



















Preview text:
lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  Chuyªn ®Ò 1:  C¸ C c ¸ ph p − h ¬ng n p  h p ¸ h p  p t  Ý t nh n  h tÝ t ch  h p  h p © h n 
 Th«ng thường ta gÆp c¸c lo¹i tÝch ph©n sau ®©y: 
+) Loại 1: TÝch ph©n cña h m sè ®a thøc ph©n thøc h÷u tû. 
+) Loại 2: TÝch ph©n cña h m sè chøa c¨n thøc 
+) Loại 3: TÝch ph©n cña h m sè l−îng gi¸c 
+) Loại 4: TÝch ph©n cña h m sè mò v logarit 
 §èi víi c¸c tÝch ph©n ®ã cã thÓ tÝch theo c¸c ph−¬ng ph¸p sau: 
I) Ph−¬ng ph¸p biÕn ®æi trùc tiÕp  b
 Dïng c¸c c«ng thøc biÕn ®æi vÒ c¸c tÝch ph©n ®¬n gi¶n v ¸p dông ®−îc  b f (x d ) x ∫ = ∫ F(x)
= F(b) − F(a)   a a
 +) BiÕn ®æi ph©n thøc vÒ tæng hiÖu c¸c ph©n thøc ®¬n gi¶n   VÝ dô 1. TÝnh:  2 2 2 2   1.  1 2 2 I ∫ x − =
2x dx  ta cã I = ( − )dx = ln x +  = (ln2 + )1 − (ln1+ ) 2 = ln 2 −1 ∫   3 x x x 2  x  1 1 1 2 e 2 e 2 x −  4  2 e 2.  = ∫ −1/2 2x
− 3+ dx = (4 x −3x + 4ln x ) J = ∫ 3x + 4 dx = − 2 e 3 + e 4 + 7  x  x  1 1 1 8 3 5 8 8 4 x −  4 1   4 3  3.  207 K = ∫
3x − 1 dx = ∫ x − 1/3 x − −2 / 3 x dx =  2 x − 3 4 x − 3 x  =   3 2  3 3   3 4  4 1 3 x 1 1
 +) BiÕn ®æi nhê c¸c c«ng thøc l−îng gi¸c   VÝ dô 2. TÝnh:  π / 2 π / 2 π / 2   1.  1 1 sin 2x sin 8x
I = ∫ cos 3xcos5xdx = ∫ (cos2x +cos8x)dx =  +  = 0  2 2  2 8  −π / 2 −π / 2 −π / 2 π / 2 π / 2 π / 2   2.  1 1 sin 5x sin 9x 4
J = ∫ sin2xsin7xdx = ∫ (cos( 5 − x) − cos9x)dx =  −  =   2 2  5 9  45 −π / 2 −π / 2 −π / 2 π / 2 π / 2 π / 2 π / 2   3.  1 1 cos 4x cos10x
K = ∫ cos 3xsin7xdx = sin 7x cos x 3 dx = ∫
∫ (sin4x +sin10x)dx = −  +  = 0  2 2  4 10  −π / 2 −π / 2 −π / 2 −π / 2 π π 1 + π cos 2x  1 1  4. H = ∫ 2
sin 2x cos xdx = ∫sin 2x dx =  − cos 2x − cos 4x  = 0 hoÆc biÕn ®æi  0 2  4 16  0 0 0 π π 1 + π cos 2x  1 1   H = ∫ 2
sin 2x cos xdx = ∫sin 2x dx =  − cos 2x − cos 4x  = 0  2  4 16  0 0 0 π / 2 π / 2 π / 2 1 + sin 2x + 2 2 2 + + − 5.  (sin x cos x) cos x sin x π / 2 G = ∫ cos 2x = dx = 2 cos xdx = ∫ ∫ (−2sin x) = 1 −  sin x + dx + cosx sin x + cos x π / 6 π / 6 π / 6 π / 6 π / 2 π / 2 2 π / 2 π / 2  −    π 6.  1 cos 2x 1 1 sin 4x 3 E = ∫ 4 sin xdx =   dx = ∫
∫(3+cos4x −4cos2x)dx = 3x + − sin 2x =    2  8 8  4  16 0 0 0 0 π / 4 π / 4 π   / 2 π −π 7.  1 / 4 4 F = ∫ 2 tan xdx =  −1dx = − = ∫ . §Ò xuÊt: F cot xdx  v  1 = ∫ 2 2 (tan x x)  cos x 0  4 0 0 π / 4 π / 4 F = ∫ 4 tan xdx   2 0
 +) BiÕn ®æi biÓu thøc ë ngo i vi ph©n v o trong vi ph©n   VÝ dô 3. TÝnh:  1 1 1 4 + 1.  1 3 1 (2x ) 1
I = ∫ (2x + 3 ) 1 dx = (2x + ) 1 d(2x + ) 1 = = 10 ∫   2 2 4 0 0 0 2 2 1 1 −2 − + 2. = ∫ 1 1 3 1 (2x ) 1 1 1 J dx = (2x − ) 1 d(2x − ) 1 = = − = 0 ∫   (2x − 3 ) 1 2 2 − 2 4 (2x − ) 1 2 1 1 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  1 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  7 / 3 7 / 3 7 / 3 3.  1 1/ 2 2 3 16
K = ∫ 3x − 3dx = x 3 ( − ) 3 d 3 ( x − ) 3 = 3 ( x − ) 3 = ∫   3 9 9 1 1 1 4 4 1 − − 4.  = ∫ dx 1 1/ 2 2 1/ 2 10 2 13 H = − (25 − x 3 ) d(25 − 3x) = (25 − 3x) = ∫ −   25 − 3x 3 3 3 0 − 0 0 2 2 2   + − −   − − 5.  = ∫ 1 x 1 x 1 1 3 2 1 G dx = dx = ( x +1 − x −1)dx = ∫  ∫    x + 1 x 1 (x − ) 1 − (x + ) 1 2 3 1 + + − 1  1 
(Nh©n c¶ tö v mÉu víi bt liªn hîp cña mÉu sè)   §Ò xuÊt  1 1   G = dx ∫ = ∫
 (ax + b)3 + (ax + c)3  + C  víi a ≠ ; 0 b ≠ c  1
ax + b + ax + c a(b − c)   1 1 1 1 6.  4
P = ∫ x 1 − xdx = ∫ (x −1+ ) 1 1− xdx = −∫ (x − ) 1 1− xd 1 ( − x) + ∫ 1− xdx =  5 0 0 0 0 1 1 7.  2 1 1 2 2 Q ∫ 1− = x e xdx = − e1−x d 1 ( − x 2 ) = −e1−x = e −1 ∫   2 0 0 0 1 −  §Ò xuÊt  4 6 2 Q = x3 1 ∫ + ∫ x 2 dx =
 HD ®−a x v o trong vi ph©n v thªm bít (x2 + 1 H 1).  1 15 0  VÝ dô 4. TÝnh:  π π / 2 π / 2 1.  1 I = (2 cos 3x ∫ + ∫ 3 sin 2x d
) x = 0 ; I = sin3 x cos xdx ∫ = ∫  v I = ecosx sin xdx ∫ = ∫ e − 1   1 2 4 3 0 0 0 π / 4 π / 2 π / 4 2.  sin x 2 J = tan xdx ∫ = ∫ ln 2 ; J = cot xdx ∫ = ∫ ln 2  v J = dx ∫ = ∫ ln 2   1 2 3 1 + 3 cos x 3 0 π / 6 0
(®−a sinx, cosx v o trong vi ph©n)  e 2 e 3 e 3.  sin(ln x) cos(ln x) 1 K = dx ∫ = ∫
1 − cos1 ; K = dx ∫ = ∫
1 − cos 2  v K = dx ∫ = ∫ 2   1 x 2 x 3 x 1 + ln x 1 1 1
{®−a 1/x v o trong vi ph©n ®Ó ®−îc d(lnx)}  ln 3 x ln 3 4.  e x 5 H dx = ln 2 + e = ln  
