www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 1
Chuyªn ®Ò 1:
C¸c ph−¬ng ph¸p tÝnh tÝch ph©n
C¸c ph−¬ng ph¸p tÝnh tÝch ph©nC¸c ph−¬ng ph¸p tÝnh tÝch ph©n
C¸c ph−¬ng ph¸p tÝnh tÝch ph©n
ườ
  !"#
$ % 
&'(
)*+,
-+.//01'2
I) Ph−¬ng ph¸p biÕn ®æi trùc tiÕp
34 567+829+:;'(
)a(F)b(F)x(Fdx)x(f
b
a
b
a
=
==
==
==
=
BiÕn ®æi ph©n thøc vÒ tæng hiÖu c¸c ph©n thøc ®¬n gi¶n
VÝ dô 1.
#
=
==
=
2
1
3
2
dx
x
x2x
I
/
12ln)21(ln)12(ln
x
2
xlndx)
x
2
x
1
(I
2
1
2
1
2
=++=
+==
$#
+
++
+
=
==
=
2
e
1
dx
x
4x3x2
J
( )
++=+=
+=
2
2
e
1
2
e
1
2/1
7e4e3xln4x3x4dx
x
4
3x2
&#
=
==
=
8
1
3
2
3
5
dx
x3
1x3x4
K
=
=
=
8
1
8
1
3
3
423/23/1
4
207
xx
4
3
x
3
4
dxx
3
1
xx
3
4
BiÕn ®æi nhê c¸c c«ng thøc l−îng gi¸c
VÝ dô 2.
#
=
==
=
2/
2/
xdx5cosx3cosI
π
ππ
π
π
ππ
π
( )
0
8
x8sin
2
x2sin
2
1
dxx8cosx2cos
2
1
2/
2/
2/
2/
=
+=+=
π
π
π
π
$#
=
==
=
2/
2/
xdx7sinx2sinJ
π
ππ
π
π
ππ
π
( )
45
4
9
x9sin
5
x5sin
2
1
dxx9cos)x5cos(
2
1
2/
2/
2/
2/
=
==
π
π
π
π
&#
=
==
=
2/
2/
xdx7sinx3cosK
π
ππ
π
π
ππ
π
( )
0
10
x10cos
4
x4cos
2
1
dxx10sinx4sin
2
1
xdx3cosx7sin
2/
2/
2/
2/
2/
2/
=
+=+==
π
π
π
π
π
π
)#
=
==
=
π
ππ
π
0
2
0
xdxcosx2sinH
=
=
+
=
π
π
0
0
0x4cos
16
1
x2cos
4
1
dx
2
x2cos1
x2sin
567

=
==
=
π
ππ
π
0
2
xdxcosx2sinH
=
=
+
=
π
π
0
0
0x4cos
16
1
x2cos
4
1
dx
2
x2cos1
x2sin
<#
+
++
+
+
++
++
++
+
=
==
=
2/
6/
dx
xcosxsin
x2cosx2sin1
G
π
ππ
π
π
ππ
π
( )
1xsin2xdxcos2dx
xcosxsin
xsinxcos)xcosx(sin
2/
6/
2/
6/
2/
6/
222
===
+
++
=
π
π
π
π
π
π
=#
=
==
=
2/
0
4
xdxsinE
π
ππ
π
( )
16
3
x2sin
4
x4sin
x3
8
1
dxx2cos4x4cos3
8
1
dx
2
x2cos1
2/
0
2/
0
2/
0
2
π
π
ππ
=
+=+=
=
>#
=
==
=
4/
0
2
xdxtanF
π
ππ
π
( )
4
4
xxtandx1
xcos
1
4/
0
4/
0
2
π
π
π
==
=
#-8?@
=
==
=
2/
4/
2
1
xdxcotF
π
ππ
π
π
ππ
π
+
=
==
=
4/
0
4
2
xdxtanF
π
ππ
π
BiÕn ®æi biÓu thøc ë ngoi vi ph©n vo trong vi ph©n
VÝ dô 3.
#
+
++
+=
==
=
1
0
3
dx)1x2(I
10
4
)1x2(
2
1
)1x2(d)1x2(
2
1
1
0
4
1
0
3
=
+
=++=
$#
=
==
=
2
1
3
dx
)1x2(
1
J
0
)1x2(
1
4
1
2
)1x2(
2
1
)1x2(d)1x2(
2
1
1
0
2
1
0
2
2
1
3
=
=
+
==
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 2
&#
=
==
=
3/7
1
dx3x3K
9
16
)3x3(
9
2
)3x3(d)3x3(
3
1
3/7
1
3
3/7
1
2/1
===
)#
=
==
=
4
0
x325
dx
H
3
13210
)x325(
3
2
)x325(d)x325(
3
1
1
0
2/1
4
0
2/1
=
==
<#
+
++
++
++
+
=
==
=
2
1
dx
1x1x
1
G
3
123
dx)1x1x(
2
1
dx
)1x()1x(
1x1x
2
1
2
1
=
+=
+
+
=

