



















Preview text:
lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN Chuyªn ®Ò 1: C¸ C c ¸ ph p − h ¬ng n p h p ¸ h p p t Ý t nh n h tÝ t ch h p h p © h n
Th«ng thường ta gÆp c¸c lo¹i tÝch ph©n sau ®©y:
+) Loại 1: TÝch ph©n cña h m sè ®a thøc ph©n thøc h÷u tû.
+) Loại 2: TÝch ph©n cña h m sè chøa c¨n thøc
+) Loại 3: TÝch ph©n cña h m sè l−îng gi¸c
+) Loại 4: TÝch ph©n cña h m sè mò v logarit
§èi víi c¸c tÝch ph©n ®ã cã thÓ tÝch theo c¸c ph−¬ng ph¸p sau:
I) Ph−¬ng ph¸p biÕn ®æi trùc tiÕp b
Dïng c¸c c«ng thøc biÕn ®æi vÒ c¸c tÝch ph©n ®¬n gi¶n v ¸p dông ®−îc b f (x d ) x ∫ = ∫ F(x)
= F(b) − F(a) a a
+) BiÕn ®æi ph©n thøc vÒ tæng hiÖu c¸c ph©n thøc ®¬n gi¶n VÝ dô 1. TÝnh: 2 2 2 2 1. 1 2 2 I ∫ x − =
2x dx ta cã I = ( − )dx = ln x + = (ln2 + )1 − (ln1+ ) 2 = ln 2 −1 ∫ 3 x x x 2 x 1 1 1 2 e 2 e 2 x − 4 2 e 2. = ∫ −1/2 2x
− 3+ dx = (4 x −3x + 4ln x ) J = ∫ 3x + 4 dx = − 2 e 3 + e 4 + 7 x x 1 1 1 8 3 5 8 8 4 x − 4 1 4 3 3. 207 K = ∫
3x − 1 dx = ∫ x − 1/3 x − −2 / 3 x dx = 2 x − 3 4 x − 3 x = 3 2 3 3 3 4 4 1 3 x 1 1
+) BiÕn ®æi nhê c¸c c«ng thøc l−îng gi¸c VÝ dô 2. TÝnh: π / 2 π / 2 π / 2 1. 1 1 sin 2x sin 8x
I = ∫ cos 3xcos5xdx = ∫ (cos2x +cos8x)dx = + = 0 2 2 2 8 −π / 2 −π / 2 −π / 2 π / 2 π / 2 π / 2 2. 1 1 sin 5x sin 9x 4
J = ∫ sin2xsin7xdx = ∫ (cos( 5 − x) − cos9x)dx = − = 2 2 5 9 45 −π / 2 −π / 2 −π / 2 π / 2 π / 2 π / 2 π / 2 3. 1 1 cos 4x cos10x
K = ∫ cos 3xsin7xdx = sin 7x cos x 3 dx = ∫
∫ (sin4x +sin10x)dx = − + = 0 2 2 4 10 −π / 2 −π / 2 −π / 2 −π / 2 π π 1 + π cos 2x 1 1 4. H = ∫ 2
sin 2x cos xdx = ∫sin 2x dx = − cos 2x − cos 4x = 0 hoÆc biÕn ®æi 0 2 4 16 0 0 0 π π 1 + π cos 2x 1 1 H = ∫ 2
sin 2x cos xdx = ∫sin 2x dx = − cos 2x − cos 4x = 0 2 4 16 0 0 0 π / 2 π / 2 π / 2 1 + sin 2x + 2 2 2 + + − 5. (sin x cos x) cos x sin x π / 2 G = ∫ cos 2x = dx = 2 cos xdx = ∫ ∫ (−2sin x) = 1 − sin x + dx + cosx sin x + cos x π / 6 π / 6 π / 6 π / 6 π / 2 π / 2 2 π / 2 π / 2 − π 6. 1 cos 2x 1 1 sin 4x 3 E = ∫ 4 sin xdx = dx = ∫
∫(3+cos4x −4cos2x)dx = 3x + − sin 2x = 2 8 8 4 16 0 0 0 0 π / 4 π / 4 π / 2 π −π 7. 1 / 4 4 F = ∫ 2 tan xdx = −1dx = − = ∫ . §Ò xuÊt: F cot xdx v 1 = ∫ 2 2 (tan x x) cos x 0 4 0 0 π / 4 π / 4 F = ∫ 4 tan xdx 2 0
+) BiÕn ®æi biÓu thøc ë ngo i vi ph©n v o trong vi ph©n VÝ dô 3. TÝnh: 1 1 1 4 + 1. 1 3 1 (2x ) 1
I = ∫ (2x + 3 ) 1 dx = (2x + ) 1 d(2x + ) 1 = = 10 ∫ 2 2 4 0 0 0 2 2 1 1 −2 − + 2. = ∫ 1 1 3 1 (2x ) 1 1 1 J dx = (2x − ) 1 d(2x − ) 1 = = − = 0 ∫ (2x − 3 ) 1 2 2 − 2 4 (2x − ) 1 2 1 1 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 1
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 7 / 3 7 / 3 7 / 3 3. 1 1/ 2 2 3 16
K = ∫ 3x − 3dx = x 3 ( − ) 3 d 3 ( x − ) 3 = 3 ( x − ) 3 = ∫ 3 9 9 1 1 1 4 4 1 − − 4. = ∫ dx 1 1/ 2 2 1/ 2 10 2 13 H = − (25 − x 3 ) d(25 − 3x) = (25 − 3x) = ∫ − 25 − 3x 3 3 3 0 − 0 0 2 2 2 + − − − − 5. = ∫ 1 x 1 x 1 1 3 2 1 G dx = dx = ( x +1 − x −1)dx = ∫ ∫ x + 1 x 1 (x − ) 1 − (x + ) 1 2 3 1 + + − 1 1
(Nh©n c¶ tö v mÉu víi bt liªn hîp cña mÉu sè) §Ò xuÊt 1 1 G = dx ∫ = ∫
(ax + b)3 + (ax + c)3 + C víi a ≠ ; 0 b ≠ c 1
ax + b + ax + c a(b − c) 1 1 1 1 6. 4
P = ∫ x 1 − xdx = ∫ (x −1+ ) 1 1− xdx = −∫ (x − ) 1 1− xd 1 ( − x) + ∫ 1− xdx = 5 0 0 0 0 1 1 7. 2 1 1 2 2 Q ∫ 1− = x e xdx = − e1−x d 1 ( − x 2 ) = −e1−x = e −1 ∫ 2 0 0 0 1 − §Ò xuÊt 4 6 2 Q = x3 1 ∫ + ∫ x 2 dx =
HD ®−a x v o trong vi ph©n v thªm bít (x2 + 1 H 1). 1 15 0 VÝ dô 4. TÝnh: π π / 2 π / 2 1. 1 I = (2 cos 3x ∫ + ∫ 3 sin 2x d
) x = 0 ; I = sin3 x cos xdx ∫ = ∫ v I = ecosx sin xdx ∫ = ∫ e − 1 1 2 4 3 0 0 0 π / 4 π / 2 π / 4 2. sin x 2 J = tan xdx ∫ = ∫ ln 2 ; J = cot xdx ∫ = ∫ ln 2 v J = dx ∫ = ∫ ln 2 1 2 3 1 + 3 cos x 3 0 π / 6 0
(®−a sinx, cosx v o trong vi ph©n) e 2 e 3 e 3. sin(ln x) cos(ln x) 1 K = dx ∫ = ∫
1 − cos1 ; K = dx ∫ = ∫
1 − cos 2 v K = dx ∫ = ∫ 2 1 x 2 x 3 x 1 + ln x 1 1 1
{®−a 1/x v o trong vi ph©n ®Ó ®−îc d(lnx)} ln 3 x ln 3 4. e x 5 H dx = ln 2 + e = ln