1 = ∫ 2 + x e 1 2 + e 1 ln 2 ln 2 ln 2 ln 2 1 − x 1+ x e − x x   e 2e e H dx = ∫ dx = dx 2 dx 3ln 2 2 ln 3   x ∫ − ∫ = −
2 = ∫ 1 + x e 1+ e 1 + x e 0 0 0 0 ln 2 ln 2 ln 2 ln 2 ln 2 x x x + −     dx 1 (e 5 e )dx 1 1 e dx 1 1 x 1 12 H = = dx −  = x − ln e + 5  = ln ∫ ∫ ∫   3 = ∫ x e + 5 5 ex + 5 5 5 ex + 5  5 5  5 7 0 0 0 0 0 1 x 1 1 e dx 2x 2 e dx 1 1 e 1 H = ∫ 2x + = ln e +1 = ln   4 = ∫ x − e + x e 2x e +1 2 2 2 0 0 0 b
 +) BiÕn ®æi nhê viÖc xÐt dÊu c¸c biÓu thøc trong gi¸ trÞ tuyÖt ®èi ®Ó tÝnh I = ∫ f(x,m)dx   a
H XÐt dÊu h m sè f(x,m) trong ®o¹n [a; b] v chia [a;b]= [a;c ]∪[c ;c ]∪...∪[c ;b] trªn mçi ®o¹n h m sè f(x,m)  1 1 2 n gi÷ mét dÊu  c c 1 2 b
H TÝnh I = ∫ f(x,m)dx + ∫ f(x,m)dx +...+ ∫ f(x,m)dx  a c c 1 n  VÝ dô 5. TÝnh:  2 1. I = ∫ 2
x + 2x − 3 dx Ta xÐt pt: x 2 + 2  x  3 = 0
 ⇔ x = 1∨ x = 3 . B¶ng xÐt dÊu f(x)  0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  2 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  1 2 1 2
 Suy ra I = x2 + 2x − 3dx + x2 + 2x − 3dx = − (x2 + 2x − ) 3 dx + (x 2 + 2x − ) 3 dx = 4 ∫ ∫ ∫ ∫   0 1 0 1 1 −2 0 1
2. J = ∫ 4x − 3
x dx  tÝnh t−¬ng tù ta cã J = 4x − x3 dx + 4x − x3 dx + 4x − x3 dx = 16 ∫ ∫ ∫   −3 −3 −2 0 3 3.  1 K = 2x ∫ − ∫ 4 dx = 4 +   ln 2 0 2π 2π π 2π 4. H 1 cos 2xdx = 2 sin x dx = 2 sin x dx + 2 sin x dx = 2 2 ∫ ∫ ∫   1 = ∫ − 0 0 0 π π H 1
sin 2xdx {ViÕt (1 – sin2x) vÒ b×nh ph−¬ng cña mét biÓu thøc råi khai c¨n}  2 = ∫ − 0   π π / 4 3π / 4 3π / 2
= sin x + cos x dx = sin x + cos x dx + sin x + cos x dx + sin x + cos x dx = 2 2 ∫ ∫ ∫ ∫   0 0 π / 4 3π / 4
II) Ph−¬ng ph¸p ®æi biÕn sè 
 A ' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 1:  b
Gi¶ sö cÇn tÝnh tÝch ph©n I = ∫ f(x)dx ta thùc hiÖn c¸c b−íc sau:  a H B−íc 1. §Æt x = u(t) 
H B−íc 2. LÊy vi ph©n dx = u’(t)dt v biÓu thÞ f(x)dx theo t v dt. Ch¼ng h¹n f(x)dx = g(t)dt 
H B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β  β
H B−íc 4. BiÕn ®æi I = ∫g(t)dt (tÝch ph©n n y dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa)  α
 C¸ch ®Æt ®æi biÕn d¹ng 1. 
 C¸ch ®Æt 1. NÕu h m sè chøa  2
1 − x th× ®Æt x = sin ; t t ∈[ π − / ; 2 π / ]
2  hoÆc ®Æt x = cos ; t t ∈[ ; 0 π ]    VÝ dô 1. TÝnh:  1 2 1. A ∫ 1− =
x dx  ta ®Æt x = sin t;t ∈[ π − / ;
2 π / 2] ⇒ dx = cost.dt; ®æi cËn khi x = 2 /2 th× t = π / 4 ; khi x  2 x 2 / 2 π / 2 π / 2 π / 2 2 2 2 − − − π = 1 th× t = π 1 sin t cos t 1 sin t 4 / 2 . Khi ®ã A = cos t d . t = d . t = d . t = ∫ ∫ ∫   sin 2 t sin 2 t sin 2 t 4 π / 4 π / 4 π / 4 1 2 1 2 2.  = ∫ x x B dx  ta viÕt B = ∫ dx .  2 2 2 1 (x / 2) 0 − 0 4 − x §Æt (x / 2) = cos t; t ∈ ; 0
[ π ] ⇒ x = 2 cos t ⇒ dx = 2 − sin tdt  π / 3 π / 2 π / 2 2 π  §æi cËn suy ra  (2 cos t) B = ( 2 − sin tdt) = 4cos2 tdt = 2 ∫ ∫ ∫(1+ cos2t) 3 dt = −   2 3 2 π − / 2 2 1 cos t π / 3 π / 3 1 1  2 3.  3 x . C = ∫ 2 x 4 − 2
3x dx  Tr−íc hÕt ta viÕt C = 2∫ 2   x 1 −   dx .   2  0 0 §Æt 3 x = sin t; t ∈[ π − / ;
2 π / 2] ®−a tÝch ph©n vÒ d¹ng:  2 π / 3 π / 3 16 − π 2 2 4 1 cos 4t 2 3 1 C = sin t cos tdt = dt = + ∫ ∫   3 3 3 3 2 27 12 0 0 Chó ý: 
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  3 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN   x = sin t;t ∈[−π π 2 / ; 2 / ] 2    H NÕu h m sè chøa  x a
a − x2 ,a > 0 th× ta viÕt  2 a − x = a 1 −    v ®Æt     a   x  = cos t; t ∈[ ; 0 π ]  a  b π π 2  x = sin t; t ∈[− / ; 2 / ] 2    H NÕu h m sè chøa  b  a
a − bx2 ,a,b > 0 th× ta viÕt  2 a − bx = a 1  − x    v ®Æt     a   b x = cost;t ∈[ ; 0 π ]  a  VÝ dô 2. TÝnh:  2 1. = ∫ 1 E
dx  {ViÕt tÝch ph©n vÒ d¹ng  2 1 − X }  2 x x 1 2 / 3 −   2 π / 3 π ta viÕt = ∫ 1 1 E dx v ®Æt  = sin t; t ∈ [− π / ; 2 π / 2] suy ra E = dt = ∫   2 2 x 1 1/ x x 12 2 / 3 − ( ) π / 4 2 2 / 3 2 2. G ∫ 3x − =
4 dx  {ViÕt tÝch ph©n vÒ d¹ng  2 1 − X }  3 x 2 / 3 2 2 / 3 3 . x . 1 (2 / 3x)2 ta viÕt  2 G ∫ − = dx v ®Æt  = sin t; t ∈ [− π / ;
2 π / 2] suy ra tÝch ph©n cã d¹ng  3 x 3x 2 / 3 π / 3 3 3 + − 2 3( 6 3 3) G = cos tdt = ∫ π
 {NÕu tÝch ph©n cã d¹ng ax 2 − b th× viÕt vÒ d¹ng  2 1 − X }  2 16 π / 4
