÍNH ĐỘ DI VÉC TƠ CHỨA TÍCH MỘT VÉC
1. Phương pháp.
S dụng định nghĩa tích của mt vectơ với mt s và các quy tc v phép toán vectơ để dng
vectơ chứa tích một vectơ với mt s.
S dụng phương pháp
cân bng h s
để đưa về
đỉnh chung
, sau đó sử dng quy tắc đỉnh đầu
(Tng, hiệu) và đỉnh gia (Tng).
Phương pháp cân bằng h s bt k :
chn
I AB
sao cho
. , 0AI k AB k
rồi suy ra vec tơ
(nh chiu nhé).
Phương pháp cân bằng h s 1: Dng hình bình hành
ABCD
. Khi đó
AB AD AC
Phương pp n bằng h s 2: gi
I
trung điểm
AB
thì
M
bt k
2MA MB MI
Phương pháp cân bng h s 3:
Gi
G
là trng tâm
ABC
thì
M
bt k
3 MA MB MC MG
Kết hp với các định lí pitago và h thức lượng trong tam giác vuông ... để tính độ dài ca
chúng.
D
B
C
A
I
A
B
M
B
C
A
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
51
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
2. Bài tập minh họa.
Bài tập 1. Cho tam giác đều
ABC
cạnh
a
. điểm
M
là trung điểm
BC
. Dựng các vectơ sau và tính
độ dài của chúng.
a).
1
2
CB MA
b).
1
2
BA BC
c).
1
2
2
AB AC
d).
3
2,5
4
MA MB
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 2.
Cho hình vuông
ABCD
cạnh
a
.
a). Chứng minh rằng
4 3 2 u MA MB MC MD
không phụ thuộc vào vị trí điểm
M
.
b). Tính độ dài vectơ
u
.
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
52
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii (Hình 1.15)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 3. Cho tam giác vuông cân
OAB
với
.OA OAB a
Dựng và tính độ dài các vectơ
a).
3 4 ;OA OB
b).
11 3
47
OA OB
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập luyện tập.
Bài 1. Cho tam giác đều
ABC
cạnh
a
. Gọi điểm
,M
N
lần ợt trung điểm
,BC CA
. Dựng các
vectơ sau và tính độ dài của chúng.
a).
1
2
AN CB
b).
1
2
2
BC MN
c).
2AB AC
d).
3
0,25
2
MA MB
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
53
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 2. Cho hình vuông
ABCD
cạnh
a
.
a). Chứng minh rằng
2 3 2 u MA MB MC MD
không phụ thuộc vào vị trí điểm
M
.
b). Tính độ dài vectơ
u
.
Li gii
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. u hỏi trắc nghiệm
Mức độ 2. Thông hiểu
Câu 1. Cho tam giác
ABC
vuông cân ti
A
AB a
. Tính
AB AC
.
A.
2AB AC a
. B.
2
2
a
AB AC
. C.
2AB AC a
. D.
AB AC a
.
Li gii
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
54
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 2. Cho hình vuông
ABCD
cạnh
a
. Tính
AB AC AD
.
A.
3a
. B.
22a
. C.
2a
. D.
22a
.
Li gii
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
Câu 3. Cho hình vuông
ABCD
cạnh
2a
. Tính
AB AC AD
?
A.
42a
. B.
4a
. C.
22a
. D.
2a
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Mức độ 3. Vận dụng
Câu 4.Cho hình thang
ABCD
đáy
AB a
,
2CD a
. Gọi
M
,
N
lần lượt trung điểm
AD
BC
. Tính độ dài của véctơ
MN BD CA
.
A.
5
2
a
. B.
7
2
a
. C.
3
2
a
. D.
2
a
.
Li gii
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 5. Cho tam giác
OAB
vuông cân tại
,O
cạnh
.OA a
Tính
2.OA OB
A.
B.
1 2 .a
C.
5.a
D.
2 2.a
Li gii
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
55
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 6. Cho tam giác
OAB
vuông cân tại
,O
cạnh
.OA a
Khẳng định nào sau đây sai ?
A.
3 4 5 .OA OB a
B.
2 3 5 .OA OB a
C.
7 2 5 .OA OB a
D.
11 6 5 .OA OB a
Li gii
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 7. Cho tam giác đều
ABC
cạnh
2a
G
là trọng tâm. Khi đó
AB GC
A.
3
3
a
. B.
23
3
a
. C.
43
3
a
. D.
2
3
a
.
Li gii
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
56
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 8. Cho tam giác
ABC
đều cạnh
a
, có
AH
là đường trung tuyến. Tính
AC AH
.
A.
3
2
a
. B.
2a
. C.
13
2
a
. D.
3a
.
Li gii
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
...................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 9. Cho hai lực
1
F MA
,
2
F MB
ng tác động vào một vật tại điểm
M
cường độ hai lực
1
F
,
2
F
lần lượt là
300 N
400 N
.
90AMB 
. Tìm cường độ của lực tổng hợp tác động vào vật.
A.
0N
. B.
700 N
. C.
100 N
. D.
500 N
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 10. Cho ba lực
1
F MA
,
2
F MB
,
3
F MC
cùng tác động vào một vật tại điểm
M
và vật
đứng yên. Cho biết cường độ của
1
F
,
2
F
đều bằng
25N
c
60AMB 
. Khi đó cường độ lực
của
3
F
A.
25 3 N
. B.
50 3 N
. C.
50 2 N
. D.
100 3 N
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
2
F
B
A
M
1
F
3
F
60
C
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
57
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 2. CHỨNG MINH ĐẲNG THỨC VÉC TƠ
1. Phương pháp.
S dng các bin pháp sau:
Biến đổi vếy thành vế kia.
Hoc c hai biu thc hai vế cùng bng biu thc th ba.
Hoc biến đổi tương đương v đẳng thức đúng:
Các kiến thc
Các quy tc: quy tắc ba điểm, quy tc hình bình hành và quy tc phép tr
Tính chất trung điểm:
I
là trung điểm đoạn thng
AB
0 IA IB
I
là trung điểm đoạn thng
AB
2 MA MB MI
(Vi
M
là điểm tu ý)
Tính cht trng tâm:
G
là trng tâm ca tam giác
ABC
0 GA GB GC
G
là trng tâm ca tam giác
ABC
3 GA GB GC MG
(Vi
M
là điểm tu ý)
2. Bài tập minh họa.
Bài tập 4.
Cho tứ giác
ABCD
. Gọi
,IJ
lần lượt là trung điểm của
AB
CD
,
là trung điểm của
IJ
. Chứng minh rằng:
a).
2AC BD IJ
b).
0 OA OB OC OD
c).
4 MA MB MC MD MO
với
M
là điểm bất kì
Li gii (Hình 1.16)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
58
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Bài tập 5. Cho tứ giác
ABCD
. Gọi
,MN
lần lượt là trung điểm các cạnh
AB
BD
. Chứng minh
rằng
2 MN AC BD AD BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 6.
Cho hai tam giác
ABC
1 1 1
A B C
ng trọng m
G
. Gọi
1 2 3
,,G G G
lần lượt là trọng
tâm tam giác
1 1 1
,,BCA ABC ACB
. Chứng minh rằng
1 2 3
0 GG GG GG
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
i tập 7.
Cho tam giác
ABC
có trực tâm
H
, trọng tâm
G
và tâm đường tròn ngoại tiếp
.
Chứng minh rằng
a).
2 HA HB HC HO
b).
OA OB OC OH
c).
20GH GO
.
Li gii (Hình 1.17)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
59
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập luyện tập.
Bài 3. Cho tam giác
ABC
. Gọi
,,M N P
lần lượt là trung điểm của
,,BC CA AB
. Chứng minh rằng
a).
0 AM BN CP
b).
OA OB OC OM ON OP
với
là điểm bất kỳ.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 4. Cho tam giác ABC . Gọi
H
điểm đối xứng với
qua
G
với
G
trọng tâm tam giác.
Chứng minh rằng
a).
21
33
AH AC AB
,
11
33
CH AB AC
b).
15
66
MH AC AB
với
M
là trung điểm của
BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 5. Cho tam giác
ABC
có điểm
M
thuộc cạnh
BC
. Chứng minh rằng

MC MB
AM AB AC
BC BC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
60
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 6. Cho hai hình bình hành
ABCD
' ' 'AB C D
có chung đỉnh
.
Chứng minh rằng
' ' ' 0 B B CC D D
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 7. Cho tam giác
ABC
đều tâm
.
M
là điểm tùy ý trong tam giác.
Hạ
,,MD ME MF
tương ứng vuông góc với
,,BC CA AB
. Chứng minh:
3
2
MD ME MF MO
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 8. Trong mặt phẳng cho tam giác
ABC
. Một đường thẳng
là đường thẳng bất kỳ. Gọi
G
trọng tâm
ABC
, , ,A B C G
lần lượt hình chiếu vuông góc của
, , ,A B C G
lên đường thẳng
.
Chứng minh rằng :
' ' ' 3 ' AA BB CC GG
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
61
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 9.
Cho tam giác
ABC
với
,, AB c BC a CA b
và trọng tâm
G
. Gọi
,,D E F
lần lượt
hình chiếu
G
lên cạnh
,,BC CA AB
.
Chứng minh rằng
2 2 2
. . . 0 a GD b GE c GF
Li gii (hình 1.18)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 10.
Cho tam giác
ABC
với các cạnh
,, AB c BC a CA b
. Gọi
I
là tâm đường tròn nội tiếp
tam giác
ABC
. Chứng minh rằng
0 aIA bIB cIC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
62
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 11. Cho tam giác
ABC
với các cạnh
,, AB c BC a CA b
. Gọi
I
là tâm và
,,D E F
lần lượt là
tiếp điểm của cạnh
,,BC CA AB
của đường tròn nội tiếp tam giác
ABC
.
,,M N P
lần lượt là trung
điểm của
,,BC CA AB
. Chứng minh rằng:
a).
cot cot cot cot cot cot 0
2 2 2 2 2 2
B C C A A B
IA IB IC
b).
cot cot cot 0
2 2 2
A B C
IM IN IP
c).
0 b c a IM a c b IN a b c IP
d).
0 aAD bBE cCF
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
63
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 12. Cho tam giác
ABC
.
M
là điểm bất kỳ nằm trong tam giác.
Chứng minh rằng :
. =0
MBC MCA MAB
S MA S MB S MC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 13. Cho tam giác
ABC
vuông tại
.
I
là trung điểm của đường cao
AH
.
Chứng minh rằng :
2 2 2
0 a IA b IB c IC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. u hỏi trắc nghiệm
Mức độ 1. Nhận biết
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
64
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 11. Cho các điểm
A
,
B
,
C
,
D
và s thc
k
. Mệnh đề nào sau đây đúng?
A.
AB k CD AB kCD
. B.
AB kCD AB kCD
.
C.
AB kCD AB k CD
. D.
AB kCD AB kCD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 12. Cho tam giác
ABC
G
là trọng tâm,
I
là trung điểm
BC
. Tìm khẳng định sai.
A.
IB IC IA IA
. B.
IB IC BC
.
C.
2AB AC AI
. D.
3AB AC GA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 13. Cho tam giác
ABC
G
là trọng tâm. Mệnh đề nào sau đây sai?
A.
3MA MB MC MG
, với mọi điểm
M
. B.
0GA GB GC
.
C.
2GB GC GA
. D.
3AG AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 14. Cho tam giác
ABC
, trng tâm
G
, gi
M
là trung điểm
BC
. Tìm mệnh đề đúng?
A.
2AB AC AG
. B.
AB AC AM
.
C.
GA GB CG
. D.
AB AC BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
65
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 15. Cho
I
là trung điểm của đoạn
MN
? Mệnh đề nào là mệnh đề sai?
A.
0IM IN
. B.
2MN NI
.
C.
MI NI IM IN
. D.
2AM AN AI
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 16. Cho
4
điểm
A
,
B
,
C
,
D
. Gọi
I
,
J
lần lượt trung điểm của
AB
CD
;
O
trung
điểm của
IJ
. Mệnh đề nào sau đây sai?
A.
1
2
IJ AD BC
. B.
AB CD AD CB
.
C.
1
2
IJ AC BD
. D.
0OA OB OC OD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 17. Cho hình bình hành
ABCD
tâm
I
;
G
là trọng tâm tam giác
BCD
. Đẳng thức nào sai?
A.
BA DA BA DC
. B.
3AB AC AD AG
.
C.
BA BC DA DC
. D.
0IA IB IC ID
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
66
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 18. Cho tam giác
ABC
I
là trung điểm ca cnh
BC
. Điểm
G
nh cht nào sau đây là
điu kin cần và đủ để
G
là trng tâm ca tam giác
ABC
?
A.
0AG BG CG
. B.
2GB GC GI
.
C.
3AI GI
. D.
2GA GI
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 19. Cho hình bình hành
ABCD
, tâm
O
, gi
G
là trngm tam giác
ABD
. Tìm mệnh đề sai:
A.
AB AD AC
. B.
3AB AD AG
. C.
2AB AD BO
. D.
1
3
GO OC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 20. Cho tam giác
ABC
có trung tuyến
AM
và trng tâm
G
.
Khẳng định nào sau đây là khẳng định đúng.
A.
2AM AB AC
. B.
3AM GM
.
C.
2 3 0AM GA
. D.
3MG MA MB MC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 21.Cho hình bình hành
ABCD
tâm
O
. Tìm khẳng định sai trong các khẳng định sau:
A.
AB AD AC
. B.
AB AD DB
. C.
OA OB AD
. D.
OA OB CB
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
67
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 22. Cho tam giác
ABC
, có
AM
là trung tuyến;
I
là trung điểm của
AM
. Đẳng thức nào đúng
A.
0IA IB IC
. B.
0IA IB IC
.
C.
24IA IB IC IA
. D.
20IA IB IC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 23. Tam giác
ABC
là tam giác nhọn có
AA
là đường cao.
Khi đó véctơ
tan tanu B A B C A C