1 = ∫ 2 + x e 1 2 + e 1 ln 2 ln 2 ln 2 ln 2 1 − x 1+ x e − x x e 2e e H dx = ∫ dx = dx 2 dx 3ln 2 2 ln 3 x ∫ − ∫ = −
2 = ∫ 1 + x e 1+ e 1 + x e 0 0 0 0 ln 2 ln 2 ln 2 ln 2 ln 2 x x x + − dx 1 (e 5 e )dx 1 1 e dx 1 1 x 1 12 H = = dx − = x − ln e + 5 = ln ∫ ∫ ∫ 3 = ∫ x e + 5 5 ex + 5 5 5 ex + 5 5 5 5 7 0 0 0 0 0 1 x 1 1 e dx 2x 2 e dx 1 1 e 1 H = ∫ 2x + = ln e +1 = ln 4 = ∫ x − e + x e 2x e +1 2 2 2 0 0 0 b
+) BiÕn ®æi nhê viÖc xÐt dÊu c¸c biÓu thøc trong gi¸ trÞ tuyÖt ®èi ®Ó tÝnh I = ∫ f(x,m)dx a
H XÐt dÊu h m sè f(x,m) trong ®o¹n [a; b] v chia [a;b]= [a;c ]∪[c ;c ]∪...∪[c ;b] trªn mçi ®o¹n h m sè f(x,m) 1 1 2 n gi÷ mét dÊu c c 1 2 b
H TÝnh I = ∫ f(x,m)dx + ∫ f(x,m)dx +...+ ∫ f(x,m)dx a c c 1 n VÝ dô 5. TÝnh: 2 1. I = ∫ 2
x + 2x − 3 dx Ta xÐt pt: x 2 + 2 x 3 = 0
⇔ x = 1∨ x = 3 . B¶ng xÐt dÊu f(x) 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 2
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 1 2 1 2
Suy ra I = x2 + 2x − 3dx + x2 + 2x − 3dx = − (x2 + 2x − ) 3 dx + (x 2 + 2x − ) 3 dx = 4 ∫ ∫ ∫ ∫ 0 1 0 1 1 −2 0 1
2. J = ∫ 4x − 3
x dx tÝnh t−¬ng tù ta cã J = 4x − x3 dx + 4x − x3 dx + 4x − x3 dx = 16 ∫ ∫ ∫ −3 −3 −2 0 3 3. 1 K = 2x ∫ − ∫ 4 dx = 4 + ln 2 0 2π 2π π 2π 4. H 1 cos 2xdx = 2 sin x dx = 2 sin x dx + 2 sin x dx = 2 2 ∫ ∫ ∫ 1 = ∫ − 0 0 0 π π H 1
sin 2xdx {ViÕt (1 – sin2x) vÒ b×nh ph−¬ng cña mét biÓu thøc råi khai c¨n} 2 = ∫ − 0 π π / 4 3π / 4 3π / 2
= sin x + cos x dx = sin x + cos x dx + sin x + cos x dx + sin x + cos x dx = 2 2 ∫ ∫ ∫ ∫ 0 0 π / 4 3π / 4
II) Ph−¬ng ph¸p ®æi biÕn sè
A ' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 1: b
Gi¶ sö cÇn tÝnh tÝch ph©n I = ∫ f(x)dx ta thùc hiÖn c¸c b−íc sau: a H B−íc 1. §Æt x = u(t)
H B−íc 2. LÊy vi ph©n dx = u’(t)dt v biÓu thÞ f(x)dx theo t v dt. Ch¼ng h¹n f(x)dx = g(t)dt
H B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β β
H B−íc 4. BiÕn ®æi I = ∫g(t)dt (tÝch ph©n n y dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa) α
C¸ch ®Æt ®æi biÕn d¹ng 1.
C¸ch ®Æt 1. NÕu h m sè chøa 2
1 − x th× ®Æt x = sin ; t t ∈[ π − / ; 2 π / ]
2 hoÆc ®Æt x = cos ; t t ∈[ ; 0 π ] VÝ dô 1. TÝnh: 1 2 1. A ∫ 1− =
x dx ta ®Æt x = sin t;t ∈[ π − / ;
2 π / 2] ⇒ dx = cost.dt; ®æi cËn khi x = 2 /2 th× t = π / 4 ; khi x 2 x 2 / 2 π / 2 π / 2 π / 2 2 2 2 − − − π = 1 th× t = π 1 sin t cos t 1 sin t 4 / 2 . Khi ®ã A = cos t d . t = d . t = d . t = ∫ ∫ ∫ sin 2 t sin 2 t sin 2 t 4 π / 4 π / 4 π / 4 1 2 1 2 2. = ∫ x x B dx ta viÕt B = ∫ dx . 2 2 2 1 (x / 2) 0 − 0 4 − x §Æt (x / 2) = cos t; t ∈ ; 0
[ π ] ⇒ x = 2 cos t ⇒ dx = 2 − sin tdt π / 3 π / 2 π / 2 2 π §æi cËn suy ra (2 cos t) B = ( 2 − sin tdt) = 4cos2 tdt = 2 ∫ ∫ ∫(1+ cos2t) 3 dt = − 2 3 2 π − / 2 2 1 cos t π / 3 π / 3 1 1 2 3. 3 x . C = ∫ 2 x 4 − 2
3x dx Tr−íc hÕt ta viÕt C = 2∫ 2 x 1 − dx . 2 0 0 §Æt 3 x = sin t; t ∈[ π − / ;
2 π / 2] ®−a tÝch ph©n vÒ d¹ng: 2 π / 3 π / 3 16 − π 2 2 4 1 cos 4t 2 3 1 C = sin t cos tdt = dt = + ∫ ∫ 3 3 3 3 2 27 12 0 0 Chó ý:
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 3
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN x = sin t;t ∈[−π π 2 / ; 2 / ] 2 H NÕu h m sè chøa x a
a − x2 ,a > 0 th× ta viÕt 2 a − x = a 1 − v ®Æt a x = cos t; t ∈[ ; 0 π ] a b π π 2 x = sin t; t ∈[− / ; 2 / ] 2 H NÕu h m sè chøa b a
a − bx2 ,a,b > 0 th× ta viÕt 2 a − bx = a 1 − x v ®Æt a b x = cost;t ∈[ ; 0 π ] a VÝ dô 2. TÝnh: 2 1. = ∫ 1 E
dx {ViÕt tÝch ph©n vÒ d¹ng 2 1 − X } 2 x x 1 2 / 3 − 2 π / 3 π ta viÕt = ∫ 1 1 E dx v ®Æt = sin t; t ∈ [− π / ; 2 π / 2] suy ra E = dt = ∫ 2 2 x 1 1/ x x 12 2 / 3 − ( ) π / 4 2 2 / 3 2 2. G ∫ 3x − =
4 dx {ViÕt tÝch ph©n vÒ d¹ng 2 1 − X } 3 x 2 / 3 2 2 / 3 3 . x . 1 (2 / 3x)2 ta viÕt 2 G ∫ − = dx v ®Æt = sin t; t ∈ [− π / ;
2 π / 2] suy ra tÝch ph©n cã d¹ng 3 x 3x 2 / 3 π / 3 3 3 + − 2 3( 6 3 3) G = cos tdt = ∫ π
{NÕu tÝch ph©n cã d¹ng ax 2 − b th× viÕt vÒ d¹ng 2 1 − X } 2 16 π / 4
C¸ch ®Æt 2. NÕu tÝch ph©n cã chøa 2 1 + x hoÆc ( 2