AB9C+D+.5E(D
-8?@
C)cax()bax(
)cb(a
1
dx
caxbax
1
G
33
1
+
++
+
+
++
++
++
++
++
+
=
==
=
+
++
++
++
++
++
+
=
==
=
+. cb;0a
=#
=
==
=
1
0
dxx1xP
=+=+=
1
0
1
0
1
0
5
4
dxx1)x1(dx1)1x(dxx1)11x(
>#
=
==
=
1
0
x1
xdxeQ
2
F
1ee)x1(de
2
1
1
0
x1
1
0
2x1
22
==
-8?@
15
264
dxx1xQ
1
0
23
1
=
==
=+
++
+=
==
=
G3'?+,++E5.A?
$
H#
VÝ dô 4.
# 0dx)x2sin3x3cos2(I
0
1
=
==
=+
++
+=
==
=
π
ππ
π
I
4
1
xdxcosxsinI
2/
0
3
2
=
==
==
==
=
π
ππ
π
+ 1exdxsineI
2/
0
xcos
3
=
==
==
==
=
π
ππ
π
$#
2lnxdxtanJ
4/
0
1
=
==
==
==
=
π
ππ
π
I
2lnxdxcotJ
2/
6/
2
=
==
==
==
=
π
ππ
π
π
ππ
π
+
2ln
3
2
dx
xcos31
xsin
J
4/
0
3
=
==
=
+
++
+
=
==
=
π
ππ
π

A'?J?+,+
&#
1cos1dx
x
)xsin(ln
K
e
1
1
=
==
==
==
=
I
2cos1dx
x
)xcos(ln
K
2
e
1
2
=
==
==
==
=
+
2dx
xln1x
1
K
3
e
1
3
=
==
=
+
++
+
=
==
=
K'L?+,+0'(:A?M
)#
+
++
+
=
==
=
3ln
1
x
x
1
dx
e2
e
H
e2
5
lne2ln
3ln
1
x
+
=+=