A.
u BC
. B.
0u
. C.
u AB
. D.
u AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 24. Cho tam giác
ABC
G
là trọng tâm và
I
là trung điểm của
.BC
Đẳng thức nào sau đây
đúng ?
A.
2.GA GI
B.
1
.
3
IG IA
C.
2.GB GC GI
D.
.GB GC GA
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
68
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 25. Cho tam giác
ABC
G
là trọng tâm và
M
là trung điểm
.BC
Khẳng định nào sau đây sai ?
A.
2
.
3
GA AM
B.
3.AB AC AG
C.
.GA BG CG
D.
.GB GC GM
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 26. Cho tam giác
ABC
vuông tại
,A
M
là trung điểm của
.BC
Khẳng định nào sau đây đúng ?
A.
.AM MB MC
B.
.MB MC
C.
.MB MC
D.
.
2
BC
AM
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 27. Cho tam giác
.ABC
Gọi
M
N
lần lượt là trung điểm của
AB
.AC
Khẳng định nào sau đây sai ?
A.
2.AB AM
B.
2.AC NC
C.
2.BC MN
D.
1
.
2
CN AC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 28. Cho tam giác
ABC
G
là trọng tâm. Mệnh đề nào sau đây đúng ?
A.
2
.
3
AB AC AG
B.
3.BA BC BG
C.
.CA CB CG
D.
0.AB AC BC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
69
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 29. Cho tam giác đều
ABC
và điểm
I
thỏa mãn
2.IA IB
Mệnh đề nào sau đây đúng ?
A.
2
.
3
CA CB
CI
B.
2
.
3
CA CB
CI
C.
2.CI CA CB
D.
2
.
3
CA CB
CI
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 30. Cho tam giác
ABC
và một điểm
M
tùy ý. Mệnh đề nào sau đây đúng ?
A.
2 3 2 .MA MB MC AC BC
B.
2 3 2 .MA MB MC AC BC
C.
2 3 2 .MA MB MC CA CB
D.
2 3 2 .MA MB MC CB CA
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 31. Cho hình vuông
ABCD
có tâm là
.O
Mệnh đề nào sau đây sai ?
A.
2.AB AD AO
B.
1
.
2
AD DO CA
C.
1
.
2
OA OB CB
D.
2.AC DB AB
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
70
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 32. Cho hình bình hành
.ABCD
Đẳng thức nào sau đây đúng ?
A.
2.AC BD BC
B.
.AC BC AB
C.
2.AC BD CD
D.
.AC AD CD
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 33. Cho hình bình hành
ABCD
M
là giao điểm của hai đường chéo.
Mệnh đề nào sau đây sai ?
A.
.AB BC AC
B.
.AB AD AC
C.
2.BA BC BM
D.
.MA MB MC MD
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 3. XÁC ĐỊNH ĐIỂM
M
THỎA MÃN ĐẲNG THỨC VÉC TƠ
1. Phương pháp.
c 1. Ta biến đổi đẳng thức vectơ về dng
AM a
trong đó điểm
a
đã biết.
c 2. Khi đó tồn ti duy nhất điểm
M
sao cho
AM a
.
Để dựng điểm
M
ta ly
làm gc dng một vectơ bằng vec
a
suy ra điểm ngọn vectơ
này chính là đim
M
.
c 3. Ta biến đi v đẳng thức vectơ đã biết như
trung điểm đoạn thng
trng tâm tam
giác
hoc một đỉnh của hình bình hành, điểm đối xng ...
2. Bài tập minh họa.
Bài tập 8.
Cho hai điểm
,AB
phân biệt. Xác định điểm
M
biết
2 3 0MA MB
Li gii (hình 1.21)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 9.
Cho tam giác
ABC
a). Tìm điểm
K
sao cho
2KA KB CB
.
b). Tìm điểm
M
sao cho
20 MA MB MC
.
Lời giải
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
71
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 10.
Cho tứ giác
ABCD
. Xác định điểm
,,M N P
sao cho
a).
20 MA MB MC
b).
0 NA NB NC ND
c).
30 PA PB PC PD
Li gii (hình 1.22)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 11. Cho tứ giác
ABCD
. Hãy xác định vị trí của điểm
G
sao cho
0GA GB GC GD
.
Chứng minh với mọi điểm
O
thì:
1
4
OG OA OB OC OD
. Điểm
G
như thế gọi là trọng tâm
của tứ giác
ABCD
.
Lời giải
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
72
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập luyện tập.
Bài 14. Xác định điểm
M
biết
2 3 0 MA MB MC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 15. Xác định các điểm
, , ,I J K L
biết
a).
20IA IB
b).
20 JA JB JC
c).
KA KB KC BC
d).
23 LA LB LC AB AC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
73
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 16. Cho tứ giác
ABCD
. Tìm điểm cố định
I
và hằng số
k
để hệ thức sau thỏa mãn với mọi
M
a).
2 MA MB MC kMI
b).
23 MA MB MD kMI
c).
2 3 4 MA MB MC MD kMI
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 17. Cho tam giác
ABC
với các cạnh
,, AB c BC a CA b
.
Tìm điểm
M
sao cho
0 aMA bMB cMC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 18.
Cho trước hai điểm
,AB
và hai s thực
,
thoả mãn
0.


Chứng minh rằng tồn tại duy nhất điểm
I
thoả mãn
0.

IA IB
Từ đó, suy ra với điểm bất kì
M
thì
( ) .
MA MB MI
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
74
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 19. Cho tam giác
ABC
và ba số thức
,,
không đồng thời bằng không. Chứng minh rằng:
a). Nếu
0
thì tồn tại duy nhất điểm M sao cho
0.
MA MB MC
b). Nếu
0
thì không tồn tại điểm N sao cho
0.
NA NB NC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
5. u hỏi trắc nghiệm
Mức độ 1. Nhận biết
Câu 34. Cho tam giác
ABC
, biết
AB AC AB AC
. Mệnh đề nào sau đây đúng?
A. Tam giác
ABC
vuông tại
A
. B. Tam giác
ABC
vuông tại
B
.
C. Tam giác
ABC
vuông tại
C
. D. Tam giác
ABC
cân tại
A
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 35. Cho tam giác
ABC
. Vị trí của điểm
M
sao cho
0MA MB MC
A.
M
trùng
C
. B.
M
là đỉnh thứ tư của hình bình hành
CBAM
.
C.
M
trùng
B
. D.
M
là đỉnh thứ tư của hìnhnh hành
CABM
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
75
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 36. Tam giác
ABC
thỏa mãn:
AB AC AB AC
thì tam giác
ABC
là:
A. Tam giác vuông
A
. B. Tam giác vuông
C
.
C. Tam giác vuông
B
. D. Tam giác cân tại
C
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 37. Cho tam giác
ABC
và điểm
M
thỏa mãn
2.MA MB CA
Khẳng định nào sau đây là đúng ?
A.
M
trùng
.A
B.
M
trùng
.B
C.
M
trùng
.C
D.
M
là trọng tâm của tam giác
.ABC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 38. Gọi
G
là trọng tâm tam giác
ABC
. Đặt
, GA a GB b
.
Hãy tìm
, mn
để có
.BC ma nb
A.
1, 2.mn
B.
1, 2.mn
C.
2, 1.mn
D.
2, 1.mn
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 39. Cho ba điểm
,,A B C
không thẳng hàng và điểm
M
thỏa mãn đẳng thức vectơ
.MA xMB y MC
Tính giá trị biểu thức
.P x y
A.
0.P
B.
2.P
C.
2.P 
D.
3.P
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
76
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
u 40. Cho hình chữ nhật
ABCD
và s thực
0.k
Tập hợp các điểm
M
thỏa mãn đẳng thức
MA MB MC MD k
A. một đoạn thẳng. B. một đường thẳng. C. một đường tròn. D. một điểm.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 41. Cho hình chnhật
ABCD
I
giao điểm của hai đường chéo. Tập hợp các điểm
M
thỏa mãn
MA MB MC MD
A. trung trực của đoạn thẳng
.AB
B. trung trực của đoạn thẳng
.AD
C. đường tròn tâm
bán kính
.
2
AC
D. đường tròn tâm
bán kính
.
2
AB BC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 42. Cho hai điểm
,AB
phân biệt và cố định, với
I
là trung điểm của
.AB
Tập hợp các điểm
M
thỏa mãn đẳng thức
MA MB MA MB
A. đường tròn tâm
đường kính
.
2
AB
B. đường tròn đường kính
.AB
C. đường trung trực của đoạn thẳng
.AB
D. đường trung trực đoạn thẳng
.IA
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
77
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 43. Cho hai điểm
,AB
phân biệt và cố định, với
I
là trung điểm của
.AB
Tập hợp các điểm
M
thỏa mãn đẳng thức
22MA MB MA MB
A. đường trung trực của đoạn thẳng
.AB
B. đường tròn đường kính
.AB
C. đường trung trực đoạn thẳng
.IA
D. đường tròn tâm
,A
bán kính
.AB
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 44. Cho tam giác đều
ABC
cạnh
,a
trọng m
.G
Ttp hợp các điểm
M
thỏa n
MA MB MA MC
A. đường trung trực của đoạn
BC
. B. đường tròn đường kính
BC
.
C. đường tròn tâm
G
, bán kính
. D. đường trung trực đoạn thẳng
AG
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyn Thi Đại Học Amsterdam Bài 3. Tích ca c tơ với mt s
78
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 45. Cho tam giác đều
ABC
cạnh
Biết rằng tập hợp các điểm
M
thỏa mãn đẳng thức
2 3 4MA MB MC MB MA
là đường tròn cố định có bán kính
.R
Tính bán kính
theo
A.
.
3
a
R
B.
.
9
a
R
C.
.
2
a
R
D.
.
6
a
R
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 46. Cho tam giác
ABC
. Có bao nhiêu điểm
M
thỏa mãn
3MA MB MC
?
A.
1.
B.
2.
C.
D. Vô số.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
79
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Dạng 4. PHÂN TÍCH MỘT VÉCTHEO HAI VECTƠ KNG CÙNG PHƯƠNG.
1. Phương pháp.
V hình, nhìn vào hình v để chèn điểm cho xut hiện véc tơ cần tìm.
Nếu cho trung đim thì s dng quy tắc trung điểm.
Nếu cho trng tâm thì s dng quy tc trng tâm.
Nếu cho hình bình hành thì s dng quy tc hình bình hành.
Nếu bài toán cho t s thì da vào t s:
AB kMN
2. Bài tập minh họa.
Bài tập 12.
Cho tam giác
ABC
. Đặt
, a AB b AC
.
a). Hãy dựng các điểm
,MN
thỏa mãn:
1
, 2
3
AM AB CN BC
b). Hãy phân tích
, , CM AN MN
qua các véc tơ
a
b
.
c). Gọi I là điểm thỏa:
MI CM
. Chứng minh
,,I A N
thẳng hàng
Li gii (hình 1.23)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 13.
Cho tam giác
,ABC
trên cạnh
BC
lấy
M
sao cho
3BM CM
, trên đoạn
AM
lấy
N
sao cho
25AN MN
.
G
là trọng tâm tam giác
ABC
.
a) Phân tích các vectơ
, AM BN
qua các véc tơ
AB
AC
.
b) Phân tích các vectơ
,GC MN
qua các véc tơ
GA
GB
.
Li gii (hình 1.24)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
80
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 14.
Cho hình bình hành
ABCD
. Gọi
,MN
lần lượt hai điểm nằm trên hai cạnh
AB
CD
sao cho
3 , 2AB AM CD CN
G
là trọng tâm tam giác
MNB
.
Phân tích các vectơ
, ,AN MN AG
qua các véc tơ
AB
AC
Li gii (hình 1.25)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập luyện tập.
Bài 20. Cho tam giác
.ABC
Lấy các điểm
,,M N P
sao cho
3MB MC
,
30NA NC
,
0PA PB
a). Biểu diễn các vectơ
,,AP AN AM
theo các vectơ
AB
AC
b). Biểu diễn các vectơ
MP
,
MN
theo các vectơ
AB
AC
Có nhận xét gì về ba điểm
,,M N P
thẳng hàng?
Li gii (hình 1.24)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
81
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 21. Cho tam giác
.ABC
Gọi
,IJ
là hai điểm xác định bởi
2 , 3 2 0 IA IB JA JC
a). Tính
IJ
theo
AB
AC
.
b). Đường thẳng
IJ
đi qua trọng tâm
G
của tam giác
ABC
.
Li gii (hình 1.24)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 22. Cho tam giác
ABC
trọng tâm
G
. Gọi
I
là điểm trên cạnh
BC
sao cho
23CI BI
J
là điểm trên
BC
kéo dài sao cho
52JB JC
.
a). y phân tích
,AI AJ
theo
AB
AC
.
b). y phân tích
AG
theo
AI
AJ
.
Li gii (hình 1.24)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
82
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 23. Cho hai vectơ
,ab
không cùng phương. Tìm
x
sao cho
a).
21 u a x b
v xa b
cùng phương.
b).
3u a xb
2
1
3
u x a b
cùng hướng.
Li gii (hình 1.24)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. u hỏi trắc nghiệm
Mức độ 2. Thông Hiểu
Câu 47. Cho tam giác
ABC
M
trung điểm của
,BC I
trung điểm của
.AM
Khẳng định
nào sau đây đúng ?
A.
2 0.IB IC IA
B.
2 0.IB IC IA
C.
2 0.IB IC IA
D.
0.IB IC IA
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 48. Cho tam giác
ABC
M
là trung điểm của
,BC I
là trung điểm của
.AM
Khẳng định nào sau đây đúng ?
A.
1
.
4
AI AB AC
B.
1
.
4
AI AB AC
C.
11
.
42
AI AB AC
D.
11
.
42
AI AB AC
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
83
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 49. Cho tam giác
ABC
M
là trung điểm của
,BC G
là trọng tâm của tam giác
.ABC
Khẳng định nào sau đây đúng ?
A.
2
.
3
AG AB AC
B.
1
.
3
AG AB AC
C.
12
.
32
AG AB AC
D.
2
3.
3
AI AB AC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 50. Cho hình bình hành
ABCD
M
là trung điểm của
.AB
Khẳng định nào sau đây đúng ?
A.
1
.
2
DM CD BC
B.
1
.
2
DM CD BC
C.
1
.
2
DM DC BC
D.
1
.
2
DM DC BC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 51. Cho tam giác
,ABC
điểm
M
thuộc cạnh
AB
sao cho
3AM AB
N
là trung điểm của
.AC
Tính
MN
theo
AB
.AC
A.
11
.
23
MN AC AB
B.
11
.
23
MN AC AB
C.
11
.
23
MN AB AC
D.
11
.
23
MN AC AB
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
84
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 52. Cho tam giác
.ABC
Hai điểm
,MN
chia cạnh
BC
theo ba phần
.BM MN NC
Tính
AM
theo
AB
.AC
A.
21
.
33
AM AB AC
B.
12
.
33
AM AB AC
C.
21
.
33
AM AB AC
D.
12
.
33
AM AB AC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 53. Cho tam giác
ABC
M
là trung điểm của
.BC
Tính
AB
theo
AM
.BC
A.
1
.
2
AB AM BC
B.
1
.
2
AB BC AM
C.
1
.
2
AB AM BC
D.
1
.
2
AB BC AM
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 54. Cho tam giác
ABC
, gọi
M
trung điểm
AB
N
một điểm trên cạnh
AC
sao cho
2NC NA
. Gọi
K
là trung điểm của
MN
. Khi đó
A.
11
.
64
AK AB AC
B.
11
.
46
AK AB AC
C.
11
.
46
AK AB AC
D.
11
.
64
AK AB AC
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
85
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 55. Cho hình bình hành
.ABCD
Tính
AB
theo
AC
.BD
A.
11
.
22
AB AC BD
B.
11
.
22
AB AC BD
C.
1
.
2
AB AM BC
D.
1
.
2
AB AC BD
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 56. Cho tam giác
ABC
và đặt
,.a BC b AC
Cặp vectơ nào sau đây cùng phương?
A.
2 , 2 .a b a b
B.
2 , 2 .a b a b
C.
5 , 10 2 .a b a b
D.
,.a b a b
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 57. Cho tam giác
ABC
và điểm
M
thỏa mãn
.MA MB MC
Khẳng định nào sau đây đúng ?
A. Ba điểm
,,C M B
thẳng hàng. B.
AM
là phân giác trong của góc
.BAC
C.
,AM
và trọng tâm tam giác
ABC
thẳng hàng. D.
0.AM BC
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
86
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Mức độ 3. Vận dụng
Câu 58. Cho tam giác
ABC
và điểm
I
thỏa mãn
2IA IB
. Biểu diễn
IC
theo các vectơ
AB
,
AC
A.
2IC AB AC
. B.
2IC AB AC
.
C.
2
3
IC AB AC
. D.
2
3
IC AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 59. Cho hình ch nht
ABCD
tâm
O
. Gi
M
,
N
lần lượt là trung điểm ca
OA
và
CD
. Biết
..MN a AB b AD
. Tính
ab
.
A.
1ab
. B.
1
2
ab
. C.
3
4
ab
. D.
1
4
ab
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 60. Cho tam giác
ABC
. Gi
I
,
J
là hai điểm xác định bi
2IA IB
,
3 2 0JA JC
.
H thức nào đúng?
A.
5
2
2
IJ AC AB
. B.
5
2
2
IJ AB AC
. C.
2
2
5
IJ AB AC
. D.
2
2
5
IJ AC AB
.
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
87
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 61. Cho tam giác
ABC
. Gọi
M
là điểm trên cạnh
BC
sao cho
2MB MC
. Khi đó:
A.
12
33
AM AB AC
. B.
21
33
AM AB AC
.
C.
AM AB AC
. D.
23
55
AM AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 62. Cho hình bình hành
ABCD
N
trung điểm
AB
G
trọng tâm
ABC
. Phân tích
GA
theo
BD
NC
A.
12
33
GA BD NC
. B.
14
33
GA BD NC
.
C.
12
33
GA BD NC
. D.
12
33
GA BD NC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
88
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 63. Cho
ABC
I
thỏa mãn
3IA IB
. Phân tích
CI
theo
CA
CB
.
A.
1
3
2
CI CA CB
. B.
3CI CA CB
.
C.
1
3
2
CI CB CA
. D.
3CI CB CA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 64. Cho tam giác
ABC
. Gi
M
là điểm được xác định:
4 3 0BM BC
.
Khi đó vectơ
AM
bng
A.
AB AC
.
B.
11
23
AB AC
.
C.
12
33
AB AC
.
D.
13
44
AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 65. Cho tam giác
ABC
I
,
D
lần lượt là trung điểm
AB
,
CI
. Đẳng thức nào sau đây đúng?
A.
13
24
BD AB AC
. B.
31
42
BD AB AC
.
C.
13
42
BD AB AC
. D.
31
42
BD AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
89
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 66. Cho tứ giác
.ABCD
Trên cạnh
,AB CD
lấy lần lượt các điểm
,MN
sao cho
32AM AB
3 2 .DN DC
Tính vectơ
MN
theo hai vectơ
,.AD BC
A.
11
.
33
MN AD BC
B.
12
.
33
MN AD BC
C.
12
.
33
MN AD BC
D.
21
.
33
MN AD BC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 67. Cho hình thang
ABCD
đáy là
AB
.CD
Gọi
M
N
lần lượt là trung điểm của
AD
.BC
Khẳng định nào sau đây sai ?
A.
.MN MD CN DC
B.
.MN AB MD BN
C.
1
.
2
MN AB DC
D.
1
.
2
MN AD BC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 68. Cho t giác
ABCD
trên cnh
AB
,
CD
lần lượt ly các điểm
M
,
N
sao cho
32AM AB
32DN DC
. Tính vectơ
MN
theo hai vectơ
AD
,
BC
.
A.
12
33
MN AD BC
.
B.
11
33
MN AD BC
.
C.
12
33
MN AD BC
. D.
21
33
MN AD BC
.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
90
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 69. Cho t giác
ABCD
, trên cnh
AB
,
CD
ly lần lượt các điểm
M
,
N
sao cho
32AM AB
32DN DC
. Tính vectơ
MN
theo hai vectơ
AD
,
BC
.
A.
11
33
MN AD BC
. B.
12
33
MN AD BC
.
C.
12
33
MN AD BC
. D.
21
33
MN AD BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 5. CHỨNG MINH HAI ĐIỂM TRÙNG NHAU, HAI TAM GIÁC CÓ CÙNG TRỌNG TÂM.
1. Phương pháp.
Để chứng minh hai điểm
1
A
2
A
trùng nhau, ta la chn mt trong hai cách sau :
Cách 1.
Chng minh
12
0.AA
Cách 2. Chng minh
12
OA OA
vi
O
là điểm tu ý.
Để chng minh hai tam giác
ABC
' ' 'A B C
cùng trọng tâm ta làm như sau:
Cách 1. Chng minh
G
là trng tâm
ABC
trùng vi
'G
là trng tâm
' ' 'A B C
Cách 2. Gi
G
là trng tâm
ABC
(tc ta có
0 GA GB GC
) ta đi chứng minh
' ' ' 0 GA GB GC
2. Bài tập rèn luyện.
Bài tập 15.
Chứng minh rằng
AB CD
khi chỉ khi trung điểm của hai đoạn thẳng
AD
BC
trùng nhau.
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
91
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 16.
Cho tam giác
ABC
, trên các cạnh
,,AB BC CA
ta lấy lần lượt các điểm
,,M N P
sao cho