1 + x ) th× ta ®Æt x = tan t;t ∈ (− π / ; 2 π / 2) hoÆc x = cot t; t ∈ ( ; 0 π ) VÝ dô 3. TÝnh: 3 π / 3 π 1. = ∫ 1 M
dx ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2) suy ra M = dt = ∫ 1 + 2 x 6 1 / 3 π / 6 3 π / 3 − 2. = ∫ 1 cos t 18 2 3 N
dx ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2) suy ra N = dt = ∫ 2 2 2 x . 1 x sin t. 3 1 + π / 4 a 3. = ∫ 1 P d ; x a ≠ 0 2 (a + 2 2 x ) 0 a π / 4 + ta viÕt = ∫ 1 x 1 2 P dx v ®Æt = tan t; ⇒ 2 P = cos tdt = ∫ π 3 3 x 2 a a 4a 0 4 2 a 1 + ( ) 0 a 1 4. = ∫ 1 Q dx 2 x + x + 1 0 1 1 π ta viÕt = 4 2 1 4 3 3 Q ∫ 1 dx v ®Æt
x + = tan t; t ∈ (− π / ; 2 π / 2) ⇒ Q = dt = ∫ 3 2 3 2 3 2 9 0 1 + 2 1 0 (x + ) 3 2
Chó ý: NÕu gÆp tÝch ph©n chøa 2 a + bx hoÆc 2
a + bx th× ta viÕt: 2 2 b 2 b b a + bx = a 1 + x hoÆc 2 a + bx = a 1 + x v ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2) a a a
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 4
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN − +
C¸ch ®Æt 3. NÕu tÝch ph©n cã chøa a x hoÆc a x th× ta ®Æt ta ®Æt x = acos t 2 ;t ∈ [ ;
0 π / 2] v l−u ý vËn dông a + x a − x 1 − cos 2t = 2sin2 t 1 + cos 2t = 2cos2 t VÝ dô 4. TÝnh: 0 π / 4 a + 1 + − π 1. cos 2t 4 I = ∫ x d ;
x a > ta ®Æt x = a cos 2t; t ∈ ; 0 [ π / 2] suy ra I = ∫ (−2a sin 2t)dt = a a − 0 − x 1 − cos 2t 4 −a π / 2 2 / 2 π / 8 1 + 1 + 2. cos 2t J = ∫
x dx ta ®Æt x = cos2t;t ∈[ ;0π / 2] suy ra J = ∫ (−2 sin 2t d ) t = 1 − x 1 − cos 2t 0 π / 4 π / 4 + − 1 + x 2 4 2 2 J = 4 cos tdt = ∫ π {cã thÓ ®Æt
= t suy rra tÝch ph©n J vÒ d¹ng tÝch ph©n cña h m sè h÷u tû} 4 1 − x π / 8
B ' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 2: b
Gi¶ sö cÇn tÝnh tÝch ph©n I = ∫ f(x d
) x ta thùc hiÖn c¸c b−íc sau: a H B−íc 1. §Æt t = v(x)
H B−íc 2. LÊy vi ph©n dx = u’(t)dt v biÓu thÞ f(x)dx theo t v dt. Ch¼ng h¹n f(x)dx = g(t)dt
H B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β β
H B−íc 4. BiÕn ®æi I = ∫g(t)dt (tÝch ph©n n y dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa) α
C¸ch ®Æt ®æi biÕn d¹ng 2.
C¸ch ®Æt 1. NÕu h m sè chøa Èn ë mÉu th× ®Æt t = mÉu sè. VÝ dô 1. TÝnh: π / 2 4 1. dt 4
I = ∫ sin 2x dx ta cã thÓ ®Æt t = 4 H cos2x suy ra I = = ln ∫ 4 − 2 cos x t 3 0 3 π / 4 2 2. dt 3 J = ∫ sin 2x
dx ®Æt t = sin 2 x + 2 cos2 x = 1 + cos2 x suy ra J = ∫ = ln 2 sin x + 2 2cos x t 4 0 3 / 2
{cã thÓ h¹ bËc ®Ó biÕn ®æi tiÕp mÉu sè vÒ cos2x sau ®ã ®−a sin2x v o trong vi ph©n} π / 2 §Ò xuÊt: sin x cos x J
dx víi a 2 + b2 > 0 1 = ∫ 2 2 a sin x + 2 2 b cos x 0 ln 2 3. = ∫ 1 K
dx ta ®Æt t = ex + 5 ⇒ ex = t − 5 ⇒ exdx = dt sau ®ã l m xuÊt hiÖn trong tÝch ph©n biÓu x e + 5 0 ln 2 7 7 x − thøc e dx dt 1 t 5 1 12 ex dx ⇒ K = = = ln = ln ∫ ∫ ex (ex + ) 5 t(t − ) 5 5 t 5 7 6 0 6 ln 2 ln 2 ln 2 x x x x + − +
{Cã thÓ biÕn ®æi trùc tiÕp 1 e 5 e 1 e 5 1 e 1 12 K = dx = dx − dx = ln ∫ ∫ ∫ } 5 e x + 5 5 e x + 5 5 e x + 5 5 7 0 0 0 π / 2 7 sin 2x + 4. 1 1 2 H = ∫ cos x
dx ta ®Æt t = 2sin x − cos 2x + 4 ⇒ H = dt = ∫
(2sin x − cos 2x + 2 4) 2 t 2 21 0 3
{®«I khi kh«ng ®Æt c¶ MS} π / 2 3
5. G = ∫ sinxcos x dx chó ý r»ng t¸ch mò 3 = 2 +1 ®Æt 1 + 2 cos x 0 2 2 1 (t − ) 1 1 1 − ln 2 t = 1 cos2 +
x ⇒ cos2 x = t −1 ⇒ 2sin x cos xdx = −dt khi ®ã: G = dt = (t − ln t ) = ∫ 2 t 2 2 1 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 5
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π / 4 6. M = ∫ cos 2x dx
sin x + cos x + 2 0
ta ®Æt t = sin x + cos x + 2 ⇒ dt = (cos x − sin x)dx l−u ý cos2x = (cosx+sinx)(cosxHsinx) π / 4 2+ 2
(cos x + sin x)(cos x − sin x) (t − 2)dt 2+ 2 + M = dx = = ∫ ∫ (t − 2lnt ) 2 2 = 2 −1 + ln sin x + cos x + 2 t 3 3 0 3 π / 4 7. N = ∫ cos 2x
dx ®Æt t = sin x + cos x + 2 suy ra (sin x + cos x + 3 2) 0 2+ 2 2+ 2 (t − ) 2 dt 1 1 1 1 1 1 2 1 N = = − = − − + = − ∫ t 3 t 2 t (2 + 2)2 2 + 2 9 3 9 2 1 ( + 2 ) 3 3 π / 4 π / 4 §Ò xuÊt: cos 2x cos 2x M dx v N dx 1 = ∫
1 = ∫ sin x − cos x + 2
(sin x − cos x + 3 2) 0 0 8.