+
++
+
=
==
=
2ln
0
x
x
2
dx
e1
e1
H
=
+
=
+
+
=
2ln
0
2ln
0
x
x
2ln
0
x
xx
3ln22ln3dx
e1
e
2dxdx
e1
e2e1
+
++
+
=
==
=
2ln
0
x
3
5e
dx
H
7
12
ln
5
1
5eln
5
1
x
5
1
5e
dxe
5
1
dx
5
1
5e
dx)e5e(
5
1
2ln
0
x
2ln
0
x
x
2ln
0
2ln
0
x
xx
=
+=
+
=
+
+
=
+
++
+
=
==
=
1
0
xx
x
4
ee
dxe
H
+
=+=
+
=
1
0
2
1
0
x2
x2
x2
2
1e
ln
2
1
1eln
2
1
1e
dxe
BiÕn ®æi nhê viÖc xÐt dÊu c¸c biÓu thøc trong gi¸ trÞ tuyÖt ®èi ®Ó tÝnh
=
==
=
b
a
dx)m,x(fI
HNO:@PA?J,QI5R+
[
]
]b;c[...]c;c[]c;a[b;a
n211
=
,ESPA?J
!T:@
H
+++=
b
c
c
c
c
a
n
2
1
1
dx)m,x(f...dx)m,x(fdx)m,x(fI
VÝ dô 5.
#
+
++
+=
==
=
2
0
2
dx3x2xI ?O
3x1x0 32x x
2
===+
#U9?O:@PA?
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 3
V,
4dx)3x2x(dx)3x2x(dx3x2xdx3x2xI
2
1
2
1
0
2
2
1
2
1
0
2
=+++=+++=
$#
=
==
=
1
3
3
dxxx4J
'2W/
16dxxx4dxxx4dxxx4J
1
0
3
0
2
3
2
3
3
=++=
&#
2ln
1
4dx42K
3
0
x
+
++
+=
==
=
=
==
=
)#
=
==
=
π
ππ
π
2
0
1
dxx2cos1H 22dxxsin2dxxsin2dxxsin2
2
0
2
0
=+==
π
π
ππ
=
==
=
π
ππ
π
0
2
dxx2sin1H

KX6AY$?+85Z'2T50 ,[\%M
22dxxcosxsindxxcosxsindxxcosxsindxxcosxsin
2/3
4/3
4/3
4/
4/
00
=+++++=+=
π
π
π
π
ππ
II) Ph−¬ng ph¸p ®æi biÕn sè
]' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 1:
^9C_
=
b
a
dx)x(fI
W`5'.
HU'.#-?FA
HU'.$#@+:?FaA:+50bPA?:?1+:#cdPA?:?FA:
HU'.&#-7e\?FZAF +.F
α
I\?F5ZAF5 +.F
β
HU'.)#U67
=
β
α
dt)t(gI A:f2ZO756./gh
C¸ch ®Æt ®æi biÕn d¹ng 1.
C¸ch ®Æt 1.
B6 
2
x1
Z
]
2
/
;
2
/
[
t
;
t
sin
π
ππ
π
π
ππ
π
=
==
=

]
;
0
[
t
;
t
cos
π
ππ
π
=
==
=
VÝ dô 1.
#
=
==
=
1
2/2
2
2
dx
x
x1
A

]2/;2/[t;tsinx
ππ
=
:?F#:I7e\?F
2
L$ZF
4/
π
I\?
FZF
2/
π
#i/
4
4
dt.
tsin
tsin1
dt.
tsin
tcos
dt.tcos
tsin
tsin1
A
2/
4/
2
2
2/
4/
2
2
2/
4/
2
2
π
π
π
π
π
π
π
=
==
=
$#
=
==
=
1
0
2
2
dx
x4
x
B
+6
=
1
0
2
2
dx
)2/x(12
x
B
#
-
];0[t;tcos)2/x(
π
=
tdtsin2dxtcos2x ==

-7e,
( )
2
3
3
dtt2cos12tdtcos4)tdtsin2(
tcos12
)tcos2(
B
2/
3/
2/
3/
2
3/
2/
2
2
=+==
=
π
π
π
π
π
π
π
&#
=
==
=
1
0
22
dxx34xC ,'.6+6
=
1
0
2
2
dx
2
x.3
1x2C #
-
]2/;2/[t;tsinx
2
3
ππ
=
'+8:
12
1
27
32
dt
2
t4cos1
33
4
tdtcostsin
33
16
C
3/
0
3/
0
22
+=
==
π
ππ
Chó ý:
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 4
HB6 
0a,xa
2
>
>>
>
Z+6
2
2
a
x
1axa
=
+
=
=
];0[t;tcos
a
x
]2/;2/[t;tsin
a
x
π
ππ
HB6 
0b,a,bxa
2
>
>>
>
Z+6
2
2
x
a
b
1abxa
=
+
=
=
];0[t;tcosx
a
b
]2/;2/[t;tsinx
a
b
π
ππ
VÝ dô 2.
#
=
==
=
2
3/2
2
dx
1xx
1
E
 KX6+8:
2
X1
M
+6
( )
=
2
3/2
2
2
dx
x/11x
1
E
+
[ ]
2/;2/t;tsin
1
ππ
= ,
12
dtE
3/
4/
π
π
π
==
$#
=
==
=
3/22
3/2
3
2
dx
x
4x3
G
 KX6+8:
2
X1
M
+6
(
)
=
3/22
3/2
3
2
dx
x
x3/21.x.3
G +
[ ]
2/;2/t;tsin
x3
2
ππ
= ,/:
16
)336(3
tdtcos
2
33
G
3/
4/
2
+
==
π
π
π
KB6/:
bax
2
Z+6+8:
2
X1
M
C¸ch ®Æt 2.
B6/ 
2
x1 +
++
+