AM BN CP
AB BC CA
. Chứng minh rằng hai tam giác
ABC
MNP
có cùng trọng tâm.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 17.
Cho lục giác
ABCDEF
. Gọi
, , , , ,M N P Q R S
lần lượt là trung điểm của các cạnh
, , , , ,AB BC CD DE EF FA
. Chứng minh rằng hai tam giác
MPR
NQS
có cùng trọng tâm.
Li gii (hình 1.26)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
92
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Bài tập 18.
Cho hai hình bình hành
ABCD
' ' 'AB C D
chung đỉnh
A
. Chứng minh rằng hai tam
giác
'BC D
''B CD
cùng trọng tâm.
Li gii (hình 1.27)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập luyện tập.
Bài 24. Cho các tam giác
, ' ' 'ABC A B C
G
,
G
lần lượt là trọng tâm.
Chứng minh rằng:
' ' ' 3 ' AA BB CC GG
. Từ đó suy ra điều kiện cần đđể hai tam giác
cùng trọng tâm .
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 25. Cho tam giác
ABC
, vẽ các hình bình hành
,,ABIJ BCPQ CARS
.
Chứng minh rằng
,RIP JQS
có cùng trọng tâm.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
93
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Bài 26. Cho tam giác
ABC
A
điểm đối xứng của
qua
,BB
điểm đối xứng của
qua
,CC
là điểm đối xứng của
qua
.
Chứng minh các tam giác
ABC
' ' 'A B C
có cùng trọng tâm.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 27. Cho tứ giác
ABCD
. Gọi
, , ,M N P Q
lần lượt là trung điểm của
, , ,AB BC CD DA
.
Chứng minh rằng hai tam giác
ANP
CMQ
có cùng trọng tâm.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 28. Cho tam giác
ABC
. Gọi
,,A B C
là các điểm xác định bởi
2011 ' 2012 ' 0A B A C
,
2011 ' 2012 ' 0B C B A
,
2011 ' 2012 ' 0C A C B
.
Chứng minh rằng
ABC
' ' 'A B C
cùng trọng tâm
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 29. Cho
ABC
' ' 'A B C
có cùng trọng tâm
G
, gọi
1 2 3
,,G G G
là trọngm các tam giác
', ', 'BCA CAB ABC
. Chứng minh rằng
1 2 3
G G G
cũng có trọng tâm
.G
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
94
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 30. Cho tứ giác
ABCD
trọng tâm
G
. Gọi
1 2 3 4
, , ,G G G G
lần lượt trọng tâm các tam giác
, , , ABC BCD CDA DAB
. Chứng minh rằng G cũng là trọng tâm tứ giác
1 2 3 4
G G G G
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 31. Cho tam giác
ABC
đều
M
một điểm nằm trong tam giác. Gọi
1 1 1
,,A B C
lần lượt
điểm đối xứng
M
qua
,,BC CA AB
.
Chứng minh rằng tam giác
ABC
1 1 1
,,A B C
có cùng trọng tâm.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 32. Cho các tam giác
ABC
, điểm
nằm trong tam giác. Gọi
1 1 1
,,A B C
lần lượt hình chiếu
của
lên
,,BC CA AB
. Lấy các điểm
2 2 2
,,A B C
lần lượt thuộc các tia
1 1 1
,,OA OB OC
sao cho
2 2 2
,, OA a OB b OC c
. Chứng minh
là trọng tâm tam giác
2 2 2
A B C
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
95
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
4. u hỏi trắc nghiệm
Mức độ 4. Vận dụng cao
Câu 70. Cho ba điểm
A
,
B
,
C
. Tìm khẳng định sai khi nêu điều kin cần đủ để ba điểm thng
hàng?
A.
:k AB k AC
. B.
:k AB kBC
.
C.
:0M MA MB MC
. D.
:k BC kBA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 71. Biết rằng hai vectơ
a
b
không cùng phương nhưng hai vectơ
23ab
1a x b
cùng phương. Khi đó giá tr ca
x
A.
1
2
. B.
3
2
. C.
1
2
. D.
3
2
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 72. Cho
ABC
. Gi
M
,
N
là các điểm tha:
0MA MB
,
2 3 0NA NC
BC kBP
.
Tìm
k
để ba điểm
M
,
N
,
P
thng hàng.
A.
1
3
k
. B.
3k
. C.
2
3
k
. D.
3
5
k
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
96
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 73. Cho tam giác
ABC
,
M
N
hai điểm thỏa mãn:
2BM BC AB
,
CN xAC BC
.
Xác định
x
để
A
,
M
,
N
thẳng hàng.
A.
3.
B.
1
.
3
C.
2.
D.
1
.
2
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 6. TÌM TẬP HỢP ĐIỂM THỎA MÃN ĐIỀU KIỆN VEC TƠ CHO TRƯỚC.
1. Phương pháp.
Để tìm tp hợp đim
M
thỏa mãn mãn điu kiện vectơ ta quy về mt trong các dng sau
Nếu
MA MB
vi
,AB
phân biệt cho trước thì
M
thuc đường trung trc của đoạn
AB
.
Nếu
.MC k AB
vi
,,A B C
phân biệt cho trước thì
M
thuc đường tròn tâm
, bán kính
bng
.k AB
.
Nếu
MA kBC
vi
,,A B C
phân bit và
k
là s thực thay đổi thì
M
thuc đường thng qua
song song vi
BC
vi
kR
.
M
thuc nửa đường thng qua
song song vi
BC
và cùng hướng
BC
vi
0k
.
M
thuc nửa đường thng qua
song song vi
BC
và ngược hướng
BC
vi
0k
.
Nếu
,MA kBC B C
vi
,,A B C
thng hàng và
k
thay đổi thì tp hợp điểm
M
là đường
thng
BC
.
2. Bài tập minh họa.
Bài tập 19.
Cho tam giác
ABC
a). Chứng minh rằng tồn tại duy nhất điểm
I
thỏa mãn :
2 3 4 0 IA IB IC
.
b). Tìm quỹ tích điểm
M
thỏa mãn :
2 3 4 MA MB MC MB MA
.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
97
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 20. Cho tam giác
ABC
. Tìm tập hợp các điểm
M
thoả mãn điều kiện sau :
a).
MA MB MA MC
b).
23 MA MB k MA MB MC
với
k
là số thực thay đổi.
Li gii (hình 1.28)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 21.
Cho tứ giác
ABCD
. Với số
k
tùy ý, lấy các điểm
M
N
sao cho
,AM k AB DN kDC
. Tìm tập hợp các trung điểm
I
của đoạn thẳng
MN
khi
k
thay đổi.
Li gii (hình 1.29)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
98
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập luyện tập.
Bài 33. Cho 2 điểm cố định
,AB
. Tìm tập hợp các điểm
M
sao cho:
a).
MA MB MA MB
. b).
22 MA MB MA MB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 34. Cho
ABC
. Tìm tập hợp các điểm
M
sao cho:
a).
MA kMB kMC
với
k
là số thực thay đổi
b).
2v MA MB MC
cùng phương với véc tơ
BC
c).
MA BC MA MB
(HD: dựng hình bình hành
ABCD
)
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 35. Cho
ABC
. Tìm tập hợp điểm
M
trong các trường hợp sau:
a).
2 3 3 2 MA MB MB MC
b).
42 MA MB MC MA MB MC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
99
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 36. Cho tứ giác
ABCD
.
a). Xác định điểm
sao cho :
42OB OC OD
.
b). Tìm tập hợp điểm
M
thoả mãn hệ thức
4 2 3 MB MC MD MA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 37. Cho lục giác đều
ABCDEF
. Tìm tập hợp các điểm
M
sao cho :
MA MB MC MD ME MF
nhận giá trị nhỏ nhất .
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 38. Trên hai tia
Ox
Oy
của góc
xOy
lấy hai điểm
,MN
sao cho
OM ON a
với
a
số
thực cho trước. Tìm tập hợp trung điểm
I
của đoạn thằng
MN
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
100
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
4. u hỏi trắc nghiệm
Mức độ 1. Nhận biết
Câu 74. Cho tam giác
ABC
. Điểm
M
thỏa mãn
2AB AC AM
. Chọn khẳng định đúng.
A.
M
là trọng tâm tam giác. B.
M
là trung điểm của
BC
.
C.
M
trùng với
B
hoặc
C
. D.
M
trùng với
A
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 75. Cho hình vuông
ABCD
tâm
O
cnh
a
. Biết rng tp hợp các điểm
M
tha mãn
2 2 2 2 2
2 2 9MA MB MC MD a
là một đường tròn. Bán kính của đường tròn đó là
A.
2Ra
. B.
3Ra
. C.
Ra
. D.
2Ra
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 76. Cho tam giác
ABC
, trng tâm
G
, gi
I
là trung điểm
BC
,
M
là điểm tho mãn:
23MA MB MC MB MC
. Khi đó, tập hợp đim
M
A. Đưng trung trc ca
BC
. B. Đưng tròn tâm
G
, bán kính
BC
.
C. Đưng trung trc ca
IG
. D. Đưng tròn tâm
I
, bán kính
BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 77. Cho
ABC
. Tìm tập hợpc điểm
M
sao cho:
3 2 2MA MB MC MA MB MC
.
A. Tập hợp các điểm
M
là một đường tròn.
B. Tập hợp của các điểm
M
là một đường thẳng.
C. Tập hợp các điểm
M
là tập rỗng.
D. Tập hợp các điểm
M
chỉ là một điểm trùng với
A
.
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
101
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 78. Cho tam giác đều
ABC
cạnh
18cm
.
Tập hợp các điểm
M
thỏa mãn đẳng thức
2 3 4MA MB MC MA MB
A. Tập rỗng.
B. Đường tròn cố định có bán kính
2cmR
.
C. Đường tròn c định có bán kính
3cmR
.
D. Một đường thẳng.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 7. XÁC ĐỊNH TÍNH CHẤT CỦA HÌNH KHI BIẾT MỘT ĐẲNG THỨC VECTƠ.
1. Phương pháp.
Phân tính được định tính xut phát t c đẳng thc vectơ của gi thiết.
Lưu ý ti nhng h thức đã biết v trung điểm của đoạn thng, trng tâm ca tam giác và kết
qu "
00 ma nb m n
vi
,ab
là hai vectơ không cùng phương "
2. Bài tập minh họa
Bài tập 22.
Gọi
,MN
lần lượt là trung điểm của các cạnh
AD
DC
của tứ giác
ABCD
.
Các đoạn thẳng
AN
BM
cắt nhau tại
.
Biết
12
;
55
PM BM AP AN
. Chứng minh rằng tứ giác
ABCD
là hình bình hành.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
102
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 23.
Cho tam giác
ABC
có các cạnh bằng
,,abc
và trọng tâm
G
thoả mãn:
2 2 2
0. a GA b GB c GC
Chứng minh rằng
ABC
là tam giác đều.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 24.
Cho tam giác
ABC
trung tuyến
AA
B
,
C
các điểm thay đổi trên
,CA AB
thoả mãn
' ' ' 0 AA BB CC
. Chứng minh
,BB CC

là các trung tuyến của tam giác
ABC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
103
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
3. Bài tập luyên tập.
Bài 39. Cho tứ giác
ABCD
hai đường chéo cắt nhau tại
thomãn
0 OA OB OC OD
.
Chứng minh tứ giác
ABCD
là hình bình hành.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 40. Cho
ABC
,BB CC