C¸ch ®Æt 2. NÕu h m sè chøa c¨n thøc n ϕ(x) th× ®Æt n
t = ϕ(x) sau ®ã luü thõa 2 vÕ v lÊy vi ph©n 2 vÕ. VÝ dô 1. TÝnh: 1 4x − 1. 1 2 I = ∫ 3 dx ta ®Æt t = x 3 + 1 ⇒ x =
(t2 − )1⇒ dx = tdt khi ®ã ®−a tÝch ph©n vÒ d¹ng:
2 + 3x + 1 3 3 0 2 2 2 3 − 2 4t 13t 2 I = dt = ∫ ∫(4t2 −8t + 3) 2 6 2 4 4 dt − dt = − ln ∫ 9 2 + t 9 9 2 + t 27 3 3 1 1 1 7 3 2 2. = ∫ x 3 4 141 J dx ta ®Æt 3 2 t = 1 + x
⇒ x 2 = t3 −1 ⇒ 2xdx 3t 2 = dt ⇒ J = (t − t)dt = ∫ 3 2 2 20 0 1 + x 1 2 5 5 − 3. = ∫ 1 tdt 1 t 1 K dx ta ®Æt 2 t = 1 + x
⇒ x 2 = t2 −1 ⇒ xdx = tdt ⇒ J = = ln ∫ 2 2 (t − ) 1 t 2 t + 1 1 x 1 + x 2 2 2 4. = ∫ 1 H dx ta ®Æt 3
t = 1 + x ⇒ x 3 = t 2 − 1 ⇒ 3x2dx = t
2 dt nh©n c¶ tö v mÉu sè víi x2 ta ®−îc: 3 1 x 1 + x 2 3 3 xdx 2 dt 1 t −1 2 2 + 1 H = = = ln = ln ∫ ∫ 2 3 3 t 2 + −1 3 t +1 3 1 x 1 x 2 2 2 3 5 x + 3 5. G = ∫ 2x dx ta ®Æt 2 t = 1 + x
⇒ x 2 = t2 −1 ⇒ xdx = tdt nhãm x2.x.(x2 +2) ta ®−îc: 2 0 x + 1 2 3 2 (x 2 + ) 2 x 2 x . (t 2 + ) 1 (t 2 − ) 1 tdt t5 26 G = dx = = − t = ∫ ∫ 2 t + 5 5 0 x 1 1 1 6 6. = ∫ 1 1 2 M dx ta ®Æt 6 t = 9x + 1 ⇒ x = (t6 − )1 ⇒ dx t5 =
dt luü thõa bËc hai v bËc ba
9x + 1 + 3 9x + 9 3 − 1 1 2 2 2 2 t 5dt 2 t 3dt 2 2 1 2 11 2 ta cã: M = = = (t − t + 1 − )dt = + ln ∫ 3 2 ∫ ∫ 3 t + t 3 t + 1 3 t +1 3 6 3 1 1 1 VÝ dô 2. TÝnh: π / 2 sin 2x + 1. [§H.2005.A] 1 2 P = ∫
sin x dx ta ®Æt t = 1+ 3cosx ⇒ cosx = (t2 − )1 ⇒ sin xdx = − tdt nhãm 1 + 3 cos x 3 3 0 π / 2 2 2 (2 cos x + 3 nh©n tö sinx ta cã: 2 2 2 2t 34 P = ∫ )
1 sin xdx = ∫(2t + )1dx = + t = 1 + 3cos x 9 9 3 27 0 1 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 6
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 2 + 2. cos 3x sin 2x 1 2 Q = d . x ∫
ta ®Æt t = 1+ 3sin x ⇒ sin x = (t 2 − ) 1 ⇒ cos xdx = tdt ¸p dông c«ng thøc 1 + 3 sin x 3 3 0 π π 2 3 − + 2 2 − − +
nh©n ®«i v nh©n 3 ta viÕt: 4 cos x 3 cos x 2 sin x cos x 4 4 sin x 3 2 sin x Q = d . x ∫ = .cos xdx ∫ 1 + 3sin x 1 + 3sin x 0 0 2 2 VËy = 2 2 4 5 14 3 206 Q ∫(− 4 4t + 2 14t − d ) 1 t = − t + t − t = 27 27 5 3 405 1 1 π 2 3. [§H.2006.A] 2 1 R = ∫ sin 2x
dx ta ®Æt t = 1 3sin 2 + x ⇒ sin x = (t 2 − ) 1 ⇒ 2 2 3 0 cos x + 4 sin x 2 2 2 2 tdt 2 2 sin 2xdx = tdt . khi ®ã: R = = t = ∫ 3 3 t 3 3 1 1 4. VÝ dô 3. TÝnh: e 1. P ∫ lnx 1 + = 3 ln x dx x 1 2 Ta ®Æt 1 dx 2 2 4 116 t = 1 + 3ln x ⇒ ln x = (t 2 − ) 1 ⇒
= tdt khi ®ã: P = ∫(t − t)dx = 3 x 3 9 135 1 e 3 − 2. Q = ∫ 2 ln x dx x 1 + 2 ln x 1 Ta ®Æt 1 dx t = 1 + 2 ln x ⇒ ln x = (t 2 − ) 1 ⇒ = tdt . Khi ®ã: 2 x 3 2 2 3 − (t 2 − ) 1 tdt − 2 t 3 9 3 11 Q = = (4 − t )dt = 4t − = ∫ ∫ t 3 3 1 1 1 2 ln 2 5 2dt 5 − 1 3 + 3. = ∫ dx 1 R
. Ta ®Æt t = ex + 1 suy ra exdx = 2tdt ⇒ R = ∫ = ln . x 2 t − 1 5 + 1 3 − 1 ln 2 e + 1 3 3 e 4. = ∫ dx d 3 x e 2 S . Ta ®Æt 3 x t = e suy ra S = = 3ln ∫ 3 x t(t + ) 1 e + 1 0 1 + e 1 ln 5 x x e e − 5. X = ∫ d 1 x x e + 3 0
C¸ch ®Æt 3. NÕu h m sè chøa c¸c ®¹i l−îng x x
sin x , cos x v tan
th× ta ®Æt t = tan khi ®ã 2 2 t 2 2 1 − t sin x = , cos x = 2 1 + t 2 1 + t VÝ dô 4. TÝnh: π / 2 1. 1 Q = d . x ∫ 5 sin x + 3cos x + 5 0 1 1 + Ta ®Æt x 2dt 1 1 t 1 1 8 t = tan ⇒ dx = v Q = dt = ln = ln ∫ 2 2 1 + t t 2 + 5t + 4 3 t + 4 3 5 0 0 x π / 3 tan 1 / 3 1 / 3 2. 2 x d 2 t 2tdt 2 10 L = d . x ∫ ta ®Æt t = tan ⇒ dx = v L = = ln t + 3 = ln ∫ cos x + 2 2 2 1 + t t 2 + 3 0 9 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 7
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 4 1 1 ( + 1 1 3. dt t)dt dt tdt V = ∫ cos 2x dx ta ®Æt t = tan x ⇒ dx = v V = ∫ = 2 ∫ + 2 ∫ cos 2x + sin 2x + 1 2 1 + t 2 1 ( + t ) 2 1 ( + t ) 1 ( 2 + 2 t ) 0 0 0 0 1 π 4 1 1 t =tan y π + 2 = dt cos 2x 2 ln 2 V + ln t + 1 ta tÝnh V = = ∫ suy ra V = dx = ∫ π 1 1 2 0 4 1 ( 2 + t ) 8 cos 2x + sin 2x + 1 8 0 0 π 4 π 4 1 + 2 1 + 2 4. tan x N = ∫ tan x dx ta viÕt N = ∫ dx v ®Æt 2 cos x + sin 2x − 2 sin x + 1 cos 2x + sin 2x + 1 0 0 1 1 dt 1 1 + t 2 1 t 2 3 + 2 ln 2 t = tan x ⇒ dx = suy ra N = dt = + t + ln t +1 = ∫ 2 1 + t 2 t + 1 2 2 4 0 0 π π 4 sin x − π 4 1 (sin x − cosx) 5. [§H.2008.B] F = ∫ 4 dx ta viÕt F = ∫ dx dùa sin 2x + 2 1 ( + sin x + cos x) 2 2 sin x cos x + 1 ( 2 + sin x + cos x) 0 0
v o mèi quan hÖ gi÷a sin x + cos x v sin x cos x ta ®Æt t = sin x + cos x ⇒ dt = (cos x − sin x)dx v 2 2 2 t 2 − 1 1 − dt 1 dt 1 1 1 1 sin x cos x = khi ®ã F = ∫ = − 2 ∫ = = − 2 2 t − 1 + 1 ( 2 + 2 t) 2 t + 2t + 1 2 t + 1 2 2 2 2 1 1 + 1
C¸ch ®Æt 4. Dùa v o ®Æc ®iÓm hai cËn cña tÝch ph©n. a 0 a 0
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ viÕt I = ∫f(x)dx + ∫f(x)dx ®Æt t = H x ®Ó biÕn ®æi I f (x d ) x 1 = ∫ −a −a 0 −a π