C¸ch ®Æt 2. NÕu tÝch ph©n cã chøa  2 1 + x hoÆc ( 2
1 + x ) th× ta ®Æt x = tan t;t ∈ (− π / ; 2 π / 2) hoÆc  x = cot t; t ∈ ( ; 0 π )   VÝ dô 3. TÝnh:  3 π / 3 π 1.  = ∫ 1 M
dx  ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2) suy ra M = dt = ∫   1 + 2 x 6 1 / 3 π / 6 3 π / 3 − 2.  = ∫ 1 cos t 18 2 3 N
dx  ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2) suy ra N = dt = ∫   2 2 2 x . 1 x sin t. 3 1 + π / 4 a 3. = ∫ 1 P d ; x a ≠ 0   2 (a + 2 2 x ) 0 a π / 4 + ta viÕt = ∫ 1 x 1 2 P dx v ®Æt  = tan t; ⇒ 2 P = cos tdt = ∫ π    3 3 x  2 a a 4a 0 4 2 a 1 + ( )  0  a  1 4.  = ∫ 1 Q dx   2 x + x + 1 0 1   1 π ta viÕt  = 4 2 1 4 3 3 Q ∫ 1 dx v ®Æt 
 x +  = tan t; t ∈ (− π / ; 2 π / 2) ⇒ Q = dt = ∫   3  2 3  2  3 2 9 0 1 + 2 1 0  (x + )  3 2 
 Chó ý: NÕu gÆp tÝch ph©n chøa  2 a + bx  hoÆc  2
a + bx th× ta viÕt:   2    2  b  2   b   b a + bx = a 1 + x hoÆc  2 a + bx = a 1  + x  v ta ®Æt  x = tan t; t ∈ (− π / ; 2 π / 2)          a    a  a
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  4 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  − +
 C¸ch ®Æt 3. NÕu tÝch ph©n cã chøa a x hoÆc a x th× ta ®Æt ta ®Æt x = acos t 2 ;t ∈ [ ;
0 π / 2]  v l−u ý vËn dông  a + x a − x 1 − cos 2t = 2sin2 t      1 + cos 2t = 2cos2 t  VÝ dô 4. TÝnh:  0 π / 4 a + 1 + − π 1.  cos 2t 4 I = ∫ x d ;
x a > ta ®Æt x = a cos 2t; t ∈ ; 0 [ π / 2] suy ra I = ∫ (−2a sin 2t)dt = a   a − 0 − x 1 − cos 2t 4 −a π / 2 2 / 2 π / 8 1 + 1 + 2.  cos 2t J = ∫
x dx  ta ®Æt x = cos2t;t ∈[ ;0π / 2] suy ra J = ∫ (−2 sin 2t d ) t =  1 − x 1 − cos 2t 0 π / 4 π / 4 + − 1 + x 2 4 2 2 J = 4 cos tdt = ∫ π  {cã thÓ ®Æt 
= t  suy rra tÝch ph©n J vÒ d¹ng tÝch ph©n cña h m sè h÷u tû}  4 1 − x π / 8
 B ' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 2:  b
Gi¶ sö cÇn tÝnh tÝch ph©n I = ∫ f(x d
) x ta thùc hiÖn c¸c b−íc sau:  a H B−íc 1. §Æt t = v(x) 
H B−íc 2. LÊy vi ph©n dx = u’(t)dt v biÓu thÞ f(x)dx theo t v dt. Ch¼ng h¹n f(x)dx = g(t)dt 
H B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β  β
H B−íc 4. BiÕn ®æi I = ∫g(t)dt (tÝch ph©n n y dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa)  α
 C¸ch ®Æt ®æi biÕn d¹ng 2. 
 C¸ch ®Æt 1. NÕu h m sè chøa Èn ë mÉu th× ®Æt t = mÉu sè.   VÝ dô 1. TÝnh:  π / 2 4   1.  dt 4
I = ∫ sin 2x dx  ta cã thÓ ®Æt t = 4 H cos2x suy ra I = = ln ∫   4 − 2 cos x t 3 0 3 π / 4 2   2.  dt 3 J = ∫ sin 2x
dx ®Æt t = sin 2 x + 2 cos2 x = 1 + cos2 x suy ra J = ∫ = ln  2 sin x + 2 2cos x t 4 0 3 / 2
{cã thÓ h¹ bËc ®Ó biÕn ®æi tiÕp mÉu sè vÒ cos2x sau ®ã ®−a sin2x v o trong vi ph©n}  π / 2 §Ò xuÊt:  sin x cos x J
dx víi a 2 + b2 > 0  1 = ∫ 2 2 a sin x + 2 2 b cos x 0 ln 2 3.  = ∫ 1 K
dx ta ®Æt t = ex + 5 ⇒ ex = t − 5 ⇒ exdx = dt sau ®ã l m xuÊt hiÖn trong tÝch ph©n biÓu  x e + 5 0 ln 2 7 7 x − thøc e dx dt 1 t 5 1 12 ex dx ⇒ K = = = ln = ln ∫ ∫   ex (ex + ) 5 t(t − ) 5 5 t 5 7 6 0 6 ln 2 ln 2 ln 2 x x x x + − +
{Cã thÓ biÕn ®æi trùc tiÕp  1 e 5 e 1 e 5 1 e 1 12 K = dx = dx − dx = ln ∫ ∫ ∫ }  5 e x + 5 5 e x + 5 5 e x + 5 5 7 0 0 0 π / 2 7 sin 2x +   4.  1 1 2 H = ∫ cos x
dx ta ®Æt t = 2sin x − cos 2x + 4 ⇒ H = dt = ∫  
(2sin x − cos 2x + 2 4) 2 t 2 21 0 3
{®«I khi kh«ng ®Æt c¶ MS}  π / 2 3
5. G = ∫ sinxcos x dx chó ý r»ng t¸ch mò 3 = 2 +1 ®Æt  1 + 2 cos x 0 2 2 1 (t − ) 1  1  1 − ln 2 t = 1 cos2 +
x ⇒ cos2 x = t −1 ⇒ 2sin x cos xdx = −dt khi ®ã: G = dt =  (t − ln t ) = ∫   2 t  2  2 1 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  5 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  π / 4 6. M = ∫ cos 2x dx  
sin x + cos x + 2 0
ta ®Æt t = sin x + cos x + 2 ⇒ dt = (cos x − sin x)dx l−u ý cos2x = (cosx+sinx)(cosxHsinx)  π / 4 2+ 2
(cos x + sin x)(cos x − sin x) (t − 2)dt 2+ 2 + M = dx = = ∫ ∫ (t − 2lnt ) 2 2 = 2 −1 + ln   sin x + cos x + 2 t 3 3 0 3 π / 4 7. N = ∫ cos 2x
dx  ®Æt t = sin x + cos x + 2 suy ra  (sin x + cos x + 3 2) 0 2+ 2 2+ 2 (t − ) 2 dt  1 1  1 1 1 1 2 1 N = =  −  = − − + = − ∫   t 3  t 2 t  (2 + 2)2 2 + 2 9 3 9 2 1 ( + 2 ) 3 3 π / 4 π / 4 §Ò xuÊt:  cos 2x cos 2x M dx v N dx   1 = ∫
1 = ∫ sin x − cos x + 2
(sin x − cos x + 3 2) 0 0 8. 