là các trung tuyến,
A
là điểm trên
BC
thoả mãn
' ' ' 0 AA BB CC
. Chứng minh
AA
cũng là trung tuyến của tam giác
ABC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 41. Cho
ABC
,,A B C
các điểm thay đổi trên
,,BC CA AB
sao cho
', ', 'AA BB CC
đồng
quy và thoả mãn
' ' ' 0 AA BB CC
Chứng minh
', ', 'AA BB CC
là các trung tuyến của tam giác
ABC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
104
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 42. Cho 4 điểm
, , , ;A B C D
I
là trung điểm
AB
J
thuộc
CD
thoả mãn
2AD BC IJ
.
Chứng minh
J
là trung điểm của
CD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 43. Cho tứ giác
ABCD
.
Giả sử tồn tại điểm
sao cho
OA OB OC OD
0 OA OB OC OD
. Chứng minh rằng
ABCD
là hình chữ nhật.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 44. Cho tam giác
ABC
nội tiếp đường tròn tâm
, gọi
G
là trọng tâm tam giác
ABC
.
,,A B C
là các điểm thỏa mãn:
3 ', 3 ', 3 ' OA OA OB OB OC OC
.
Chứng minh rằng
G
là trực tâm tam giác
' ' 'A B C
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
105
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Bài 45. Cho tam giác
ABC
nội tiếp đường tròn tâm
, gọi
H
trực tâm tam giác .
,,A B C
các điểm thỏa mãn:
' 3 , ' 3 , ' 3 OA OA OB OB OC OC
.
Chứng minh rằng
H
là trọng tâm tam giác
' ' 'A B C
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 46. Cho tam giác
ABC
và điểm
M
nằm trong tam giác. Đường thẳng
AM
cắt
BC
tại
D
,
BM
cắt
CA
tại
CM
cắt
AB
tại
F
. Chứng minh rằng nếu
0 AD BE CF
thì
M
là trọng tâm
tam giác
ABC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 8. CHỨNG MINH BT ĐẲNG THỨCM CỰC TRỊ LIÊN QUAN ĐẾN ĐỘ DÀI VECTƠ.
1. Phương pháp.
S dng bt đẳng thức cơ bản: Vi mọi vectơ
,ab
ta luôn có
a b a b
, du bng xy ra khi
,ab
cùng hướng
a b a b
, du bng xy ra khi
,ab
ngược hướng
Đưa bài toán ban đu v bài toán tìm cc tr ca
MI
vi
M
thay đổi
Nếu
M
điểm thay đổi trên đường thng
khi đó
MI
đạt giá tr nh nht khi ch khi
M
là hình chiếu ca
M
lên
.
Nếu
M
điểm thay đổi trên đường tròn
O
khi đó
MI
đạt giá tr nh nht khi ch khi
M
là giao điểm ca tia
OI
với đường tròn;
MI
đạt giá tr ln nht khi và ch khi
M
là giao điểm ca tia
OI
với đường tròn
O
.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích ca véc tơ với mt số
106
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
2. Bài tập minh họa.
Bài tập 25. Cho tam giác
ABC
đường thẳng
d
. Tìm điểm
M
thuộc đường thẳng
d
để biểu
thức sau đạt giá trị nhỏ nhất
T MA MB MC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 26. Cho tam giác
ABC
' ' 'A B C
là các tam giác thay đổi, có trọng tâm
G
G
cố định.
Tìm giá trị nhỏ nhất của tổng
' ' ' T AA BB CC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập luyên tập.
Bài 47. Cho tam giác
ABC
, đường thẳng
d
và ba số
,,
sao cho
0
.
Tìm điểm
M
thuộc đường thẳng
d
để biểu thức
T MA MB MC
đạt giá trị nhỏ nhất.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 48. Cho tam giác
ABC
.
,,M N P
lần lượt c điểm trên các cạnh
,,BC CA AB
sao cho
,, BM kBC CN kCA AP k AB
. Chứng minh rằng các đoạn thẳng
,,AM BN CP
ba cạnh của
một tam giác nào đó.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 3. Tích của c tơ vi mt số
107
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 49. Cho tam giác
ABC
. Chứng minh rằng với mọi điểm
M
thuộc cạnh
AB
không trùng
với các đỉnh ta có:
...MC AB MA BC MB AC
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 50. Cho tứ giác
ABCD
,
M
điểm thuộc đoạn
CD
. Gọi
12
,,p p p
lần lượt chu vi của các
tam giác
,,AMB ACB ADB
. Chứng minh rằng
12
max ;p p p
.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
83
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
A.THUYT :
I.TRC TỌA Đ:
1. Định nghĩa: Trc tọa độ (Trc, hay trc s ) là một đường thẳng trên đó ta đã xác định một điểm
O
và một vectơ đơn vị
i
( tc là
1i
)
Đim
O
đưc gi là
gc tọa độ
.
Vec tơ
i
đưc gi là
vectơ đơn vị
ca trc tọa độ.
Kí hiu
;Oi
hay
'x Ox
hoặc đơn giản là
.Ox
2. Tọa đ của vec và của điểm trên trc:
a). Tọa độ của vectơ:
Cho vec tơ
u
nm trên trc
;Oi
thì có s thc
a
sao cho
u a i
vi
aR
.
S
a
như thế đưc gi là tọa độ ca vectơ
u
đối vi trc
;Oi
.
dụ 1. Tọa độ của véctơ
u
thỏa
2ui
2.
b). Tọa độ ca đim:
Cho điểm
M
nm trên
;Oi
thì có s
m
sao cho
OM m i
.
S
m
như thế đưc gi là tọa độ ca điểm
M
đối vi trc
;.Oi
Như vậy tọa độ đim
M
là tọa độ vectơ
.OM
dụ 2. Tọa độ của của điểm
M
thỏa
3OM i
3.
3. Đ dài đại s ca vec tơ trên trục :
Cho hai đim
,AB
nm trên trc
Ox
thì ta đ ca vectơ
BA
AB x x
.
Khi đó độ dài đại s của vectơ
AB
trên trc
Ox
là tọa độ ca vectơ đó kí hiu là
BA
AB x x
.
Như vậy
.AB ABi
Tính cht :
AB BA
AB CD AB CD
; ; ( ; ) : A B C O i AB BC AC
dụ 3.
Trên trục tọa độ
;Oi
cho 3 điểm
,,A B C
có tọa độ lần lượt là
2 ; 1
4
.
a). Tính tọa độ các vectơ
;;AB BC CA
b). Chứng minh
B
là trung điểm của
AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
dụ 4.
Trên trục tọa độ
;Oi
cho
4
điểm
, , ,A B C D
bất kỳ. Chứng minh
. . . 0 AB CD AC DB AD BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
i
x'
x
O
§BI 4. TRC TA ĐỘH TRC TA ĐỘ
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
84
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
II. H TRC TỌA ĐỘ
1. Định nghĩa. H trc tọa độ gm hai trc vuông góc
Ox
Oy
với hai vectơ đơn vị lần lượt là
,ij
.
Đim
O
gi là
gc tọa độ
,
Ox
gi là
trc hoành
Oy
gi
trc tung.
Kí hiu
Oxy
hay
;,O i j
2. Tọa đ đim, tọa đ vec tơ .
a). Tọa độ vec tơ :
Trong h trc tọa độ
;,O i j
nếu
u xi y j
thì cp s
;xy
đưc gi là tọa độ của vectơ
u
,
kí hiu là
;u x y
hay
;u x y
.
x
đưc gọi là hoành độ.
y
đưc gọi là tung độ.
dụ 5.
Viết tọa độ các vectơ sau
a).
23a i j
. b).
1
5
3
b i j
. c).
3ci
. d).
2dj
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
dụ 6.
Viết vectơ
u
dưới dạng
u xi y j
khi biết tọa độ của
u
là:
2; 3 , 1;8 , 2;0 , 0; 1 ,
0
0;0 , ; sin10
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
b). Tọa độ đim:
Trong h trc tọa độ
;,O i j
, tọa độ đim
;M x y
: OM xi y j
Trong đó:
x
đưc gọi là hoành độ.
y
đưc gọi là tung độ .
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
85
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Nhn xét:
Gi
,HK
lần lượt là hình chiếu ca
M
lên
Ox
Oy
thì
; M x y OM xi y j OH OK
Như vậy
,OH xi OK y j
hay
,x OH y OK
Cho hai điểm
; , ;
A A B B
A x y B x y
khi đó tọa độ vectơ
;
B A B A
AB x x y y
.
dụ 7.
Cho ba điểm
,,A B C
lần lượt thỏa mãn
23OA i j
,
2OB j i
,
31
.
22
OC i j
a). Xác định tọa độ các điểm
,,.A B C
b). Xác định tọa độ các véctơ
, , .AB AC BC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Tọa đ trung điểm của đon thng. Tọa độ trng tâm tam giác.
Cho
( ; ), ( ; )
A A B B
A x y B x y
M
là trung đim
AB
.
Ta độ trung điểm
;
MM
M x y
của đoạn thng
AB
2
2
AB
M
AB
M
xx
x
yy
y
Cho tam giác
ABC
( ; ), ( ; ), ;
A A B B C C
A x y B x y C x y
.
Ta độ trng tâm
;
GG
G x y
ca tam giác
ABC
3
2


A B C
G
A B C
G
xxx
x
yyy
y
dụ 8.
Cho tam giác
ABC
(2;1), ( 1; 2), ( 3;2) A B C
.
a). Tìm tọa độ điểm
M
sao cho
C
là trung điểm của đoạn
MB
.
b). Xác định trọng tâm tam giác
.ABC
c). m điểm
D
sao cho
ABCD
là hình bình hành.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
86
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
4. Biu th tọa đ của các phép toán vectơ.
Cho
( ; )u x y
;
' ( '; ')u x y
và s thc
k
. Khi đó ta có :
Hai véc tơ bằng nhau:
'
'
'

xx
uu
yy
Tng và hiu của hai véc tơ :
( '; ') u v x x y y
Tích ca một véc tơ với mt s:
. ( ; )k u kx ky
Điu kin cùng phương:
'u
cùng phương
u
(
0u
) khi và ch khi có s k sao cho
'
.
'
x kx
y ky
Nhn xét: s dụng điều kiện cùng phương để chng minh song song, trùng nhau hoc thng hàng.
dụ 9. Trong mặt phẳng
Oxy
, cho 3 vecto:
3; 2 , 1;5 , 2; 5 .a b c
Tìm tọa độ của vectơ sau
a).
2uv
với
34u i j
vi
. b).
2k a b
2 5 .l a b c
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
dụ 10.
Cho
(1;2), ( 3;4) ; ( 1;3) a b c
. Tìm tọa độ của vectơ
u
biết
a).
2 3 0.u a b
b).
3 2 3 3 .u a b c
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
dụ 11.
Cho ba điểm
4;0 , 0;3AB
2;1C
a). Xác định tọa độ vectơ
2u AB AC
b). Tìm điểm
M
sao cho
2 3 0 MA MB MC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
87
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Ví dụ 12.
Xét xem các cặp vectơ sau cùng phương hay không? Trong trường hợp cùng phương thì
xét xem cùng hay ngược hướng?
a).
2;3 , 10; 15ab
. b).
0;5 , 0;8uv
.
c).
2;1 , 6;3mn
. d).
3;4 , 6;9cd
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
dụ 13.
Tìm tham số để các cặp vectơ cùng phương:
a).
1
5 , 4
2
u i j v ki j
. b).
; 3 , 2;2m x n x
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
B. PHÂN DẠNG V PHƯƠNG PHÁP.
Dạng 1. TÌM TỌA Đ CỦA MỘT ĐIỂM, VECTƠ, Đ DI ĐẠI SỐ CỦA VECTƠ TRÊN
( ; )Oi
.
1. Phương pháp.
S dng các kiến thức cơ bản sau:
Trên trc
,Oi
đim
Mx
khi
.OM x i
.
Trên trc
,Oi
vectơ
ux
khi
.u xi
Vectơ
AB
có độ dài đại s
.m AB AB mi
Độ dài đại s của vectơ
AB
trên trc là tọa độ của vectơ đó
BA
AB x x
.
Các tính cht
AB BA
AB CD AB CD
H thức Sac lơ
; ; ( ; ) :A B C O i AB BC AC
Tọa độ trung điểm
I
của đoạn
:
2
AB
I
xx
AB x
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
88
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
2. Bài tập minh họa.
Bài tập 1. Trên trục
'x Ox
cho hai điểm
,AB
tọa độ lần lượt
a
b
. Tìm tọa độ điểm
I
biết
2IB IA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 2. Trên trục
'x Ox
cho hai điểm
,AB
có tọa độ lần lượt là
a
b
.
a). Tìm tọa độ
x
của điểm
M
sao cho
MA kMB
,1k
.
b). Tìm tọa độ trung điểm
I
của đoạn
AB
.
c). m tọa đ
x
của điểm
M
sao cho
25MA MB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 3. Cho các điểm
,,A B C
trên trục
,Oi
tọa độ lần lượt
5; 3; 4
. Tính độ dài đại số
của
, , ,AB BA AC BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 4. Trên trục
'x Ox
cho ba điểm
,,A B C
tọa độ lần lượt là
,,abc
. Tìm tọa độ điểm
I
sao
cho
0IA IB IC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
89
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Bài tập 5. Trên trục tọa độ
'x Ox
cho ba điểm
,,A B C
tọa đlần lượt
5;2;4
. Tìm tọa đ
điểm
M
thỏa mãn một trong các điều kiện sau
a).
0MA MB MC
.
b).
2 4 3 0MA MB MC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 6. Trên trục tọa độ
'x Ox
cho ba điểm
,,A B C
có tọa độ lần lượt là
8, 2,5
a). Tính tọa độ của điểm
C
đối xứng với điểm
M
qua điểm
B
.
b). Tính tỉ số
MA
MB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 7. Trên trục tọa độ
'x Ox
cho bốn điểm
, , ,A B C D
. Gọi
, , ,I J K L
lần lượt là trung điểm của
các đoạn thẳng
, , ,AC BD AB CD
. Chứng minh rằng
a).
2AB CD AD CB IJ
.
b).
2AC BD AD BC KL
.
c). Hai đoạn
IJ
KL
có chung trung điểm.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
90
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 2. TÌM TỌA Đ CỦA MỘT ĐIỂM, TỌA Đ VECTƠ
Oxy
1. Phương pháp.
Tọa độ đim
; : . .M x y OM x i y j
Nếu biết tọa độ hai điểm
( ; ), ( ; )
A A B B
A x y B x y
suy ra tọa độ :
;
B A B A
AB x x y y
Tọa độ trung điểm
I
của đoạn
:;
22
A B A B
II
x x y y
AB x y


