Các phương pháp tính tích phân - Vi tích phân 1 | Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh

Các phương pháp tính tích phân - Vi tích phân 1 | Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh. Tài liệu được sưu tầm giúp bạn tham khảo, ôn tập và đạt kết quả cao trong kì thi sắp tới. Mời bạn đọc đón xem !

Môn:
Thông tin:
21 trang 3 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Các phương pháp tính tích phân - Vi tích phân 1 | Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh

Các phương pháp tính tích phân - Vi tích phân 1 | Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh. Tài liệu được sưu tầm giúp bạn tham khảo, ôn tập và đạt kết quả cao trong kì thi sắp tới. Mời bạn đọc đón xem !

55 28 lượt tải Tải xuống
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 1
Chuyªn ®Ò 1:
C¸c ph−¬ng ph¸p tÝnh tÝch ph©n
C¸c ph−¬ng ph¸p tÝnh tÝch ph©nC¸c ph−¬ng ph¸p tÝnh tÝch ph©n
C¸c ph−¬ng ph¸p tÝnh tÝch ph©n
ườ
  !"#
$ % 
&'(
)*+,
-+.//01'2
I) Ph−¬ng ph¸p biÕn ®æi trùc tiÕp
34 567+829+:;'(
)a(F)b(F)x(Fdx)x(f
b
a
b
a
=
==
==
==
=
BiÕn ®æi ph©n thøc vÒ tæng hiÖu c¸c ph©n thøc ®¬n gi¶n
VÝ dô 1.
#
=
==
=
2
1
3
2
dx
x
x2x
I
/
12ln)21(ln)12(ln
x
2
xlndx)
x
2
x
1
(I
2
1
2
1
2
=++=
+==
$#
+
++
+
=
==
=
2
e
1
dx
x
4x3x2
J
( )
++=+=
+=
2
2
e
1
2
e
1
2/1
7e4e3xln4x3x4dx
x
4
3x2
&#
=
==
=
8
1
3
2
3
5
dx
x3
1x3x4
K
=
=
=
8
1
8
1
3
3
423/23/1
4
207
xx
4
3
x
3
4
dxx
3
1
xx
3
4
BiÕn ®æi nhê c¸c c«ng thøc l−îng gi¸c
VÝ dô 2.
#
=
==
=
2/
2/
xdx5cosx3cosI
π
ππ
π
π
ππ
π
( )
0
8
x8sin
2
x2sin
2
1
dxx8cosx2cos
2
1
2/
2/
2/
2/
=
+=+=
π
π
π
π
$#
=
==
=
2/
2/
xdx7sinx2sinJ
π
ππ
π
π
ππ
π
( )
45
4
9
x9sin
5
x5sin
2
1
dxx9cos)x5cos(
2
1
2/
2/
2/
2/
=
==
π
π
π
π
&#
=
==
=
2/
2/
xdx7sinx3cosK
π
ππ
π
π
ππ
π
( )
0
10
x10cos
4
x4cos
2
1
dxx10sinx4sin
2
1
xdx3cosx7sin
2/
2/
2/
2/
2/
2/
=
+=+==
π
π
π
π
π
π
)#
=
==
=
π
ππ
π
0
2
0
xdxcosx2sinH
=
=
+
=
π
π
0
0
0x4cos
16
1
x2cos
4
1
dx
2
x2cos1
x2sin
567

=
==
=
π
ππ
π
0
2
xdxcosx2sinH
=
=
+
=
π
π
0
0
0x4cos
16
1
x2cos
4
1
dx
2
x2cos1
x2sin
<#
+
++
+
+
++
++
++
+
=
==
=
2/
6/
dx
xcosxsin
x2cosx2sin1
G
π
ππ
π
π
ππ
π
( )
1xsin2xdxcos2dx
xcosxsin
xsinxcos)xcosx(sin
2/
6/
2/
6/
2/
6/
222
===
+
++
=
π
π
π
π
π
π
=#
=
==
=
2/
0
4
xdxsinE
π
ππ
π
( )
16
3
x2sin
4
x4sin
x3
8
1
dxx2cos4x4cos3
8
1
dx
2
x2cos1
2/
0
2/
0
2/
0
2
π
π
ππ
=
+=+=
=
>#
=
==
=
4/
0
2
xdxtanF
π
ππ
π
( )
4
4
xxtandx1
xcos
1
4/
0
4/
0
2
π
π
π
==
=
#-8?@
=
==
=
2/
4/
2
1
xdxcotF
π
ππ
π
π
ππ
π
+
=
==
=
4/
0
4
2
xdxtanF
π
ππ
π
BiÕn ®æi biÓu thøc ë ngoi vi ph©n vo trong vi ph©n
VÝ dô 3.
#
+
++
+=
==
=
1
0
3
dx)1x2(I
10
4
)1x2(
2
1
)1x2(d)1x2(
2
1
1
0
4
1
0
3
=
+
=++=
$#
=
==
=
2
1
3
dx
)1x2(
1
J
0
)1x2(
1
4
1
2
)1x2(
2
1
)1x2(d)1x2(
2
1
1
0
2
1
0
2
2
1
3
=
=
+
==
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 2
&#
=
==
=
3/7
1
dx3x3K
9
16
)3x3(
9
2
)3x3(d)3x3(
3
1
3/7
1
3
3/7
1
2/1
===
)#
=
==
=
4
0
x325
dx
H
3
13210
)x325(
3
2
)x325(d)x325(
3
1
1
0
2/1
4
0
2/1
=
==
<#
+
++
++
++
+
=
==
=
2
1
dx
1x1x
1
G
3
123
dx)1x1x(
2
1
dx
)1x()1x(
1x1x
2
1
2
1
=
+=
+
+
=

AB9C+D+.5E(D
-8?@
C)cax()bax(
)cb(a
1
dx
caxbax
1
G
33
1
+
++
+
+
++
++
++
++
++
+
=
==
=
+
++
++
++
++
++
+
=
==
=
+. cb;0a
=#
=
==
=
1
0
dxx1xP
=+=+=
1
0
1
0
1
0
5
4
dxx1)x1(dx1)1x(dxx1)11x(
>#
=
==
=
1
0
x1
xdxeQ
2
F
1ee)x1(de
2
1
1
0
x1
1
0
2x1
22
==
-8?@
15
264
dxx1xQ
1
0
23
1
=
==
=+
++
+=
==
=
G3'?+,++E5.A?
$
H#
VÝ dô 4.
# 0dx)x2sin3x3cos2(I
0
1
=
==
=+
++
+=
==
=
π
ππ
π
I
4
1
xdxcosxsinI
2/
0
3
2
=
==
==
==
=
π
ππ
π
+ 1exdxsineI
2/
0
xcos
3
=
==
==
==
=
π
ππ
π
$#
2lnxdxtanJ
4/
0
1
=
==
==
==
=
π
ππ
π
I
2lnxdxcotJ
2/
6/
2
=
==
==
==
=
π
ππ
π
π
ππ
π
+
2ln
3
2
dx
xcos31
xsin
J
4/
0
3
=
==
=
+
++
+
=
==
=
π
ππ
π

A'?J?+,+
&#
1cos1dx
x
)xsin(ln
K
e
1
1
=
==
==
==
=
I
2cos1dx
x
)xcos(ln
K
2
e
1
2
=
==
==
==
=
+
2dx
xln1x
1
K
3
e
1
3
=
==
=
+
++
+
=
==
=
K'L?+,+0'(:A?M
)#
+
++
+
=
==
=
3ln
1
x
x
1
dx
e2
e
H
e2
5
lne2ln
3ln
1
x
+
=+=

+
++
+
=
==
=
2ln
0
x
x
2
dx
e1
e1
H
=
+
=
+
+
=
2ln
0
2ln
0
x
x
2ln
0
x
xx
3ln22ln3dx
e1
e
2dxdx
e1
e2e1
+
++
+
=
==
=
2ln
0
x
3
5e
dx
H
7
12
ln
5
1
5eln
5
1
x
5
1
5e
dxe
5
1
dx
5
1
5e
dx)e5e(
5
1
2ln
0
x
2ln
0
x
x
2ln
0
2ln
0
x
xx
=
+=
+
=
+
+
=
+
++
+
=
==
=
1
0
xx
x
4
ee
dxe
H
+
=+=
+
=
1
0
2
1
0
x2
x2
x2
2
1e
ln
2
1
1eln
2
1
1e
dxe
BiÕn ®æi nhê viÖc xÐt dÊu c¸c biÓu thøc trong gi¸ trÞ tuyÖt ®èi ®Ó tÝnh
=
==
=
b
a
dx)m,x(fI
HNO:@PA?J,QI5R+
[
]
]b;c[...]c;c[]c;a[b;a
n211
=
,ESPA?J
!T:@
H
+++=
b
c
c
c
c
a
n
2
1
1
dx)m,x(f...dx)m,x(fdx)m,x(fI
VÝ dô 5.
#
+
++
+=
==
=
2
0
2
dx3x2xI ?O
3x1x0 32x x
2
===+
#U9?O:@PA?
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 3
V,
4dx)3x2x(dx)3x2x(dx3x2xdx3x2xI
2
1
2
1
0
2
2
1
2
1
0
2
=+++=+++=
$#
=
==
=
1
3
3
dxxx4J
'2W/
16dxxx4dxxx4dxxx4J
1
0
3
0
2
3
2
3
3
=++=
&#
2ln
1
4dx42K
3
0
x
+
++
+=
==
=
=
==
=
)#
=
==
=
π
ππ
π
2
0
1
dxx2cos1H 22dxxsin2dxxsin2dxxsin2
2
0
2
0
=+==
π
π
ππ
=
==
=
π
ππ
π
0
2
dxx2sin1H

KX6AY$?+85Z'2T50 ,[\%M
22dxxcosxsindxxcosxsindxxcosxsindxxcosxsin
2/3
4/3
4/3
4/
4/
00
=+++++=+=
π
π
π
π
ππ
II) Ph−¬ng ph¸p ®æi biÕn sè
]' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 1:
^9C_
=
b
a
dx)x(fI
W`5'.
HU'.#-?FA
HU'.$#@+:?FaA:+50bPA?:?1+:#cdPA?:?FA:
HU'.&#-7e\?FZAF +.F
α
I\?F5ZAF5 +.F
β
HU'.)#U67
=
β
α
dt)t(gI A:f2ZO756./gh
C¸ch ®Æt ®æi biÕn d¹ng 1.
C¸ch ®Æt 1.
B6 
2
x1
Z
]
2
/
;
2
/
[
t
;
t
sin
π
ππ
π
π
ππ
π
=
==
=

]
;
0
[
t
;
t
cos
π
ππ
π
=
==
=
VÝ dô 1.
#
=
==
=
1
2/2
2
2
dx
x
x1
A

]2/;2/[t;tsinx
ππ
=
:?F#:I7e\?F
2
L$ZF
4/
π
I\?
FZF
2/
π
#i/
4
4
dt.
tsin
tsin1
dt.
tsin
tcos
dt.tcos
tsin
tsin1
A
2/
4/
2
2
2/
4/
2
2
2/
4/
2
2
π
π
π
π
π
π
π
=
==
=
$#
=
==
=
1
0
2
2
dx
x4
x
B
+6
=
1
0
2
2
dx
)2/x(12
x
B
#
-
];0[t;tcos)2/x(
π
=
tdtsin2dxtcos2x ==

-7e,
( )
2
3
3
dtt2cos12tdtcos4)tdtsin2(
tcos12
)tcos2(
B
2/
3/
2/
3/
2
3/
2/
2
2
=+==
=
π
π
π
π
π
π
π
&#
=
==
=
1
0
22
dxx34xC ,'.6+6
=
1
0
2
2
dx
2
x.3
1x2C #
-
]2/;2/[t;tsinx
2
3
ππ
=
'+8:
12
1
27
32
dt
2
t4cos1
33
4
tdtcostsin
33
16
C
3/
0
3/
0
22
+=
==
π
ππ
Chó ý:
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 4
HB6 
0a,xa
2
>
>>
>
Z+6
2
2
a
x
1axa
=
+
=
=
];0[t;tcos
a
x
]2/;2/[t;tsin
a
x
π
ππ
HB6 
0b,a,bxa
2
>
>>
>
Z+6
2
2
x
a
b
1abxa
=
+
=
=
];0[t;tcosx
a
b
]2/;2/[t;tsinx
a
b
π
ππ
VÝ dô 2.
#
=
==
=
2
3/2
2
dx
1xx
1
E
 KX6+8:
2
X1
M
+6
( )
=
2
3/2
2
2
dx
x/11x
1
E
+
[ ]
2/;2/t;tsin
1
ππ
= ,
12
dtE
3/
4/
π
π
π
==
$#
=
==
=
3/22
3/2
3
2
dx
x
4x3
G
 KX6+8:
2
X1
M
+6
(
)
=
3/22
3/2
3
2
dx
x
x3/21.x.3
G +
[ ]
2/;2/t;tsin
x3
2
ππ
= ,/:
16
)336(3
tdtcos
2
33
G
3/
4/
2
+
==
π
π
π
KB6/:
bax
2
Z+6+8:
2
X1
M
C¸ch ®Æt 2.
B6/ 
2
x1 +
++
+

(
((
(
)
))
)
2
x1 +
++
+
Z
(
((
(
)
))
)
2/;2/t;ttanx
π
ππ
ππ
ππ
π
=
==
=

(
)
π
;0t;tcotx =
VÝ dô 3.
#
+
++
+
=
==
=
3
3/1
2
dx
x1
1
M

(
)
2/;2/t;ttanx
ππ
=
,
6
dtM
3/
6/
π
π
π
==
$#
+
++
+
=
==
=
3
1
22
dx
x1.x
1
N

(
)
2/;2/t;ttanx
ππ
=
,
3
3218
dt
.tsin
tcos
N
3/
4/
2
==
π
π
&#
+
++
+
=
==
=
a
0
222
0a;dx
)xa(
1
P

+6
+
=
a
0
2
24
dx
)
a
x
(1a
1
P
+
;ttan
a
x
=
3
4/
0
2
3
a4
2
tdtcos
a
1
P
+
==
π
π
)#
+
++
++
++
+
=
==
=
1
0
2
dx
1xx
1
Q

+6
++
=
1
0
2
dx
)
2
1
x(
3
2
1
1
3
4
Q
+
( )
2/;2/t;ttan
2
1
x
3
2
ππ
=
+
9
3
dt
2
3
3
4
Q
1
0
π
==
Chó ý:B6 
2
bxa +
++
+

2
bxa +
++
+ Z+6
+=+
2
2
x
a
b
1axba

2
2
x
a
b
1abxa
+=+ +
( )
2/;2/t;ttanx
a
b
ππ
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 5
C¸ch ®Æt 3.B6/ 
xa
xa
+
++
+

xa
xa
+
++
+
Z
]
2
/
;
0
[
t
;
t
2
cos
a
π
ππ
π
=
==
=
+'g+e:;

=+
=
tcos2t2cos1
tsin2t2cos1
2
2
VÝ dô 4.
#
>
>>
>
+
++
+
=
==
=
0
a
0a;dx
xa
xa
I