 C¸ch ®Æt 2. NÕu h m sè chøa c¨n thøc n ϕ(x)  th× ®Æt  n
t = ϕ(x)  sau ®ã luü thõa 2 vÕ v lÊy vi ph©n 2 vÕ.   VÝ dô 1. TÝnh:  1 4x −   1.  1 2 I = ∫ 3 dx ta ®Æt t = x 3 + 1 ⇒ x =
(t2 − )1⇒ dx = tdt khi ®ã ®−a tÝch ph©n vÒ d¹ng: 
2 + 3x + 1 3 3 0 2 2 2 3 −     2 4t 13t 2 I = dt = ∫ ∫(4t2 −8t + 3) 2 6 2 4 4 dt − dt = − ln ∫   9 2 + t 9 9 2 + t 27 3 3 1 1 1 7 3 2   2. = ∫ x 3 4 141 J dx  ta ®Æt  3 2 t = 1 + x
⇒ x 2 = t3 −1 ⇒ 2xdx 3t 2 = dt ⇒ J = (t − t)dt = ∫   3 2 2 20 0 1 + x 1 2 5 5 −   3.  = ∫ 1 tdt 1 t 1 K dx ta ®Æt  2 t = 1 + x
⇒ x 2 = t2 −1 ⇒ xdx = tdt ⇒ J = = ln ∫   2 2 (t − ) 1 t 2 t + 1 1 x 1 + x 2 2 2 4.  = ∫ 1 H dx ta ®Æt  3
t = 1 + x ⇒ x 3 = t 2 − 1 ⇒ 3x2dx = t
2 dt nh©n c¶ tö v mÉu sè víi x2 ta ®−îc:  3 1 x 1 + x 2 3 3 xdx 2 dt 1 t −1 2 2 + 1 H = = = ln = ln ∫ ∫   2 3 3 t 2 + −1 3 t +1 3 1 x 1 x 2 2 2 3 5 x + 3 5. G = ∫ 2x dx ta ®Æt  2 t = 1 + x
⇒ x 2 = t2 −1 ⇒ xdx = tdt nhãm x2.x.(x2 +2) ta ®−îc:  2 0 x + 1 2 3 2 (x 2 + ) 2 x 2 x . (t 2 + ) 1 (t 2 − ) 1 tdt  t5  26 G = dx = = − t = ∫ ∫     2 t +  5  5 0 x 1 1 1 6 6.  = ∫ 1 1 2 M dx ta ®Æt  6 t = 9x + 1 ⇒ x = (t6 − )1 ⇒ dx t5 =
dt luü thõa bËc hai v bËc ba 
9x + 1 + 3 9x + 9 3 − 1 1 2 2 2 2 t 5dt 2 t 3dt 2 2 1 2  11 2  ta cã: M = = = (t − t + 1 − )dt =  + ln  ∫   3 2 ∫ ∫ 3 t + t 3 t + 1 3 t +1 3  6 3  1 1 1  VÝ dô 2. TÝnh:  π / 2 sin 2x + 1. [§H.2005.A] 1 2 P = ∫
sin x dx ta ®Æt t = 1+ 3cosx ⇒ cosx = (t2 − )1 ⇒ sin xdx = − tdt nhãm  1 + 3 cos x 3 3 0 π / 2 2 2 (2 cos x + 3   nh©n tö sinx ta cã:  2 2 2 2t 34 P = ∫ )
1 sin xdx = ∫(2t + )1dx =  + t =  1 + 3cos x 9 9  3  27 0 1 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  6 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  π 2 + 2.  cos 3x sin 2x 1 2 Q = d . x ∫
 ta ®Æt t = 1+ 3sin x ⇒ sin x = (t 2 − ) 1 ⇒ cos xdx = tdt ¸p dông c«ng thøc  1 + 3 sin x 3 3 0 π π 2 3 − + 2 2 − − +
nh©n ®«i v nh©n 3 ta viÕt:  4 cos x 3 cos x 2 sin x cos x 4 4 sin x 3 2 sin x Q = d . x ∫ = .cos xdx ∫   1 + 3sin x 1 + 3sin x 0 0 2 2   VËy = 2 2 4 5 14 3 206 Q ∫(− 4 4t + 2 14t − d ) 1 t =  − t + t − t  =   27 27  5 3  405 1 1 π 2 3. [§H.2006.A] 2 1 R = ∫ sin 2x
dx ta ®Æt t = 1 3sin 2 + x ⇒ sin x = (t 2 − ) 1 ⇒  2 2 3 0 cos x + 4 sin x 2 2 2 2 tdt 2 2 sin 2xdx = tdt . khi ®ã: R = = t = ∫   3 3 t 3 3 1 1 4.   VÝ dô 3. TÝnh:  e 1. P ∫ lnx 1 + = 3 ln x dx   x 1 2 Ta ®Æt  1 dx 2 2 4 116 t = 1 + 3ln x ⇒ ln x = (t 2 − ) 1 ⇒
= tdt khi ®ã: P = ∫(t − t)dx =   3 x 3 9 135 1 e 3 − 2. Q = ∫ 2 ln x dx   x 1 + 2 ln x 1 Ta ®Æt  1 dx t = 1 + 2 ln x ⇒ ln x = (t 2 − ) 1 ⇒ = tdt . Khi ®ã:  2 x 3 2 2 3 − (t 2 − ) 1 tdt   − 2 t 3 9 3 11 Q = = (4 − t )dt = 4t − = ∫ ∫     t  3  3 1 1 1 2 ln 2 5 2dt 5 − 1 3 + 3.  = ∫ dx 1 R
. Ta ®Æt t = ex + 1 suy ra exdx = 2tdt ⇒ R = ∫ = ln .   x 2 t − 1 5 + 1 3 − 1 ln 2 e + 1 3 3 e 4. = ∫ dx d 3 x e 2 S . Ta ®Æt  3 x t = e suy ra S = = 3ln ∫   3 x t(t + ) 1 e + 1 0 1 + e 1 ln 5 x x e e − 5. X = ∫ d 1 x  x e + 3 0
C¸ch ®Æt 3. NÕu h m sè chøa c¸c ®¹i l−îng  x x
sin x , cos x v tan
 th× ta ®Æt t = tan khi ®ã  2 2 t 2 2 1 − t sin x = , cos x =   2 1 + t 2 1 + t VÝ dô 4. TÝnh:  π / 2   1.  1 Q = d . x ∫   5 sin x + 3cos x + 5 0 1 1 + Ta ®Æt  x 2dt 1 1 t 1 1 8 t = tan ⇒ dx = v Q = dt = ln = ln ∫   2 2 1 + t t 2 + 5t + 4 3 t + 4 3 5 0 0 x π / 3 tan 1 / 3 1 / 3   2.  2 x d 2 t 2tdt 2 10 L = d . x ∫ ta ®Æt t = tan ⇒ dx = v L = = ln t + 3 = ln ∫   cos x + 2 2 2 1 + t t 2 + 3 0 9 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  7 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  π 4 1 1 ( + 1 1   3.  dt t)dt dt tdt V = ∫ cos 2x dx ta ®Æt t = tan x ⇒ dx = v V = ∫ =   2 ∫ + 2 ∫ cos 2x + sin 2x + 1 2 1 + t 2 1 ( + t ) 2 1 ( + t ) 1 ( 2 + 2 t ) 0 0 0 0 1 π 4 1 1 t =tan y π + 2 = dt cos 2x 2 ln 2 V + ln t + 1 ta tÝnh V = = ∫ suy ra V = dx = ∫ π   1 1 2 0 4 1 ( 2 + t ) 8 cos 2x + sin 2x + 1 8 0 0 π 4 π 4 1 + 2 1 + 2 4.  tan x N = ∫ tan x dx ta viÕt N = ∫ dx v ®Æt  2 cos x + sin 2x − 2 sin x + 1 cos 2x + sin 2x + 1 0 0 1 1 dt 1 1 + t 2 1  t 2  3 + 2 ln 2 t = tan x ⇒ dx = suy ra N = dt = + t + ln t +1 = ∫   2   1 + t 2 t + 1 2  2  4 0 0  π  π 4 sin x −  π 4 1 (sin x − cosx) 5. [§H.2008.B] F = ∫  4  dx ta viÕt F = ∫ dx dùa  sin 2x + 2 1 ( + sin x + cos x) 2 2 sin x cos x + 1 ( 2 + sin x + cos x) 0 0
v o mèi quan hÖ gi÷a sin x + cos x v sin x cos x ta ®Æt t = sin x + cos x ⇒ dt = (cos x − sin x)dx v  2 2 2 t 2 − 1 1 − dt 1 dt 1 1 1 1 sin x cos x =  khi ®ã F = ∫ = −   2 ∫ = = − 2 2 t − 1 + 1 ( 2 + 2 t) 2 t + 2t + 1 2 t + 1 2 2 2 2 1 1 + 1
 C¸ch ®Æt 4. Dùa v o ®Æc ®iÓm hai cËn cña tÝch ph©n.  a 0 a 0
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ viÕt I = ∫f(x)dx + ∫f(x)dx ®Æt t = H x ®Ó biÕn ®æi I f (x d ) x  1 = ∫ −a −a 0 −a π
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = π H x  0 π 2