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = π H x 0 π 2
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = 2π H x 0 π / 2 π
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = H x 2 0 b
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = (a + b) H x a VÝ dô 4. TÝnh: 1 0 1 1. I = ∫ 2008 x sin xdx ta viÕt I = 2008 x sin xdx + ∫ x 2008 sin xdx = A + B ∫
. Ta ®Æt t = Hx th× A = H B. vËy I = 0. −1 −1 0 π π π π 2. sin t t sin t
J = ∫ x sin x dx ta ®Æt t = π − x khi ®ã J = ∫ dt − dt ta ®æi biÕn tiÕp: 2 ∫ 1 + 2 cos x 1 + cos t 1 + 2 cos t 0 0 0 π π π sin t 2 cos t =tan u π t sin t t =−x 2 2 π π J = dt ==== ∫ v J = dt === J ∫ .VËy J = − J ⇒ J = 1 2 1 + cos2 t 2 1 + cos2 t 2 4 0 0
C¸ch ®Æt 4. NÕu tÝch ph©n cã chøa ax 2 + bx + c; a > 0 th× ta cã thÓ ®Æt t − ax = ax 2 + bx + c sau ®ã tÝnh x theo t
v tÝnh dx theo t v dt.{PhÐp thÕ ¬le} VÝ dô 5. TÝnh: 1 2 − 2 1. = ∫ dx 1 t 2dt I
ta ®Æt t − x = x 2 − x + 1 ⇒ x = ⇒ I = = ln 3 ∫ 2 2t + 1 2t − 1 0 x − x + 1 1 1 2 − 2 2 − 2. = ∫ dx t 1 dt 1 6 2 1 J
ta ®Æt t − 3x = 9x 2 − 2x + 1 ⇒ x = ⇒ J = = ln ∫ 2 ( 2 3t − ) 1 t 3 − 1 3 2 0 9x − 2x + 1 1
II )Ph−¬ng ph¸p tÝch ph©n tõng phÇn
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 8
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN b
HGi¶ sö cÇn tÝnh tÝch ph©n I = ∫f(x)dx . Khi ®ã ta thùc hiÖn c¸c b−íc t×nh: a b b
B−íc 1. ViÕt tÝch ph©n d−íi d¹ng: I = ∫f(x)dx = ∫g(x) h.(x)dx a a du = u = g(x) g' (x)dx B−íc 2. §Æt ⇒ dv = h(x) d . x v = ∫h(x) d.x b b
B−íc 3. ¸p dông c«ng thøc: hay ∫ u d.v = b v . u − d . v u a ∫ a a
C¸c c¸ch ®Æt ®Ó tÝch ph©n tõng phÇn: b du = P' (x)dx u = P(x)
+C¸ch ®Æt 1. NÕu tÝch ph©n cã d¹ng I = ∫ P(x).sin ax d.x th× ta sÏ ®Æt ⇒ cos ax dv = sin ax d . x v = − a a b du = P' (x)dx u = P(x)
NÕu tÝch ph©n cã d¹ng ∫ P(x).cosax d.x th× ta ®Æt ⇒ sin ax dv = cos ax d . x v = a a du = b P' (x)dx u = P(x) NÕu tÝch ph©n cã d¹ng ∫ ax P(x) e . d . x th× ta ®Æt ⇒ eax dv = eax d . x v = a a VÝ dô 5. TÝnh: π 1. I = ∫( x 3 − ) 1 .sin 2 d . x x ta ®Æt 0 du = d 3 x π π u = x 3 − 1 cos 2x 3 3π ⇒ cos 2x ⇒ I = − ( x 3 − ) 1 + cos 2x d . x = − ∫ dv = sin 2x d . x v = − 2 2 2 2 0 0 π / 2 u = x2 + du = 2xdx 2. 1 J = ∫ 2 (x + ) 1 .cos x d . x ta ®Æt ⇒ dv = cos d . x x v = sin x 0 π π 2 / 2 π + ⇒ / 2 4 2 J = (x + ) 1 sin x − 2 . x .sin x d . x = − 2J ∫ π ta tÝnh J . x sin d . x x b»ng c¸ch ®Æt 1 = ∫ 1 0 4 0 0 π / 2 u = x π 2 2 / 2 π + 4 π − 4
sau ®ã suy ra J = − x cos x + cos xdx =1 ∫ .VËy J = − 2 = dv = sin d . x x 1 0 4 4 0 1 3. L = ∫ 2 (x − x + 3x ) 1 e . d . x ta ®Æt 0 1 1 u = x 2 − x + 1 3 1 1 e − 1 1 ⇒ 2 3x 3x L = (x − x + ) 1 e − (2x − ) 1 e . d . x = − L ∫ 1 dv = e3x d . x 3 3 3 3 0 0 1 u = 2x − 1 3 − 3 − TÝnh tiÕp 4e 4 e 5 5 L (2x ) 1 e . d . x ®Æt ⇒ L = suy ra L = 1 = ∫ − 3x 1 dv = e3x d . x 9 27 0 π π π 1 cos 2x x 1 2 − π π 2 4. M = ∫ 2 ( x sin x) d . x ta viÕt M = ∫ x sin d . x x = ∫ x d . x = − ∫ x cos2xdx 2 4 2 0 0 0 0 0 π u =x 2 π xÐt M = x cos 2x d . x 0 ∫ === . vËy ta cã M = 1 4 dv=cos 2xdx 0 2 π / 4 π / 2 u = 2t
5. M = ∫sin x d.x ta ®æi biÕn t = x ®Ó ®−a M = ∫ 2tsin tdt b»ng c¸ch ®Æt ⇒ M = 2 dv = sin t d . t 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 9
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN du = b b cos bxdx u = sin bx
+C¸ch ®Æt 2. NÕu tÝch ph©n cã d¹ng I = ∫ ax e sin bx d . x th× ta ®Æt ⇒ eax dv = eax d . x v = a a du = − b b sin bxdx u = cos bx
NÕu tÝch ph©n cã d¹ng I = ∫ ax e cos bx d . x th× ta ®Æt ⇒ eax dv = eax d . x v = a a VÝ dô 6. TÝnh: π du = / 2 3 cos x 3 dx u = sin x 3 1. I = ∫ 2x e .sin 3 d . x x ta ®Æt ⇒ e 2x dv = e2x dx v = 0 2 π / 2 π π 2x π u = cos3x ⇒ e 3 e 3 2 x I = sin x 3 − e cos x 3 d . x = − − I ∫ (*). Ta xÐt I e cos 3 d . x x v ®Æt ⇒ 1 = ∫ 2x 1 2 2 2 2 dv = e2x dx 0 0 0 π / 2 π e2x 3 eπ 3 1 3 π 2e + 3 2 x 1 3 I = −cos 3x + e sin 3 d . x x = + I ∫ thay v o (*) ta cã: I = − − + I ⇒ I = − 1 2 2 2 2 2 2 2 2 13 0 0 π π 1 cos 2x 1 1 2x − π π 2. F = ∫ x 2 (e .sin x) d . x ta viÕt F = ∫ e d . x = ∫ 2x e d . x − ∫ 2x e cos 2 d . x x 2 2 2 0 0 0 0 π π 2π − 2π − Ta xÐt 1 1 2x e 1 2x e 1 F = e d . x = ∫
. Sau hai lÇn tÝch ph©n tõng phÇn ta tÝnh ®−îc F = e cos 2x d . x = ∫ . 1 2 2 2 2 4 0 0 π 2π − VËy ta cã: x 2 e 1 F = (e .sin x) d . x = ∫ 8 0 P' (x) b du = dx u = ln[P(x)]