Tọa độ trng tâm
G
ca tam giác
ABC
;
33
A B C A B C
GG
x x x y y y
xy

Cho hai điểm phân bit
;
AA
A x y
;
BB
B x y
. Ta i điểm
M
chia đoạn thng
AB
theo t
s
k
nếu
1MA kMB k
1
1
AB
M
AB
M
x kx
x
k
y ky
y
k
.
2. Bài tập minh ha:
Bài tập 8.
Trong mặt phẳng ta độ
Oxy
. Cho điểm
;M x y
. Tìm tọa độ của các điểm
a).
1
M
đối xứng với M qua trục hoành.
b).
2
M
đối xứng với M qua trục tung.
c).
3
M
đối xứng với M qua gốc tọa độ.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 9.
Trong hệ trục tọa độ
;;O i j
, cho hình vuông
ABCD
tâm
I
và có
(1;3)A
. Biết điểm
B
thuộc trục
;Oi
BC
cùng hướng với
i
. Tìm tọa độ các vectơ
,AB BC
AC
.
Li gii (hình 1.33)
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 10.
Trong mặt phẳng
,Oxy
cho hình thoi
ABCD
cạnh
a
0
60BAD
. Biết
A
trùng với
gốc tọa đ
,O
C
thuộc trục
Ox
0, 0
BB
xy
. Tìm tọa độ các đỉnh của hình thoi
.ABCD
Li gii (hình 1.34)
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
91
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 11.
Cho hình thoi
ABCD
tâm
O
8, 6AC BD
. Chọn hệ tọa độ
;;O i j
sao cho
i
và
j
cùng hướng với
OB
OC
a). Tính tọa độ các đỉnh của hình thoi.
b). Tìm tọa độ trung điểm
I
của
BC
và trọng tâm
G
của tam giác
ABC
.
c). m tọa độ điểm đối xứng
'I
của
I
qua tâm
O
. Chứng minh
, ',A I D
thẳng hàng.
d). Tìm tọa độ của vectơ
,,AC BD BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 12.
Cho lục giác đều
,ABCDEF
chọn hệ tọa độ
;;O i j
trong đó
O
là tâm của lục giác đều,
hai vectơ
i
j
cùng hướng
OD
EC
. Tính tọa độ các đỉnh của lục giác biết độ dài cạnh lục
giác bằng 6.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
92
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Câu hỏi trắc nghiệm.
Mức độ 1. Nhận biết
Câu 1. Cho trục tọa độ
, Oe
. Khẳng định nào sau đây luôn đúng?
A.
AB AB
.
B.
.AB AB e
.
C. Điểm
M
có tọa độ là
a
đối với trục tọa độ
, Oe
thì
OM a
.
D.
AB AB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 2. Trong hệ trục tọa độ
;;O i j
tọa độ
ij
là:
A.
0;1 .
B.
(1; 1).
C.
( 1;1).
D.
(1;1).
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 3. Trong hệ tọa độ
,Oxy
cho hình bình hành
, .OABC C Ox
Khẳng định nào sau đây đúng?
A.
AB
tung độ khác
0.
B.
, AB
có tung độ khác nhau.
C.
C
có hoành độ khác
0.
D.
0.
A C B
x x x
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 4. Trong mặt phẳng
Oxy
, cho
2;4A
4; 1B
. Khi đó, tọa độ của
AB
A.
2;5AB 
. B.
6;3AB
. C.
2;5AB
. D.
2; 5AB 
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 5. Trên mt phng ta độ
Oxy
, cho đim
5; 3N
,
1;0P
M
tùy ý. Khi đó
MN MP
tọa độ
A.
4;3
. B.
4;1
. C.
4; 3
. D.
4;3
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 6. Trong hệ tọa độ
,Oxy
cho
5;2 , 10;8 .AB
Tìm tọa độ của vectơ
?AB
A.
15;10 .
B.
2;4 .
C.
5;6 .
D.
50;16 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
93
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 7. Trong hệ tọa độ
,Oxy
cho ba điểm
1;3 , 1;2 , 2;1 .A B C
Tìm tọa độ của vectơ
?AB AC
A.
5; 3 .
B.
1;1 .
C.
1;2 .
D.
4;0 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 8. Trong mặt phẳng
Oxy
, cho
11
;A x y
22
;B x y
.
Tọa độ trung điểm
I
của đoạn thẳng
AB
A.
1 1 2 2
;
22
x y x y
I




. B.
1 2 1 2
;
33
x x y y
I




. C.
2 1 2 1
;
22
x x y y
I




. D.
1 2 1 2
;
22
x x y y
I




Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 9. Trong hệ tọa độ
,Oxy
cho
2; 3 , 4;7 .AB
Tìm tọa độ trung điểm
I
của đoạn thẳng
AB
A.
6;4 .
B.
2;10 .
C.
3;2 .
D.
8; 21 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 10. Trong hệ tọa độ
,Oxy
cho tam giác
ABC
3;5 , 1;2 , 5;2 .A B C
Tìm tọa độ trọng tâm
G
của tam giác
?ABC
A.
3;4 .
B.
4;0 .
C.
2;3 .
D.
3;3 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 11. Cho các điểm
3
1;
2



A
,
3
3;
2



B
,
9; 6C
. Tọa độ trng tâm
G
A.
11
2;
3



G
. B.
11
;2
3



G
. C.
11
;2
3



G
. D.
11
2;
3



G
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 12. Cho tam giác
ABC
với
2;3A
,
4; 1B
, trọng tâm của tam giác là
2; 1G
.
Tọa độ đỉnh
C
A.
6; 4
. B.
6; 3
. C.
4; 5
. D.
2;1
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
94
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 13. Trong mặt phẳng tọa độ
Oxy
, cho hai điểm
1;0A
0; 2B
.
Tọa độ trung điểm của đoạn thẳng
AB
A.
1
;1
2



. B.
1
1;
2



. C.
1
;2
2



. D.
1; 1
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 14. Trong h tọa độ
Oxy
, cho
2; 3A
,
4;7B
.
Tìm ta độ trung điểm
I
của đoạn thng
AB
.
A.
2;10I
. B.
6;4I
. C.
8; 21I
. D.
3;2I
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 15. Trong mặt phẳng tọa độ
Oxy
, cho tam giác
ABC
trọng tâm gốc tọa độ
,O
hai đỉnh
–2;2A
3;5 .B
Tọa độ đỉnh
C
A.
1; 7
. B.
2; 2
. C.
3; 5
. D.
1; 7
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 16. Trong hệ tọa độ
,Oxy
cho bốn điểm
1;1 , 2; 1 , 4;3 , 3;5 .A B C D
Khẳng định nào
sau đây đúng?
A. Tứ giác
ABCD
là hình bình hành. B.
5
2;
3
G



là trọng tâm tam giác
.BCD
C.
.AB CD
D.
, AC AD
ng phương.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 17. Trong hệ tọa độ
,Oxy
cho
3; 4 .M
Gọi
12
,MM
lần lượt là hình chiếu vuông góc của
M
trên
,.Ox Oy
Khẳng định nào đúng?
A.
1
3.OM 
B.
2
4.OM
C.
12
3; 4 .OM OM
D.
12
3; 4 .OM OM
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
95
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 18. Trong hệ tọa độ
,Oxy
cho hình vuông
ABCD
gốc
O
làm tâm hình vuông các cạnh
của nó song song với các trục tọa độ. Khẳng định nào đúng?
A.
.OA OB AB
B.
, OA OB DC
cùng hướng.
C.
,.
A C A C
x x y y
D.
,.
B C B C
x x y y
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 3. TÍNH TỌA ĐỘ CỦA MỘT TỔNG, HIU V TÍCH CỦA ĐIỂM, VEC
1. Phương pháp.
Dùng công thc tính tọa độ của vectơ
,,u v u v k u
.
Vi
( ; )u x y
;
' ( '; ')u x y
và s thc
k
, khi đó
( '; ') u v x x y y
. ( ; )k u kx ky
.
2. Bài tập luyện tập.
Bài tập 13. Cho
3; 2 , 7;4uv
. Tính tọa độ của
, , 8 , 3 4 , 3 4u v u v u u v u v
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 14. Cho
2;1 , 3;4 , 7;2a b c
a). Tìm tọa độ của vectơ
23u a b c
.
b). Tìm tọa độ của vectơ
v
sao cho
v a b c
.
c). m các số
,km
để
c ka mb
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 15. Cho ba vectơ
3; 1 , 1; 2 , 1;7a b c
. Hãy biểu diễn vectơ
p a b c
qua
các vectơ
a
b
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
96
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 16. Cho ba điểm
4;0 , 5;0AB
3; 3C
.
a). Tìm tọa độ vectơ
23 u AB BC CA
.
b). Tìm điểm
M
sao cho
0 MA MB MC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. Câu hỏi trắc nghiệm:
Mức độ 1. Nhận biết
Câu 19. Trong hệ trục tọa độ
;;O i j
tọa độ
ij
là:
A.
0;1 .
B.
(1; 1).
C.
( 1;1).
D.
(1;1).
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 20. Cho
3; 4 , 1;2 .ab
Tìm tọa độ của
.ab
A.
4;6 .
B.
2; 2 .
C.
4; 6 .
D.
3; 8 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 21. Trên mt phng tọa độ
Oxy
, cho
2; 4a 
,
5;3b 
. Véc tơ
2ab
có tọa độ
A.
7; 7
. B.
9; 5
. C.
1;5
. D.
9; 11
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 22. Cho
1;2 , 5; 7 .ab
Tìm tọa độ của
.ab
A.
6; 9 .
B.
4; 5 .
C.
6;9 .
D.
5; 14 .
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
97
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 23. Cho
1;2a
3;4b
. Vectơ
23m a b
có to độ
A.
10; 12m
. B.
11; 16m
. C.
12; 15m
. D.
13; 14m
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 24. Trên mặt phẳng tọa độ
Oxy
cho hai vectơ
23a i j
,
2b i j
.
Khi đó tọa độ vectơ
ab
A.
2; 1
. B.
1;2
. C.
1; 5
. D.
2; 3
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Mức độ 2. Thông hiểu
u 25. Cho
;2 , 5;1 , ;7 .a x b c x
Tìm
x
biết
23c a b
.
A.
15.x 
B.
3.x
C.
15.x
D.
5.x
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 26. Trên mặt phẳng tọa độ
Oxy
cho tam giác
ABC
1;3A
,
2;1B
0; 3C
.
Vectơ
AB AC
có tọa độ
A.
4;8
. B.
1;1
. C.
1; 1
. D.
4; 8
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 27. Cho
3; 2A
,
5; 4B
1
;0
3
C



. Ta có
AB xAC
thì giá tr
x
A.
3x
. B.
3x 
. C.
2x
. D.
2x 
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
98
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 28. Trong hệ trục tọa độ
;;O i j
cho hai véc tơ
24a i j
;
53b i j
.
Tọa độ của vectơ
2u a b
A.
9; 5u 
. B.
1; 5u 
. C.
7; 7u 
. D.
9; 11u 
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 29. Cho
2; 4 , 5;3 .ab
Tìm tọa độ của
2u a b
A.
7; 7 .u 
B.
9; 11 .u 
C.
9; 5 .u 
D.
1;5 .u 
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 30. Cho ba vectơ
2;1 , 3;4 , 7;2 .a b c
Giá trị của
, kh
để
..c k a h b
là:
A.
2,5; 1,3.kh
B.
4,6; 5,1.kh
C.
4,4; 0,6.kh
D.
3,4; 0,2.kh
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 31. Trong mt phng tọa độ
Oxy
, cho các vectơ
2; 4u 
,
1; 2a
,
1; 3b 
.
Biết
u ma nb
, tính
mn
.
A.
5
. B.
2
. C.
5
. D.
2
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 32. Cho
2; 1a
,
3; 4b 
,
4; 9c 
. Hai số thực
m
,
n
thỏa mãn
ma nb c
.
Tính
22
mn
.
A.
5
. B.
3
. C.
4
. D.
1
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
99
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 33. Trong hệ tọa độ
,Oxy
cho
1;2 , 2;3AB
. Tìm tọa độ đỉểm
I
sao cho
20IA IB
A.
1;2 .
B.
2
1; .
5



C.
8
1; .
3



D.
2; 2 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 34. Trong hệ tọa độ
,Oxy
cho
2;5 , 1;1 , 3;3 .A B C
Tìm tọa độ đỉểm
E
sao cho
32AE AB AC
A.
3; 3 .
B.
3;3 .
C.
3; 3 .
D.
2; 3 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 35. Trong mt phng to độ
Oxy
, cho ba điểm
2; 3M
,
1;2N
,
3; 2P
.
Gi
Q
là điểm tho
40QP QN MQ
. Tìm to độ đim
Q
.
A.
5
;2
3
Q



. B.
5
;2
3
Q



. C.
3
;2
5
Q



. D.
3
;2
5
Q



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 36. Cho hai điểm
8; 1M
3; 2N
.
Nếu
P
là điểm đối xng với điểm
M
qua điểm
N
thì
P
có tọa độ
A.
2; 5
. B.
13; 3
. C.
11; 1
. D.
11 1
;
22



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
100
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 37. Trong mặt phẳng tọa độ
Oxy
, cho hai điểm
4; 0A
0; 3B
.
Xác định tọa độ của vectơ
2u AB
.
A.
8; 6u
. B.
8; 6u
. C.
4; 3u
. D.
4; 3u
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 38. Trong mặt phẳng tọa độ
Oxy
, cho
3; 1A
,
1;2B
1; 1I
.
Tìm tọa độ điểm
C
để
I
là trọng tâm tam giác
ABC
.
A.
1; 4C
. B.
1;0C
. C.
1;4C
. D.
9; 4C
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 39. Trong mt phng vi h ta độ
Oxy
cho các điểm
1;2A
,
3; 1B
,
0;1C
. Ta đ ca
véctơ
2u AB BC
A.
2;2u
. B.
4;1u 
. C.
1; 4u 
. D.
1;4u 
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 40. Trên mt phng to độ
Oxy
, cho
2;5A
,
1; 1B
. Tìm to đ
M
sao cho
2MA MB
.
A.
1;0M
. B.
0; 1M
. C.
1;0M
. D.
0;1M
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 41. Trong mặt phẳng
Oxy
cho
2;3A
,
4; 1B
. Tọa độ của
OA OB
A.
2; 4
. B.
2; 4
. C.
3;1
. D.
6; 2
.
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
101
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 42.Trong mặt phẳng tọa độ
Oxy
cho hai điểm
2; 2A
;
5; 4B
. Tìm tọa độ trọng tâm
G
của
OAB
.
A.
7
;1
2
G


. B.
72
;
33
G


. C.
1; 2G
. D.
3
;3
2
G


.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 43. Cho
0;3A
,
4;2B
. Điểm
D
tha
2 2 0OD DA DB
, tọa độ
D
A.
3;3
. B.
8;2
. C.
8; 2
. D.
5
2;
2



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 44. Trên mt phng tọa độ
Oxy
, cho
1; 2I
là trung điểm ca
AB
, vi
A Ox
,
B Oy
.
Khi đó:
A.
0;2A
. B.
0;4B
. C.
4;0B
. D.
2;0A
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 45. Trong mặt phẳng
Oxy
, cho
1;2A
,
1; 3B
. Gọi
D
đối xứng với
A
qua
B
.
Khi đó tọa độ điểm
D
A.
3, 8D
. B.
3;8D
. C.
1;4D
. D.
3; 4D
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
102
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 46. Trong mặt phẳng tọa độ
Oxy
, cho
2; 3B
,
1; 2C 
.
Điểm
M
thỏa mãn
2 3 0MB MC
. Tọa độ điểm
M
A.
1
;0
5
M



. B.
1
;0
5
M



. C.
1
0;
5
M



. D.
1
0;
5
M



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 3. TÍNH TỌA ĐỘ CÁC ĐIỂM CỦA MỘT HÌNH
1. Phương pháp.
Da vào tính cht ca hình và s dng các công thc:
M
là trung điểm đoạn thng
AB
suy ra
,.
22
A B A B
MM
x x y y
xy