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = 2π H x  0 π / 2 π
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = H x  2 0 b
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = (a + b) H x  a VÝ dô 4. TÝnh:  1 0 1  1. I = ∫ 2008 x sin xdx ta viÕt I = 2008 x sin xdx + ∫ x 2008 sin xdx = A + B ∫
. Ta ®Æt t = Hx th× A = H B. vËy I = 0.  −1 −1 0 π π π π  2.  sin t t sin t
J = ∫ x sin x dx ta ®Æt t = π − x khi ®ã J = ∫ dt − dt ta ®æi biÕn tiÕp:  2 ∫ 1 + 2 cos x 1 + cos t 1 + 2 cos t 0 0 0 π π π sin t 2 cos t =tan u π t sin t t =−x 2 2 π π J = dt ==== ∫  v J = dt === J ∫ .VËy J = − J ⇒ J =   1 2 1 + cos2 t 2 1 + cos2 t 2 4 0 0
C¸ch ®Æt 4. NÕu tÝch ph©n cã chøa ax 2 + bx + c; a > 0 th× ta cã thÓ ®Æt t − ax = ax 2 + bx + c sau ®ã tÝnh x theo t 
v tÝnh dx theo t v dt.{PhÐp thÕ ¬le}  VÝ dô 5. TÝnh:  1 2 − 2  1. = ∫ dx 1 t 2dt I
 ta ®Æt t − x = x 2 − x + 1 ⇒ x = ⇒ I = = ln 3 ∫   2 2t + 1 2t − 1 0 x − x + 1 1 1 2 − 2 2 −  2. = ∫ dx t 1 dt 1 6 2 1 J
 ta ®Æt t − 3x = 9x 2 − 2x + 1 ⇒ x = ⇒ J = = ln ∫   2 ( 2 3t − ) 1 t 3 − 1 3 2 0 9x − 2x + 1 1
II )Ph−¬ng ph¸p tÝch ph©n tõng phÇn 
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  8 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  b
HGi¶ sö cÇn tÝnh tÝch ph©n I = ∫f(x)dx . Khi ®ã ta thùc hiÖn c¸c b−íc t×nh:  a b b
B−íc 1. ViÕt tÝch ph©n d−íi d¹ng: I = ∫f(x)dx = ∫g(x) h.(x)dx  a a  du = u = g(x)  g' (x)dx B−íc 2. §Æt   ⇒    dv = h(x) d . x v =  ∫h(x) d.x b b
B−íc 3. ¸p dông c«ng thøc: hay ∫ u d.v = b v . u − d . v u  a ∫ a a
C¸c c¸ch ®Æt ®Ó tÝch ph©n tõng phÇn:  b du =  P' (x)dx u = P(x) 
 +C¸ch ®Æt 1. NÕu tÝch ph©n cã d¹ng I = ∫ P(x).sin ax d.x th× ta sÏ ®Æt  ⇒  cos ax  dv = sin ax d . x v = − a  a b du =  P' (x)dx u = P(x) 
NÕu tÝch ph©n cã d¹ng ∫ P(x).cosax d.x th× ta ®Æt  ⇒  sin ax   dv = cos ax d . x v = a  a du = b  P' (x)dx u = P(x)  NÕu tÝch ph©n cã d¹ng ∫ ax P(x) e . d . x th× ta ®Æt  ⇒  eax   dv = eax d . x v = a  a VÝ dô 5. TÝnh:  π  1. I = ∫( x 3 − ) 1 .sin 2 d . x x ta ®Æt  0 du =  d 3 x π π u = x 3 − 1  cos 2x 3 3π  ⇒  cos 2x ⇒ I = − ( x 3 − ) 1 + cos 2x d . x = − ∫   dv = sin 2x d . x v = − 2 2 2  2 0 0 π / 2 u = x2 + du = 2xdx  2.  1 J = ∫ 2 (x + ) 1 .cos x d . x ta ®Æt  ⇒    dv = cos d . x x v = sin x 0 π π 2 / 2 π + ⇒ / 2 4 2 J = (x + ) 1 sin x − 2 . x .sin x d . x = − 2J ∫ π  ta tÝnh J . x sin d . x x b»ng c¸ch ®Æt  1 = ∫ 1 0 4 0 0  π / 2 u = x π 2 2 / 2 π + 4 π − 4 
sau ®ã suy ra J = − x cos x + cos xdx =1 ∫ .VËy J = − 2 =   dv = sin d . x x 1 0 4 4 0 1 3. L = ∫ 2 (x − x + 3x ) 1 e . d . x ta ®Æt  0  1 1 u = x 2 − x + 1 3 1 1 e − 1 1  ⇒ 2 3x 3x L = (x − x + ) 1 e − (2x − ) 1 e . d . x = − L ∫    1 dv = e3x d . x 3 3 3 3 0 0 1 u = 2x − 1 3 − 3 − TÝnh tiÕp  4e 4 e 5 5 L (2x ) 1 e . d . x ®Æt  ⇒ L = suy ra L =   1 = ∫ − 3x 1 dv = e3x d . x 9 27 0 π π π 1 cos 2x x 1 2 − π π 2 4. M = ∫ 2 ( x sin x) d . x ta viÕt M = ∫ x sin d . x x = ∫ x d . x = − ∫ x cos2xdx  2 4 2 0 0 0 0 0 π u =x 2 π xÐt M = x cos 2x d . x 0 ∫ === . vËy ta cã M =  1 4 dv=cos 2xdx 0 2 π / 4 π / 2 u = 2t
5. M = ∫sin x d.x ta ®æi biÕn t = x ®Ó ®−a M = ∫ 2tsin tdt b»ng c¸ch ®Æt  ⇒ M = 2  dv = sin t d . t 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  9 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  du = b  b cos bxdx u = sin bx 
 +C¸ch ®Æt 2. NÕu tÝch ph©n cã d¹ng I = ∫ ax e sin bx d . x th× ta ®Æt  ⇒  eax   dv = eax d . x v = a  a du = − b  b sin bxdx u = cos bx 
NÕu tÝch ph©n cã d¹ng I = ∫ ax e cos bx d . x th× ta ®Æt  ⇒  eax   dv = eax d . x v = a  a VÝ dô 6. TÝnh:  π du = / 2  3 cos x 3 dx u = sin x 3   1. I = ∫ 2x e .sin 3 d . x x ta ®Æt  ⇒  e 2x   dv = e2x dx v = 0  2 π / 2 π π 2x π u = cos3x ⇒ e 3 e 3 2 x I = sin x 3 − e cos x 3 d . x = − − I ∫  (*). Ta xÐt I e cos 3 d . x x v ®Æt  ⇒  1 = ∫ 2x 1 2 2 2 2 dv = e2x dx 0 0 0 π / 2 π e2x 3 eπ 3  1 3  π 2e + 3 2 x 1 3 I = −cos 3x + e sin 3 d . x x = + I ∫  thay v o (*) ta cã: I = − −  + I ⇒ I = −   1 2 2 2 2 2 2  2 2  13 0 0 π π 1 cos 2x 1 1 2x − π π  2. F = ∫ x 2 (e .sin x) d . x ta viÕt F = ∫ e d . x = ∫ 2x e d . x − ∫ 2x e cos 2 d . x x  2 2 2 0 0 0 0 π π 2π − 2π − Ta xÐt  1 1 2x e 1 2x e 1 F = e d . x = ∫
. Sau hai lÇn tÝch ph©n tõng phÇn ta tÝnh ®−îc F = e cos 2x d . x = ∫ .  1 2 2 2 2 4 0 0 π 2π − VËy ta cã:  x 2 e 1 F = (e .sin x) d . x = ∫   8 0  P' (x) b  du = dx u = ln[P(x)] 