+C¸ch ®Æt 3. NÕu tÝch ph©n cã d¹ng I = ∫ ln[P(x)]Q . (x)dx th× ta ®Æt ⇒ P(x) dv = Q(x) d . x a v = ∫ Q(x)dx VÝ dô 7. TÝnh: 1 5 du = dx 5 5 u = ln[x − ] 1 2 2 1. x − 1 x x I = ∫ . x ln(x − ) 1 dx ta ®Æt ⇒ ⇒ I = ln(x − ) 1 − ∫ dx dv = x d . x x 2 2 2x − 2 2 2 v = 2 2 48 ln 2 + 27 = 4 1 3 2 u = ln x + 1 + x du = dx 2. J = ∫ln(x + 1+ 2 x )dx ta ®Æt ⇒ 1 + x 2 ⇒ J = 3 ln( 3 + 2) −1 0 dv = dx v = x e e e e u = 2 2 3. ln x x K = ∫ 2 . x ln xdx ta ®Æt suy ra K = 2 ln x − ∫ x.ln xdx . XÐt K x.ln xdx v ®Æt 1 = ∫ dv = xdx 2 1 1 1 1 u = ln x e2 + 1 e 2 − 1 th× K = ⇒ K = . dv = xdx 1 4 4 2 u = ln x 2 e − 4. 1 1 5 15 4 ln 2 H = ∫ ln x dx ta ®Æt suy ra H = − ln x + x dx = ∫ − . 5 x dv = − x 5dx 4x 4 4 256 1 1 1 π / 3 5. G = ∫ ln(sin x) dx ®Æt 2 cos x π / 6 u = ln(sin x) π / 3 du = cot xdx π / 3 3 3l 3 n −4 3l 2 n −π 1 ⇒ ⇒ I = tan x ln(sin x) − dx = π / 6 ∫ dv = dx v = tan x 6 cos2 x π / 6
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 10
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π π e sin(ln x) e u = cos(ln x) du = − π 6. dx e F = o c s(ln x)dx ∫ ®Æt ⇒ x ⇒ I = x cos(ln x) + sin(ln x)dx (*). Ta xÐt 1 ∫ dv = dx 1 v = x 1 π π e cos(ln x) e u = sin(ln x) du = dx π e F sin(ln x)dx ®Æt ⇒ ⇒ F = x sin(ln x) − cos(ln x)dx = −F ∫ thay 1 = ∫ x dv = dx 1 1 1 v = x 1 π π + v o (*) ta cã: e 1
F = −e − 1 − F ⇒ F = − . 2
II )Ph−¬ng ph¸p t×m hÖ sè bÊt ®Þnh AH Khi gÆp tÝch ph©n:
I = ∫ P(x) dx víi P(x), Q(x) l c¸c ®a thøc cña x. Q(x)
B−íc 1: NÕu bËc cña P(x) ≥ bËc cña Q(x) th× ta lÊy P(x) chia cho Q(x) ®−îc th−¬ng A(x) v d− R(x),
tøc l P(x) = Q(x).A(x) + R(x), víi bËc R(x) < bËc Q(x). Suy ra : P(x) R(x) = P(x) R(x) A(x) + ⇒ ∫ dx = ∫ A(x d ) x + ∫ dx ( Q x) ( Q x) ( Q x) ( Q x)
B−íc 2: Ta ®i tÝnh : I = ∫ R(x) dx , víi bËc R(x) < bËc Q(x). Q(x)
Cã thÓ x¶y ra c¸c kh¶ n¨ng sau : + +Kh¶ n¨ng 1: Víi R(x) M x . N
Q(x) = ax2 + bx + c ,( a ≠ 0 ) th× bËc R(x) < 2 ⇒ R(x) = M.x+N v = ( Q x)
ax2 + bx + c
TH1 : Q(x) cã 2 nghiÖm x , x , tøc l : Q(x) = a(x – x )(x – x ). 1 2 1 2 +
Chän h»ng sè A, B sao cho: R(x) M x . N A B = = + Q(x)
a(x − x )(x − x ) x − x x − x 1 2 1 2
TH2 : Q(x) cã nghiÖm kÐp x , tøc l : 2 = − . 0 Q(x) a(x x ) 0 +
Chän h»ng sè A, B sao cho: R(x) M x . N A B = = + 2 2 Q(x) a(x − x ) x − x (x − x ) 0 0 0
TH3 : Q(x) v« nghiÖm. Chän h»ng sè A, B sao cho: R(x) A ' Q . (x) B R(x) = A ' Q . (x) + B và = + ( Q x) Q(x) Q(x)
+Kh¶ n¨ng 2: Víi Q(x) = ax3 + bx2 + cx + d ,( a ≠ 0 ) th× bËc R(x) < 3
TH1: Q(x) cã 3 nghiÖm x ,x ,x . tøc l : Q(x) = a(x − x )(x − x )(x − x ) 1 2 3 1 2 3
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + + Q(x)
a(x − x )(x − x )(x − x ) x − x x − x x − x 1 2 3 1 2 3
TH2: Q(x) cã 1 n ®¬n kÐp = − − 0 x , 1 n x , tøc l : 2 Q(x) ( a x x )(x x ) 1 0 0 1 0
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + + 2 2 ( Q x) (
a x − x )(x − x ) x − x x − x (x − x ) 1 0 1 0 0
TH3: Q(x) cã mét nghiÖm x (béi 3), tøc l : 3
Q(x) = a(x − x ) 0 0
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + + 3 2 3 Q(x) ( a x − x ) x − x (x − x ) (x − x ) 0 0 0 0
TH4: Q(x) cã ®óng mét nghiÖm ®¬n x , tøc l : Q(x) = (x − x ) a
( x2 + βx + γ ) (trong ®ã 2 ∆ = β − a 4 γ < 0 ). 1 1 R(x) R(x) A Bx +
Chän h»ng sè A, B, C sao cho: = = + C ( Q x) (x − x ) a ( x2 1
+ βx + γ ) x − x ax2 1 + βx + γ
+Kh¶ n¨ng 3: Víi bËc Q(x) >3 th× th«ng th−êng ta gÆp Q(x) l c¸c biÓu thøc ®¬n gi¶n nh−: x4 + 1 ; x4 ± x2 + 1 ; x6 + 1
VÝ dô 1. TÝnh c¸c tÝch ph©n:
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 11
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 0 2 0 x + x + 4x − 1 − 1. 4x 1 A B I = ∫
1 dx ta viÕt I = ∫1+ dx v viÕt = + Sau ®ã chän ®−îc 2
x − 3x + 2 2 x − x 3 + 2 x 2 − x 3 + 2 x − 1 x − 2 −1 −1 A = H3; B = 7. Khi ®ã: 0
I = (x − 3ln x − 1 + 7 ln x − 2 ) = 10 ln 2 − 7 ln 3 . 1 − 1 2. = ∫ x J
dx ta viÕt x = A(x2 + x + 1)’ + B suy ra A = 1/2; B = H 1/2. VËy J = J + J víi 2 1 2 x + x + 1 0 1 1 1 1 d(x 2 + x + ) 1 1 1 dx 1 4 dx J = = ln 3 ∫ v J . 2 = − ∫ = − 2 ∫ 1 2 x 2 + x + 1 2 2 x + x + 1 2 3 2 0 0 2 1 0 x + + 1 3 2 π / 3 π Ta ®Æt 2 1 2 3 3 x + = tan u suy ra J = − du = ∫ . 2 3 2 3 9 π / 6 3 + 3. = ∫ 1 1 A Bx c K dx ta viÕt = +
sau ®ã chän ®−îc A = 1/3, B = H 1/3, C = 0. V× thÕ viÕt ®−îc 3 x + x 3 x 3 + 3x x x 2 + 3 1 3 3 1 x 1 K = dx − dx = ln 3 ∫ ∫
{V× ®−a ®−îc x v o trong vi ph©n}. 3x ( 3 x 2 + ) 3 6 1 1 4. β a sin x +
B – Khi gÆp tÝch ph©n I = ∫
b cos x dx (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ tøc l chän A, B sao cho: c sin x + d cos x α x 2t 2 1 − t asinx + b cosx = A
(csinx + dcosx) + B(csinx + dcosx)' hoÆc ®Æt t = tan ⇒ sin x = cos x = 2 2 1 + t 2 1 + t VÝ dô 1. TÝnh: π / 2 3sin x + 1. I = ∫ 5 cos x dx ta viÕt 3sinx + c 5 osx = A
(sinx + cosx) + B(cosx - sinx) suy ra A = 4; B = 1. sin x + cos x 0 π / 2 π / 2 + Khi ®ã: d(sin x cos x) / 2 I = d 4 x + = ∫ ∫ (4x + lnsinx + cosx )π = π2 sin x + cos x 0 0 0 π / 2 3sin x + 2. J = ∫