(
((
(
)
))
)
2
x1 +
++
+
Z
(
((
(
)
))
)
2/;2/t;ttanx
π
ππ
ππ
ππ
π
=
==
=

(
)
π
;0t;tcotx =
VÝ dô 3.
#
+
++
+
=
==
=
3
3/1
2
dx
x1
1
M

(
)
2/;2/t;ttanx
ππ
=
,
6
dtM
3/
6/
π
π
π
==
$#
+
++
+
=
==
=
3
1
22
dx
x1.x
1
N

(
)
2/;2/t;ttanx
ππ
=
,
3
3218
dt
.tsin
tcos
N
3/
4/
2
==
π
π
&#
+
++
+
=
==
=
a
0
222
0a;dx
)xa(
1
P

+6
+
=
a
0
2
24
dx
)
a
x
(1a
1
P
+
;ttan
a
x
=
3
4/
0
2
3
a4
2
tdtcos
a
1
P
+
==
π
π
)#
+
++
++
++
+
=
==
=
1
0
2
dx
1xx
1
Q

+6
++
=
1
0
2
dx
)
2
1
x(
3
2
1
1
3
4
Q
+
( )
2/;2/t;ttan
2
1
x
3
2
ππ
=
+
9
3
dt
2
3
3
4
Q
1
0
π
==
Chó ý:B6 
2
bxa +
++
+

2
bxa +
++
+ Z+6
+=+
2
2
x
a
b
1axba

2
2
x
a
b
1abxa
+=+ +
( )
2/;2/t;ttanx
a
b
ππ
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 5
C¸ch ®Æt 3.B6/ 
xa
xa
+
++
+

xa
xa
+
++
+
Z
]
2
/
;
0
[
t
;
t
2
cos
a
π
ππ
π
=
==
=
+'g+e:;

=+
=
tcos2t2cos1
tsin2t2cos1
2
2
VÝ dô 4.
#
>
>>
>
+
++
+
=
==
=
0
a
0a;dx
xa
xa
I

]2/;0[t;t2cosax
π
=
,
+
=
4/
2/
dt)t2sina2(
t2cos1
t2cos1
I
π
π
4
4
a
π
=
$#
+
++
+
=
==
=
2/2
0
dx
x1
x1
J

]2/;0[t;t2cosx
π
=
,
+
=
8/
4/
dt)t2sin2(
t2cos1
t2cos1
J
π
π
F
4
224
tdtcos4J
4/
8/
2
+
==
π
π
π
K/0
t
x1
x1
=
==
=
+
++
+
,,j+8:!"M
U' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 2:
^9C_
=
==
=
b
a
dx)x(fI W`5'.
HU'.#-F+A?
HU'.$#@+:?FaA:+50bPA?:?1+:#cdPA?:?FA:
HU'.&#-7e\?FZAF +.F
α
I\?F5ZAF5 +.F
β
HU'.)#U67
=
β
α
dt)t(gI A:f2ZO756./gh
C¸ch ®Æt ®æi biÕn d¹ng 2.
C¸ch ®Æt 1.
B6 klDZFD#
VÝ dô 1.
#
=
==
=
2/
0
2
dx
xcos4
x2sin
I
π
ππ
π
/0F)H
$
?,
3
4
ln
t
dt
I
4
3
==
$#
+
++
+
=
==
=
4/
0
22
dx
xcos2xsin
x2sin
J
π
ππ
π