G
trng tâm tam giác
ABC
suy ra
,
3

A B C
G
xxx
x
2

A B C
G
yyy
y
Hai vectơ bằng nhau
'
; ' '; '
'

xx
u x y u x y
yy
ng công thc tính tọa độ của vectơ
,,u v u v k u
2. Bài tập luyện tập.
Bài tập 17. Cho ba điểm
(3;4), (2;1), ( 1; 2)A B C
a). Tìm tọa độ trung điểm cạnh
BC
và tọa độ trọng tâm của tam giác
ABC
b). Tìm tọa độ điểm
D
sao cho
ABCD
là hình bình hành.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 18. Trong mặt phẳng tọa độ
Oxy
cho
3; 1 , 1;2AB
1; 1I
. Xác định tọa độ các
điểm
,CD
sao cho tứ giác
ABCD
hình bình hành biết
I
trọng tâm tam giác
ABC
. Tìm tọa
tâm
O
của hình bình hành
ABCD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
103
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 19. Cho tam giác
ABC
3;1 , 1; 3AB
, đỉnh
C
nằm trên
Oy
trọng tâm
G
nằm
trên trục
Ox
. Tìm tọa độ đỉnh
C
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 20. Cho tam giác
ABC
,,M N P
lần lượt là trung điểm của
,,BC CA AB
.
Biết
(1;1), ( 2; 3), (2; 1) M N P
. Tìm tọa độ các đỉnh của tam giác
ABC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 21. Cho tam giác
ABC
3;4 , 1;2 , 4;1A B C
.
A
là điểm đối xứng của
A
qua
B
,
B
là điểm đối xứng của
B
qua
C
,
C
là điểm đối xứng của
C
qua
A
.
a). Tìm tọa độ các điểm
,,A B C
.
b). Chứng minh các tam giác
ABC
' ' 'A B C
có cùng trọng tâm.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 22. Cho ba điểm
1;0 , 0;3 , 3; 5A B C 
. Tìm điểm
M
thuộc trục
Ox
2 3 2T MA MB MC
bé nhất.
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
104
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
3. Bài tập vận dụng.
Bài 1. Trên mặt phẳng
Oxy
cho 2 điểm
2; 2A 
5; 4B
.
a). Tìm tọa độ trọng tâm của tam giác
OAB
.
b). Tìm tọa độ điểm
C
sao cho tam giác
ABC
có trọng tâm là điểm
2;0G
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 2. Cho tam giác
ABC
với
2;3 , 1;4 , 1;1A B C
. Tìm các tọa độ của đỉnh
D
của hình
bình hành.
a).
ABCD
. b).
ACBD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 3. Cho
4;1 . 2;4 , 2; 2A B C
.
a). Tìm điểm
D
sao cho
C
là trọng tâm tam giác
ABD
.
b). Tìm điểm
E
sao cho
ABCE
là hình bình hành.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
105
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 4. Cho tam giác
ABC
. Các điểm
1;1 , 2;3 , 0; 4M N P
lần lượt trung điểm các cạnh
,,BC CA AB
. Tính tọa độ các đỉnh của tam giác.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài 5. Cho ba điểm
2;5 , 1;1 , 3;3A B C
.
a). Tìm tọa độ điểm
D
sao cho
32AD AB AC
.
b). Tìm tọa độ điểm
E
sao cho
ABCE
là hình bình hành. Tìm tọa độ tam hình bình hành ấy.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. Câu hỏi trắc nghiệm
Mức độ 2. Thông hiểu
Câu 47. Cho
2; 4 , 5;3 .ab
Tìm tọa độ của
2u a b
A.
7; 7 .u 
B.
9; 11 .u 
C.
9; 5 .u 
D.
1;5 .u 
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
106
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 48. Trong hệ tọa độ
,Oxy
cho bốn điểm
1;1 , 2; 1 , 4;3 , 3;5 .A B C D
Khẳng định nào sau đây đúng?
A. Tứ giác
ABCD
là hình bình hành. B.
5
2;
3
G



là trọng tâm tam giác
.BCD
C.
.AB CD
D.
, AC AD
ng phương.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 49. Trong hệ tọa độ
,Oxy
cho ba điểm
2;1 , 0; 3 , 3;1 .A B C
Tìm tọa độ điểm
D
để
ABCD
là hình bình hành.
A.
5;5 .
B.
5; 2 .
C.
5; 4 .
D.
1; 4 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 50. Trong hệ tọa độ
,Oxy
cho ba điểm
1;1 , 3;2 , 6;5 .A B C
Tìm tọa độ điểm
D
để
ABCD
là hình bình hành.
A.
4;3 .
B.
3;4 .
C.
4;4 .
D.
8;6 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 51. Cho ba điểm
,,M N K
thỏa
MN kMP
. Tìm
k
để
N
là trung điểm
?MP
A.
1
.
2
B.
1.
C.
2.
D.
2.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 52. Trong hệ tọa độ
,Oxy
cho tam giác
ABC
9;7 , 11; 1 .BC
Gọi
,MN
lần lượt là trung điểm của
,.AB AC
Tìm tọa độ vectơ
MN
?
A.
2; 8 .
B.
1; 4 .
C.
10;6 .
D.
5;3 .
Li gii.
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
107
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 53. Trong hệ tọa độ
,Oxy
cho tam giác
ABC
2;3 , 0; 4 , 1;6M N P
lần lượt là trung
điểm của các cạnh
,,BC CA AB
. Tìm tọa độ đỉnh
A
?
A.
1;5 .
B.
3; 1 .
C.
2; 7 .
D.
1; 10 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 54. Trong hệ tọa độ
,Oxy
cho tam giác
ABC
6;1 , 3;5AB
và trọng tâm
1;1G
.
Tìm tọa độ đỉnh
C
?
A.
6; 3 .
B.
6;3 .
C.
6; 3 .
D.
3;6 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 55. Trong hệ tọa độ
,Oxy
cho tam giác
ABC
1;1 , 2; 2 , 7; 7 .A B C
Khẳng định nào sau đây đúng?
A.
2;2G
là trọng tâm tam giác
.ABC
B.
B
ở giữa hai điểm
A
.C
C.
A
ở giữa hai điểm
B
.C
D.
,AB AC
ng hướng.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 56. Trong hệ tọa độ
,Oxy
cho tam giác
ABC
2;2 , 3;5AB
trọng tâm là gốc
O
. Tìm
tọa độ đỉnh
C
?
A.
1; 7 .
B.
2; 2 .
C.
3; 5 .
D.
1;7 .
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
108
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 57. Trong mặt phẳng tọa độ
Oxy
, cho tam giác
ABC
5
;1
2
M




,
37
;
22
N




,
1
0;
2
P



lần lượt là trung điểm các cạnh
BC
,
CA
,
AB
. Tọa độ trọng tâm
G
của tam giác
ABC
A.
44
;
33
G




. B.
4; 4G 
. C.
44
;
33
G



. D.
4; 4G
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Mức độ 3. Vận dụng
Câu 58. Trong mặt phẳng toạ đ
Oxy
. Cho tam giác
ABC
với
1; 2A
,
3; 4B
,
5;2C
. Tìm tọa
độ giao điểm
I
của đường thẳng
BC
với đường phân giác ngoài của góc
A
.
A.
11
;2
3
I



. B.
4; 1I
. C.
1; 10I
. D.
13
;0
3
I



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 59. Trong mặt phẳng tọa độ
Oxy
, cho hình bình hành
ABCD
2; 3A
tâm
1; 1I
.
Biết điểm
4; 9M
nằm trên đường thẳng
AD
điểm
D
tung đgấp đôi hoành độ. Tìm các
đỉnh còn lại của hình bình hành?
A. Tọa độ các đỉnh
4; 1C 
,
5; 4B 
,
3; 6D
.
B. Tọa độ các đỉnh
4; 1C 
,
4; 2B 
,
2; 4D
.
C. Tọa độ các đỉnh
4; 1C 
,
1; 4B
,
1; 2D 
.
D. Tọa độ các đỉnh
4; 1C
,
5; 4B 
,
3; 6D
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
109
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 60. Trong mặt phẳng
Oxy
, cho tam giác
MNP
1; 1M
,
5; 3N
và
P
điểm thuộc
trục
Oy
, trọng tâm
G
của tam giác
MNP
nằm trên trục
Ox
. Tọa độ điểm
P
A.
2; 4
. B.
0; 4
. C.
0; 2
. D.
2; 0
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 61. Cho hình bình hành
ABCD
có tọa độ tâm
3;2I
và hai đỉnh
1;3B
;
8; 1C
.
Tìm ta độ hai đỉnh
A
,
D
.
A.
7;1A
,
2;5D
. B.
2;5A
,
7;1D
.
C.
7;5A
,
2;1D
. D.
2;1A
,
7;5D
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 62. Trong mặt phẳng toạ độ
Oxy
cho hình bình hành
ABCD
2;3A
,
0;4B
,
5; 4C
.
Toạ độ đỉnh
D
là:
A.
3; 5
. B.
3;7
. C.
3; 2
. D.
7;2
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 63. Trong mặt phẳng tọa độ
Oxy
, cho tam giác
ABC
1; 5A
,
3;0B
,
3;4C
.
Gọi
M
,
N
lần lượt là trung điểm của
AB
,
AC
. Tìm tọa độ vectơ
MN
.
A.
3;2MN 
. B.
3; 2MN 
. C.
6;4MN 
. D.
1;0MN
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 64. Trong mt phng
Oxy
, cho hình bình hành
ABCD
2; 3A
,
4;5B
13
0;
3
G



trng tâm tam giác
ADC
. Tọa độ đỉnh
D
A.
2;1D
. B.
1;2D
. C.
2; 9D 
. D.
2;9D
.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
110
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 65. Trong mặt phẳng tọa độ
Oxy
, cho
ABC
với trọng tâm
G
. Biết rằng
1;4A
,
2;5B
,
0;7G
. Hỏi tọa độ đỉnh
C
là cặp số nào?
A.
2;12
. B.
1;12
. C.
3;1
. D.
1;12
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 66. Trong mặt phẳng tọa độ
Oxy
, cho
1; 1M
,
3;2N
,
0; 5P
lần lượt trung điểm các
cạnh
BC
,
CA
AB
của tam giác
ABC
. Tọa độ điểm
A
A.
2; 2
. B.
5;1
. C.
5;0
. D.
2; 2
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 67. Trong mặt phẳng tọa độ
Oxy
, cho điểm
1; 3M
. Khẳng định nào sau đây sai?
A. Hình chiếu vuông góc của
M
trên trục hoành là
1;0H
.
B. Điểm đối xứng với
M
qua gốc tọa độ là
3; 1P
.
C. Điểm đối xứng với
M
qua trục hoành
1;3N
.
D. Hình chiếu vuông góc của
M
trên trục tung là
0; 3K
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
111
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 68. Trong mặt phẳng toạ độ
Oxy
, cho tam giác
ABC
3;4A
,
2;1B
,
1; 2C 
.
Cho
;M x y
trên đoạn thẳng
BC
sao cho
4
ABC ABM
SS
. Khi đó
22
xy
bằng
A.
13
8
. B.
3
2
. C.
3
2
. D.
5
2
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 69. Trong h tọa độ
Oxy
, cho hai đim
2; 3A
,
3; 4B
.
Tìm ta độ đim
M
trên trc hoành sao cho chu vi tam giác
AMB
nh nht.
A.
18
;0
7
M



. B.
4;0M
. C.
3;0M
. D.
17
;0
7
M



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 70. Cho
1; 2M 
,
3;2N
,
4; 1P
. Tìm
E
trên
Ox
sao cho
EM EN EP
nhỏ nhất.
A.
4;0E
. B.
3;0E
. C.
1;0E
. D.
2;0E
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
112
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 71. Trong mặt phẳng tọa độ
Oxy
, tọa độ điểm
N
trên cạnh
BC
của tam giác
ABC
1; 2A
,
2;3B
,
1; 2C 
sao cho
3
ABN ANC
SS
A.
13
;
44



. B.
13
;
44




. C.
11
;
33



. D.
11
;
33



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 72. Trên mặt phẳng tọa độ
Oxy
, cho
ABC
vuông tại
A
1; 3B
1;2C
.
Tìm tọa độ điểm
H
là chân đường cao kẻ từ đỉnh
A
của
ABC
, biết
3AB
,
4AC
.
A.
24
1;
5
H



. B.
6
1;
5
H



. C.
24
1;
5
H



. D.
6
1;
5
H



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
113
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Dạng 5. SỰ CÙNG PHƯƠNG CỦA HAI VEC TƠ.
1. Phương pháp.
Cho
( ; )u x y
;
' ( '; ')u x y
.
Vectơ
'u
cùng phương với vectơ
u
(
0u
) khi và ch khi có s
k
sao cho
'
'
x kx
y ky
.
Chú ý. Nếu
0xy
ta có
'u
cùng phương
''xy
u
xy

.
Để phân tích
12
;c c c
qua hai vectơ
1 2 1 2
; , ;a a a b b b
không cùng phương:
Ta gi s
c xa yb
. Khi đó ta quy về gii h phương trình
1 1 1
2 2 2
a x b y c
a x b y c


.
2. Bài tập luyện tập.
Bài tập 23. Cho
(1;2), ( 3;0) ; ( 1;3) a b c
.
a). Chứng minh hai vectơ
; ab
không cùng phương.
b). Phân tích vectơ
c
qua
; ab
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 24. Cho
2
2 ;4 u m m
( ;2)vm
. Tìm
m
để hai vecto
,uv
cùng phương.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 25. Cho ba điểm
1;1 , 1;3 , 2;0A B C
a). Chứng minh rằng ba điểm
,,A B C
thẳng hàng.
b). Tìm các tỉ số mà điểm
A
chia đoạn
BC
, điểm
B
chia đoạn
AC
, và điểm
C
chia đoạn
AB
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
114
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 26. Trên mặt phẳng
Oxy
, cho tam giác
ABC
biết
0;2 , 1;1AB
1; 2C 
. Các điểm
', ', 'C A B
lần lượt chia các đoạn thẳng
,,AB BC CA
theo các tỉ số
1
1, , 2
2