 +C¸ch ®Æt 3. NÕu tÝch ph©n cã d¹ng I = ∫ ln[P(x)]Q . (x)dx th× ta ®Æt  ⇒  P(x)   dv = Q(x) d . x  a v = ∫  Q(x)dx VÝ dô 7. TÝnh:   1 5 du =  dx 5 5 u = ln[x − ] 1  2 2   1.  x − 1 x x I = ∫ . x ln(x − ) 1 dx ta ®Æt  ⇒  ⇒ I = ln(x − ) 1 − ∫ dx  dv = x d . x  x 2 2 2x − 2 2 2 v = 2  2 48 ln 2 + 27 =   4  1 3    2  u = ln x + 1 + x du = dx   2. J = ∫ln(x + 1+ 2 x )dx ta ®Æt    ⇒  1 + x 2 ⇒ J = 3 ln( 3 + 2) −1    0 dv = dx v = x e  e e e u = 2 2 3.  ln x x K = ∫ 2 . x ln xdx ta ®Æt  suy ra K = 2 ln x − ∫ x.ln xdx . XÐt K x.ln xdx v ®Æt  1 = ∫ dv = xdx 2 1 1 1 1 u = ln x e2 + 1 e 2 − 1  th× K = ⇒ K = .  dv = xdx 1 4 4 2 u = ln x 2 e − 4.  1 1 5 15 4 ln 2 H = ∫ ln x dx ta ®Æt  suy ra H = − ln x + x dx = ∫ − .  5 x dv = − x 5dx 4x 4 4 256 1 1 1 π / 3 5. G = ∫ ln(sin x) dx ®Æt  2 cos x π / 6 u = ln(sin x) π   / 3 du = cot xdx π / 3 3 3l 3 n −4 3l 2 n −π  1 ⇒ ⇒ I = tan x ln(sin x) − dx =   π / 6 ∫ dv = dx v = tan x 6  cos2 x π / 6
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  10 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  π π e   sin(ln x) e u = cos(ln x) du = − π 6.  dx e F = o c s(ln x)dx ∫ ®Æt  ⇒ x ⇒ I = x cos(ln x) + sin(ln x)dx (*). Ta xÐt  1 ∫ dv = dx  1 v = x 1 π π e   cos(ln x) e u = sin(ln x) du = dx π e F sin(ln x)dx ®Æt  ⇒ ⇒ F = x sin(ln x) − cos(ln x)dx = −F ∫  thay  1 = ∫ x dv = dx 1  1 1 v = x 1 π π + v o (*) ta cã:  e 1
F = −e − 1 − F ⇒ F = − .  2
II )Ph−¬ng ph¸p t×m hÖ sè bÊt ®Þnh   AH Khi gÆp tÝch ph©n:
I = ∫ P(x) dx  víi P(x), Q(x) l c¸c ®a thøc cña x.  Q(x)
 B−íc 1: NÕu bËc cña P(x) ≥ bËc cña Q(x) th× ta lÊy P(x) chia cho Q(x) ®−îc th−¬ng A(x) v d− R(x), 
 tøc l P(x) = Q(x).A(x) + R(x), víi bËc R(x) < bËc Q(x).   Suy ra : P(x) R(x) = P(x) R(x) A(x) + ⇒ ∫ dx = ∫ A(x d ) x + ∫ dx   ( Q x) ( Q x) ( Q x) ( Q x)
 B−íc 2: Ta ®i tÝnh : I = ∫ R(x) dx  , víi bËc R(x) < bËc Q(x).  Q(x)
 Cã thÓ x¶y ra c¸c kh¶ n¨ng sau :  +  +Kh¶ n¨ng 1: Víi  R(x) M x . N
Q(x) = ax2 + bx + c  ,( a ≠ 0 ) th× bËc R(x) < 2 ⇒ R(x) = M.x+N v  =   ( Q x)
ax2 + bx + c
TH1 : Q(x) cã 2 nghiÖm x , x , tøc l : Q(x) = a(x – x )(x – x ).  1 2 1 2 +
Chän h»ng sè A, B sao cho: R(x) M x . N A B = = +   Q(x)
a(x − x )(x − x ) x − x x − x 1 2 1 2
 TH2 : Q(x) cã nghiÖm kÐp x , tøc l :  2 = − .  0 Q(x) a(x x ) 0 +
 Chän h»ng sè A, B sao cho: R(x) M x . N A B = = +   2 2 Q(x) a(x − x ) x − x (x − x ) 0 0 0
TH3 : Q(x) v« nghiÖm. Chän h»ng sè A, B sao cho:  R(x) A ' Q . (x) B R(x) = A ' Q . (x) + B  và  = +   ( Q x) Q(x) Q(x)
 +Kh¶ n¨ng 2: Víi Q(x) = ax3 + bx2 + cx + d  ,( a ≠ 0 ) th× bËc R(x) < 3 
TH1: Q(x) cã 3 nghiÖm x ,x ,x .  tøc l : Q(x) = a(x − x )(x − x )(x − x )   1 2 3 1 2 3
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + +   Q(x)
a(x − x )(x − x )(x − x ) x − x x − x x − x 1 2 3 1 2 3
TH2: Q(x) cã 1 n  ®¬n   kÐp  = − −   0 x , 1 n x , tøc l :  2 Q(x) ( a x x )(x x ) 1 0 0 1 0
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + +   2 2 ( Q x) (
a x − x )(x − x ) x − x x − x (x − x ) 1 0 1 0 0
TH3: Q(x) cã mét nghiÖm x  (béi 3), tøc l :  3
Q(x) = a(x − x )   0 0
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + +   3 2 3 Q(x) ( a x − x ) x − x (x − x ) (x − x ) 0 0 0 0
TH4: Q(x) cã ®óng mét nghiÖm ®¬n x , tøc l : Q(x) = (x − x ) a
( x2 + βx + γ )  (trong ®ã  2 ∆ = β − a 4 γ < 0 ).  1 1 R(x) R(x) A Bx +
Chän h»ng sè A, B, C sao cho:  = = + C   ( Q x) (x − x ) a ( x2 1
+ βx + γ ) x − x ax2 1 + βx + γ
 +Kh¶ n¨ng 3: Víi bËc Q(x) >3 th× th«ng th−êng ta gÆp Q(x) l c¸c biÓu thøc ®¬n gi¶n nh−: x4 + 1  ; x4 ± x2 + 1 ; x6 + 1    
 VÝ dô 1. TÝnh c¸c tÝch ph©n: 
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  11 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  0 2 0 x + x +  4x − 1  − 1.  4x 1 A B I = ∫
1 dx ta viÕt I = ∫1+ dx v viÕt  = + Sau ®ã chän ®−îc  2
x − 3x + 2  2 x − x 3 + 2  x 2 − x 3 + 2 x − 1 x − 2 −1 −1 A = H3; B = 7. Khi ®ã:  0
I = (x − 3ln x − 1 + 7 ln x − 2 ) = 10 ln 2 − 7 ln 3 .  1 − 1 2. = ∫ x J
dx ta viÕt x = A(x2 + x + 1)’ + B suy ra A = 1/2; B = H 1/2. VËy J = J + J víi  2 1 2 x + x + 1 0 1 1 1 1 d(x 2 + x + ) 1 1 1 dx 1 4 dx J = = ln 3 ∫  v J .   2 = − ∫ = − 2 ∫ 1 2 x 2 + x + 1 2 2 x + x + 1 2 3  2 0 0 2  1  0   x +  + 1  3  2  π   / 3 π Ta ®Æt 2 1  2 3 3 x +  = tan u suy ra J = − du = ∫ .  2 3  2  3 9 π / 6 3 + 3.  = ∫ 1 1 A Bx c K dx ta viÕt  = +
sau ®ã chän ®−îc A = 1/3, B = H 1/3, C = 0. V× thÕ viÕt ®−îc  3 x + x 3 x 3 + 3x x x 2 + 3 1 3 3 1 x 1 K = dx − dx = ln 3 ∫ ∫
 {V× ®−a ®−îc x v o trong vi ph©n}.  3x ( 3 x 2 + ) 3 6 1 1 4.  β a sin x +
B – Khi gÆp tÝch ph©n I = ∫
b cos x dx (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ tøc l chän A, B sao cho:  c sin x + d cos x α x 2t 2 1 − t asinx + b  cosx = A
 (csinx + dcosx) + B(csinx + dcosx)' hoÆc ®Æt t = tan ⇒ sin x = cos x =   2 2 1 + t 2 1 + t  VÝ dô 1. TÝnh:  π / 2 3sin x +   1. I = ∫ 5 cos x dx ta viÕt 3sinx + c 5 osx = A
 (sinx + cosx) + B(cosx - sinx) suy ra A = 4; B = 1.  sin x + cos x 0 π / 2 π / 2 +   Khi ®ã:  d(sin x cos x) / 2 I = d 4 x + = ∫ ∫ (4x + lnsinx + cosx )π = π2  sin x + cos x 0 0 0 π / 2 3sin x + 2. J = ∫
cos x dx ta viÕt 3sinx + cosx = A