xcos1xcos2xsint
222
+=+=
,
==
2
2/3
4
3
ln
t
dt
J
K/05e05676D+8$?/'$?+,+M
-8?@
+
++
+
=
==
=
2/
0
2222
1
dx
xcosbxsina
xcosxsin
J
π
ππ
π
+.
0ba
22
>+
&#
+
++
+
=
==
=
2ln
0
x
dx
5e
1
K

5et
x
+=
5te
x
=
dtdxe
x
=
/?@`,50
 
dxe
x
7
12
ln
5
1
t
5t
ln
5
1
)5t(t
dt
)5e(e
dxe
K
7
6
7
6
2ln
0
xx
x
=
=
=
+
=
Kc/0567,W6
7
12
ln
5
1
dx
5e
e
5
1
dx
5e
5e
5
1
dx
5e
e5e
5
1
K
2ln
0
x
x
2ln
0
x
x
2ln
0
x
xx
=
+
+
+
=
+
+
=
M
)#
+
++
+
+
++
+
=
==
=
2/
0
2
dx
)4x2cosxsin2(
xcosx2sin
H
π
ππ
π

4x2cosxsin2t +=
21
2
dt
t
1
2
1
H
7
3
2
==
Km\\9nVM
<#
+
++
+
=
==
=
2/
0
2
3
dx
xcos1
xcosxsin
G
π
ππ
π
og,p*&F$
xcos1t
2
+=
1txcos
2
=
dtxdxcosxsin2 =
\/
2
2ln1
)tlnt(
2
1
dt
t
)1t(
2
1
G
2
1
2
1
=
=
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 6
=#
++
=
4/
0
dx
2xcosxsin
x2cos
M
π
ππ
π

2xcosxsint ++=
dx)xsinx(cosdt = 'g$?FA??A?H?
( )
3
22
ln12tln2t
t
dt)2t(
dx
2xcosxsin
)xsinx)(cosxsinx(cos
M
22
3
22
3
4/
0
+
+==
=
++
+
=
+
+
π
>#
++
=
4/
0
3
dx
)2xcosx(sin
x2cos
N
π
ππ
π

2xcosxsint ++=
,
)21(2
1
9
2
3
1
9
1
22
1
)22(
1
t
1
t
1
t
dt)2t(
N
2
22
3
22
3
23
+
=+
+
+
=
=
=
+
+
-8?@
+
=
4/
0
1
dx
2xcosxsin
x2cos
M
π
ππ
π
+
+
=
4/
0
3
1
dx
)2xcosx(sin
x2cos
N
π
ππ
π
q#
C¸ch ®Æt 2.B6 % 
n
)x(
ϕ
ϕϕ
ϕ
Z
n
)x(t
ϕ
ϕϕ
ϕ
=
==
= /rs$+6+@+$+6#
VÝ dô 1.
#
+
++
++
++
+
=
==
=
1
0
dx
1x32
3x4
I

1x3t +=
(
)
1t
3
1
x
2
=
tdt
3
2
dx =
\/'+8:
( )
3
4
ln
3
4
27
2
dt
t2
6
9
2
dt3t8t4
9
2
dt
t2
t13t4
9
2
I
2
1
2
1
2
2
1
3
=
+
+=
+
=
$#
+
=
7
0
3
2
3
dx
x1
x
J

3
2
x1t +=
1tx
32
=
dtt3xdx2
2
=
20
141
dt)tt(
2
3
J
2
1
4
==
&#
+
=
2
1
2
dx
x1x
1
K

2
x1t +=
1tx
22
=
tdtxdx =
5
2
5
2
2
1t
1t
ln
2
1
t)1t(
tdt
J
+
=
=
)#
+
=
2
1
3
dx
x1x
1
H