a). Tìm tọa độ của
', ', 'A B C
. b). Chứng minh
', ', 'A B C
thẳng hàng.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 27.
a). Cho
1;1 , 3;2A B n
4;2 1C m m
. Tìm
m
để ba điểm
,,A B C
thẳng hang.
b). Cho
3;4 , 2;5AB
. Tìm
x
để điểm
7;Cx
thuộc đường thẳng
AB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 28. Cho
3;4 , 1;1 , 5;5A B C
a). Chứng minh ba điểm
,,A B C
không thẳng hàng.
b). Tìm điểm
D
sao cho
A
là trung điểm
BD
.
c). m điểm
E
trên trục
Ox
sao cho
,,A B E
thẳng hàng.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
115
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 29. Cho
1;3 , 4;2 , 3;5A B C
a). Chứng minh ba điểm
,,A B C
không thẳng hàng.
b). Tìm điểm
D
sao cho
3AD BC
.
c). m điểm
E
sao cho
O
là trọng tâm tam giác
ABE
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 30. Cho tam giác
ABC
1; 1 , 5; 3AB
, đỉnh
C
nằm trên trục
Oy
trọng tâm
G
nằm trên trục
Ox
. Tìm tọa độ đỉnh
C
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 31. Cho bốn điểm
2; 3 , 3;7 , 0;3 , 4; 5A B C D
.
Chứng minh rằng hai đường thẳng
AB
CD
song song với nhau.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
116
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 32. Trong mặt phẳng tọa đ
Oxy
, cho ba điểm
(6;3), ( 3;6), (1; 2)A B C
.
a). Chứng minh
,,A B C
là ba đỉnh một tam giác;
b). Xác định điểm
D
trên trục hoành sao cho ba điểm
,,A B D
thẳng hàng;
c). Xác định điểm
E
trên cạnh
BC
sao cho
2BE EC
;
d). Xác định giao điểm hai đường thẳng
DE
AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 33. Cho tam giác
ABC
(3;4), (2;1), ( 1; 2)A B C 
.
Tìm điểm
M
trên đường thẳng
BC
sao cho
3
ABC ABM
SS
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
4. Câu hỏi trắc nghiệm:
Mức độ 2. Thông hiểu
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
117
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 73. Khẳng định nào sau đây là đúng?
A.
, 5;0 4;0ab
cùng hướng. B.
7;3c
là vectơ đối của
; 7 3 .d 
C.
, 4;2 8;3uv
cùng phương. D.
, 6;3 2;1ab
ngược hướng.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 74. Cho
, 3; 2 1;6 .uv
Chọn khẳng định đúng?
A.
uv
4;4a 
ngược hướng. B.
, uv
cùng phương.
C.
uv
..c k a h b
cùng hướng. D.
2 , u v v
cùng phương.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 75. Cho
2u i j
v i xj
. Xác định
x
sao cho
u
v
cùng phương.
A.
1x 
. B.
1
2
x 
. C.
1
4
x
. D.
2x
.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 76. Cho
5;0 , 4; .a b x
Tìm
x
để hai vectơ
, ab
cùng phương.
A.
5.x 
B.
4.x
C.
0.x
D.
1.x 
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 77. Trong hệ tọa độ
,Oxy
cho bốn điểm
5; 2 , 5;3 , 3;3 , 3; 2 .A B C D
Khẳng định
nào sau đây đúng?
A.
, AB CD
ng hướng. B.
ABCD
là hình chữ nhật.
C.
1;1I
là trung điểm
.AC
D.
.OA OB OC
Li gii.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
118
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 78. Trong hệ tọa độ
,Oxy
cho bốn điểm
3; 2 , 7;1 , 0;1 , 8; 5 .A B C D
Khẳng định nào
sau đây đúng?
A.
, AB CD
là hai vectơ đối nhau. B.
, AB CD
ngược hướng.
C.
, AB CD
cùng hướng. D.
, , , A B C D
thẳng hàng.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 79. Trong hệ tọa độ
,Oxy
cho
1;5 , 5;5 , 1;11 .A B C
Khẳng định nào sau đây đúng?
A.
, , A B C
thẳng hàng. B.
, AB AC
cùng phương.
C.
, AB AC
không cùng phương. D.
, AB AC
ng hướng.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 80. Trong hệ tọa độ
,Oxy
cho bốn điểm
2;1 , 2; 1 , 2; 3 , 2; 1 .A B C D
Xét ba mệnh đề:
I ABCD
là hình thoi.
II ABCD
là hình bình hành.
III AC
cắt
BD
tại
0; 1 .M
Chọn khẳng định đúng
A. Chỉ
I
đúng. B. Chỉ
II
đúng.
C. Chỉ
II
III
đúng. D. Cả ba đều đúng.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 81. Trong hệ tọa độ
,Oxy
cho bốn điểm
1;1 , 0;2 , 3;1 , 0; 2 .A B C D
Khẳng định nào sau đây sai?
A.
.AB DC
B.
.AC BD
C.
.AD BC
D.
.AD BC
Li gii.
Trung Tâm Luyện Thi Đại Học Amsterdam
Bài 4. Trc ta đ Htrc ta đ
119
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 82. Trong hệ tọa độ
,Oxy
cho ba điểm
1;1 , 1;3 , 2;0 .A B C
Khẳng định nào sau đây sai?
A.
2.AB AC
B.
,,A B C
thẳng hàng. C.
2
.
3
BA BC
D.
2 0.BA CA
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 83. Trong mặt phẳng tọa độ
Oxy
, cho các vectơ
2;1u 
3v i m j
.
Tìm
m
để hai vectơ
u
,
v
cùng phương.
A.
2
3
. B.
2
3
. C.
3
2
. D.
3
2
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Mức độ 3. Vận dụng
Câu 84. Trong mặt phẳng tọa độ
Oxy
, cho ba điểm
1;3A
,
1; 2B 
,
1;5C
. Tọa độ
D
trên trục
Ox
sao cho
ABCD
là hình thang có hai đáy
AB
CD
A.
1;0
. B.
0; 1
.
C.
1;0
. D. Không tồn tại điểm
D
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 85. Trong mt phng to độ
Oxy
, cho ba điểm
2;5A
,
2;2B
,
10; 5C
.
Tìm đim
;1Em
sao cho t giác
ABCE
là hình thang có một đáy là
CE
.
A.
2;1E
. B.
0;1E
. C.
2;1E
. D.
1;1E
.
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 4. Trc tọa đ Htrc ta đ
120
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 86. Trong hệ tọa đ
Oxy
, cho hai điểm
2; 3 , 3;4 .AB
Tìm tọa độ điểm
M
trên trục hoành sao cho
,,A B M
thẳng hàng.
A.
4;0 .M
B.
4;0 .M
C.
51
;.
33
M




D.
17
;0 .
7
M



Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 87. Trong mặt phẳng
Oxy
, cho
2; 3A
,
3;4B
.
Tọa độ điểm
M
nằm trên trục hoành sao cho
,,A B M
thẳng hàng là
A.
1;0M
. B.
4;0M
. C.
51
;
33
M




. D.
17
;0
7
M



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 88. Trong h tọa độ
,Oxy
cho
2u i j
v i xj
. Tìm
x
sao cho
u
v
cùng phương.
A.
1
2
x 
. B.
1
4
x
. C.
2x
. D.
1x 
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 89. Cho
4
đim
1; 2M
,
0; 3N
,
3; 4P
,
1;8Q
.
Ba điểm nào trong
4
điểm đã cho là thng hàng?
A.
M
,
P
,
Q
. B.
M
,
N
,
P
. C.
N
,
P
,
Q
. D.
M
,
N
,
Q
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
121
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
A. T LUN.
Bài tập 1. Cho tam giác
,ABC
hãy xác định các điểm
, , ,I J K L
.
a).
20IA IB
. b).
20JA JB JC
.
c).
KA KB KC BC
. d).
20LA LB LC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 2. Cho tam giác
ABC
, tìm tập hợp điểm
M
thỏa mãn.
a)
3
2
MA MB MC MB MC
. b)
MA MB MB MC
. c)
0MA MB MA MC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
§BI 5. ÔN TP CHƯƠNG I
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
122
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 3. Cho tam giác
ABC
đều có cạnh bằng
a
.
Gọi
,IJ
là hai điểm sao cho
2 3 0IB IC
30JA JC
.
a). Hãy xác định các điểm
I
.J
b). Hãy biễu diễn các véc tơ
,,AI BJ IJ
theo
c). Tính các tích vô hướng
. ; . ; .AI BJ IJ AB IJ BC
d). Tính độ dài
.IJ
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 4. Cho tam giác
ABC
.
a). Xác định điểm
I
sao cho
3 2 0IA IB IC
.
b). Chứng minh đường thẳng nối hai điểm
,MN
xác định bởi hệ thức
22MN MA MB MC
luôn đi qua một điểm cố định.
c). m tập hợp các điểm
H
sao cho
32HA HB HC HA HB
.
d). Tìm tập hợp các điểm
K
sao cho
23KA KB KC KA KB
.
e).
M
là điểm tùy ý. Tìm vị trí điểm
M
M
để
2 2 2
MA MB MC
đạt giá trị nhỏ nhất.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
123
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 5. Cho hình bình hành
ABCD
tâm
. Gọi
, MN
là hai điểm trên cạnh
, AB CD
sao cho:
3 , 2AM AB CN CD
.
a). Biểu thị
AN
theo
AB
AC
.
b). Gọi
G
là trọng tâm tam giác
BMN
. Biểu thị
AG
theo
AB
AC
.
c). Gọi
I
thỏa mãn
6
11
BI BC
. Chứng minh
, , A I G
thẳng hàng.
d). Tìm tập hợp điểm
sao cho
4.PA PB PC PD AB
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
124
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 6. Cho tam giác
ABC
, với
G
là trọng tâm
a). Chứng minh rằng:
2 2 2 2 2 2 2
3,MA MB MC MG GA GB GC M
b). Tìm vị trí điểm
M
để tổng
2 2 2
MA MB MC
nhỏ nhất.
c). m quỹ tích các điểm
M
thỏa mãn
2 2 2 2
MA MB MC k
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
125
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 7. Cho tam giác
,ABC
M
là một điểm trên cạnh
BC
sao cho
2MB MC
.
a). y phân tíchctơ
AM
theo hai véctơ
,AB AC
.
b). Chứng minh rằng véctơ
2v NB NC NA
không phụ thuộc vào vị trí điểm
N
.
Hãy dựng véctơ
v
.
c). Gọi
N
là trung điểm của cạnh
,AC
I
nằm trên đoạn
AM
sao cho
3
5
AI AM
.
Chứng minh rằng ba điểm
,,B I N
thẳng hàng.
d). Gọi
J
là tâm của đường tròn nội tiếp tam giác
ABC
.
Chứng minh rằng
. . . 0a JA b JB c JC
(với
,,a BC b AC c AB
).
e). Chứng minh rằng nếu tam giác
ABC
thỏa mãn hệ thức
. . . 0a GA b GB c GC
với
G
trọng tâm tam giác
ABC
thì tam giác
ABC
đều.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
126
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 8. Cho tứ giác
ABCD
. Các điểm
, , ,M N P Q
lần lượt là trung điểm của
,AB
,BC
,CD
DA
a). Chứng minh hai tam giác
ANP
CMQ
có cùng trọng tâm.
b). Chứng minh tứ giác
ABCD
MNPQ
có cùng trọng tâm.
c). Tìm quỹ tích các điểm
M
thỏa mãn
MA MB MC MD k k
.
d). Giả thiết
( 8;0),A
(0;4),B
(2;0),C
( 3;5)D
. Chứng minh rằng tứ giác
ABCD
nội tiếp được
trong đường tròn.
e). Xét đường thẳng
bất kì, hãy tìm vị trí của điểm
I
trên
sao cho
(*)IA IB IC ID
đạt
GTLN, GTNN.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
127
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 9. Cho tam giác đều
ABC
cạnh
a
và hai điểm
,MN
trên cạnh
,AB AC
:
1
,
3
AM AB
AN k AC
. Hãy tìm giá trị của
k
để:
a).
BN CM
b). Góc hợp bởi
BN
CM
bằng
120
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 10. Cho tam giác
ABC
6, 8AB AC
60A 
.
Kẻ đường phân giác
AD
của tam giác
ABC
.
a). Hãy biễu diễn
AD
theo
,.AB AC
b). Tính độ dài đường phân giác
.AD
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
128
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Bài tập 11. Cho tam giác
ABC
4, 6, 5AB AC BC
.
Kẻ đường phân giác trong
AE
và phân giác ngoài
AF
của tam giác
ABC
.
a). y biễu diễn
,AE AF
theo
,.AB AC
b). Tính độ dài đường phân giác
,.AE AF
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
129
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
B. CÂU HI TRC NGHIÊM.
Câu 1. Điều kiện nào sau đây không phải điều kiện cần đủ để
G
trọng tâm của tam giác
ABC
, với
M
là trung điểm của
BC
.
A.
AG BG GC
. B.
0AG BG CG
.
C.
0AG GB GC
. D.
0GA GB GC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 2. Điều kiện nào dưới đây là điều kiện cần và đủ để điểm
là trung điểm của đoạn
AB
?
A.
OA OB
. B.
OA OB
. C.
AO BO
. D.
0OA OB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 3. Gọi
M
là trung điểm của đoạn
.AB
Khẳng định nào sau đây là sai?
A.
2.AB MB
B.
.MA MB
C.
1
.
2
MA AB
D.
0.MA MB
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 4. Cho
4
điểm
, , ,A B C D
. Đẳng thức nào sau đây đúng.
A.
AB CD AC BD
. B.
AB CD AD BC
.
C.
AB CD AD CB
. D.
AB CD DA BC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 25. Cho các điểm phân biệt
,,A B C
. Đẳng thức nào sau đây đúng.
A.
AB BC CA
. B.
AB CB AC
. C.
AB BC AC
. D.
AB CA BC
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 5. Cho hình bình hành
ABCD
tâm
. Khi đó
OA BO
A.
OC OB
. B.
AB
. C.
OC DO
. D.
CD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 6. Cho
6
điểm
, , , , ,A B C D E F
. Đẳng thức nào sau đây đúng.
A.
0AB CD FA BC EF DE
. B.
AB CD FA BC EF DE AF
.
C.
AB CD FA BC EF DE AE
. D.
AB CD FA BC EF DE AD
.
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
130
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 7. Gọi
G
là trọng tâm tam giác vuông
ABC
với cạnh huyền
12BC
. Tổng hai véc
GB GC
có độ dài bằng bao nhiêu?
A.
2
. B.
4
. C.
8
. D.
23
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 8. Cho tam giác đều
ABC
cạnh bằng
2a
khi đó
AB AC
A.
2a
. B.
23a
. C.
4a
. D.
3a
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 9. Cho hình thang
ABCD
AB
song song với
CD
. Cho
2AB a
;
CD a
. Gọi
trung
điểm của
AD
. Khi đó:
A.
OB OC a
. B.
3
2
a
OB OC
.
C.
2OB OC a
. D.
3OB OC a
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 10. Cho hình vuông
ABCD
cạnh
a
, tâm
. Khi đó
OA BO
A.
a
. B.
2a
. C.
. D.
2a
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
131
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 11. Cho hình chữ nhật
ABCD
,3AB a AD a
. Độ dài của véc tơ
CB CD
là:
A.
3a
. B.
2a
. C.
2
3
a
. D.
3a
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 12. Cho tam giác đều
ABC
cạnh
a
. Gọi
G
là trọngm. Khi đó giá trị
AB GC
:
A.
3
a
. B.
23
3
a
. C.
2
3
a
. D.
3
3
a
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 13. Cho hình vuông
ABCD
cạnh
2a
.Tính
2S AD DB
.
A.
2Sa
. B.
Sa
. C.
3Sa
. D.
2Sa
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 14. Tam giác vuông tại , . Độ dài vectơ bằng:
A.
17
. B.
2 15
. C.
5
. D.
2 17
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
ABC
2AB AC
4AB AC
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
132
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 15. Cho tam giác đều
ABC
cạnh
a
, trọng tâm
G
. Phát biểu nào sau đây đúng?
A.
AB AC
. B.
GA GB GC
.
C.
2AB AC a
. D.
3AB AC AB CA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 16. Cho tam giác
ABC
đều cạnh bằng
a
M
một điểm thuộc đường tròn ngoại tiếp
tam giác
.ABC
Khi đó vectơ
u MA MB MC
có độ dài bằng
A.
3
3
a
. B.
3
2
a
. C.
3
2
a
. D.
3a
.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 17. Chọn khẳng định sai?
A. Nếu
I
là trung điểm đoạn
AB
thì
IA IB O
.
B. Nếu
I
là trung điểm đoạn
AB
thì
AI BI AB
.
C. Nếu
I
là trung điểm đoạn
AB
thì
AI IB O
.
D. Nếu
I
là trung điểm đoạn
AB
thì
IA BI O
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 18. Cho ba vectơ
;ab
c
đều khác vectơ không. Trong đó hai vectơ
;ab
ng hướng, hai
vectơ
;ac
đối nhau. Khẳng định nào sau đây đúng?
A. Hai vectơ
b
cùng hướng. B. Hai vectơ
b
ngược hướng.
C. Hai vectơ
b
đối nhau. D. Hai vectơ
b
bằng nhau.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
133
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 19. Cho ba lc
1 2 3
; ; F MA F MB F MC
cùng tác động
vào mt vt tại điểm
M
vật đng yên. Cho biết cường độ
ca
12
; FF
đều bng
100N
0
60AMB
(như hình vẽ bên).
Khi đó cường độ ca lc
3
F
A.
50 2N
. B.
50 3N
. C.
25 3N
. D.
100 3N
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 20. Cho ba lc
1 2 3
,,F MA F MB F MC
cùng điểm đặt
,M
cùng tác động vào mt vt vật đó đứng n (như hình
v). Biết cường độ
12
,FF
đều bng
30 N
60 .AMB 
ờng độ ca lc
3
F
bng
A.
15 3 .N
B.
30 2 .N
C.
30 3 .N
D.
60 .N
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 21. Cho hình bình hành
ABCD
. Tổng các vectơ
AB AC AD
:
A.
AC
. B.
2AC
. C.
3AC
. D.
5AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
134
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 22. Cho ba điểm
,,A B C
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là :
A.
:0M MA MB MC
. B.
:M MA MC MB
.
C.
AC AB BC
. D.
:k AB k AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 23. Cho tam giác
ABC
. Để điểm
M
thỏa mãn điều kiện
0MA BM MC
thì
M
phải thỏa
mãn mệnh đề nào?
A.
M
là điểm sao cho tứ giác
ABMC
là hình bình hành.
B.
M
là trọng tâm tam giác
ABC
.
C.
M
là điểm sao cho tứ giác
BAMC
là hình bình hành.
D.
M
thuộc trung trực của
AB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 24. Cho đoạn thẳng
AB
điểm
I
thỏa mãn
30IB IA
. Hình nào sau đây tả đúng
giả thiết này?
A. Hình 1. B. Hình 2. C. Hình 3. D. Hình 4.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 25. Xét các phát biểu sau:
(1) Điều kiện cần và đủ để
là trung điểm của đoạn
AB
2BA AC
.
(2) Điều kiện cần và đủ để
là trung điểm của đoạn
AB
CB CA
.
(3) Điều kiện cần và đủ để
M
là trung điểm của đoạn
PQ
2PQ PM
.
Trong các câu trên, thì:
A. Câu (1) và câu (3) đều đúng. B. Câu (1) sai.
C. Chỉ có câu (3) sai. D. Kng có câu nào sai.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
135
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 26. Cho vectơ
0b
,
2ab
,
c a b
.Khẳng định nào sau đây sai?
A. Hai vectơ
b
c
bằng nhau. B. Hai vectơ
b
c
ngược hướng.
C. Hai vectơ
b
c
cùng phương. D. Hai vectơ
b
c
đối nhau.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 27. Gọi
là giao điểm hai đường chéo
AC
BD
của hình bình hành
ABCD
.Đẳng thức nào
sau đây là đẳng thức sai?
A.
2OB OD OB
. B.
2AC AO
. C.
CB CD CA
. D.
2DB BO
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 28. Phát biểu nào sau đây sai?
A. Nếu
AB CD
thì
AB AC
. B. Nếu
AB CD
thì
, , ,A B C D
thẳng hàng.
C. Nếu
3 7 0AB AC
thì
,,A B C
thẳng hàng. D.
AB CD DC BA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 29. Cho hai tam giác
ABC
' ' 'A B C
lần lượt cùng trọng tâm là
G
'G
.Đẳng thức nào
sau đây sai?
A.
3 ' ' ' 'GG AA BB CC
. B.
3 ' ' ' 'GG AB BC CA
.
C.
3 ' ' ' 'GG AC BA CB
. D.
3 ' ' ' 'GG A A B B C C
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 30. Biết rằng hai véctơ
a
b
không ng phương nhưng hai véctơ
23ab
1a x b
cùng phương. Khi đó giá trị của
x
A.
. B.
3
2
. C.
1
2
. D.
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 31. Cho tam giác
ABC
có trọng tâm
G
.
Gọi
1
A
,
1
B
,
1
C
lần lượt là trung điểm của
BC
,
CA
,
AB
. Chọn khẳng định sai.
A.
1 1 1
0GA GB GC
. B.
0GA GB GC
.
C.
1 1 1
0AA BB CC
. D.
1
2GC GC
.
Li gii
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
136
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 32. Cho
a
,
b
không cùng phương,
2x a b
. Véctơ cùng hướng với
x
A.
2ab
. B.
1
2
ab
. C.
42ab
. D.
ab
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 33. Cho hình bình hành
ABCD
, điểm
M
thỏa mãn:
MA MC AB
.
Khi đó
M
là trung điểm của
A.
AB
. B.
BC
. C.
AD
. D.
CD
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 34. Hãy chọn kết quả đúng khi phân tích véctơ
AM
theo hai véctơ
AB
AC
của tam giác
ABC
với trung tuyến
AM
.
A.
AM AB AC
. B.
23AM AB AC
.
C.
1
2
AM AB AC
. D.
1
3
AM AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 35. Cho tam giác
ABC
, gọi
M
trung điểm
BC
G
là trọng tâm tam giác
ABC
.
Đẳng thức véctơ nào sau đây đúng?
A.
23AM AG
. B.
2AM AG
.
C.
3
2
AB AC AG
. D.
2AB AC GM
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
137
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 36. Cho tam giác
ABC
I
thỏa mãn
3IA IB
.Đẳng thức nào sau đây là đẳng thức đúng?
A.
3CI CA CB
. B.
1
3
2
CI CB CA
.
C.
1
3
2
CI CA CB
. D.
3CI CB CA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 37. Nếu
G
là trọng tâm tam giác
ABC
thì đẳng thức nào sau đây đúng?
A.
3
2
AB AC
AG
. B.
3
AB AC
AG
.
C.
2
3
AB AC
AG
. D.
2
AB AC
AG
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 38. Cho tam giác
ABC
. Gọi
M
là điểm trên cạnh
BC
sao cho
3MB MC
.
Khi đó, biểu diễn
AM
theo
AB
AC
A.
1
3
4
AM AB AC
. B.
13
44
AM AB AC
.
C.
11
46
AM AB AC
. D.
11
26
AM AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 39. Cho tam giác
ABC
trung tuyến
AM
, gọi
I
là trung điểm
AM
. Đẳng thức nào sau đây
đúng?
A.
20IA IB IC
. B.
0IA IB IC
.
C.
24IA IB IC IA
. D.
IB IC IA
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
138
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 40. Cho tam giác
ABC
I
,
D
lần lượt là trung điểm
AB
,
CI
. Đẳng thức nào sau đây đúng?
A.
13
24
BD AB AC
. B.
31
42
BD AB AC
.
C.
13
42
BD AB AC
. D.
31
42
BD AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 41. Gọi
,MN
lần lượt là trung điểm các cạnh
,AD BC
của tứ giác
ABCD
. Đẳng thức nào sau
đây sai?
A.
2AC DB MN
. B.
2AC BD MN
.
C.
2AB DC MN
. D.
2MB MC MN
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 42. Cho tam giác thuộc cạnh sao cho là trung điểm của .
Đẳng thức nào sau đây đúng?
A.
12
63
NI AB AC
. B. .
C.
21
33
NI AB AC
. D.
21
36
NI AB AC
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
ABC
N
BC
2BN NC
I
AB
12
63
NI AB AC
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
139
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 43. Cho tam giác
ABC
G
trọng tâm, điểm
M
nằm trên
AB
sao cho
30MA MB
điểm
N
nằm trên
AC
sao cho
.AN x AC
.x
Tìm
x
để ba điểm
,,M N G
thẳng hàng.
A.
1
.
5
x
B.
2
.
5
x
C.
3
.
5
x
D.
4
.
5
x
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 44. Cho hai điểm cố định
,AB
; Gọi
I
là trung điểm
AB
.
Tập hợp các điểm
M
thỏa mãn
MA MB MA MB
A. Đường tròn đường kính
AB
. B. Trung trực của
AB
.
C. Đường tròn tâm
I
, bán kính
AB
. D. Nửa đường tròn đường kính
AB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 45. Cho tam giác
ABC
. Tập hợp những điểm
M
sao cho
MA MB MC MB
A.
M
nằm trên đường trung trực của
BC
.
B.
M
nằm trên đường tròn tâm
I
, bán kính
2R AB
với
I
nằm trên cạnh
AB
thỏa
2IA IB
.
C.
M
nằm trên đường trung trực của
IJ
với
,IJ
lần lượt là trung điểm của
AB
BC
.
D.
M
nằm trên đường tròn tâm
I
, bán kính
2R AC
với
I
nằm trên cạnh
AB
thỏa
2IA IB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
140
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 46. Cho tam giác
ABC
, có bao nhiêu điểm
M
thỏa
5MA MB MC
?
A.
1
. B.
2
. C. vô số. D. Không có điểm nào.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 47 Cho tam giác
ABC
đều có độ dài cạnh bằng
Gọi
M
điểm thay đổi trên đường thẳng
.AC
Gá trị nhỏ nhất của
3P MA MB MC MA MB MC
bằng
A.
2 2.a
B.
2 3.a
C.
3 2.a
D.
4.a
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 48. Tập hợp các điểm
M
thỏa mãn
0MB MA MB MC
với
, , A B C
ba đỉnh của tam
giác là
A. một điểm. B. đoạn thẳng. C. đường thẳng. D. đường tròn.
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 49. Cho hai điểm
1;0A
0; 2B
. Vec tơ đối của
AB
có tọa độ là:
A.
1;2
. B.
1; 2
. C.
1;2
. D.
1; 2
.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
141
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 50. Cho hai điểm
1;0A
0; 2B
. Tọa độ trung điểm của đoạn thẳng
AB
là:
A.
1
;1
2