 (sinx + cosx) + B(cosx - sinx) suy ra A = 2; B = H1.  (sin x + 3 cos x) 0 π / 2 π / 2 π / 2   + π Khi ®ã:  2 d(sin x cos x) 1 I = dx  − = − cot(x + )  + = 2 ∫ ∫     (sin x + cos x)2 (sin x + cos x)3  4 2(sin x + cos x)2  0 0 0 β a sin x + bcos x +
C – Khi gÆp tÝch ph©n I = ∫
m dx (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ + C. Chän A, B,C sao cho:  c sin x + d cos x + n α asinx + b  cosx +   m = A
 (csinx + dcosx + n) + B(csinx + dcosx + n)'+C hoÆc cã thÓ ®Æt  x 2t 2 1 − t t = tan ⇒ sin x = cos x =   2 2 1 + t 2 1 + t  VÝ dô 1. TÝnh:  π / 2 7sin x − cos x + 1. I = ∫
7 dx ta viÕt 7sinx − cosx + 7= A  (4sinx + c 3 osx + ) 5 + B(4cosx - 3sinx) + C  4 sin x + 3cos x + 5 0 π / 2 π / 2 π d(4 sin x + 3 cos x + / 2
Khi ®ã A = 1; B = H1; C = 2 v I = ∫dx − ∫ ) 5 + ∫ 2 dx dx  4 sin x + 3cos x + 5 4 sin x + 3 cos x + 5 0 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  12 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  π / 2 2 − XÐt  2 x 2t 1 t I dx ®Æt t = tan ⇒ sin x = cos x = suy ra  1 = ∫ 4 sin x + 3cos x + 5 2 2 1 + t 2 1 + t 0 1 1 1 π / 2 π 1 9 I = 2 dt = ∫
. VËy I = (x − ln 4sin x + 3cos x + 5 ) + I = + − ln  1 1 (t + ) 2 2 3 0 2 3 8 0
 V)Ph−¬ng ph¸p dïng tÝch ph©n liªn kÕt   VÝ dô 1. TÝnh:  π 2 π 2 π   1.  cos xdx
I = ∫ sin xdx ta xÐt thªm tÝch ph©n thø hai: J = ∫ Khi ®ã: I + J =  (*).  sin x + cos x sin x + cos x 2 0 0 π 2 π 2 − + π   MÆt kh¸c  (sin x cos x)dx d(sin x cos x) I − J = = − = 0 ∫ ∫
(**). Gi¶I hÖ (*) v (**) suy ra I = J =  .  sin x + cos x sin x + cos x 4 0 0 π 2 π n 2 n π   2.  sin x cos x I = dx ∫ ta xÐt J = dx ∫ . Khi ®ã: I + J =  (*)  n n n n sin n x + cosn x sin n x + cosn x 2 0 0 π π 2 π 2 n n π   MÆt kh¸c nÕu ®Æt x =  H t th×  cos t cos x I = dt = dx = J ∫ ∫
(**). Tõ (*), (**) ta cã I =  2 n n n n n n n sin t + cos t sin x + cos x 4 0 0 π 2 π 2 n n π   3.  sin x cos x I = dx ∫ t−¬ng tù xÐt J = dx ∫ v suy ra I = J =   n n n n n sin x n + cos x n sin x n + cos x 4 0 0 π 6 π π 2 6 2 6   4.  sin x cos x 1 1 E = dx ∫ v F = dx ∫ ta cã E + F = dx = ln 3 ∫ (*)  sin x + 3 cos x sin x + 3 cos x sin x + 3 cos x 4 0 0 0 π 6 − L¹i cã  1 1 3 E − F 3 = (sin x − 3 cos x d ) x = 1 − 3 ∫
(**). Gi¶I hÖ (*), (**) ta ®−îc: E = ln 3 −  v  16 4 0 π 6 3 1 − 3 cos 2x 1 1 − 3 F = ln 3 + . Më réng tÝnh E = dx = F − = ∫ E ln 3 +   16 4 sin x + 3 cos x 8 2 0 π 6 §Ò xuÊt  cos 2x L = dx ∫   sin x − 3 cos x 0 C¸c ¸  c b i t  o¸n ¸  n t− t ¬ − ng n tù t . ù 
A – Ph−¬ng ph¸p biÕn ®æi trùc tiÕp    1
+ B×nh ph−¬ng v ph©n tÝch th nh 2 ph©n sè ®¬n gi¶n.  1 ( + x 2
1. [§HNNI.98.A] M = ∫ e ) dx  + BiÕt ®æi biÕn.  1 + 2x e   0 1 1 1 + 1 2x x x Gi¶i:  e 2 dx M = ∫ e dx + e 2 dx ta tÝnh M
 ®Æt ex = tan t,t ∈ (− π / ;
2 π / 2) khi ®ã víi tan α =e v  1 = ∫ 2x ∫ 1 + e 1 + 2x e 1 + 2x e 0 0 0 α α α 2 tan tdt α 1 1 + e 2 M = 2 tan tdt = −2 ln cos t = 2 − ln = ln ∫   1 = ∫ 1 ( + 2 2 tan t) cos t π / 1 + tan 2 4 t 2 π / 4 π / 4 π / 4   π 2 +  3
2. [§HTCKT.97] ∫ 3sin xdx     1 + cos x 0 Gi¶i:    π 2 +  3
2. [§HTCKT.97] ∫ 3sin xdx     1 + cos x 0 Gi¶i:   
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  13 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  π 2 +  3
2. [§HTCKT.97] ∫ 3sin xdx     1 + cos x 0 Gi¶i:    π 2 +  3
2. [§HTCKT.97] ∫ 3sin xdx     1 + cos x 0 Gi¶i:      1 1 ( + x 2 1. [§HNNI.98.A] ∫ e ) dx     1 + 2x e 0 π 2 3
2. [§HTCKT.97] ∫ 3sin xdx     1 + cos x 0 π 2 3. [§HBK.98] ∫ 4 cos 2 ( x sin x + 4 cos x d ) x     0 2 4. [§HDL§.98] ∫ dx    
x + 1 + x − 1 1 π 6 5. ∫ 1 dx   π   0 cos x. cos(x + ) 6 2 e
6. ∫ ln x + ln(ln x) dx     x e π 3 7. [§HMá.00] ∫ 1 dx π     π 6sin x sin(x + ) 6 π 3 8. ∫ 4 cos x sin 2xdx     0 π 4 9. [§HNN.01] ∫ sin 4x dx     6 sin x + 6 cos x 0 π 2 6
10. [§HNNI.01] ∫ cos x dx     4 sin x π 4 π 3 11. ∫ 4 tg xdx     π 4 3
12. [C§GTVT.01] ∫ 2 x + 3x d . x     −2 3
13. [C§SPBN.00] ∫ 2
x − 4x + 4dx     0 π 14. ∫ cosx sinxdx     0 π 3 15. ∫ 2 tg x + 2
cot g x − 2dx     π 6
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  14 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  3 16. ∫ 3 x − 2 2x + xdx     0 1
17. ∫ 4 − x dx   §¸p: ( 2 5 − 3 )   −1 1
18. ∫ x − xdx   2 2   − 3 1 5
19. ∫(x + 2 − x − 2 )dx   8  −3 3 2
x + x − 1 20. ∫ d . x     2
x + x − 2 0 π
21. ∫ 2 + 2cos2xdx   4  0 π
22. ∫ 1 − sin2xdx   2 2   0 π / 2
23. ∫ 1 + sinxdx   4 2   0 1
− m + 1 / 2 ~ m ≤ 0
24. ∫ x − ad ; x a ∈ R     
m 2 − m + 1 / 2 ~ 0 < m ≤ 1 0 2
a ≥ 2  th× ®s: (3a – 5)/6;  25. ∫ 2
x − (a + ) 1 x + a d ; x a ∈ R  
1 < a < 2 th× ®s: (aH1)3/3 – (3a H 5)/6  1
a ≤ 1 th× ®s: (5 – 3a)/6  π 2 3 26. ∫ cos x dx     1 + cos x 0 π 2
28. [§H.2005.D] ∫ sinx (e + cos x) cos xdx     0 2 28. [§H.2003.D] ∫ 2 x − x dx     0 π / 4 1 − 2 29. [§H.2003.B] ∫ 2 sin x dx     1 + sin 2x 0 π 2