3
x1t +=
1tx
23
=
tdt2dxx3
2
=
9C+D+.?
$
'(
2
12
ln
3
2
1t
1t
ln
3
1
1t
dt
3
2
x1x
xdx
H
3
2
3
2
2
2
1
32
+
=
+
=
=
+
=
<#
+
+
=
3
0
2
35
dx
1x
x2x
G

2
x1t +=
1tx
22
=
tdtxdx =
/?
$
#?#A?
$
$'(
5
26
t
5
t
t
tdt)1t)(1t(
dx
1x
x.x)2x(
G
2
1
5
2
1
22
3
0
2
22
=
=
+
=
+
+
=
=#
+++
=
6
1
3
dx
1x91x9
1
M

6
1x9t +=
(
)
1t
9
1
x
6
=
dtt
3
2
dx
5
=
rs5e+5e5
/
+=
+
+=
+
=
+
=
3
2
ln
6
11
3
2
dt)
1t
1
1tt(
3
2
1t
dtt
3
2
tt
dtt
3
2
M
2
1
2
2
1
3
2
1
23
5
VÝ dô 2.
#[§H.2005.A]
+
+
=
2/
0
dx
xcos31
xsinx2sin
P
π
ππ
π

xcos31t +=
)1t(
3
1
xcos
2
=
tdt
3
2
xdxsin =
/
C?/
+
+
=
2/
0
xcos31
xdxsin)1xcos2(
P
π
( )
27
34
t
3
t2
9
2
dx1t2
9
2
2
1
3
2
1
2
=
+=+=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 7
$#
dx.
xsin31
x2sinx3cos
Q
2
0
+
+
=
π
ππ
π

xsin31t +=
)1t(
3
1
xsin
2
=
tdt
3
2
xdxcos =
:; 
+&+6
dx.
xsin31
xcosxsin2xcos3xcos4
Q
2
0
3
+
+
=
π
xdxcos.
xsin31
xsin23xsin44
2
0
2
+
+
=
π
Xe
+=
2
1
24
dt)1t14t4(
27
2
Q
405
206
tt
3
14
t
5
4
27
2
2
1
35
=
+=
&. [§H.2006.A]
+
=
2
0
22
dx
xsin4xcos
x2sin
R
π
ππ
π

xsin31t
2
+=
)1t(
3
1
xsin
22
=
tdt
3
2
xdx2sin =
#\/
3
2
t
3
2
t
tdt
3
2
R
2
1
2
1
===
)#
VÝ dô 3.
#
+
=
e
1
dx
x
xln31xln
P

xln31t +=
)1t(
3
1
xln
2
=
tdt
3
2
dx
= \/
( )
135
116
dxtt
9
2
P
2
1
4
==
$#
+
=
e
1
dx
xln21x
xln23
Q


xln21t +=
)1t(
2
1
xln
2
=
tdt
dx
=
#i/
3
1139
3
t
t4dt)t4(
t
tdt)1t(3
Q
3
1
3
2
1
2
2
1
2
=
==
=
&#
+
=
2ln2
2ln
x
1e
dx
R
#
1et
x
+=
,
tdt2dxe
x
=
+
+
=
=
5
3
2
13
13
.
15
15
ln
1t
dt2
R
)#
+
=
3
0
3
x
e1
dx
S
#
3
x
et =
,
1e
e2
ln3
)1t(t
dx3
S
e
1
+
=
+
=

<#
+
=
5ln
0
x
xx
3e
dx1ee
X
C¸ch ®Æt 3.
B6 '(
sin
J
cos
+
2
x
tan
Z
2
x
tant
= \/
2
t1
t2
xsin
+
=
J
2
2
t1
t1
xcos
+
=
VÝ dô 4.
#
dx.
5xcos3xsin5
1
Q
2/
0
++
=
π