. B.
1
1;
2



. C.
1
;2
2



. D.
1; 1
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 51. Cho tam giác
ABC
có trọng tâm là gốc tọa độ
, hai đỉnh
có tọa độ là
2;2 ;A
3;5B
. Tọa độ đỉnh
A.
1;7
. B.
1; 7
. C.
3; 5
. D.
2; 2
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 52. Cho hai điểm
1;0A
0; 2B
. Tọa độ điểm
D
sao cho
3AD AB
là:
A.
4; 6
. B.
2;0
. C.
0;4
. D.
4;6
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 53. Cho
5;0 , 4;a b x
. Hai vectơ
a
cùng phương nếu số
x
:
A.
5
. B.
4
. C.
1
. D.
0
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 54. Khẳng định nào trong các khẳng định sau là đúng?
A. Hai vec tơ
4;2u
8;3v
cùng phương.
B. Hai vec tơ
5;0a
4;0b
cùng hướng.
C. Hai vec tơ
6;3a
2;1b
ngược hướng.
D. Vec tơ
7;3c
là vec tơ đối của
7;3 .d
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
142
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 55. Cho
;2 , 5;1 , ;7 a x b c x
. Vec tơ
23c a b
nếu
A.
3x
. B.
15x 
. C.
15x
. D.
5x
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 56. Cho
0;1 , 1;2 , 3; 2 a b c
. Tọa độ của
3 2 4 u a b c
A.
10; 15
. B.
15;10
. C.
10;15
. D.
10;15
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 57. Cho
0;3 , 4;2AB
. Điểm
D
thỏa mãn
2 2 0 OD DA DB
, tọa độ
D
A.
3;3
. B.
8; 2
. C.
8;2
. D.
5
2;
2



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 58. Cho
1; 2 , 2;6AB
. Điểm
M
trên trục
Oy
sao cho ba điểm
,,A B M
thẳng hàng thì tọa
độ điểm
M
A.
0;10
. B.
0; 10
. C.
10;0
. D.
10;0
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 59. Cho ba vectơ
1;2 ,a
3;bm
5.ui
Đặt
4.c a b
Tìm gtrị ca tham số
m
để
hai vectơ
c
u
cùng phương.
A.
39
.
5
m 
B.
5.m
C.
39
.
5
m
D.
8.m
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
143
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 60. Trong mặt phẳng
Oxy
. Cho
5; 4 , 3;7BC
.
Tọa độ của điểm
đối xứng với
qua
A.
1;18E
. B.
7;15E
. C.
7; 1E
. D.
7; 15E
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 61. Trong mặt phẳng
Oxy
, cho các điểm
3;3A
,
1;4B
,
2; 5C
.
Tọa độ điểm
M
thỏa mãn
24MA BC CM
.
A.
15
;
66
M



. B.
15
;
66
M




. C.
15
;
66
M



. D.
51
;
66
M



.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 62. Trong mặt phẳng
,Oxy
cho các điểm
2;0A
,
5; 4B
,
5;1C
.
Tọa độ điểm
D
để tứ giác
BCAD
là hình bình hành
A.
8; 5D 
. B.
8;5D
. C.
8;5D
. D.
8; 5D
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 63. Trong mặt phẳng
,Oxy
cho các điểm
2;1a
,
3;4b
,
7;2c
.
Cho biết
c ma nb
. Khi đó:
A.
22 3
;
55
mn
. B.
13
;
55
mn

. C.
22 3
;
55
mn

. D.
22 3
;
55
mn
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
144
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Câu 64. Cho
1; 3K
. Điểm
A Ox
,
B Oy
sao cho
là trung điểm
KB
. Tọa độ điểm
A.
0;3
. B.
1
;0
3



. C.
0;2
. D.
4;2
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 65. Cho
2;0M
,
2;2N
,
1;3P
lần lượt trung điểm các cạnh
BC
,
CA
,
AB
của
ABC
. Tọa độ
A.
1;1
. B.
1; 1
. C.
1;1
. D.
1; 1
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 66. Trong mặt phẳng tọa độ
Oxy
cho bốn điểm
3; 2A
,
7;1B
,
0;1C
,
8; 5D 
.
Khẳng định nào sau đây là đúng?
A.
AB
,
CD
đối nhau. B.
AB
,
CD
cùng phương nhưng ngược hướng.
C.
AB
,
CD
cùng phương cùng hướng. D.
,
,
,
D
thẳng hàng.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 67. Cho
34a i j
b i j
. Tìm phát biểu sai:
A.
5.a
. B.
0.b
. C.
2; 3ab
. D.
2.b
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 68. Trong mặt phẳng
.Oxy
Gọi
'"
;BB
"'
B
lần lượt điểm đối xứng của
( 2;7)B
qua truc
,Ox Oy
và qua gốc tọa độ
.O
Tọa độ các điểm
'"
;BB
"'
B
A.
'"
( 2;7), 2;7BB
"'
(2; 7)B
. B.
'"
( 7;2), 2;7BB
"'
(2; 7)B
.
C.
'"
( 2; 7), 2;7BB
"'
( 7; 2)B 
. D.
'"
( 2; 7), 7;2BB
"'
(2; 7)B
.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tập Chương I
145
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 69. Tam giác
ABC
2; 4C 
, trọng tâm
0;4G
, trung điểm cạnh
BC
2;0M
.
Tọa độ
A.
(4;12), 4;6AB
. B.
( 4; 12), 6;4AB
.
C.
( 4;12), 6;4AB
. D.
(4; 12), 6;4AB
.
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 70. Trong mặt phẳng
,Oxy
cho tam giác
ABC
2;3 , 3;5 , 1;4 .ABC
Gọi
G
là trọng tâm tam giác đã cho, tìm tọa độ trung điểm
I
của
.GC
A.
2;5 .I
B.
4;10 .I
C.
3
;4 .
2
I



D.
3;8 .I
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 71. Trong mặt phẳng tọa đ
Oxy
cho tam giác
MNP
1; 1M
,
5; 3N
thuộc trục
Oy
, trọng tâm
G
của tam giác nằm trên trục
Ox
. Tọa độ của P là
A.
0;4
. B.
2;0
.
C.
2;4
. D.
0;2
Li gii
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 72. Trong mặt phẳng
,Oxy
cho hai vectơ
1
5
2
u i j
4.v ki j
Tìm
k
để
u
vuông góc
với
v
.
A.
40.k 
B.
20.k 
C.
20.k
D.
40.k
Li gii.
Trung Tâm Luyện Thi Đại Học Amsterdam Bài 5. Tng Ôn Tp Chương I
146
Lớp Toán Thầy-Diệp Tn Tel: 0935.660.880
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
Câu 73. Trong mặt phẳng
,Oxy
cho tam giác
ABC
biết
1;1 ,A
3;2 ,B
4; 1 .C
Điểm
;
DD
D x y
thuộc trục hoành sao tứ giác
ABCD
là hình thang. Khẳng định nào sau đây
đúng?
A.
0 1.
D
x
B.
3
1.
2
D
x
C.
3
4.
2
D
x
D.
4 7.
D
x
Li gii.
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
....................................................................................................................................................................................................................
| 1/171