]2/;0[t;t2cosax
π
=
,
+
=
4/
2/
dt)t2sina2(
t2cos1
t2cos1
I
π
π
4
4
a
π
=
$#
+
++
+
=
==
=
2/2
0
dx
x1
x1
J

]2/;0[t;t2cosx
π
=
,
+
=
8/
4/
dt)t2sin2(
t2cos1
t2cos1
J
π
π
F
4
224
tdtcos4J
4/
8/
2
+
==
π
π
π
K/0
t
x1
x1
=
==
=
+
++
+
,,j+8:!"M
U' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 2:
^9C_
=
==
=
b
a
dx)x(fI W`5'.
HU'.#-F+A?
HU'.$#@+:?FaA:+50bPA?:?1+:#cdPA?:?FA:
HU'.&#-7e\?FZAF +.F
α
I\?F5ZAF5 +.F
β
HU'.)#U67
=
β
α
dt)t(gI A:f2ZO756./gh
C¸ch ®Æt ®æi biÕn d¹ng 2.
C¸ch ®Æt 1.
B6 klDZFD#
VÝ dô 1.
#
=
==
=
2/
0
2
dx
xcos4
x2sin
I
π
ππ
π
/0F)H
$
?,
3
4
ln
t
dt
I
4
3
==
$#
+
++
+
=
==
=
4/
0
22
dx
xcos2xsin
x2sin
J
π
ππ
π

xcos1xcos2xsint
222
+=+=
,
==
2
2/3
4
3
ln
t
dt
J
K/05e05676D+8$?/'$?+,+M
-8?@
+
++
+
=
==
=
2/
0
2222
1
dx
xcosbxsina
xcosxsin
J
π
ππ
π
+.
0ba
22
>+
&#
+
++
+
=
==
=
2ln
0
x
dx
5e
1
K

5et
x
+=
5te
x
=
dtdxe
x
=
/?@`,50
 
dxe
x
7
12
ln
5
1
t
5t
ln
5
1
)5t(t
dt
)5e(e
dxe
K
7
6
7
6
2ln
0
xx
x
=
=
=
+
=
Kc/0567,W6
7
12
ln
5
1
dx
5e
e
5
1
dx
5e
5e
5
1
dx
5e
e5e
5
1
K
2ln
0
x
x
2ln
0
x
x
2ln
0
x
xx
=
+
+
+
=
+
+
=
M
)#
+
++
+
+
++
+
=
==
=
2/
0
2
dx
)4x2cosxsin2(
xcosx2sin
H
π
ππ
π

4x2cosxsin2t +=
21
2
dt
t
1
2
1
H
7
3
2
==
Km\\9nVM
<#
+
++
+
=
==
=
2/
0
2
3
dx
xcos1
xcosxsin
G
π
ππ
π
og,p*&F$
xcos1t
2
+=
1txcos
2
=
dtxdxcosxsin2 =
\/
2
2ln1
)tlnt(
2
1
dt
t
)1t(
2
1
G
2
1
2
1
=
=
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 6
=#
++
=
4/
0
dx
2xcosxsin
x2cos
M
π
ππ
π

2xcosxsint ++=
dx)xsinx(cosdt = 'g$?FA??A?H?
( )
3
22
ln12tln2t
t
dt)2t(
dx
2xcosxsin
)xsinx)(cosxsinx(cos
M
22
3
22
3
4/
0
+
+==
=
++
+
=
+
+
π
>#
++
=
4/
0
3
dx
)2xcosx(sin
x2cos
N
π
ππ
π

2xcosxsint ++=
,
)21(2
1
9
2
3
1
9
1
22
1
)22(
1
t
1
t
1
t
dt)2t(
N
2
22
3
22
3
23
+
=+
+
+
=
=
=
+
+
-8?@
+
=
4/
0
1
dx
2xcosxsin
x2cos
M
π
ππ
π
+
+
=
4/
0
3
1
dx
)2xcosx(sin
x2cos
N
π
ππ
π
q#
C¸ch ®Æt 2.B6 % 
n
)x(
ϕ
ϕϕ
ϕ
Z
n
)x(t
ϕ
ϕϕ
ϕ
=
==
= /rs$+6+@+$+6#
VÝ dô 1.
#
+
++
++
++
+
=
==
=
1
0
dx
1x32
3x4
I

1x3t +=
(
)
1t
3
1
x
2
=
tdt
3
2
dx =
\/'+8:
( )
3
4
ln
3
4
27
2
dt
t2
6
9
2
dt3t8t4
9
2
dt
t2
t13t4
9
2
I
2
1
2
1
2
2
1
3
=
+
+=
+
=
$#
+
=
7
0
3
2
3
dx
x1
x
J

3
2
x1t +=
1tx
32
=
dtt3xdx2
2
=
20
141
dt)tt(
2
3
J
2
1
4
==
&#
+
=
2
1
2
dx
x1x
1
K

2
x1t +=
1tx
22
=
tdtxdx =
5
2
5
2
2
1t
1t
ln
2
1
t)1t(
tdt
J
+
=
=
)#
+
=
2
1
3
dx
x1x
1
H

3
x1t +=
1tx
23
=
tdt2dxx3
2
=
9C+D+.?
$
'(
2
12
ln
3
2
1t
1t
ln
3
1
1t
dt
3
2
x1x
xdx
H
3
2
3
2
2
2
1
32
+
=
+
=
=
+
=
<#
+
+
=
3
0
2
35
dx
1x
x2x
G

2
x1t +=
1tx
22
=
tdtxdx =
/?
$
#?#A?
$
$'(
5
26
t
5
t
t
tdt)1t)(1t(
dx
1x
x.x)2x(
G
2
1
5
2
1
22
3
0
2
22
=
=
+
=
+
+
=
=#
+++
=
6
1
3
dx
1x91x9
1
M

6
1x9t +=
(
)
1t
9
1
x
6
=
dtt
3
2
dx
5
=
rs5e+5e5
/
+=
+
+=
+
=
+
=
3
2
ln
6
11
3
2
dt)
1t
1
1tt(
3
2
1t
dtt
3
2
tt
dtt
3
2
M
2
1
2
2
1
3
2
1
23
5
VÝ dô 2.
#[§H.2005.A]
+
+
=
2/
0
dx
xcos31
xsinx2sin
P
π
ππ
π

xcos31t +=
)1t(
3
1
xcos
2
=
tdt
3
2
xdxsin =
/
C?/
+
+
=
2/
0
xcos31
xdxsin)1xcos2(
P
π
( )
27
34
t
3
t2
9
2
dx1t2
9
2
2
1
3
2
1
2
=
+=+=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 7
$#
dx.
xsin31
x2sinx3cos
Q
2
0
+
+
=
π
ππ
π

xsin31t +=
)1t(
3
1
xsin
2
=
tdt
3
2
xdxcos =
:; 
+&+6
dx.
xsin31
xcosxsin2xcos3xcos4
Q
2
0
3
+
+
=
π
xdxcos.
xsin31
xsin23xsin44
2
0
2
+
+
=
π
Xe
+=
2
1
24
dt)1t14t4(
27
2
Q
405
206
tt
3
14
t
5
4
27
2
2
1
35
=
+=
&. [§H.2006.A]
+
=
2
0
22
dx
xsin4xcos
x2sin
R
π
ππ
π

xsin31t
2
+=
)1t(
3
1
xsin
22
=
tdt
3
2
xdx2sin =
#\/
3
2
t
3
2
t
tdt
3
2
R
2
1
2
1
===
)#
VÝ dô 3.
#
+
=
e
1
dx
x
xln31xln
P

xln31t +=
)1t(
3
1
xln
2
=
tdt
3
2
dx
= \/
( )
135
116
dxtt
9
2
P
2
1
4
==
$#
+
=
e
1
dx
xln21x
xln23
Q


xln21t +=
)1t(
2
1
xln
2
=
tdt
dx
=
#i/
3
1139
3
t
t4dt)t4(
t
tdt)1t(3
Q
3
1
3
2
1
2
2
1
2
=
==
=
&#
+
=
2ln2
2ln
x
1e
dx
R
#
1et
x
+=
,
tdt2dxe
x
=
+
+
=
=
5
3
2
13
13
.
15
15
ln
1t
dt2
R
)#
+
=
3
0
3
x
e1
dx
S
#
3
x
et =
,
1e
e2
ln3
)1t(t
dx3
S
e
1
+
=
+
=

<#
+
=
5ln
0
x
xx
3e
dx1ee
X
C¸ch ®Æt 3.
B6 '(
sin
J
cos
+
2
x
tan
Z
2
x
tant
= \/
2
t1
t2
xsin
+
=
J
2
2
t1
t1
xcos
+
=
VÝ dô 4.
#
dx.
5xcos3xsin5
1
Q
2/
0
++
=
π


2
x
tant
=
2
t1
dt2
dx
+
=
+
5
8
ln
3
1
4t
1t
ln
3
1
dt
4t5t
1
Q
1
0
1
0
2
=
+
+
=
++
=
$#
dx.
2xcos
2
x
tan
L
3/
0
+
=
π

2
x
tant =
2
t1
dt2
dx
+
=
+
9
10
ln3tln
3t
tdt2
L
3/1
0
2
3/1
0
2
=+=
+
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 8
&#
++
=
4
0
dx
1x2sinx2cos
x2cos
V
π

xtant
=
2
t1
dt
dx
+
=
+
+
+
+
=
+
+
=
1
0
2
1
0
2
1
0
2
)t1(2
tdt
)t1(2
dt
)t1(2
dt)t1(
V
1
0
2
1
1tln
4
1
V ++=

8
)t1(2
dt
V
ytant
1
0
2
1
π
=
=
+
=
,
8
2ln2
dx
1x2sinx2cos
x2cos
V
4
0
+
=
++
=
π
π
)#
++
+
=
4
0
22
2
dx
1xsinx2sinxcos
xtan1
N
π
+6
++
+
=
4
0
2
dx
1x2sinx2cos
xtan1
N
π
+
xtant
=
2
t1
dt
dx
+
=
,
4
2ln23
1tlnt
2
t
2
1
dt
1t
t1
2
1
N
1
0
2
1
0
2
+
=
+++=
+
+
=
<#Q-G#$ttq#UR
+++
=
4
0
dx
)xcosxsin1(2x2sin
4
xsin
F
π
π
+6
( )
+++
=
4
0
dx
)xcosxsin1(2xcosxsin2
xcosxsin
2
1
F
π
:W
+u`!
xcosxsin
+
+
xcosxsin

xcosxsint
+
=
dx)xsinx(cosdt
=
+
2
1t
xcosxsin
2
=
\/
+
=
+
=
++
=
++
=
2
1
2
1
2
2
1
2
22
1
22
1
1t
1
2
1
1t2t
dt
2
1
)t1(21t
dt
2
1
F
C¸ch ®Æt 4.
3W+0e#
B6/:
=
a
a
dx)x(fI
Z/0+6
+=
a
0
0
a
dx)x(fdx)x(fI
FH?0567
=
0
a
1
dx)x(fI

B6/:
=
π
0
dx)x(fI
Z/0F
π
H?
B6/:
=
π
2
0
dx)x(fI Z/0F$
π
H?
B6/:
=
2/
0
dx)x(fI
π
Z/0F
2
π
H?
B6/:
=
b
a
dx)x(fI Z/0FA5H?
VÝ dô 4.
#
=
1
1
2008
xdxsinxI +6 +=
0
1
2008
xdxsinxI BAxdxsinx
1
0
2008
+=
#FH?Z]FHU#+emFt#
$#
+
=
π
0
2
dx
xcos1
xsinx
J

xt
=
π
\/
+
+
=
ππ
π
0
2
0
2
dt
tcos1
tsint
dt
tcos1
tsin
J
7566
2
dt
tcos1
tsin
J
2
utantcos
0
2
1
ππ
π
=
====
+
=
+
Jdt
tcos1
tsint
J
xt
0
2
2
=
===
+
=
π
#Xe
4
JJ
2
J
22
ππ
==
C¸ch ®Æt 4.
B6/ 
0a;cbxax
2
>++
Z/0
cbxaxxat
2
++=
/?1
+:?1+:#KvO621M
VÝ dô 5.
#
+
=
1
0
2
1xx
dx
I

1xxxt
2
+=
1
t
2
t1
x
2
+
=
3ln
1t2
dt2
I
2
1
=
=
$#
+
=
1
0
2
1x2x9
dx
J

1x2x9x3t
2
+=
)1t3(2
1t
x
2
=
2
126
ln
3
1
1t3
dt
J
22
1
=
=
III)Ph−¬ng ph¸p tÝch ph©n tõng phÇn
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 9
H^9C_
=
b
a
dx)x(fI #i/W`5'.Z
U'.#X6:'.:
==
b
a
b
a
dx)x(h).x(gdx)x(fI
U'.$#-
=
=
dx).x(hdv
)x(gu
=
=
dx).x(hv
dx)x('gdu
U'.&#:; 
=
b
a
b
a
b
a
du.vv.udv.u
c0s_
+C¸ch ®Æt 1.
B6/:
=
b
a
dx.axsin).x(PI Zw
=
=
dx.axsindv
)x(Pu
=
=
a
axcos
v
dx)x('Pdu
B6/:
b
a
dx.axcos).x(P Z
=
=
dx.axcosdv
)x(Pu
=
=
a
axsin
v
dx)x('Pdu
B6/:
b
a
ax
dx.e).x(P
Z
=
=
dx.edv
)x(Pu
ax
=
=
a
e
v
dx)x('Pdu
ax
VÝ dô 5.
#
=
π
0
dx.x2sin).1x3(I 
=
=
dx.x2sindv
1x3u
=
=
2
x2cos
v
dx3du
2
3
dx.x2cos
2
3
2
x2cos
)1x3(I
0
0
π
π
π
=+=
$#
+=
2/
0
2
dx.xcos).1x(J
π

=
+=
dx.xcosdv
1xu
2
=
=
xsinv
xdx2du
1
2
0
2/
0
2
J2
4
4
dx.xsin..x2xsin)1x(J
+
=+=
π
π
π

=
2/
0
1
dx.xsin.xJ
π
5p
=
=
dx.xsindv
xu
/,
1xdxcosxcosxJ
2/
0
2/
0
1
=+=
π
π
#Xe
4
4
2
4
4
J
22
=
+
=
ππ
&#
+=
1
0
x32
dx.e).1xx(L