2
x
tant
=
2
t1
dt2
dx
+
=
+
5
8
ln
3
1
4t
1t
ln
3
1
dt
4t5t
1
Q
1
0
1
0
2
=
+
+
=
++
=
$#
dx.
2xcos
2
x
tan
L
3/
0
+
=
π

2
x
tant =
2
t1
dt2
dx
+
=
+
9
10
ln3tln
3t
tdt2
L
3/1
0
2
3/1
0
2
=+=
+
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 8
&#
++
=
4
0
dx
1x2sinx2cos
x2cos
V
π

xtant
=
2
t1
dt
dx
+
=
+
+
+
+
=
+
+
=
1
0
2
1
0
2
1
0
2
)t1(2
tdt
)t1(2
dt
)t1(2
dt)t1(
V
1
0
2
1
1tln
4
1
V ++=

8
)t1(2
dt
V
ytant
1
0
2
1
π
=
=
+
=
,
8
2ln2
dx
1x2sinx2cos
x2cos
V
4
0
+
=
++
=
π
π
)#
++
+
=
4
0
22
2
dx
1xsinx2sinxcos
xtan1
N
π
+6
++
+
=
4
0
2
dx
1x2sinx2cos
xtan1
N
π
+
xtant
=
2
t1
dt
dx
+
=
,
4
2ln23
1tlnt
2
t
2
1
dt
1t
t1
2
1
N
1
0
2
1
0
2
+
=
+++=
+
+
=
<#Q-G#$ttq#UR
+++
=
4
0
dx
)xcosxsin1(2x2sin
4
xsin
F
π
π
+6
( )
+++
=
4
0
dx
)xcosxsin1(2xcosxsin2
xcosxsin
2
1
F
π
:W
+u`!
xcosxsin
+
+
xcosxsin

xcosxsint
+
=
dx)xsinx(cosdt
=
+
2
1t
xcosxsin
2
=
\/
+
=
+
=
++
=
++
=
2
1
2
1
2
2
1
2
22
1
22
1
1t
1
2
1
1t2t
dt
2
1
)t1(21t
dt
2
1
F
C¸ch ®Æt 4.
3W+0e#
B6/:
=
a
a
dx)x(fI
Z/0+6
+=
a
0
0
a
dx)x(fdx)x(fI
FH?0567
=
0
a
1
dx)x(fI

B6/:
=
π
0
dx)x(fI
Z/0F
π
H?
B6/:
=
π
2
0
dx)x(fI Z/0F$
π
H?
B6/:
=
2/
0
dx)x(fI
π
Z/0F
2
π
H?
B6/:
=
b
a
dx)x(fI Z/0FA5H?
VÝ dô 4.
#
=
1
1
2008
xdxsinxI +6 +=
0
1
2008
xdxsinxI BAxdxsinx
1
0
2008
+=
#FH?Z]FHU#+emFt#
$#
+
=
π
0
2
dx
xcos1
xsinx
J

xt
=
π
\/
+
+
=
ππ
π
0
2
0
2
dt
tcos1
tsint
dt
tcos1
tsin
J
7566
2
dt
tcos1
tsin
J
2
utantcos
0
2
1
ππ
π
=
====
+
=
+
Jdt
tcos1
tsint
J
xt
0
2
2
=
===
+
=
π
#Xe
4
JJ
2
J
22
ππ
==
C¸ch ®Æt 4.
B6/ 
0a;cbxax
2
>++
Z/0
cbxaxxat
2
++=
/?1
+:?1+:#KvO621M
VÝ dô 5.
#
+
=
1
0
2
1xx
dx
I