cos x dx ta viÕt 3sinx + cosx = A
(sinx + cosx) + B(cosx - sinx) suy ra A = 2; B = H1. (sin x + 3 cos x) 0 π / 2 π / 2 π / 2 + π Khi ®ã: 2 d(sin x cos x) 1 I = dx − = − cot(x + ) + = 2 ∫ ∫ (sin x + cos x)2 (sin x + cos x)3 4 2(sin x + cos x)2 0 0 0 β a sin x + bcos x +
C – Khi gÆp tÝch ph©n I = ∫
m dx (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ + C. Chän A, B,C sao cho: c sin x + d cos x + n α asinx + b cosx + m = A
(csinx + dcosx + n) + B(csinx + dcosx + n)'+C hoÆc cã thÓ ®Æt x 2t 2 1 − t t = tan ⇒ sin x = cos x = 2 2 1 + t 2 1 + t VÝ dô 1. TÝnh: π / 2 7sin x − cos x + 1. I = ∫
7 dx ta viÕt 7sinx − cosx + 7= A (4sinx + c 3 osx + ) 5 + B(4cosx - 3sinx) + C 4 sin x + 3cos x + 5 0 π / 2 π / 2 π d(4 sin x + 3 cos x + / 2
Khi ®ã A = 1; B = H1; C = 2 v I = ∫dx − ∫ ) 5 + ∫ 2 dx dx 4 sin x + 3cos x + 5 4 sin x + 3 cos x + 5 0 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 12
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π / 2 2 − XÐt 2 x 2t 1 t I dx ®Æt t = tan ⇒ sin x = cos x = suy ra 1 = ∫ 4 sin x + 3cos x + 5 2 2 1 + t 2 1 + t 0 1 1 1 π / 2 π 1 9 I = 2 dt = ∫
. VËy I = (x − ln 4sin x + 3cos x + 5 ) + I = + − ln 1 1 (t + ) 2 2 3 0 2 3 8 0
V)Ph−¬ng ph¸p dïng tÝch ph©n liªn kÕt VÝ dô 1. TÝnh: π 2 π 2 π 1. cos xdx
I = ∫ sin xdx ta xÐt thªm tÝch ph©n thø hai: J = ∫ Khi ®ã: I + J = (*). sin x + cos x sin x + cos x 2 0 0 π 2 π 2 − + π MÆt kh¸c (sin x cos x)dx d(sin x cos x) I − J = = − = 0 ∫ ∫
(**). Gi¶I hÖ (*) v (**) suy ra I = J = . sin x + cos x sin x + cos x 4 0 0 π 2 π n 2 n π 2. sin x cos x I = dx ∫ ta xÐt J = dx ∫ . Khi ®ã: I + J = (*) n n n n sin n x + cosn x sin n x + cosn x 2 0 0 π π 2 π 2 n n π MÆt kh¸c nÕu ®Æt x = H t th× cos t cos x I = dt = dx = J ∫ ∫
(**). Tõ (*), (**) ta cã I = 2 n n n n n n n sin t + cos t sin x + cos x 4 0 0 π 2 π 2 n n π 3. sin x cos x I = dx ∫ t−¬ng tù xÐt J = dx ∫ v suy ra I = J = n n n n n sin x n + cos x n sin x n + cos x 4 0 0 π 6 π π 2 6 2 6 4. sin x cos x 1 1 E = dx ∫ v F = dx ∫ ta cã E + F = dx = ln 3 ∫ (*) sin x + 3 cos x sin x + 3 cos x sin x + 3 cos x 4 0 0 0 π 6 − L¹i cã 1 1 3 E − F 3 = (sin x − 3 cos x d ) x = 1 − 3 ∫
(**). Gi¶I hÖ (*), (**) ta ®−îc: E = ln 3 − v 16 4 0 π 6 3 1 − 3 cos 2x 1 1 − 3 F = ln 3 + . Më réng tÝnh E = dx = F − = ∫ E ln 3 + 16 4 sin x + 3 cos x 8 2 0 π 6 §Ò xuÊt cos 2x L = dx ∫ sin x − 3 cos x 0 C¸c ¸ c b i t o¸n ¸ n t− t ¬ − ng n tù t . ù
A – Ph−¬ng ph¸p biÕn ®æi trùc tiÕp 1
+ B×nh ph−¬ng v ph©n tÝch th nh 2 ph©n sè ®¬n gi¶n. 1 ( + x 2
1. [§HNNI.98.A] M = ∫ e ) dx + BiÕt ®æi biÕn. 1 + 2x e 0 1 1 1 + 1 2x x x Gi¶i: e 2 dx M = ∫ e dx + e 2 dx ta tÝnh M
®Æt ex = tan t,t ∈ (− π / ;
2 π / 2) khi ®ã víi tan α =e v 1 = ∫ 2x ∫ 1 + e 1 + 2x e 1 + 2x e 0 0 0 α α α 2 tan tdt α 1 1 + e 2 M = 2 tan tdt = −2 ln cos t = 2 − ln = ln ∫ 1 = ∫ 1 ( + 2 2 tan t) cos t π / 1 + tan 2 4 t 2 π / 4 π / 4 π / 4 π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i: π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i:
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 13
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i: π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i: 1 1 ( + x 2 1. [§HNNI.98.A] ∫ e ) dx 1 + 2x e 0 π 2 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 π 2 3. [§HBK.98] ∫ 4 cos 2 ( x sin x + 4 cos x d ) x 0 2 4. [§HDL§.98] ∫ dx
x + 1 + x − 1 1 π 6 5. ∫ 1 dx π 0 cos x. cos(x + ) 6 2 e
6. ∫ ln x + ln(ln x) dx x e π 3 7. [§HMá.00] ∫ 1 dx π π 6sin x sin(x + ) 6 π 3 8. ∫ 4 cos x sin 2xdx 0 π 4 9. [§HNN.01] ∫ sin 4x dx 6 sin x + 6 cos x 0 π 2 6
10. [§HNNI.01] ∫ cos x dx 4 sin x π 4 π 3 11. ∫ 4 tg xdx π 4 3
12. [C§GTVT.01] ∫ 2 x + 3x d . x −2 3
13. [C§SPBN.00] ∫ 2
x − 4x + 4dx 0 π 14. ∫ cosx sinxdx 0 π 3 15. ∫ 2 tg x + 2
cot g x − 2dx π 6
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 14
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 3 16. ∫ 3 x − 2 2x + xdx 0 1
17. ∫ 4 − x dx §¸p: ( 2 5 − 3 ) −1 1
18. ∫ x − xdx 2 2 − 3 1 5
19. ∫(x + 2 − x − 2 )dx 8 −3 3 2
x + x − 1 20. ∫ d . x 2
x + x − 2 0 π
21. ∫ 2 + 2cos2xdx 4 0 π
22. ∫ 1 − sin2xdx 2 2 0 π / 2
23. ∫ 1 + sinxdx 4 2 0 1
− m + 1 / 2 ~ m ≤ 0
24. ∫ x − ad ; x a ∈ R
m 2 − m + 1 / 2 ~ 0 < m ≤ 1 0 2
a ≥ 2 th× ®s: (3a – 5)/6; 25. ∫ 2
x − (a + ) 1 x + a d ; x a ∈ R
1 < a < 2 th× ®s: (aH1)3/3 – (3a H 5)/6 1
a ≤ 1 th× ®s: (5 – 3a)/6 π 2 3 26. ∫ cos x dx 1 + cos x 0 π 2
28. [§H.2005.D] ∫ sinx (e + cos x) cos xdx 0 2 28. [§H.2003.D] ∫ 2 x − x dx 0 π / 4 1 − 2 29. [§H.2003.B] ∫ 2 sin x dx 1 + sin 2x 0 π 2