=
+=
dx.edv
1xxu
x3
2
1
3
1
0
x3
1
0
x32
L
3
1
3
1e
dx.e).1x2(
3
1
e)1xx(
3
1
L
=+=
6
=
1
0
x3
1
dx.e).1x2(L 
=
=
dx.edv
1x2u
x3
9
4e4
L
3
1
=
,
27
5e5
L
3
=
)#
=
π
0
2
dx.)xsinx(M +6
=
==
π
π
ππ
0
0
2
00
2
xdx2cosx
2
1
4
x
dx.
2
x2cos1
xdx.xsinxM
?O
0dx.x2cosxM
xu
xdx2cosdv
0
1
===
=
=
=
π
#+e/
4
M
2
π
=
<#
=
4/
0
2
dx.xsinM
π
756
xt =
0'
=
2/
0
tdtsint2M
π
5p
=
=
dt.tsindv
t2u
2
M
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 10
+C¸ch ®Æt 2.B6/:
=
b
a
ax
dx.bxsineI Z
=
=
dx.edv
bxsinu
ax
=
=
a
e
v
bxdxcosbdu
ax
B6/:
=
b
a
ax
dx.bxcoseI Z
=
=
dx.edv
bxcosu
ax
=
=
a
e
v
bxdxsinbdu
ax
VÝ dô 6.
#
=
2/
0
x2
dx.x3sin.eI
π

=
=
dxedv
x3sinu
x2
=
=
2
e
v
xdx3cos3du
x2
1
0
x2
2/
0
x2
I
2
3
2
e
dx.x3cose
2
3
2
e
x3sinI ==
π
π
π
Ax#?O
=
π
0
x2
1
dx.x3coseI
+
=
=
dxedv
x3cosu
x2
I
2
3
2
1
dx.x3sine
2
3
2
e
x3cosI
0
x2
2/
0
x2
1
+=+=
π
π
+Ax/
+= I
2
3
2
1
2
3
2
e
I
π
13
3e2
I
+
=
π
$#
=
π
0
2x
dx.)xsin.e(F +6
=
=
πππ
0
x2
0
x2
0
x2
dx.x2cose
2
1
dx.e
2
1
dx.
2
x2cos1
eF
?O
2
1e
dx.e
2
1
F
2
0
x2
1
==
π
π
#V_s_'(
4
1e
dx.x2cose
2
1
F
2
0
x2
2
==
π
π
#
Xe/
8
1e
dx.)xsin.e(F
2
0
2x
==
π
π
+C¸ch ®Æt 3.B6/:
[ ]
=
b
a
dx)x(Q.)x(PlnI Z
[
]
=
=
dx).x(Qdv
)x(Plnu
=
=
dx)x(Qv
dx
)x(P
)x('P
du
VÝ dô 7.
#
=
5
2
dx)1xln(.xI 
[
]
=
=
dx.xdv
1xlnu
=
=
2
x
v
dx
1x
1
du
2
=
5
2
2
5
2
2
dx
2x2
x
)1xln(
2
x
I
4
272ln48
+
=
$#
++=
3
0
2
dx)x1xln(J 
=
++=
dxdv
x1xlnu
2
=
+
=
xv
dx
x1
1
du
2
1)23ln(3J +=
&#
=
e
1
2
xdxln.xK

=
=
xdxdv
xlnu
2
,
=
e
1
e
1
2
2
xdxln.xxln
2
x
K
#NO
=
e
1
1
xdxln.xK
+
=
=
xdxdv
xlnu
Z
4
1e
K
4
1e
K
22
1
=
+
=
#
)#
=
2
1
5
dx
x
xln
H

=
=
dxxdv
xlnu
5
,
256
2ln415
dxx
4
1
xln
x4
1
H
e
1
5
2
1
4
=+=
#
<#
=
3/
6/
2
dx
xcos
)xln(sin
G
π
π

=
=
dx
xcos
1
dv
)xln(sinu
2
=
=
xtanv
xdxcotdu
=
3/
6/
3/
6/
dx)xln(sinxtanI
π
π
π
π
6
2ln343ln33
π
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 11
=#
dx)x(lnoscF
e
1
=
π

=
=
dxdv
)xcos(lnu
=
=
xv
dx
x
)xsin(ln
du
+=
π
π
e
1
e
1
dx)xsin(ln)xcos(lnxI
Ax#?O
=
π
e
1
1
dx)xsin(lnF 
=
=
dxdv
)xsin(lnu
=
=
xv
dx
x
)xcos(ln
du
Fdx)xcos(ln)xsin(lnxF
e
1
e
1
1
==
π
π

+Ax/
2
1e
FF1eF
+
==
π
π
#
mmmv'2Z`5@b
]Hi
=
==
= dx
)x(Q
)x(P
I
+.P(x), Q(x) x#
B−íc 1:
B6bËc cña P(x)
bËc cña Q(x) Z@P(x)chia cho Q(x)'('2A(x)+:'R(x)J
 P(x) = Q(x).A(x) + R(x)J+.bËc R(x) < bËc Q(x)#
V,
)x(Q
)x(R
)x(A
)x(Q
)x(P
+
++
+=
==
=
+
++
+=
==
= dx
)x(Q
)x(R
dx)x(Adx
)x(Q
)x(P

B−íc 2:

=
==
= dx
)x(Q
)x(R
I
J+.bËc R(x) < bËc Q(x)#
c/0?9,kh¶ n¨ng
+Kh¶ n¨ng 1:
X. cbxax)x(Q
2
+
++
++
++
+=
==
= JA
0
a
ZbËc R(x) < 2
R(x) = M.x+N v
cbxax
Nx.M
)x(Q
)x(R
2
+
++
++
++
+
+
++
+
=
==
=
TH1 :
Q(x)/$`x
1
, x
2
J Q(x) = a(x – x
1
)(x – x
2
)#
cypA, B
2121
xx
B
xx
A
)xx)(xx(a
Nx.M
)x(Q
)x(R
+
++
+
=
==
=
+
++
+
=
==
=
TH2 :
Q(x)/`\Ox
0
J 
2
0
)xx(a)x(Q
=
==
=
#
cypA, B
2
0
0
2
0
)xx(
B
xx
A
)xx(a
Nx.M
)x(Q
)x(R
+
++
+
=
==
=
+
++
+
=
==
=
TH3 :
Q(x)+`#cypA, B
B
)
(
'
Q
.
A
)
(
R
+
++
+
=
==
=
+à
)x(Q
B
)x(Q
)x('Q.A
)x(Q
)x(R
+
++
+=
==
=
+Kh¶ n¨ng 2:
X.
dcxbxax)x(Q
23
+
++
++
++
++
++
+=
==
=
JA
0
a
Z5eR(x) < 3
TH1:
Q(x)/&`
.x,x,x
321
 
)xx)(xx)(xx(a)x(Q
321
=
==
=
cypA, B, C 
321321
xx
C
xx
B
xx
A
)xx)(xx)(xx(a
)x(R
)x(Q
)x(R
+
++
+
+
++
+
=
==
=
=
==
=
TH2:
Q(x)/1 n
0
2
1
x
J1 n
0
kÐp
0
x
J 
2
01
)xx)(xx(a)x(Q
=
==
=
cypA, B, C
2
0
01
2
01
)xx(
C
xx
B
xx
A
)xx)(xx(a
)x(R
)x(Q
)x(R
+
++
+
+
++
+
=
==
=
=
==
=
TH3:
Q(x)/T`
0
x
A5T&J 
3
0
)xx(a)x(Q
=
==
=
cypA, B, C
3
0
2
0
0
3
0
)xx(
C
)xx(
B
xx
A
)xx(a
)x(R
)x(Q
)x(R
+
++
+
+
++
+
=
==
=
=
==
=
TH4:
Q(x)/®óng mét nghiÖm ®¬n
1
x
J  )xax)(xx()x(Q
2
1
γ
γγ
γβ
ββ
β
+
++
++
++
+
=
==
= Atrong ®ã 0a4
2
<
<<
<
=
==
=
γ
γγ
γβ
ββ
β
#
cypA, B, C
γ
γγ
γβ
ββ
βγ
γγ
γβ
ββ
β
+
++
++
++
+
+
++
+
+
++
+
=
==
=
+
++
++
++
+
=
==
=
xax
CBx
xx
A
)xax)(xx(
)x(R
)x(Q
)x(R
2
1
2
1
+Kh¶ n¨ng 3:
X.5e
)
(
Q
z&Z'{|A?50 29'
1
4
+
++
+
I
1
24
+
++
+
±
±±
±
I
1
6
+
++
+
X:;#
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 12
#
+
++
+
+
++
++
++
+
=
==
=
0
1
2
2
dx
2x3x
1xx
I
+6
+
+=
0
1
2
dx
2x3x
1x4
1I
++6
2x
B
1x
A
2x3x
1x4
2
+
=
+
V/y'(
]FH&IUF>#i/
(
)
3ln72ln102xln71xln3xI
0
1
=+=
#
$#
++
=
1
0
2
dx
1xx
x
J
+6?F]A?
$
?aU,]FL$IUFHL$#Xe
21
JJJ +=
+.
3ln
2
1
1xx
)1xx(d
2
1
J
1
0
2
2
1
=
++
++
=
+
+
+
=
++
=
1
0
2
1
0
2
2
1
2
1
x
3
2
dx
3
4
.
2
1
1xx
dx
2
1
J

utan
2
1
x
3
2
=
+
,
9
3
du
3
32
J
3/
6/
2
π
π
π
==
#
&#
+
=
3
1
3
dx
x3x
1
K
+6
3x
cBx
x
A
x3x
1
23
+
+
+=
+
/y'(]FL&JUFHL&JcFt#XZ6+6'(
3ln
6
1
dx
)3x(3
x
dx
x3
1
K
3
1
2
3
1
=
+
=
KXZ''(?+,+M#
)#
UYi
+
+
=
β
α
dx
xcosdxsinc
xcosbxsina
I
AJ:
tZ+6VF]#AnVU#AnVa y]JU
dcosx)'B(csinxdcosx)A(csinx bcosx asinx
+
+
+
=
+

2
x
tant =
2
t1
t2
xsin
+
=
2
2
t1
t1
xcos
+
=
X:;#
#
+
+
=
2/
0
dx
xcosxsin
xcos5xsin3
I
π
+6
sinx)-B(cosxcosx)A(sinx cosx 53sinx ++=+
,]F)IUF#
i/
( )
π
π
ππ
2xcosxsinlnx4
xcosxsin
)xcosx(sind
dx4I
2/
0
2/
0
2/
0
=++=
+
+
+=
$#
+
+
=
2/
0
3
dx
)xcosx(sin
xcosxsin3
J
π
+6
sinx)-B(cosxcosx)A(sinx cosx 3sinx ++=+
,]F$IUFH#
i/
2
)xcosx(sin2
1
)
4
xcot(
)xcosx(sin
)xcosx(sind
dx
)xcosx(sin
2
I
2/
0
2
2/
0
3
2/
0
2
=
+
++=
+
+
+
=
π
ππ
π
cYi
++
++
=
β
α
dx
nxcosdxsinc
mxcosbxsina
I
AJ:
tZ+6VF]#AnVU#AnVac#cy]JUJc
Cn)'dcosxB(csinxn)dcosxA(csinx mbcosx asinx ++++++=++
/0
2
x
tant =
2
t1
t2
xsin
+
=
2
2
t1
t1
xcos
+
=
X:;#
#
++
+
=
2/
0
dx
5xcos3xsin4
7xcosxsin7
I
π
+6
C3sinx)-B(4cosx)5cosx3A(4sinx 7cosx7sinx
+
+
+
+
=
+
i/]FIUFHIcF$+
++
+
++
++
=
2/
0
2/
0
2/
0
dx
5xcos3xsin4
2
dx
5xcos3xsin4
)5xcos3xsin4(d
dxI
πππ
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 13
NO
++
=
2/
0
1
dx
5xcos3xsin4
2
I
π

2
x
tant =
2
t1
t2
xsin
+
=
2
2
t1
t1
xcos
+
=
,
3
1
dt
)2t(
1
2I
1
0
2
1
=
+
=
#Xe
(
)
8
9
ln
3
1
2
I5xcos3xsin4lnxI
1
2/
0
+=+++=
π
π
Xv'2:4E\6
X:;#
#
+
=
2
0
xcosxsin
xdxsin
I
π
?OE 
+
=
2
0
xcosxsin
xdxcos
J
π
i/
2
JI
π
=+ Ax#
n\
0
xcosxsin
)xcosx(sind
xcosxsin
dx)xcosx(sin
JI
2
0
2
0
=
+
+
=
+
=
ππ
Axx#^9m`Ax+Axx,mFjF
4
π
#
$#
dx
xcosxsin
xsin
I
2
0
nn
n
n
+
=
π
?O
dx
xcosxsin
xcos
J
2
0
nn
n
n
+
=
π
#i/
2
JI
nn
π
=+ Ax
n\6?F
2
π
HZ
n
2
0
nn
n
2
0
nn
n
n
Jdx
xcosxsin
xcos
dt
tcostsin
tcos
I =
+
=
+
=
ππ
Axx#sAxJAxx/
4
I
n
π
=
&#
dx
xcosxsin
xsin
I
2
0
nn
n
n
+
=
π
'2W?O
dx
xcosxsin
xcos
J
2
0
nn
n
n
+
=
π
+,
4
JI
nn
π
==
)#
dx
xcos3xsin
xsin
E
6
0
2
+
=
π
+
dx
xcos3xsin
xcos
F
6
0
2
+
=
π
/
3ln
4
1
dx
xcos3xsin
1
FE
6
0
=
+
=+
π
Ax
/
31dx)xcos3x(sinF3E
6
0
==
π
Axx#^9m`AxJAxx'(
4
31
3ln
16
1
E
=
+
4
31
3ln
16
3
F
+=
#nl,T
==
+
=
EFdx
xcos3xsin
x2cos
E
6
0
π
2
31
3ln
8
1
+
-8?@
dx
xcos3xsin
x2cos
L
6
0
=
π
C¸c bi to¸n t−¬ng tù.
C¸c bi to¸n t−¬ng tù.C¸c bi to¸n t−¬ng tù.
C¸c bi to¸n t−¬ng tù.
A – Ph−¬ng ph¸p biÕn ®æi trùc tiÕp
#Q-GBBm#}q#]R
+
++
+
+
++
+
=
==
=
1
0
x2
2x
e1
dx)e1(
M
+ B×nh ph−¬ng v ph©n tÝch thnh 2 ph©n sè ®¬n gi¶n.
+ BiÕt ®æi biÕn.
^9
+
++
+
+
++
+
+
++
+
+
++
+
=
==
=
1
0
x2
x
1
0
x2
x2
e1
dxe2
e1
dxe1
M