29. M = ∫ (sin6 x + cos6 x − sin2 x.cos2 x)d.x     0 π 4 2 30.  sin x N = d . x ∫     cos8 x 0 31.                                   
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  15 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 
B – Ph−¬ng ph¸p ®æi biÕn  1 3 1. [C§BN.01] ∫ x dx   HD ®Æt fsf   1 ( + 2 3 x ) 0 1
2. [PVB.01] ∫ 3 x 1 − 2 x d . x     0 ln 3 3. ∫ dx     x e + 2 0 π 2
4. [C§XD.01] ∫ sin2x dx     1 + 2 cos x 0 1 1 5. [§HKTQD.97] ∫ 5 x 1 ( − 3 6 x ) dx   §Ò xuÊt: ∫ 2 x 1 ( − 7 x) dx   0 0 1
6. [§HQG.97.B] ∫ dx     1 + x 0 2
7. [§H.2004.A] ∫ xdx    
1 + x − 1 1 2 3 ``8. [§H.2003.A]  ∫ dx     2 x x 4 5 + π
9. [§HSPHN.00.B]  ∫ 2 2 x a − 2 x dx     0 ln 2 2x
10. [§HBK.00]  ∫ e dx     x 0 e + 1 23 11. ∫ dx    
x + 8 − 5 x + 2 14 π 2 12. ∫ sin2x dx     2 2 sin x 0 ( + ) π 4 13. ∫ dx     3 cos x 0 6 14. ∫ 1 dx    
2x + 4x + 1 2 3 15. ∫ 5 x 1 + 2 x dx     0 2 e
16. ∫ ln x + ln(ln x) dx     x e 4
17. ∫ x + 1 dx     x 2     1 3 10x + 2 3 x + 1 + 18. ∫ 10x dx     2 2 0 1
( + x ) x + 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  16 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  e 19. ∫ 1 dx     2 1 x 1 − ln x e   20. ∫ lnx   dx    
 x 1 + ln x  1 4 21. ∫ 1 dx    
3 2x + 1 + 2x + 1 0 4 23. ∫ dx     2 x. x 9 7 + 7 24. ∫ 1 d . x     x + x + 2 2 1 25. ∫ dx     2 2 1 3x 0 ( + ) π 2 x + 26. [GTVT.00] cos x  ∫ dx     4 − 2 sin x −π 2 π
27. [§HAN.97] ∫ xsinxdx     1 + 2 cos x 0 π 2 28. [§HLN.00] ∫ 1     2 + dx + sinx + cosx 0 π 4 29. [§HH§.00] ∫ 1     1 + dx + tgx 0 π 4
30. [§HVH.01] ∫ sinxcosx     sin 2x + dx + cos2x 0 π 2 3
31. [HVBCVT.98]  ∫ sinxcos xdx     1 + 2 cos x 0 1 32. = ∫ 1 I dx     2 (x + 2 ) 1 −1 (1+ 5 ) 2 2 x + 33. [§HTN.01]  1   ∫ dx     4 x − 2 x + 1 1 1 34. [§HTCKT.00] ∫ x dx     4 x + 2 x + 1 0 1 35. [HVKTQS.98] ∫ dx     2 − 1 ( x 1 x ) 1 + + + 1
36. [PVB¸o.01] ∫ 3 x 1 − 2 x d . x     0 e
37. [§H.2004.B]  ∫ 1+ 3ln x ln x dx     x 1 π 2sin 2x + 38. [§H.2005.A] ∫ sin x dx     1 3 cos x 0 +
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  17 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  π 2 39. [§H.2006.A] ∫ sin 2x dx     2 2 cos x 4sin x 0 + π 2
40. [§H.2005.B] ∫ sin 2xcos x dx     1 + cos x 0 ln 5 41. . [§H.2005.B] ∫ dx     x e + −x e 2 − 3 ln 3 2 3 42. [§H.2003.A] ∫ dx     2 x x 4 5 + 2 43. [§H.2004.A] ∫ x dx     1 x 1 1 + − π / 6 4
44. [§H.2008.A] ∫ tan x dx     cos 2x 0 π / 4 45. [§Ò thi thö §H] ∫ sin 4x dx     6 sin x + 6 cos x 0 e  
46. [§Ò thi thö §H] ∫  1 2  
+ x .ln x d.x    x. 1 + ln x 1 +  4
47. [§Ò thi thö §H] ∫ 2x+1 e dx     0 π 2 2 ( 2 t − d ) 1 t 1
48. [§Ò thi thö §H] ∫ sin2x = + ⇒ ∫ = ∫   dx   HD: §Æt t 1 sin x 2t 3 8 1 ( 2 + 3 sin x) 1 0 8 2 49. I ∫ x − = 16 dx     x 4 4 x − 1 + 50. J = ∫ x + 1 dx     x 2 1 3 10x + 2 3 x + 1 + 51. K = ∫ 10x dx     2 2 0 1
( + x ) x + 1 − ln 2 x 52.  = ∫ e H dx     2x −ln 2 1 − e ln 3 53.  = ∫ dx G     2x 0 e + 1 π 2 54. = ∫ dx F    
3 + 5 sin x + 3 cos x 0 π 3 55. D = ∫ cos x 2 dx     4 2 0
cos x − 3 cos x + 3 ln 5 x x e e − 56. S = ∫ d 1 x     x e + 3 0 π 57. = ∫ dx T     π
2 + sin x − cos x 2
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  18 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  4 58.  = ∫ dx R     2 x. x 9 7 + 7 59. = ∫ 1 E d . x     x + x + 2 2 4 2x + 60. W = ∫ 1 d . x     1 + 2x 1 0 + + π / 2 1 t = 3 tan u π 61.  = ∫ dx x dt 3 Q  
§Æt t = tan th× Q = ∫ = ∫ ===   2 + cos x 2 ( 3 )2 + t 2 9 0 0 2 62.  = ∫ dx M     2 0
− 3x + 6x + 1    
C – Ph−¬ng ph¸p tÝch ph©n tõng phÇn  1 1. [§HC§.97] ∫ 1 ( + 2 2x x) e dx     0 π 4 2. [§HTCKT.98] ∫ 2 ( x 2 cos x − d ) 1 x     0 2 10 3. ∫ 3 2 x ln(x + d ) 1 x v ∫ 2 xlg xdx     0 0 e 4. [PVB¸o.98] ∫ 2 (x ln x) dx     1 π 5. [HVNH.98]  ∫ 2 xsin xcos xdx     0 2
6. [§HC§.00] ∫ ln(x + d ) 1 x     2 x 1 π 4
7. [§HTL.01]  ∫ ln 1 ( + tgx d ) x     0 π 2 8. ∫ 2 xtg xdx     0 3
9. [§HYHN.01] ∫ 2 x − 1 d . x     2 2
10. [§Ò thi thö] ∫ xln(3x − 2 x d ) x     1 e
11. [§H.2007.D] ∫ 2 2 x ln xdx     1 1
12. [§H.2006.D] ∫ (x − 2x 2 e ) dx     0 0 13. I = ∫ 2x x e ( + 3 x + 1 d ) x     −1 2 e 14. J ∫ lnx + = ln(ln x) dx     x e
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  19 
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985  www.MATHVN.com 
 CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  π 15. K = ∫ 2 (x sin x) dx     0 1 16.  = ∫ x H dx     2 sin (2x + ) 1 0 π 4
17. G = ∫ x.sin x dx     3 cos x 0 ln 2 18.  2 F = ∫ 5 x x e . dx     0 4 ln( x + 19. D = ∫ ) 1 dx     x + x 1 e  
20. S = ∫  lnx 2   + ln xdx      x 1 + ln x  1 2 π 21. A = ∫ 2 cos x d . x     2 π / 4 π
22. P = ∫ (e .cosx)2 x dx     0 2 π 23. U = x . sin x d . x ∫     0 π 24. Y = x.si x n . cos 2 x d . x ∫     0 π / 3 1 + §Æt  sin x u = sin x ;dv = ..XÐt T
e dx  v ®Æt tptp suy ra  1 = ∫ x π / 3 sin x + 1 + 1 + cos x cos x 25.  0 T = ∫ sin x x   sin x + e dx + cos x π / 3 x 3 π 0 e sin x e T = =   1 + cos x 3 0 1 26.  2 + ln 1 ( + 2 )
R = ∫ 1 + 2 x dx   §s:    2 0 1 27.  1 E = ∫ 2 x ln(x + d ) 1 x   §S: ln 2 −  2 0 π / 2 28.  π
W = ∫ cos x ln 1 ( + cos x d ) x   §s:  − 1   2 0 e 29.  e 2
Q = ∫ ln x dx   §s:    (x + 2 ) 1 e + 1 1 / e π / 2 π / 3 ViÕt M = M  sin x 3 x 1 + M2. Víi M = dx ∫ = ∫ ln  & M dx .  2 = ∫ 1 1 + cos x 2 1 + cos x π / 3 π / 6 π / 2 u = du = x + = x  dx 30. M = ∫ sin x     − π §Æt  ⇒ ⇒ (3 2 3 ) = −   1 + dx + cos x  1  x M ln 4 2 π dv = v = / 3  = dx 2 cot 3    1 + cos x  2 − π VËy  (3 2 3 ) 3 M = + ln  3 8
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com  20 
Downloaded by Châu Bùi (Vj7@gmail.com)