29. M = ∫ (sin6 x + cos6 x − sin2 x.cos2 x)d.x 0 π 4 2 30. sin x N = d . x ∫ cos8 x 0 31.
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 15
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
B – Ph−¬ng ph¸p ®æi biÕn 1 3 1. [C§BN.01] ∫ x dx HD ®Æt fsf 1 ( + 2 3 x ) 0 1
2. [PVB.01] ∫ 3 x 1 − 2 x d . x 0 ln 3 3. ∫ dx x e + 2 0 π 2
4. [C§XD.01] ∫ sin2x dx 1 + 2 cos x 0 1 1 5. [§HKTQD.97] ∫ 5 x 1 ( − 3 6 x ) dx §Ò xuÊt: ∫ 2 x 1 ( − 7 x) dx 0 0 1
6. [§HQG.97.B] ∫ dx 1 + x 0 2
7. [§H.2004.A] ∫ xdx
1 + x − 1 1 2 3 ``8. [§H.2003.A] ∫ dx 2 x x 4 5 + π
9. [§HSPHN.00.B] ∫ 2 2 x a − 2 x dx 0 ln 2 2x
10. [§HBK.00] ∫ e dx x 0 e + 1 23 11. ∫ dx
x + 8 − 5 x + 2 14 π 2 12. ∫ sin2x dx 2 2 sin x 0 ( + ) π 4 13. ∫ dx 3 cos x 0 6 14. ∫ 1 dx
2x + 4x + 1 2 3 15. ∫ 5 x 1 + 2 x dx 0 2 e
16. ∫ ln x + ln(ln x) dx x e 4
17. ∫ x + 1 dx x 2 1 3 10x + 2 3 x + 1 + 18. ∫ 10x dx 2 2 0 1
( + x ) x + 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 16
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN e 19. ∫ 1 dx 2 1 x 1 − ln x e 20. ∫ lnx dx
x 1 + ln x 1 4 21. ∫ 1 dx
3 2x + 1 + 2x + 1 0 4 23. ∫ dx 2 x. x 9 7 + 7 24. ∫ 1 d . x x + x + 2 2 1 25. ∫ dx 2 2 1 3x 0 ( + ) π 2 x + 26. [GTVT.00] cos x ∫ dx 4 − 2 sin x −π 2 π
27. [§HAN.97] ∫ xsinxdx 1 + 2 cos x 0 π 2 28. [§HLN.00] ∫ 1 2 + dx + sinx + cosx 0 π 4 29. [§HH§.00] ∫ 1 1 + dx + tgx 0 π 4
30. [§HVH.01] ∫ sinxcosx sin 2x + dx + cos2x 0 π 2 3
31. [HVBCVT.98] ∫ sinxcos xdx 1 + 2 cos x 0 1 32. = ∫ 1 I dx 2 (x + 2 ) 1 −1 (1+ 5 ) 2 2 x + 33. [§HTN.01] 1 ∫ dx 4 x − 2 x + 1 1 1 34. [§HTCKT.00] ∫ x dx 4 x + 2 x + 1 0 1 35. [HVKTQS.98] ∫ dx 2 − 1 ( x 1 x ) 1 + + + 1
36. [PVB¸o.01] ∫ 3 x 1 − 2 x d . x 0 e
37. [§H.2004.B] ∫ 1+ 3ln x ln x dx x 1 π 2sin 2x + 38. [§H.2005.A] ∫ sin x dx 1 3 cos x 0 +
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 17
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 2 39. [§H.2006.A] ∫ sin 2x dx 2 2 cos x 4sin x 0 + π 2
40. [§H.2005.B] ∫ sin 2xcos x dx 1 + cos x 0 ln 5 41. . [§H.2005.B] ∫ dx x e + −x e 2 − 3 ln 3 2 3 42. [§H.2003.A] ∫ dx 2 x x 4 5 + 2 43. [§H.2004.A] ∫ x dx 1 x 1 1 + − π / 6 4
44. [§H.2008.A] ∫ tan x dx cos 2x 0 π / 4 45. [§Ò thi thö §H] ∫ sin 4x dx 6 sin x + 6 cos x 0 e
46. [§Ò thi thö §H] ∫ 1 2
+ x .ln x d.x x. 1 + ln x 1 + 4
47. [§Ò thi thö §H] ∫ 2x+1 e dx 0 π 2 2 ( 2 t − d ) 1 t 1
48. [§Ò thi thö §H] ∫ sin2x = + ⇒ ∫ = ∫ dx HD: §Æt t 1 sin x 2t 3 8 1 ( 2 + 3 sin x) 1 0 8 2 49. I ∫ x − = 16 dx x 4 4 x − 1 + 50. J = ∫ x + 1 dx x 2 1 3 10x + 2 3 x + 1 + 51. K = ∫ 10x dx 2 2 0 1
( + x ) x + 1 − ln 2 x 52. = ∫ e H dx 2x −ln 2 1 − e ln 3 53. = ∫ dx G 2x 0 e + 1 π 2 54. = ∫ dx F
3 + 5 sin x + 3 cos x 0 π 3 55. D = ∫ cos x 2 dx 4 2 0
cos x − 3 cos x + 3 ln 5 x x e e − 56. S = ∫ d 1 x x e + 3 0 π 57. = ∫ dx T π
2 + sin x − cos x 2
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 18
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 4 58. = ∫ dx R 2 x. x 9 7 + 7 59. = ∫ 1 E d . x x + x + 2 2 4 2x + 60. W = ∫ 1 d . x 1 + 2x 1 0 + + π / 2 1 t = 3 tan u π 61. = ∫ dx x dt 3 Q
§Æt t = tan th× Q = ∫ = ∫ === 2 + cos x 2 ( 3 )2 + t 2 9 0 0 2 62. = ∫ dx M 2 0
− 3x + 6x + 1
C – Ph−¬ng ph¸p tÝch ph©n tõng phÇn 1 1. [§HC§.97] ∫ 1 ( + 2 2x x) e dx 0 π 4 2. [§HTCKT.98] ∫ 2 ( x 2 cos x − d ) 1 x 0 2 10 3. ∫ 3 2 x ln(x + d ) 1 x v ∫ 2 xlg xdx 0 0 e 4. [PVB¸o.98] ∫ 2 (x ln x) dx 1 π 5. [HVNH.98] ∫ 2 xsin xcos xdx 0 2
6. [§HC§.00] ∫ ln(x + d ) 1 x 2 x 1 π 4
7. [§HTL.01] ∫ ln 1 ( + tgx d ) x 0 π 2 8. ∫ 2 xtg xdx 0 3
9. [§HYHN.01] ∫ 2 x − 1 d . x 2 2
10. [§Ò thi thö] ∫ xln(3x − 2 x d ) x 1 e
11. [§H.2007.D] ∫ 2 2 x ln xdx 1 1
12. [§H.2006.D] ∫ (x − 2x 2 e ) dx 0 0 13. I = ∫ 2x x e ( + 3 x + 1 d ) x −1 2 e 14. J ∫ lnx + = ln(ln x) dx x e
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 19
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 15. K = ∫ 2 (x sin x) dx 0 1 16. = ∫ x H dx 2 sin (2x + ) 1 0 π 4
17. G = ∫ x.sin x dx 3 cos x 0 ln 2 18. 2 F = ∫ 5 x x e . dx 0 4 ln( x + 19. D = ∫ ) 1 dx x + x 1 e
20. S = ∫ lnx 2 + ln xdx x 1 + ln x 1 2 π 21. A = ∫ 2 cos x d . x 2 π / 4 π
22. P = ∫ (e .cosx)2 x dx 0 2 π 23. U = x . sin x d . x ∫ 0 π 24. Y = x.si x n . cos 2 x d . x ∫ 0 π / 3 1 + §Æt sin x u = sin x ;dv = ..XÐt T
e dx v ®Æt tptp suy ra 1 = ∫ x π / 3 sin x + 1 + 1 + cos x cos x 25. 0 T = ∫ sin x x sin x + e dx + cos x π / 3 x 3 π 0 e sin x e T = = 1 + cos x 3 0 1 26. 2 + ln 1 ( + 2 )
R = ∫ 1 + 2 x dx §s: 2 0 1 27. 1 E = ∫ 2 x ln(x + d ) 1 x §S: ln 2 − 2 0 π / 2 28. π
W = ∫ cos x ln 1 ( + cos x d ) x §s: − 1 2 0 e 29. e 2
Q = ∫ ln x dx §s: (x + 2 ) 1 e + 1 1 / e π / 2 π / 3 ViÕt M = M sin x 3 x 1 + M2. Víi M = dx ∫ = ∫ ln & M dx . 2 = ∫ 1 1 + cos x 2 1 + cos x π / 3 π / 6 π / 2 u = du = x + = x dx 30. M = ∫ sin x − π §Æt ⇒ ⇒ (3 2 3 ) = − 1 + dx + cos x 1 x M ln 4 2 π dv = v = / 3 = dx 2 cot 3 1 + cos x 2 − π VËy (3 2 3 ) 3 M = + ln 3 8
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 20
Downloaded by Châu Bùi (Vj7@gmail.com)