+
++
+
=
==
=
1
0
x2
x
1
e1
dxe2
M

(
((
(
)
))
)
2/;2/t,ttane
x
π
ππ
ππ
ππ
π
=
==
=
\/+.
α
F1+
+
=
α
π
4/
22
1
tcos)ttan1(
tdttan2
M
F
2
e1
ln
ttan1
1
ln2tcosln2tdttan2
2
4/
2
4/
4/
+
=
+
==
α
π
α
π
α
π
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
+
^9
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
+
^9
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 14
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
+
^9
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
+
^9
#Q-GBBm#}q#]R
+
+
1
0
x2
2x
e1
dx)e1(
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
&#Q-GUi#}qR
+
2
0
44
dx)xcosx(sinx2cos
π
ππ
π
)#Q-G3-#}qR
++
2
1
1x1x
dx
<#
+
6
0
dx
)
6
xcos(.xcos
1
π
ππ
π
π
ππ
π
=#
+
2
e
e
dx
x
)xln(lnxln
>#Q-Gn~#ttR
+
3
6
dx
)
6
xsin(xsin
1
π
ππ
π
π
ππ
π
π
ππ
π
q#
3
0
4
xdx2sinxcos
π
ππ
π
}#Q-GBB#tR
+
4
0
66
dx
xcosxsin
x4sin
π
ππ
π
t#Q-GBBm#tR
2
4
4
6
dx
xsin
xcos
π
ππ
π
π
ππ
π
#
3
4
4
xdxtg
π
ππ
π
π
ππ
π
12. [C§GTVT.01]
+
3
2
2
dx.x3x
&#Qc-VvUB#ttR
+
3
0
2
dx4x4x
)#
π
ππ
π
0
dxxsinxcos
<#
+
3
6
22
dx2xgcotxtg
π
ππ
π
π
ππ
π
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 15
=#
+
3
0
23
dxxx2x
>#
1
1
dxx4
-
)35(2
q#
1
1
dxxx
3
22
}#
( )
+
5
3
dx2x2x
q
$t#
+
+
3
0
2
2
dx.
2xx
1xx
$#
+
π
ππ
π
0
dxx2cos22
)
$$#
π
ππ
π
0
dxx2sin1
22
$&#
+
2/
0
dxxsin1
π
ππ
π
24
$)#
1
0
Ra;dxax
<+
+
1m0~2/1mm
0m~2/1m
2
$<#
++
2
1
2
Ra;dxax)1a(x
2
a
ZA&Y<L=I
••$ZAH
&
L&YA&H<L=
ZA<Y&L=
$=#
+
2
0
3
dx
xcos1
xcos
π
ππ
π
$q#Q-G#$tt<#3R
+
++
+
2
0
xsin
xdxcos)xcose(
π
ππ
π
$q#Q-G#$tt&#3R
2
0
2
dxxx
$}#Q-G#$tt&#UR
+
++
+
4/
0
2
dx
x2sin1
xsin21
π
ππ
π
$}#
(
((
( )
))
)
dx.xcos.xsinxcosxsinM
2
0
2266
+
++
+=
==
=
π
ππ
π
&t#
dx.
xcos
xsin
N
4
0
8
2
=
==
=
π
ππ
π
&#
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 16
B – Ph−¬ng ph¸p ®æi biÕn
#Qc-UB#tR
+
1
0
32
3
dx
)x1(
x
G3
fsf
$#QvXU#tR
1
0
23
dx.x1x
&#
+
3ln
0
x
2e
dx
)#Qc-N3#tR
+
2
0
2
dx
xcos1
x2sin
π
ππ
π
<#Q-Gi|3#}>R
1
0
635
dx)x1(x
-8?@
1
0
72
dx)x1(x
=#Q-G|^#}>#UR
+
1
0
x1
dx
>#Q-G#$tt)#]R
+
2
1
1x1
xdx
€€q#Q-G#$tt&#]R
+
32
5
2
4xx
dx
}#Q-GVvGB#tt#UR
π
ππ
π
0
222
dxxax
t#Q-GUi#ttR
+
2ln
0
x
x2
1e
dxe
#
++
23
14
2x58x
dx
$#
( )
+
2
0
2
dx
xsin2
x2sin
π
ππ
π
&#
4
0
3
xcos
dx
π
ππ
π
)#
++
6
2
dx
1x4x2
1
<#
+
3
0
25
dxx1x
=#
+
2
e
e
dx
x
)xln(lnxln
>#
+
4
2
dx
x
1x
q#
++
+++
1
0
22
23
dx
1x)x1(
x101x3x10
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 17
}#
e
1
2
dx
xln1x
1
$t#
+
e
1
dx
xln1x
xln
$#
+++
4
0
3
dx
1x21x2
1
$&#
+
4
7
2
9x.x
dx
$)#
++
7
2
dx.
2xx
1
$<#
( )
+
1
0
2
2
x31
dx
$=#Q^X#ttR
+
++
+
2
2
2
dx
xsin4
xcosx
π
ππ
π
π
ππ
π
$>#Q-G]B#}>R
+
++
+
π
ππ
π
0
2
xcos1
xdxsinx
$q#Q-GB#ttR
+
++
++
++
+
2
0
dx
xcosxsin2
1
π
ππ
π
$}#Q-GG-#ttR
+
++
+
4
0
dx
tgx1
1
π
ππ
π
&t#Q-GXG#tR
+
++
+
4
0
dx
x2cosx2sin
xcosxsin
π
ππ
π
&#QGXUcX#}qR
+
++
+
2
0
2
3
xcos1
xdxcosxsin
π
ππ
π
&$#
+
++
+
=
==
=
1
1
22
dx
)1x(
1
I
&&#Q-GB#tR
+
++
+
+
++
+
+
++
+
2)51(
1
24
2
dx
1xx
1x
&)#Q-Gci#ttR
+
++
++
++
+
1
0
24
dx
1xx
x
&<#QGXi|V#}qR
+
++
++
++
++
++
+
1
1
2
)x1x1(
dx
&=#QvXU#tR
1
0
23
dx.x1x
&>#Q-G#$tt)#UR
+
++
+
e
1
dx
x
xlnxln31
&q#Q-G#$tt<#]R
+
++
+
+
++
+
2
0
dx
xcos31
xsinx2sin
π
ππ
π
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 18
&}#Q-G#$tt=#]R
+
++
+
2
0
22
dx
xsin4xcos
x2sin
π
ππ
π
)t#Q-G#$tt<#UR
+
++
+
2
0
dx
xcos1
xcosx2sin
π
ππ
π
)##Q-G#$tt<#UR
+
++
+
5ln
3ln
xx
3e2e
dx
)$#Q-G#$tt&#]R
+
++
+
32
5
2
4xx
dx
)&#Q-G#$tt)#]R
+
++
+
2
1
dx
1x1
x
))#Q-G#$ttq#]R
6/
0
4
dx
x2cos
xtan
π
ππ
π
)<#Q-8C-GR
+
++
+
4/
0
66
dx
xcosxsin
x4sin
π
ππ
π
)=#Q-8C-GR
+
++
+
+
++
+
e
1
2
dx.xln.x
xln1.x
1
)>#Q-8C-GR
+
++
+
4
0
1x2
dxe
)q#Q-8C-GR
+
++
+
2
0
3
dx
)xsin1(2
x2sin
π
ππ
π
G3-
sin
1
t
+
++
+
=
==
=
8
1
t2
dt)1t(2
2
1
3
=
==
=
)}#
=
==
=
8
4
2
dx
x
16x
I
<t#
+
++
++
++
+
=
==
=
4
2
dx
x
1x1x
J
<#
+
++
++
++
+
+
++
++
++
++
++
+
=
==
=
1
0
22
23
dx
1x)x1(
x101x3x10
K
<$#
=
==
=
2ln
2ln
x2
x
dx
e1
e
H
<&#
+
++
+
=
==
=
3ln
0
x2
1e
dx
G
<)#
+
++
++
++
+
=
==
=
2
0
xcos3xsin53
dx
F
π
ππ
π
<<#
+
++
+
=
==
=
2
0
24
3
dx
3xcos3xcos
xcos
D
π
ππ
π
<=#
+
++
+
=
==
=
5ln
0
x
xx
3e
dx1ee
S
<>#
+
++
+
=
==
=
π
ππ
π
π
ππ
π
2
xcosxsin2
dx
T
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 19
<q#
+
++
+
=
==
=
4
7
2
9x.x
dx
R
<}#
+
++
++
++
+
=
==
=
7
2
dx.
2xx
1
E
=t#
+
++
++
++
+
+
++
+
=
==
=
4
0
dx.
1x21
1x2
W
=#
+
++
+
=
==
=
2/
0
xcos2
dx
Q
π
ππ
π
-
2
x
tant =
==
=
Z
9
3
t)3(
dt
Q
utan3t
1
0
22
π
ππ
π
=
==
=
====
========
====
+
++
+
=
==
=
=$#
+
++
++
++
+
=
==
=
2
0
2
1x6x3
dx
M
C – Ph−¬ng ph¸p tÝch ph©n tõng phÇn
#Q-Gc-#}>R
+
++
+
1
0
x22
dxe)x1(
$#Q-Gci#}qR
4
0
2
dx)1xcos2(x
π
ππ
π
&#
+
++
+
2
0
23
dx)1xln(x +
10
0
2
xdxlgx
)#QvXU#}qR
e
1
2
dx)xlnx(
<#QGXBG#}qR
π
ππ
π
0
2
xdxcosxsinx
=#Q-Gc-#ttR
+
++
+
2
1
2
x
dx)1xln(
>#Q-G#tR
+
++
+
4
0
dx)tgx1ln(
π
ππ
π
q#
2
0
2
xdxxtg
π
ππ
π
}#Q-G•GB#tR
3
2
2
dx.1x
t#Q-8CR
2
1
2
dx)xx3ln(x
#Q-G#$tt>#3R
e
1
22
xdxlnx
$#Q-G#$tt=#3R
1
0
x2
dxe)2x(
&#
+
++
++
++
+=
==
=
0
1
3
x2
dx)1xe(xI
)#
+
++
+
=
==
=
2
e
e
dx
x
)xln(lnxln
J
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 20
<#
=
==
=
π
ππ
π
0
2
dx)xsinx(K
=#
+
++
+
=
==
=
1
0
2
dx
)1x2(sin
x
H
>#
=
==
=
4
0
3
dx
xcos
xsin.x
G
π
ππ
π
q#
=
==
=
2ln
0
x5
dxe.xF
2
}#
+
++
+
+
++
+
=
==
=
4
1
dx
xx
)1xln(
D
$t#
+
++
+
+
++
+
=
==
=
e
1
2
dxxln
xln1x
xln
S
$#
=
==
=
2
2
4/
2
dx.xcosA
π
ππ
π
π
ππ
π
$$#
(
((
( )
))
)
=
==
=
π
ππ
π
0
2
x
dxxcos.eP
$&#
dx.xsin.xU
2
0
=
==
=
π
ππ
π
$)#
dx.xcos.xsin.xY
2
0
=
==
=
π
ππ
π
$<#
+
++
+
+
++
+
=
==
=
3/
0
x
dxe
xcosxsin
xsin1
T
π
ππ
π
-
=
==
=
+
++
+
+
++
+
=
==
= dv;
xcosxsin
xsin1
u ##NO
+
++
+
=
==
=
3/
0
x
1
dxe
xcos1
xsin
T
π
ππ
π
+,
3
e
xcos1
xsine
T
3
3/
0
x
π
ππ
π
π
ππ
π
=
==
=
+
++
+
=
==
=
$=#
+
++
+=
==
=
1
0
2
dxx1R
-
2
)21ln(2 +
++
++
++
+
$>#
+
++
+=
==
=
1
0
2
dx)1xln(xE
-V
2
1
2ln
$q#
+
++
+=
==
=
2/
0
dx)xcos1ln(xcosW
π
ππ
π
-
1
2
π
ππ
π
$}#
+
++
+
=
==
=
e
e/1
2
dx
)1x(
xln
Q
-
1e
e2
+
++
+
&t#
+
++
+
+
++
+
=
==
=
2/
3/
dx
xcos1
xsinx
M
π
ππ
π
π
ππ
π
X6nFn
n
$
#X.
2
3
lndx
xcos1
xsin
M
2/
3/
1
=
==
=
+
++
+
=
==
=
π
ππ
π
π
ππ
π
+
++
+
=
==
=
3/
6/
2
dx
xcos1
x
M
π
ππ
π
π
ππ
π
#
-
+
++
+
=
==
=
=
==
=
dx
xcos1
1
dv
xu
=
==
=
=
==
=
2
x
cot2v
dxdu
4ln
3
)323(
M
2
=
==
=
π
ππ
π
Xe
8
3
ln
3
)323(
M +
++
+
=
==
=
π
ππ
π
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
| 1/21

Preview text:

lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN Chuyªn ®Ò 1: C¸ C c ¸ ph p − h ¬ng n p h p ¸ h p p t Ý t nh n h tÝ t ch h p h p © h n
Th«ng thường ta gÆp c¸c lo¹i tÝch ph©n sau ®©y:
+) Loại 1: TÝch ph©n cña h m sè ®a thøc ph©n thøc h÷u tû.
+) Loại 2: TÝch ph©n cña h m sè chøa c¨n thøc
+) Loại 3: TÝch ph©n cña h m sè l−îng gi¸c
+) Loại 4: TÝch ph©n cña h m sè mò v logarit
§èi víi c¸c tÝch ph©n ®ã cã thÓ tÝch theo c¸c ph−¬ng ph¸p sau:
I) Ph−¬ng ph¸p biÕn ®æi trùc tiÕp b
Dïng c¸c c«ng thøc biÕn ®æi vÒ c¸c tÝch ph©n ®¬n gi¶n v ¸p dông ®−îc b f (x d ) x ∫ = ∫ F(x)
= F(b) F(a) a a
+) BiÕn ®æi ph©n thøc vÒ tæng hiÖu c¸c ph©n thøc ®¬n gi¶n VÝ dô 1. TÝnh: 2 2 2 2   1. 1 2 2 Ix − =
2x dx ta cã I = ( − )dx = ln x +  = (ln2 + )1 − (ln1+ ) 2 = ln 2 −1 ∫ 3 x x x 2  x  1 1 1 2 e 2 e 2 x −  4  2 e 2. = ∫ −1/2 2x
− 3+ dx = (4 x −3x + 4ln x ) J = ∫ 3x + 4 dx = − 2 e 3 + e 4 + 7 x  x  1 1 1 8 3 5 8 8 4 x −  4 1   4 3  3. 207 K = ∫
3x 1 dx = ∫ x − 1/3 x − −2 / 3 x dx =  2 x − 3 4 x − 3 x  = 3 2  3 3   3 4  4 1 3 x 1 1
+) BiÕn ®æi nhê c¸c c«ng thøc l−îng gi¸c VÝ dô 2. TÝnh: π / 2 π / 2 π / 2   1. 1 1 sin 2x sin 8x
I = ∫ cos 3xcos5xdx = ∫ (cos2x +cos8x)dx =  +  = 0 2 2  2 8  −π / 2 −π / 2 −π / 2 π / 2 π / 2 π / 2   2. 1 1 sin 5x sin 9x 4
J = ∫ sin2xsin7xdx = ∫ (cos( 5 − x) − cos9x)dx =  −  = 2 2  5 9  45 −π / 2 −π / 2 −π / 2 π / 2 π / 2 π / 2 π / 2   3. 1 1 cos 4x cos10x
K = ∫ cos 3xsin7xdx = sin 7x cos x 3 dx = ∫
∫ (sin4x +sin10x)dx = −  +  = 0 2 2  4 10  −π / 2 −π / 2 −π / 2 −π / 2 π π 1 + π cos 2x  1 1  4. H = ∫ 2
sin 2x cos xdx = ∫sin 2x dx =  − cos 2x − cos 4x  = 0 hoÆc biÕn ®æi 0 2  4 16  0 0 0 π π 1 + π cos 2x  1 1  H = ∫ 2
sin 2x cos xdx = ∫sin 2x dx =  − cos 2x − cos 4x  = 0 2  4 16  0 0 0 π / 2 π / 2 π / 2 1 + sin 2x + 2 2 2 + + − 5. (sin x cos x) cos x sin x π / 2 G = ∫ cos 2x = dx = 2 cos xdx = ∫ ∫ (−2sin x) = 1 − sin x + dx + cosx sin x + cos x π / 6 π / 6 π / 6 π / 6 π / 2 π / 2 2 π / 2 π / 2  −    π 6. 1 cos 2x 1 1 sin 4x 3 E = ∫ 4 sin xdx =   dx = ∫
∫(3+cos4x −4cos2x)dx = 3x + − sin 2x =  2  8 8  4  16 0 0 0 0 π / 4 π / 4 π   / 2 π −π 7. 1 / 4 4 F = ∫ 2 tan xdx =  −1dx = − = ∫ . §Ò xuÊt: F cot xdx v 1 = ∫ 2 2 (tan x x)  cos x 0  4 0 0 π / 4 π / 4 F = ∫ 4 tan xdx 2 0
+) BiÕn ®æi biÓu thøc ë ngo i vi ph©n v o trong vi ph©n VÝ dô 3. TÝnh: 1 1 1 4 + 1. 1 3 1 (2x ) 1
I = ∫ (2x + 3 ) 1 dx = (2x + ) 1 d(2x + ) 1 = = 10 ∫ 2 2 4 0 0 0 2 2 1 1 −2 − + 2. = ∫ 1 1 3 1 (2x ) 1 1 1 J dx = (2x − ) 1 d(2x − ) 1 = = − = 0 ∫ (2x 3 ) 1 2 2 − 2 4 (2x − ) 1 2 1 1 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 1
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 7 / 3 7 / 3 7 / 3 3. 1 1/ 2 2 3 16
K = ∫ 3x 3dx = x 3 ( − ) 3 d 3 ( x − ) 3 = 3 ( x − ) 3 = ∫ 3 9 9 1 1 1 4 4 1 − − 4. = ∫ dx 1 1/ 2 2 1/ 2 10 2 13 H = − (25 − x 3 ) d(25 − 3x) = (25 − 3x) = ∫ − 25 3x 3 3 3 0 − 0 0 2 2 2   + − −   − − 5. = ∫ 1 x 1 x 1 1 3 2 1 G dx = dx = ( x +1 − x −1)dx = ∫  ∫  x + 1 x 1 (x − ) 1 − (x + ) 1 2 3 1 + + − 1  1 
(Nh©n c¶ tö v mÉu víi bt liªn hîp cña mÉu sè) §Ò xuÊt 1 1   G = dx ∫ = ∫
(ax + b)3 + (ax + c)3  + C víi a ≠ ; 0 b ≠ c 1
ax + b + ax + c a(b c)   1 1 1 1 6. 4
P = ∫ x 1 xdx = ∫ (x −1+ ) 1 1− xdx = −∫ (x − ) 1 1− xd 1 ( − x) + ∫ 1− xdx = 5 0 0 0 0 1 1 7. 2 1 1 2 2 Q1− = x e xdx = − e1−x d 1 ( − x 2 ) = −e1−x = e −1 ∫ 2 0 0 0 1 − §Ò xuÊt 4 6 2 Q = x3 1 ∫ + ∫ x 2 dx =
HD ®−a x v o trong vi ph©n v thªm bít (x2 + 1 H 1). 1 15 0 VÝ dô 4. TÝnh: π π / 2 π / 2 1. 1 I = (2 cos 3x ∫ + ∫ 3 sin 2x d
) x = 0 ; I = sin3 x cos xdx ∫ = ∫ v I = ecosx sin xdx ∫ = ∫ e 1 1 2 4 3 0 0 0 π / 4 π / 2 π / 4 2. sin x 2 J = tan xdx ∫ = ∫ ln 2 ; J = cot xdx ∫ = ∫ ln 2 v J = dx ∫ = ∫ ln 2 1 2 3 1 + 3 cos x 3 0 π / 6 0
(®−a sinx, cosx v o trong vi ph©n) e 2 e 3 e 3. sin(ln x) cos(ln x) 1 K = dx ∫ = ∫
1 cos1 ; K = dx ∫ = ∫
1 cos 2 v K = dx ∫ = ∫ 2 1 x 2 x 3 x 1 + ln x 1 1 1
{®−a 1/x v o trong vi ph©n ®Ó ®−îc d(lnx)} ln 3 x ln 3 4. e x 5 H dx = ln 2 + e = ln
1 = ∫ 2 + x e 1 2 + e 1 ln 2 ln 2 ln 2 ln 2 1 x 1+ x e − x x e 2e e H dx = ∫ dx = dx 2 dx 3ln 2 2 ln 3 x ∫ − ∫ = −
2 = ∫ 1 + x e 1+ e 1 + x e 0 0 0 0 ln 2 ln 2 ln 2 ln 2 ln 2 x x x + −   dx 1 (e 5 e )dx 1 1 e dx 1 1 x 1 12 H = = dx −  = x − ln e + 5  = ln ∫ ∫ ∫ 3 = ∫ x e + 5 5 ex + 5 5 5 ex + 5  5 5  5 7 0 0 0 0 0 1 x 1 1 e dx 2x 2 e dx 1 1 e 1 H = ∫ 2x + = ln e +1 = ln 4 = ∫ xe + x e 2x e +1 2 2 2 0 0 0 b
+) BiÕn ®æi nhê viÖc xÐt dÊu c¸c biÓu thøc trong gi¸ trÞ tuyÖt ®èi ®Ó tÝnh I = ∫ f(x,m)dx a
H XÐt dÊu h m sè f(x,m) trong ®o¹n [a; b] v chia [a;b]= [a;c ]∪[c ;c ]∪...∪[c ;b] trªn mçi ®o¹n h m sè f(x,m) 1 1 2 n gi÷ mét dÊu c c 1 2 b
H TÝnh I = ∫ f(x,m)dx + ∫ f(x,m)dx +...+ ∫ f(x,m)dx a c c 1 n VÝ dô 5. TÝnh: 2 1. I = ∫ 2
x + 2x 3 dx Ta xÐt pt: x 2 + 2 x 3 = 0
⇔ x = 1∨ x = 3 . B¶ng xÐt dÊu f(x) 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 2
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 1 2 1 2
Suy ra I = x2 + 2x − 3dx + x2 + 2x − 3dx = − (x2 + 2x − ) 3 dx + (x 2 + 2x − ) 3 dx = 4 ∫ ∫ ∫ ∫ 0 1 0 1 1 −2 0 1
2. J = ∫ 4x 3
x dx tÝnh t−¬ng tù ta cã J = 4x − x3 dx + 4x − x3 dx + 4x − x3 dx = 16 ∫ ∫ ∫ −3 −3 −2 0 3 3. 1 K = 2x ∫ − ∫ 4 dx = 4 + ln 2 0 2π 2π π 2π 4. H 1 cos 2xdx = 2 sin x dx = 2 sin x dx + 2 sin x dx = 2 2 ∫ ∫ ∫ 1 = ∫ − 0 0 0 π π H 1
sin 2xdx {ViÕt (1 – sin2x) vÒ b×nh ph−¬ng cña mét biÓu thøc råi khai c¨n} 2 = ∫ − 0 π π / 4 3π / 4 3π / 2
= sin x + cos x dx = sin x + cos x dx + sin x + cos x dx + sin x + cos x dx = 2 2 ∫ ∫ ∫ ∫ 0 0 π / 4 3π / 4
II) Ph−¬ng ph¸p ®æi biÕn sè
A ' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 1: b
Gi¶ sö cÇn tÝnh tÝch ph©n I = ∫ f(x)dx ta thùc hiÖn c¸c b−íc sau: a H B−íc 1. §Æt x = u(t)
H B−íc 2. LÊy vi ph©n dx = u’(t)dt v biÓu thÞ f(x)dx theo t v dt. Ch¼ng h¹n f(x)dx = g(t)dt
H B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β β
H B−íc 4. BiÕn ®æi I = ∫g(t)dt (tÝch ph©n n y dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa) α
C¸ch ®Æt ®æi biÕn d¹ng 1.
C¸ch ®Æt 1.
NÕu h m sè chøa 2
1 x th× ®Æt x = sin ; t t [ π − / ; 2 π / ]
2 hoÆc ®Æt x = cos ; t t [ ; 0 π ] VÝ dô 1. TÝnh: 1 2 1. A1− =
x dx ta ®Æt x = sin t;t ∈[ π − / ;
2 π / 2] ⇒ dx = cost.dt; ®æi cËn khi x = 2 /2 th× t = π / 4 ; khi x 2 x 2 / 2 π / 2 π / 2 π / 2 2 2 2 − − − π = 1 th× t = π 1 sin t cos t 1 sin t 4 / 2 . Khi ®ã A = cos t d . t = d . t = d . t = ∫ ∫ ∫ sin 2 t sin 2 t sin 2 t 4 π / 4 π / 4 π / 4 1 2 1 2 2. = ∫ x x B dx ta viÕt B = ∫ dx . 2 2 2 1 (x / 2) 0 − 0 4 x §Æt (x / 2) = cos t; t ∈ ; 0
[ π ] ⇒ x = 2 cos t ⇒ dx = 2 − sin tdt π / 3 π / 2 π / 2 2 π §æi cËn suy ra (2 cos t) B = ( 2 − sin tdt) = 4cos2 tdt = 2 ∫ ∫ ∫(1+ cos2t) 3 dt = − 2 3 2 π − / 2 2 1 cos t π / 3 π / 3 1 1  2 3. 3 x . C = ∫ 2 x 4 2
3x dx Tr−íc hÕt ta viÕt C = 2∫ 2   x 1 −   dx .  2  0 0 §Æt 3 x = sin t; t ∈[ π − / ;
2 π / 2] ®−a tÝch ph©n vÒ d¹ng: 2 π / 3 π / 3 16 − π 2 2 4 1 cos 4t 2 3 1 C = sin t cos tdt = dt = + ∫ ∫ 3 3 3 3 2 27 12 0 0 Chó ý:
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 3
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  x = sin t;t ∈[−π π 2 / ; 2 / ] 2    H NÕu h m sè chøa x a
a x2 ,a > 0 th× ta viÕt 2 a − x = a 1 −    v ®Æt  a   x  = cos t; t ∈[ ; 0 π ]  a  b π π 2  x = sin t; t ∈[− / ; 2 / ] 2   H NÕu h m sè chøa b  a
a bx2 ,a,b > 0 th× ta viÕt 2 a − bx = a 1  − x    v ®Æt   a   b x = cost;t ∈[ ; 0 π ]  a VÝ dô 2. TÝnh: 2 1. = ∫ 1 E
dx {ViÕt tÝch ph©n vÒ d¹ng 2 1 − X } 2 x x 1 2 / 3 − 2 π / 3 π ta viÕt = ∫ 1 1 E dx v ®Æt = sin t; t ∈ [− π / ; 2 π / 2] suy ra E = dt = ∫ 2 2 x 1 1/ x x 12 2 / 3 − ( ) π / 4 2 2 / 3 2 2. G3x − =
4 dx {ViÕt tÝch ph©n vÒ d¹ng 2 1 − X } 3 x 2 / 3 2 2 / 3 3 . x . 1 (2 / 3x)2 ta viÕt 2 G ∫ − = dx v ®Æt = sin t; t ∈ [− π / ;
2 π / 2] suy ra tÝch ph©n cã d¹ng 3 x 3x 2 / 3 π / 3 3 3 + − 2 3( 6 3 3) G = cos tdt = ∫ π
{NÕu tÝch ph©n cã d¹ng ax 2 − b th× viÕt vÒ d¹ng 2 1 − X } 2 16 π / 4
C¸ch ®Æt 2. NÕu tÝch ph©n cã chøa 2 1 + x hoÆc ( 2
1 + x ) th× ta ®Æt x = tan t;t ∈ (− π / ; 2 π / 2) hoÆc x = cot t; t ∈ ( ; 0 π ) VÝ dô 3. TÝnh: 3 π / 3 π 1. = ∫ 1 M
dx ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2) suy ra M = dt = ∫ 1 + 2 x 6 1 / 3 π / 6 3 π / 3 − 2. = ∫ 1 cos t 18 2 3 N
dx ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2) suy ra N = dt = ∫ 2 2 2 x . 1 x sin t. 3 1 + π / 4 a 3. = ∫ 1 P d ; x a 0 2 (a + 2 2 x ) 0 a π / 4 + ta viÕt = ∫ 1 x 1 2 P dx v ®Æt = tan t; ⇒ 2 P = cos tdt = ∫ π  3 3 x  2 a a 4a 0 4 2 a 1 + ( )  0  a  1 4. = ∫ 1 Q dx 2 x + x + 1 0 1   1 π ta viÕt = 4 2 1 4 3 3 Q ∫ 1 dx v ®Æt
 x +  = tan t; t ∈ (− π / ; 2 π / 2) ⇒ Q = dt = ∫ 3  2 3  2  3 2 9 0 1 + 2 1 0  (x + )  3 2 
Chó ý: NÕu gÆp tÝch ph©n chøa 2 a + bx hoÆc 2
a + bx th× ta viÕt:  2    2  b  2   b   b a + bx = a 1 + x hoÆc 2 a + bx = a 1  + x  v ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2)         a    a  a
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 4
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN − +
C¸ch ®Æt 3. NÕu tÝch ph©n cã chøa a x hoÆc a x th× ta ®Æt ta ®Æt x = acos t 2 ;t [ ;
0 π / 2] v l−u ý vËn dông a + x a x 1 − cos 2t = 2sin2 t  1 + cos 2t = 2cos2 t VÝ dô 4. TÝnh: 0 π / 4 a + 1 + − π 1. cos 2t 4 I = ∫ x d ;
x a > ta ®Æt x = a cos 2t; t ∈ ; 0 [ π / 2] suy ra I = ∫ (−2a sin 2t)dt = a a 0x 1 − cos 2t 4 −a π / 2 2 / 2 π / 8 1 + 1 + 2. cos 2t J = ∫
x dx ta ®Æt x = cos2t;t ∈[ ;0π / 2] suy ra J = ∫ (−2 sin 2t d ) t = 1 x 1 − cos 2t 0 π / 4 π / 4 + − 1 + x 2 4 2 2 J = 4 cos tdt = ∫ π {cã thÓ ®Æt
= t suy rra tÝch ph©n J vÒ d¹ng tÝch ph©n cña h m sè h÷u tû} 4 1 x π / 8
B ' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 2: b
Gi¶ sö cÇn tÝnh tÝch ph©n I = ∫ f(x d
) x ta thùc hiÖn c¸c b−íc sau: a H B−íc 1. §Æt t = v(x)
H B−íc 2. LÊy vi ph©n dx = u’(t)dt v biÓu thÞ f(x)dx theo t v dt. Ch¼ng h¹n f(x)dx = g(t)dt
H B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β β
H B−íc 4. BiÕn ®æi I = ∫g(t)dt (tÝch ph©n n y dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa) α
C¸ch ®Æt ®æi biÕn d¹ng 2.
C¸ch ®Æt 1.
NÕu h m sè chøa Èn ë mÉu th× ®Æt t = mÉu sè. VÝ dô 1. TÝnh: π / 2 4 1. dt 4
I = ∫ sin 2x dx ta cã thÓ ®Æt t = 4 H cos2x suy ra I = = ln ∫ 4 2 cos x t 3 0 3 π / 4 2 2. dt 3 J = ∫ sin 2x
dx ®Æt t = sin 2 x + 2 cos2 x = 1 + cos2 x suy ra J = ∫ = ln 2 sin x + 2 2cos x t 4 0 3 / 2
{cã thÓ h¹ bËc ®Ó biÕn ®æi tiÕp mÉu sè vÒ cos2x sau ®ã ®−a sin2x v o trong vi ph©n} π / 2 §Ò xuÊt: sin x cos x J
dx víi a 2 + b2 > 0 1 = ∫ 2 2 a sin x + 2 2 b cos x 0 ln 2 3. = ∫ 1 K
dx ta ®Æt t = ex + 5 ⇒ ex = t − 5 ⇒ exdx = dt sau ®ã l m xuÊt hiÖn trong tÝch ph©n biÓu x e + 5 0 ln 2 7 7 x − thøc e dx dt 1 t 5 1 12 ex dx ⇒ K = = = ln = ln ∫ ∫ ex (ex + ) 5 t(t − ) 5 5 t 5 7 6 0 6 ln 2 ln 2 ln 2 x x x x + − +
{Cã thÓ biÕn ®æi trùc tiÕp 1 e 5 e 1 e 5 1 e 1 12 K = dx = dx − dx = ln ∫ ∫ ∫ } 5 e x + 5 5 e x + 5 5 e x + 5 5 7 0 0 0 π / 2 7 sin 2x + 4. 1 1 2 H = ∫ cos x
dx ta ®Æt t = 2sin x − cos 2x + 4 ⇒ H = dt = ∫
(2sin x cos 2x + 2 4) 2 t 2 21 0 3
{®«I khi kh«ng ®Æt c¶ MS} π / 2 3
5. G = ∫ sinxcos x dx chó ý r»ng t¸ch mò 3 = 2 +1 ®Æt 1 + 2 cos x 0 2 2 1 (t − ) 1  1  1 − ln 2 t = 1 cos2 +
x ⇒ cos2 x = t −1 ⇒ 2sin x cos xdx = −dt khi ®ã: G = dt =  (t − ln t ) = ∫ 2 t  2  2 1 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 5
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π / 4 6. M = ∫ cos 2x dx
sin x + cos x + 2 0
ta ®Æt t = sin x + cos x + 2 ⇒ dt = (cos x − sin x)dx l−u ý cos2x = (cosx+sinx)(cosxHsinx) π / 4 2+ 2
(cos x + sin x)(cos x − sin x) (t − 2)dt 2+ 2 + M = dx = = ∫ ∫ (t − 2lnt ) 2 2 = 2 −1 + ln sin x + cos x + 2 t 3 3 0 3 π / 4 7. N = ∫ cos 2x
dx ®Æt t = sin x + cos x + 2 suy ra (sin x + cos x + 3 2) 0 2+ 2 2+ 2 (t − ) 2 dt  1 1  1 1 1 1 2 1 N = =  −  = − − + = − ∫ t 3  t 2 t  (2 + 2)2 2 + 2 9 3 9 2 1 ( + 2 ) 3 3 π / 4 π / 4 §Ò xuÊt: cos 2x cos 2x M dx v N dx 1 = ∫
1 = ∫ sin x cos x + 2
(sin x cos x + 3 2) 0 0 8.
C¸ch ®Æt 2. NÕu h m sè chøa c¨n thøc n ϕ(x) th× ®Æt n
t = ϕ(x) sau ®ã luü thõa 2 vÕ v lÊy vi ph©n 2 vÕ. VÝ dô 1. TÝnh: 1 4x − 1. 1 2 I = ∫ 3 dx ta ®Æt t = x 3 + 1 ⇒ x =
(t2 − )1⇒ dx = tdt khi ®ã ®−a tÝch ph©n vÒ d¹ng:
2 + 3x + 1 3 3 0 2 2 2 3 − 2 4t 13t 2 I = dt = ∫ ∫(4t2 −8t + 3) 2 6 2 4 4 dt − dt = − ln ∫ 9 2 + t 9 9 2 + t 27 3 3 1 1 1 7 3 2 2. = ∫ x 3 4 141 J dx ta ®Æt 3 2 t = 1 + x
⇒ x 2 = t3 −1 ⇒ 2xdx 3t 2 = dt ⇒ J = (t − t)dt = ∫ 3 2 2 20 0 1 + x 1 2 5 5 − 3. = ∫ 1 tdt 1 t 1 K dx ta ®Æt 2 t = 1 + x
⇒ x 2 = t2 −1 ⇒ xdx = tdt ⇒ J = = ln ∫ 2 2 (t − ) 1 t 2 t + 1 1 x 1 + x 2 2 2 4. = ∫ 1 H dx ta ®Æt 3
t = 1 + x ⇒ x 3 = t 2 − 1 ⇒ 3x2dx = t
2 dt nh©n c¶ tö v mÉu sè víi x2 ta ®−îc: 3 1 x 1 + x 2 3 3 xdx 2 dt 1 t −1 2 2 + 1 H = = = ln = ln ∫ ∫ 2 3 3 t 2 + −1 3 t +1 3 1 x 1 x 2 2 2 3 5 x + 3 5. G = ∫ 2x dx ta ®Æt 2 t = 1 + x
⇒ x 2 = t2 −1 ⇒ xdx = tdt nhãm x2.x.(x2 +2) ta ®−îc: 2 0 x + 1 2 3 2 (x 2 + ) 2 x 2 x . (t 2 + ) 1 (t 2 − ) 1 tdt  t5  26 G = dx = = − t = ∫ ∫   2 t +  5  5 0 x 1 1 1 6 6. = ∫ 1 1 2 M dx ta ®Æt 6 t = 9x + 1 ⇒ x = (t6 − )1 ⇒ dx t5 =
dt luü thõa bËc hai v bËc ba
9x + 1 + 3 9x + 9 3 − 1 1 2 2 2 2 t 5dt 2 t 3dt 2 2 1 2  11 2  ta cã: M = = = (t − t + 1 − )dt =  + ln  ∫ 3 2 ∫ ∫ 3 t + t 3 t + 1 3 t +1 3  6 3  1 1 1 VÝ dô 2. TÝnh: π / 2 sin 2x + 1. [§H.2005.A] 1 2 P = ∫
sin x dx ta ®Æt t = 1+ 3cosx ⇒ cosx = (t2 − )1 ⇒ sin xdx = − tdt nhãm 1 + 3 cos x 3 3 0 π / 2 2 2 (2 cos x + 3   nh©n tö sinx ta cã: 2 2 2 2t 34 P = ∫ )
1 sin xdx = ∫(2t + )1dx =  + t = 1 + 3cos x 9 9  3  27 0 1 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 6
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 2 + 2. cos 3x sin 2x 1 2 Q = d . x
ta ®Æt t = 1+ 3sin x ⇒ sin x = (t 2 − ) 1 ⇒ cos xdx = tdt ¸p dông c«ng thøc 1 + 3 sin x 3 3 0 π π 2 3 − + 2 2 − − +
nh©n ®«i v nh©n 3 ta viÕt: 4 cos x 3 cos x 2 sin x cos x 4 4 sin x 3 2 sin x Q = d . x ∫ = .cos xdx ∫ 1 + 3sin x 1 + 3sin x 0 0 2 2   VËy = 2 2 4 5 14 3 206 Q ∫(− 4 4t + 2 14t − d ) 1 t =  − t + t − t  = 27 27  5 3  405 1 1 π 2 3. [§H.2006.A] 2 1 R = ∫ sin 2x
dx ta ®Æt t = 1 3sin 2 + x ⇒ sin x = (t 2 − ) 1 ⇒ 2 2 3 0 cos x + 4 sin x 2 2 2 2 tdt 2 2 sin 2xdx = tdt . khi ®ã: R = = t = ∫ 3 3 t 3 3 1 1 4. VÝ dô 3. TÝnh: e 1. P lnx 1 + = 3 ln x dx x 1 2 Ta ®Æt 1 dx 2 2 4 116 t = 1 + 3ln x ⇒ ln x = (t 2 − ) 1 ⇒
= tdt khi ®ã: P = ∫(t − t)dx = 3 x 3 9 135 1 e 3 − 2. Q = ∫ 2 ln x dx x 1 + 2 ln x 1 Ta ®Æt 1 dx t = 1 + 2 ln x ⇒ ln x = (t 2 − ) 1 ⇒ = tdt . Khi ®ã: 2 x 3 2 2 3 − (t 2 − ) 1 tdt   − 2 t 3 9 3 11 Q = = (4 − t )dt = 4t − = ∫ ∫   t  3  3 1 1 1 2 ln 2 5 2dt 5 − 1 3 + 3. = ∫ dx 1 R
. Ta ®Æt t = ex + 1 suy ra exdx = 2tdt ⇒ R = ∫ = ln . x 2 t − 1 5 + 1 3 − 1 ln 2 e + 1 3 3 e 4. = ∫ dx d 3 x e 2 S . Ta ®Æt 3 x t = e suy ra S = = 3ln ∫ 3 x t(t + ) 1 e + 1 0 1 + e 1 ln 5 x x e e − 5. X = ∫ d 1 x x e + 3 0
C¸ch ®Æt 3. NÕu h m sè chøa c¸c ®¹i l−îng x x
sin x , cos x v tan
th× ta ®Æt t = tan khi ®ã 2 2 t 2 2 1 t sin x = , cos x = 2 1 + t 2 1 + t VÝ dô 4. TÝnh: π / 2 1. 1 Q = d . x ∫ 5 sin x + 3cos x + 5 0 1 1 + Ta ®Æt x 2dt 1 1 t 1 1 8 t = tan ⇒ dx = v Q = dt = ln = ln ∫ 2 2 1 + t t 2 + 5t + 4 3 t + 4 3 5 0 0 x π / 3 tan 1 / 3 1 / 3 2. 2 x d 2 t 2tdt 2 10 L = d . x ∫ ta ®Æt t = tan ⇒ dx = v L = = ln t + 3 = ln ∫ cos x + 2 2 2 1 + t t 2 + 3 0 9 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 7
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 4 1 1 ( + 1 1 3. dt t)dt dt tdt V = ∫ cos 2x dx ta ®Æt t = tan x ⇒ dx = v V = ∫ = 2 ∫ + 2 ∫ cos 2x + sin 2x + 1 2 1 + t 2 1 ( + t ) 2 1 ( + t ) 1 ( 2 + 2 t ) 0 0 0 0 1 π 4 1 1 t =tan y π + 2 = dt cos 2x 2 ln 2 V + ln t + 1 ta tÝnh V = = ∫ suy ra V = dx = ∫ π 1 1 2 0 4 1 ( 2 + t ) 8 cos 2x + sin 2x + 1 8 0 0 π 4 π 4 1 + 2 1 + 2 4. tan x N = ∫ tan x dx ta viÕt N = ∫ dx v ®Æt 2 cos x + sin 2x − 2 sin x + 1 cos 2x + sin 2x + 1 0 0 1 1 dt 1 1 + t 2 1  t 2  3 + 2 ln 2 t = tan x ⇒ dx = suy ra N = dt = + t + ln t +1 = ∫ 2   1 + t 2 t + 1 2  2  4 0 0  π  π 4 sin x −  π 4 1 (sin x − cosx) 5. [§H.2008.B] F = ∫  4  dx ta viÕt F = ∫ dx dùa sin 2x + 2 1 ( + sin x + cos x) 2 2 sin x cos x + 1 ( 2 + sin x + cos x) 0 0
v o mèi quan hÖ gi÷a sin x + cos x v sin x cos x ta ®Æt t = sin x + cos x ⇒ dt = (cos x − sin x)dx v 2 2 2 t 2 − 1 1 − dt 1 dt 1 1 1 1 sin x cos x = khi ®ã F = ∫ = − 2 ∫ = = − 2 2 t − 1 + 1 ( 2 + 2 t) 2 t + 2t + 1 2 t + 1 2 2 2 2 1 1 + 1
C¸ch ®Æt 4. Dùa v o ®Æc ®iÓm hai cËn cña tÝch ph©n. a 0 a 0
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ viÕt I = ∫f(x)dx + ∫f(x)dx ®Æt t = H x ®Ó biÕn ®æi I f (x d ) x 1 = ∫ −a −a 0 −a π
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = π H x 0 π 2
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = 2π H x 0 π / 2 π
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = H x 2 0 b
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = (a + b) H x a VÝ dô 4. TÝnh: 1 0 1 1. I = ∫ 2008 x sin xdx ta viÕt I = 2008 x sin xdx + ∫ x 2008 sin xdx = A + B ∫
. Ta ®Æt t = Hx th× A = H B. vËy I = 0. −1 −1 0 π π π π 2. sin t t sin t
J = ∫ x sin x dx ta ®Æt t = π − x khi ®ã J = ∫ dt − dt ta ®æi biÕn tiÕp: 2 ∫ 1 + 2 cos x 1 + cos t 1 + 2 cos t 0 0 0 π π π sin t 2 cos t =tan u π t sin t t =−x 2 2 π π J = dt ==== ∫ v J = dt === J ∫ .VËy J = − J ⇒ J = 1 2 1 + cos2 t 2 1 + cos2 t 2 4 0 0
C¸ch ®Æt 4. NÕu tÝch ph©n cã chøa ax 2 + bx + c; a > 0 th× ta cã thÓ ®Æt t − ax = ax 2 + bx + c sau ®ã tÝnh x theo t
v tÝnh dx theo t v dt.{PhÐp thÕ ¬le} VÝ dô 5. TÝnh: 1 2 − 2 1. = ∫ dx 1 t 2dt I
ta ®Æt t − x = x 2 − x + 1 ⇒ x = ⇒ I = = ln 3 ∫ 2 2t + 1 2t − 1 0 x − x + 1 1 1 2 − 2 2 − 2. = ∫ dx t 1 dt 1 6 2 1 J
ta ®Æt t − 3x = 9x 2 − 2x + 1 ⇒ x = ⇒ J = = ln ∫ 2 ( 2 3t − ) 1 t 3 − 1 3 2 0 9x − 2x + 1 1
II )Ph−¬ng ph¸p tÝch ph©n tõng phÇn
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 8
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN b
HGi¶ sö cÇn tÝnh tÝch ph©n I = ∫f(x)dx . Khi ®ã ta thùc hiÖn c¸c b−íc t×nh: a b b
B−íc 1. ViÕt tÝch ph©n d−íi d¹ng: I = ∫f(x)dx = ∫g(x) h.(x)dx a a  du = u = g(x)  g' (x)dx B−íc 2. §Æt  ⇒  dv = h(x) d . x v =  ∫h(x) d.x b b
B−íc 3. ¸p dông c«ng thøc: hay ∫ u d.v = b v . u − d . v u a ∫ a a
C¸c c¸ch ®Æt ®Ó tÝch ph©n tõng phÇn: b du =  P' (x)dx u = P(x) 
+C¸ch ®Æt 1. NÕu tÝch ph©n cã d¹ng I = ∫ P(x).sin ax d.x th× ta sÏ ®Æt  ⇒  cos ax dv = sin ax d . x v = − a  a b du =  P' (x)dx u = P(x) 
NÕu tÝch ph©n cã d¹ng ∫ P(x).cosax d.x th× ta ®Æt  ⇒  sin ax dv = cos ax d . x v = a  a du = b  P' (x)dx u = P(x)  NÕu tÝch ph©n cã d¹ng ∫ ax P(x) e . d . x th× ta ®Æt  ⇒  eax dv = eax d . x v = a  a VÝ dô 5. TÝnh: π 1. I = ∫( x 3 − ) 1 .sin 2 d . x x ta ®Æt 0 du =  d 3 x π π u = x 3 − 1  cos 2x 3 3π  ⇒  cos 2x ⇒ I = − ( x 3 − ) 1 + cos 2x d . x = − ∫ dv = sin 2x d . x v = − 2 2 2  2 0 0 π / 2 u = x2 + du = 2xdx 2. 1 J = ∫ 2 (x + ) 1 .cos x d . x ta ®Æt  ⇒  dv = cos d . x x v = sin x 0 π π 2 / 2 π + ⇒ / 2 4 2 J = (x + ) 1 sin x − 2 . x .sin x d . x = − 2J ∫ π ta tÝnh J . x sin d . x x b»ng c¸ch ®Æt 1 = ∫ 1 0 4 0 0  π / 2 u = x π 2 2 / 2 π + 4 π − 4 
sau ®ã suy ra J = − x cos x + cos xdx =1 ∫ .VËy J = − 2 = dv = sin d . x x 1 0 4 4 0 1 3. L = ∫ 2 (x − x + 3x ) 1 e . d . x ta ®Æt 0  1 1 u = x 2 − x + 1 3 1 1 e − 1 1  ⇒ 2 3x 3x L = (x − x + ) 1 e − (2x − ) 1 e . d . x = − L ∫  1 dv = e3x d . x 3 3 3 3 0 0 1 u = 2x − 1 3 − 3 − TÝnh tiÕp 4e 4 e 5 5 L (2x ) 1 e . d . x ®Æt  ⇒ L = suy ra L = 1 = ∫ − 3x 1 dv = e3x d . x 9 27 0 π π π 1 cos 2x x 1 2 − π π 2 4. M = ∫ 2 ( x sin x) d . x ta viÕt M = ∫ x sin d . x x = ∫ x d . x = − ∫ x cos2xdx 2 4 2 0 0 0 0 0 π u =x 2 π xÐt M = x cos 2x d . x 0 ∫ === . vËy ta cã M = 1 4 dv=cos 2xdx 0 2 π / 4 π / 2 u = 2t
5. M = ∫sin x d.x ta ®æi biÕn t = x ®Ó ®−a M = ∫ 2tsin tdt b»ng c¸ch ®Æt  ⇒ M = 2 dv = sin t d . t 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 9
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN du = b  b cos bxdx u = sin bx 
+C¸ch ®Æt 2. NÕu tÝch ph©n cã d¹ng I = ∫ ax e sin bx d . x th× ta ®Æt  ⇒  eax dv = eax d . x v = a  a du = − b  b sin bxdx u = cos bx 
NÕu tÝch ph©n cã d¹ng I = ∫ ax e cos bx d . x th× ta ®Æt  ⇒  eax dv = eax d . x v = a  a VÝ dô 6. TÝnh: π du = / 2  3 cos x 3 dx u = sin x 3  1. I = ∫ 2x e .sin 3 d . x x ta ®Æt  ⇒  e 2x dv = e2x dx v = 0  2 π / 2 π π 2x π u = cos3x ⇒ e 3 e 3 2 x I = sin x 3 − e cos x 3 d . x = − − I ∫ (*). Ta xÐt I e cos 3 d . x x v ®Æt  ⇒ 1 = ∫ 2x 1 2 2 2 2 dv = e2x dx 0 0 0 π / 2 π e2x 3 eπ 3  1 3  π 2e + 3 2 x 1 3 I = −cos 3x + e sin 3 d . x x = + I ∫ thay v o (*) ta cã: I = − −  + I ⇒ I = − 1 2 2 2 2 2 2  2 2  13 0 0 π π 1 cos 2x 1 1 2x − π π 2. F = ∫ x 2 (e .sin x) d . x ta viÕt F = ∫ e d . x = ∫ 2x e d . x − ∫ 2x e cos 2 d . x x 2 2 2 0 0 0 0 π π 2π − 2π − Ta xÐt 1 1 2x e 1 2x e 1 F = e d . x = ∫
. Sau hai lÇn tÝch ph©n tõng phÇn ta tÝnh ®−îc F = e cos 2x d . x = ∫ . 1 2 2 2 2 4 0 0 π 2π − VËy ta cã: x 2 e 1 F = (e .sin x) d . x = ∫ 8 0  P' (x) b  du = dx u = ln[P(x)] 
+C¸ch ®Æt 3. NÕu tÝch ph©n cã d¹ng I = ∫ ln[P(x)]Q . (x)dx th× ta ®Æt  ⇒  P(x) dv = Q(x) d . x  a v = ∫  Q(x)dx VÝ dô 7. TÝnh:  1 5 du =  dx 5 5 u = ln[x − ] 1  2 2 1. x − 1 x x I = ∫ . x ln(x − ) 1 dx ta ®Æt  ⇒  ⇒ I = ln(x − ) 1 − ∫ dx dv = x d . x  x 2 2 2x − 2 2 2 v = 2  2 48 ln 2 + 27 = 4  1 3    2  u = ln x + 1 + x du = dx 2. J = ∫ln(x + 1+ 2 x )dx ta ®Æt    ⇒  1 + x 2 ⇒ J = 3 ln( 3 + 2) −1   0 dv = dx v = x e  e e e u = 2 2 3. ln x x K = ∫ 2 . x ln xdx ta ®Æt  suy ra K = 2 ln x − ∫ x.ln xdx . XÐt K x.ln xdx v ®Æt 1 = ∫ dv = xdx 2 1 1 1 1 u = ln x e2 + 1 e 2 − 1  th× K = ⇒ K = . dv = xdx 1 4 4 2 u = ln x 2 e − 4. 1 1 5 15 4 ln 2 H = ∫ ln x dx ta ®Æt  suy ra H = − ln x + x dx = ∫ − . 5 x dv = − x 5dx 4x 4 4 256 1 1 1 π / 3 5. G = ∫ ln(sin x) dx ®Æt 2 cos x π / 6 u = ln(sin x) π   / 3 du = cot xdx π / 3 3 3l 3 n −4 3l 2 n −π  1 ⇒ ⇒ I = tan x ln(sin x) − dx = π / 6 ∫ dv = dx v = tan x 6  cos2 x π / 6
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 10
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π π e   sin(ln x) e u = cos(ln x) du = − π 6. dx e F = o c s(ln x)dx ∫ ®Æt  ⇒ x ⇒ I = x cos(ln x) + sin(ln x)dx (*). Ta xÐt 1 ∫ dv = dx  1 v = x 1 π π e   cos(ln x) e u = sin(ln x) du = dx π e F sin(ln x)dx ®Æt  ⇒ ⇒ F = x sin(ln x) − cos(ln x)dx = −F ∫ thay 1 = ∫ x dv = dx 1  1 1 v = x 1 π π + v o (*) ta cã: e 1
F = −e − 1 − F ⇒ F = − . 2
II )Ph−¬ng ph¸p t×m hÖ sè bÊt ®Þnh AH Khi gÆp tÝch ph©n:
I = ∫ P(x) dx víi P(x), Q(x) l c¸c ®a thøc cña x. Q(x)
B−íc 1: NÕu bËc cña P(x) bËc cña Q(x) th× ta lÊy P(x) chia cho Q(x) ®−îc th−¬ng A(x) v d− R(x),
tøc l P(x) = Q(x).A(x) + R(x), víi bËc R(x) < bËc Q(x). Suy ra : P(x) R(x) = P(x) R(x) A(x) + ⇒ ∫ dx = ∫ A(x d ) x + ∫ dx ( Q x) ( Q x) ( Q x) ( Q x)
B−íc 2: Ta ®i tÝnh : I = ∫ R(x) dx , víi bËc R(x) < bËc Q(x). Q(x)
Cã thÓ x¶y ra c¸c kh¶ n¨ng sau : + +Kh¶ n¨ng 1: Víi R(x) M x . N
Q(x) = ax2 + bx + c ,( a 0 ) th× bËc R(x) < 2R(x) = M.x+N v = ( Q x)
ax2 + bx + c
TH1 : Q(x) cã 2 nghiÖm x , x , tøc l : Q(x) = a(x – x )(x – x ). 1 2 1 2 +
Chän h»ng sè A, B sao cho: R(x) M x . N A B = = + Q(x)
a(x x )(x x ) x x x x 1 2 1 2
TH2 : Q(x) cã nghiÖm kÐp x , tøc l : 2 = − . 0 Q(x) a(x x ) 0 +
Chän h»ng sè A, B sao cho: R(x) M x . N A B = = + 2 2 Q(x) a(x x ) x x (x x ) 0 0 0
TH3 : Q(x) v« nghiÖm. Chän h»ng sè A, B sao cho: R(x) A ' Q . (x) B R(x) = A ' Q . (x) + B và = + ( Q x) Q(x) Q(x)
+Kh¶ n¨ng 2: Víi Q(x) = ax3 + bx2 + cx + d ,( a ≠ 0 ) th× bËc R(x) < 3
TH1: Q(x) cã 3 nghiÖm x ,x ,x . tøc l : Q(x) = a(x x )(x x )(x x ) 1 2 3 1 2 3
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + + Q(x)
a(x x )(x x )(x x ) x x x x x x 1 2 3 1 2 3
TH2: Q(x)1 n ®¬n kÐp = − − 0 x , 1 n x , tøc l : 2 Q(x) ( a x x )(x x ) 1 0 0 1 0
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + + 2 2 ( Q x) (
a x x )(x x ) x x x x (x x ) 1 0 1 0 0
TH3: Q(x) cã mét nghiÖm x (béi 3), tøc l : 3
Q(x) = a(x x ) 0 0
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + + 3 2 3 Q(x) ( a x x ) x x (x x ) (x x ) 0 0 0 0
TH4: Q(x)®óng mét nghiÖm ®¬n x , tøc l : Q(x) = (x x ) a
( x2 + βx + γ ) (trong ®ã 2 ∆ = β − a 4 γ < 0 ). 1 1 R(x) R(x) A Bx +
Chän h»ng sè A, B, C sao cho: = = + C ( Q x) (x x ) a ( x2 1
+ βx + γ ) x x ax2 1 + βx + γ
+Kh¶ n¨ng 3: Víi bËc Q(x) >3 th× th«ng th−êng ta gÆp Q(x) l c¸c biÓu thøc ®¬n gi¶n nh−: x4 + 1 ; x4 ± x2 + 1 ; x6 + 1
VÝ dô 1. TÝnh c¸c tÝch ph©n:
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 11
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 0 2 0 x + x +  4x − 1  − 1. 4x 1 A B I = ∫
1 dx ta viÕt I = ∫1+ dx v viÕt = + Sau ®ã chän ®−îc 2
x 3x + 2  2 x − x 3 + 2  x 2 − x 3 + 2 x − 1 x − 2 −1 −1 A = H3; B = 7. Khi ®ã: 0
I = (x − 3ln x − 1 + 7 ln x − 2 ) = 10 ln 2 − 7 ln 3 . 1 − 1 2. = ∫ x J
dx ta viÕt x = A(x2 + x + 1)’ + B suy ra A = 1/2; B = H 1/2. VËy J = J + J víi 2 1 2 x + x + 1 0 1 1 1 1 d(x 2 + x + ) 1 1 1 dx 1 4 dx J = = ln 3 ∫ v J . 2 = − ∫ = − 2 ∫ 1 2 x 2 + x + 1 2 2 x + x + 1 2 3  2 0 0 2  1  0   x +  + 1  3  2  π   / 3 π Ta ®Æt 2 1  2 3 3 x +  = tan u suy ra J = − du = ∫ . 2 3  2  3 9 π / 6 3 + 3. = ∫ 1 1 A Bx c K dx ta viÕt = +
sau ®ã chän ®−îc A = 1/3, B = H 1/3, C = 0. V× thÕ viÕt ®−îc 3 x + x 3 x 3 + 3x x x 2 + 3 1 3 3 1 x 1 K = dx − dx = ln 3 ∫ ∫
{V× ®−a ®−îc x v o trong vi ph©n}. 3x ( 3 x 2 + ) 3 6 1 1 4. β a sin x +
B – Khi gÆp tÝch ph©n I = ∫
b cos x dx (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ tøc l chän A, B sao cho: c sin x + d cos x α x 2t 2 1 − t asinx + b cosx = A
(csinx + dcosx) + B(csinx + dcosx)' hoÆc ®Æt t = tan ⇒ sin x = cos x = 2 2 1 + t 2 1 + t VÝ dô 1. TÝnh: π / 2 3sin x + 1. I = ∫ 5 cos x dx ta viÕt 3sinx + c 5 osx = A
(sinx + cosx) + B(cosx - sinx) suy ra A = 4; B = 1. sin x + cos x 0 π / 2 π / 2 + Khi ®ã: d(sin x cos x) / 2 I = d 4 x + = ∫ ∫ (4x + lnsinx + cosx )π = π2 sin x + cos x 0 0 0 π / 2 3sin x + 2. J = ∫
cos x dx ta viÕt 3sinx + cosx = A
(sinx + cosx) + B(cosx - sinx) suy ra A = 2; B = H1. (sin x + 3 cos x) 0 π / 2 π / 2 π / 2   + π Khi ®ã: 2 d(sin x cos x) 1 I = dx  − = − cot(x + )  + = 2 ∫ ∫   (sin x + cos x)2 (sin x + cos x)3  4 2(sin x + cos x)2  0 0 0 β a sin x + bcos x +
C – Khi gÆp tÝch ph©n I = ∫
m dx (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ + C. Chän A, B,C sao cho: c sin x + d cos x + n α asinx + b cosx + m = A
(csinx + dcosx + n) + B(csinx + dcosx + n)'+C hoÆc cã thÓ ®Æt x 2t 2 1 − t t = tan ⇒ sin x = cos x = 2 2 1 + t 2 1 + t VÝ dô 1. TÝnh: π / 2 7sin x − cos x + 1. I = ∫
7 dx ta viÕt 7sinx − cosx + 7= A (4sinx + c 3 osx + ) 5 + B(4cosx - 3sinx) + C 4 sin x + 3cos x + 5 0 π / 2 π / 2 π d(4 sin x + 3 cos x + / 2
Khi ®ã A = 1; B = H1; C = 2 v I = ∫dx − ∫ ) 5 + ∫ 2 dx dx 4 sin x + 3cos x + 5 4 sin x + 3 cos x + 5 0 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 12
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π / 2 2 − XÐt 2 x 2t 1 t I dx ®Æt t = tan ⇒ sin x = cos x = suy ra 1 = ∫ 4 sin x + 3cos x + 5 2 2 1 + t 2 1 + t 0 1 1 1 π / 2 π 1 9 I = 2 dt = ∫
. VËy I = (x − ln 4sin x + 3cos x + 5 ) + I = + − ln 1 1 (t + ) 2 2 3 0 2 3 8 0
V)Ph−¬ng ph¸p dïng tÝch ph©n liªn kÕt VÝ dô 1. TÝnh: π 2 π 2 π 1. cos xdx
I = ∫ sin xdx ta xÐt thªm tÝch ph©n thø hai: J = ∫ Khi ®ã: I + J = (*). sin x + cos x sin x + cos x 2 0 0 π 2 π 2 − + π MÆt kh¸c (sin x cos x)dx d(sin x cos x) I − J = = − = 0 ∫ ∫
(**). Gi¶I hÖ (*) v (**) suy ra I = J = . sin x + cos x sin x + cos x 4 0 0 π 2 π n 2 n π 2. sin x cos x I = dx ∫ ta xÐt J = dx ∫ . Khi ®ã: I + J = (*) n n n n sin n x + cosn x sin n x + cosn x 2 0 0 π π 2 π 2 n n π MÆt kh¸c nÕu ®Æt x = H t th× cos t cos x I = dt = dx = J ∫ ∫
(**). Tõ (*), (**) ta cã I = 2 n n n n n n n sin t + cos t sin x + cos x 4 0 0 π 2 π 2 n n π 3. sin x cos x I = dx ∫ t−¬ng tù xÐt J = dx ∫ v suy ra I = J = n n n n n sin x n + cos x n sin x n + cos x 4 0 0 π 6 π π 2 6 2 6 4. sin x cos x 1 1 E = dx ∫ v F = dx ∫ ta cã E + F = dx = ln 3 ∫ (*) sin x + 3 cos x sin x + 3 cos x sin x + 3 cos x 4 0 0 0 π 6 − L¹i cã 1 1 3 E − F 3 = (sin x − 3 cos x d ) x = 1 − 3 ∫
(**). Gi¶I hÖ (*), (**) ta ®−îc: E = ln 3 − v 16 4 0 π 6 3 1 − 3 cos 2x 1 1 − 3 F = ln 3 + . Më réng tÝnh E = dx = F − = ∫ E ln 3 + 16 4 sin x + 3 cos x 8 2 0 π 6 §Ò xuÊt cos 2x L = dx ∫ sin x − 3 cos x 0 C¸c ¸ c b i t o¸n ¸ n t− t ¬ − ng n tù t . ù
A – Ph−¬ng ph¸p biÕn ®æi trùc tiÕp 1
+ B×nh ph−¬ng v ph©n tÝch th nh 2 ph©n sè ®¬n gi¶n. 1 ( + x 2
1. [§HNNI.98.A] M = ∫ e ) dx + BiÕt ®æi biÕn. 1 + 2x e 0 1 1 1 + 1 2x x x Gi¶i: e 2 dx M = ∫ e dx + e 2 dx ta tÝnh M
®Æt ex = tan t,t ∈ (− π / ;
2 π / 2) khi ®ã víi tan α =e v 1 = ∫ 2x1 + e 1 + 2x e 1 + 2x e 0 0 0 α α α 2 tan tdt α 1 1 + e 2 M = 2 tan tdt = −2 ln cos t = 2 − ln = ln ∫ 1 = ∫ 1 ( + 2 2 tan t) cos t π / 1 + tan 2 4 t 2 π / 4 π / 4 π / 4 π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i: π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i:
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 13
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i: π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i: 1 1 ( + x 2 1. [§HNNI.98.A] ∫ e ) dx 1 + 2x e 0 π 2 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 π 2 3. [§HBK.98] ∫ 4 cos 2 ( x sin x + 4 cos x d ) x 0 2 4. [§HDL§.98] dx
x + 1 + x 1 1 π 6 5. ∫ 1 dx π 0 cos x. cos(x + ) 6 2 e
6. ∫ ln x + ln(ln x) dx x e π 3 7. [§HMá.00] 1 dx π π 6sin x sin(x + ) 6 π 3 8. ∫ 4 cos x sin 2xdx 0 π 4 9. [§HNN.01] ∫ sin 4x dx 6 sin x + 6 cos x 0 π 2 6
10. [§HNNI.01] ∫ cos x dx 4 sin x π 4 π 3 11. ∫ 4 tg xdx π 4 3
12. [C§GTVT.01] 2 x + 3x d . x 2 3
13. [C§SPBN.00] 2
x 4x + 4dx 0 π 14. ∫ cosx sinxdx 0 π 3 15. ∫ 2 tg x + 2
cot g x 2dx π 6
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 14
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 3 16. ∫ 3 x 2 2x + xdx 0 1
17. ∫ 4 x dx §¸p: ( 2 5 3 ) 1 1
18. ∫ x xdx 2 2 3 1 5
19. ∫(x + 2 x 2 )dx 8 −3 3 2
x + x 1 20. ∫ d . x 2
x + x 2 0 π
21. ∫ 2 + 2cos2xdx 4 0 π
22. ∫ 1 sin2xdx 2 2 0 π / 2
23. ∫ 1 + sinxdx 4 2 0 1
− m + 1 / 2 ~ m 0
24. ∫ x ad ; x a R
m 2 m + 1 / 2 ~ 0 < m 1 0 2
a 2 th× ®s: (3a – 5)/6; 25. ∫ 2
x (a + ) 1 x + a d ; x a R
1 < a < 2 th× ®s: (aH1)3/3 – (3a H 5)/6 1
a ≤ 1 th× ®s: (5 – 3a)/6 π 2 3 26. ∫ cos x dx 1 + cos x 0 π 2
28. [§H.2005.D] ∫ sinx (e + cos x) cos xdx 0 2 28. [§H.2003.D] ∫ 2 x x dx 0 π / 4 1 2 29. [§H.2003.B] ∫ 2 sin x dx 1 + sin 2x 0 π 2
29. M = ∫ (sin6 x + cos6 x sin2 x.cos2 x)d.x 0 π 4 2 30. sin x N = d . x cos8 x 0 31.
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 15
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
B – Ph−¬ng ph¸p ®æi biÕn 1 3 1. [C§BN.01] ∫ x dx HD ®Æt fsf 1 ( + 2 3 x ) 0 1
2. [PVB.01] 3 x 1 2 x d . x 0 ln 3 3. ∫ dx x e + 2 0 π 2
4. [C§XD.01] ∫ sin2x dx 1 + 2 cos x 0 1 1 5. [§HKTQD.97] ∫ 5 x 1 ( 3 6 x ) dx §Ò xuÊt: ∫ 2 x 1 ( 7 x) dx 0 0 1
6. [§HQG.97.B] ∫ dx 1 + x 0 2
7. [§H.2004.A] ∫ xdx
1 + x 1 1 2 3 ``8. [§H.2003.A] dx 2 x x 4 5 + π
9. [§HSPHN.00.B] 2 2 x a 2 x dx 0 ln 2 2x
10. [§HBK.00] e dx x 0 e + 1 23 11. dx
x + 8 5 x + 2 14 π 2 12. ∫ sin2x dx 2 2 sin x 0 ( + ) π 4 13. ∫ dx 3 cos x 0 6 14. ∫ 1 dx
2x + 4x + 1 2 3 15. ∫ 5 x 1 + 2 x dx 0 2 e
16. ∫ ln x + ln(ln x) dx x e 4
17. ∫ x + 1 dx x 2 1 3 10x + 2 3 x + 1 + 18. ∫ 10x dx 2 2 0 1
( + x ) x + 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 16
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN e 19. ∫ 1 dx 2 1 x 1 ln x e   20. ∫ lnx   dx
x 1 + ln x 1 4 21. ∫ 1 dx
3 2x + 1 + 2x + 1 0 4 23. ∫ dx 2 x. x 9 7 + 7 24. ∫ 1 d . x x + x + 2 2 1 25. ∫ dx 2 2 1 3x 0 ( + ) π 2 x + 26. [GTVT.00] cos x dx 4 2 sin x −π 2 π
27. [§HAN.97] ∫ xsinxdx 1 + 2 cos x 0 π 2 28. [§HLN.00] ∫ 1 2 + dx + sinx + cosx 0 π 4 29. [§HH§.00] ∫ 1 1 + dx + tgx 0 π 4
30. [§HVH.01] ∫ sinxcosx sin 2x + dx + cos2x 0 π 2 3
31. [HVBCVT.98] sinxcos xdx 1 + 2 cos x 0 1 32. = ∫ 1 I dx 2 (x + 2 ) 11 (1+ 5 ) 2 2 x + 33. [§HTN.01] 1 dx 4 x 2 x + 1 1 1 34. [§HTCKT.00] ∫ x dx 4 x + 2 x + 1 0 1 35. [HVKTQS.98] dx 21 ( x 1 x ) 1 + + + 1
36. [PVB¸o.01] 3 x 1 2 x d . x 0 e
37. [§H.2004.B] 1+ 3ln x ln x dx x 1 π 2sin 2x + 38. [§H.2005.A] ∫ sin x dx 1 3 cos x 0 +
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 17
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 2 39. [§H.2006.A] ∫ sin 2x dx 2 2 cos x 4sin x 0 + π 2
40. [§H.2005.B] ∫ sin 2xcos x dx 1 + cos x 0 ln 5 41. . [§H.2005.B] ∫ dx x e + −x e 23 ln 3 2 3 42. [§H.2003.A] ∫ dx 2 x x 4 5 + 2 43. [§H.2004.A] ∫ x dx 1 x 1 1 + − π / 6 4
44. [§H.2008.A] ∫ tan x dx cos 2x 0 π / 4 45. [§Ò thi thö §H] ∫ sin 4x dx 6 sin x + 6 cos x 0 e  
46. [§Ò thi thö §H] ∫  1 2  
+ x .ln x d.x x. 1 + ln x 1 +  4
47. [§Ò thi thö §H] ∫ 2x+1 e dx 0 π 2 2 ( 2 t d ) 1 t 1
48. [§Ò thi thö §H] ∫ sin2x = + ⇒ ∫ = ∫ dx HD: §Æt t 1 sin x 2t 3 8 1 ( 2 + 3 sin x) 1 0 8 2 49. I x − = 16 dx x 4 4 x 1 + 50. J = ∫ x + 1 dx x 2 1 3 10x + 2 3 x + 1 + 51. K = ∫ 10x dx 2 2 0 1
( + x ) x + 1ln 2 x 52. = ∫ e H dx 2xln 2 1 e ln 3 53. = ∫ dx G 2x 0 e + 1 π 2 54. = ∫ dx F
3 + 5 sin x + 3 cos x 0 π 3 55. D = ∫ cos x 2 dx 4 2 0
cos x 3 cos x + 3 ln 5 x x e e − 56. S = ∫ d 1 x x e + 3 0 π 57. = ∫ dx T π
2 + sin x cos x 2
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 18
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 4 58. = ∫ dx R 2 x. x 9 7 + 7 59. = ∫ 1 E d . x x + x + 2 2 4 2x + 60. W = ∫ 1 d . x 1 + 2x 1 0 + + π / 2 1 t = 3 tan u π 61. = ∫ dx x dt 3 Q
§Æt t = tan th× Q = ∫ = ∫ === 2 + cos x 2 ( 3 )2 + t 2 9 0 0 2 62. = ∫ dx M 2 0
3x + 6x + 1
C – Ph−¬ng ph¸p tÝch ph©n tõng phÇn
1 1. [§HC§.97] ∫ 1 ( + 2 2x x) e dx 0 π 4 2. [§HTCKT.98] ∫ 2 ( x 2 cos x d ) 1 x 0 2 10 3. ∫ 3 2 x ln(x + d ) 1 x v ∫ 2 xlg xdx 0 0 e 4. [PVB¸o.98] ∫ 2 (x ln x) dx 1 π 5. [HVNH.98] 2 xsin xcos xdx 0 2
6. [§HC§.00] ∫ ln(x + d ) 1 x 2 x 1 π 4
7. [§HTL.01] ln 1 ( + tgx d ) x 0 π 2 8. ∫ 2 xtg xdx 0 3
9. [§HYHN.01] 2 x 1 d . x 2 2
10. [§Ò thi thö] ∫ xln(3x 2 x d ) x 1 e
11. [§H.2007.D] ∫ 2 2 x ln xdx 1 1
12. [§H.2006.D] ∫ (x 2x 2 e ) dx 0 0 13. I = ∫ 2x x e ( + 3 x + 1 d ) x 1 2 e 14. Jlnx + = ln(ln x) dx x e
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 19
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 15. K = ∫ 2 (x sin x) dx 0 1 16. = ∫ x H dx 2 sin (2x + ) 1 0 π 4
17. G = ∫ x.sin x dx 3 cos x 0 ln 2 18. 2 F = ∫ 5 x x e . dx 0 4 ln( x + 19. D = ∫ ) 1 dx x + x 1 e  
20. S = ∫  lnx 2   + ln xdx x 1 + ln x1 2 π 21. A = ∫ 2 cos x d . x 2 π / 4 π
22. P = ∫ (e .cosx)2 x dx 0 2 π 23. U = x . sin x d . x0 π 24. Y = x.si x n . cos 2 x d . x0 π / 3 1 + §Æt sin x u = sin x ;dv = ..XÐt T
e dx v ®Æt tptp suy ra 1 = ∫ x π / 3 sin x + 1 + 1 + cos x cos x 25. 0 T = ∫ sin x x sin x + e dx + cos x π / 3 x 3 π 0 e sin x e T = = 1 + cos x 3 0 1 26. 2 + ln 1 ( + 2 )
R = ∫ 1 + 2 x dx §s: 2 0 1 27. 1 E = ∫ 2 x ln(x + d ) 1 x §S: ln 2 2 0 π / 2 28. π
W = ∫ cos x ln 1 ( + cos x d ) x §s: − 1 2 0 e 29. e 2
Q = ∫ ln x dx §s: (x + 2 ) 1 e + 1 1 / e π / 2 π / 3 ViÕt M = M sin x 3 x 1 + M2. Víi M = dx ∫ = ∫ ln & M dx . 2 = ∫ 1 1 + cos x 2 1 + cos x π / 3 π / 6 π / 2u = du = x + = xdx 30. M = ∫ sin x   − π §Æt ⇒ ⇒ (3 2 3 ) = − 1 + dx + cos x1x M ln 4 2 π dv = v = / 3  = dx 2 cot 3    1 + cos x2 − π VËy (3 2 3 ) 3 M = + ln 3 8
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 20
Downloaded by Châu Bùi (Vj7@gmail.com)