1xxxt
2
+=
1
t
2
t1
x
2
+
=
3ln
1t2
dt2
I
2
1
=
=
$#
+
=
1
0
2
1x2x9
dx
J

1x2x9x3t
2
+=
)1t3(2
1t
x
2
=
2
126
ln
3
1
1t3
dt
J
22
1
=
=
III)Ph−¬ng ph¸p tÝch ph©n tõng phÇn
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 9
H^9C_
=
b
a
dx)x(fI #i/W`5'.Z
U'.#X6:'.:
==
b
a
b
a
dx)x(h).x(gdx)x(fI
U'.$#-
=
=
dx).x(hdv
)x(gu
=
=
dx).x(hv
dx)x('gdu
U'.&#:; 
=
b
a
b
a
b
a
du.vv.udv.u
c0s_
+C¸ch ®Æt 1.
B6/:
=
b
a
dx.axsin).x(PI Zw
=
=
dx.axsindv
)x(Pu
=
=
a
axcos
v
dx)x('Pdu
B6/:
b
a
dx.axcos).x(P Z
=
=
dx.axcosdv
)x(Pu
=
=
a
axsin
v
dx)x('Pdu
B6/:
b
a
ax
dx.e).x(P
Z
=
=
dx.edv
)x(Pu
ax
=
=
a
e
v
dx)x('Pdu
ax
VÝ dô 5.
#
=
π
0
dx.x2sin).1x3(I 
=
=
dx.x2sindv
1x3u
=
=
2
x2cos
v
dx3du
2
3
dx.x2cos
2
3
2
x2cos
)1x3(I
0
0
π
π
π
=+=
$#
+=
2/
0
2
dx.xcos).1x(J
π

=
+=
dx.xcosdv
1xu
2
=
=
xsinv
xdx2du
1
2
0
2/
0
2
J2
4
4
dx.xsin..x2xsin)1x(J
+
=+=
π
π
π

=
2/
0
1
dx.xsin.xJ
π
5p
=
=
dx.xsindv
xu
/,
1xdxcosxcosxJ
2/
0
2/
0
1
=+=
π
π
#Xe
4
4
2
4
4
J
22
=
+
=
ππ
&#
+=
1
0
x32
dx.e).1xx(L

=
+=
dx.edv
1xxu
x3
2
1
3
1
0
x3
1
0
x32
L
3
1
3
1e
dx.e).1x2(
3
1
e)1xx(
3
1
L
=+=
6
=
1
0
x3
1
dx.e).1x2(L 
=
=
dx.edv
1x2u
x3
9
4e4
L
3
1
=
,
27
5e5
L
3
=
)#
=
π
0
2
dx.)xsinx(M +6
=
==
π
π
ππ
0
0
2
00
2
xdx2cosx
2
1
4
x
dx.
2
x2cos1
xdx.xsinxM
?O
0dx.x2cosxM
xu
xdx2cosdv
0
1
===
=
=
=
π
#+e/
4
M
2
π
=
<#
=
4/
0
2
dx.xsinM
π
756
xt =
0'
=
2/
0
tdtsint2M
π
5p
=
=
dt.tsindv
t2u
2
M
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 10
+C¸ch ®Æt 2.B6/:
=
b
a
ax
dx.bxsineI Z
=
=
dx.edv
bxsinu
ax
=
=
a
e
v
bxdxcosbdu
ax
B6/:
=
b
a
ax
dx.bxcoseI Z
=
=
dx.edv
bxcosu
ax
=
=
a
e
v
bxdxsinbdu
ax
VÝ dô 6.
#
=
2/
0
x2
dx.x3sin.eI
π

=
=
dxedv
x3sinu
x2
=
=
2
e
v
xdx3cos3du
x2
1
0
x2
2/
0
x2
I
2
3
2
e
dx.x3cose
2
3
2
e
x3sinI ==
π
π
π
Ax#?O
=
π
0
x2
1
dx.x3coseI
+
=
=
dxedv
x3cosu
x2
I
2
3
2
1
dx.x3sine
2
3
2
e
x3cosI
0
x2
2/
0
x2
1
+=+=
π
π
+Ax/
+= I
2
3
2
1
2
3
2
e
I
π
13
3e2
I
+
=
π
$#
=
π
0
2x
dx.)xsin.e(F +6
=
=
πππ
0
x2
0
x2
0
x2
dx.x2cose
2
1
dx.e
2
1
dx.
2
x2cos1
eF
?O
2
1e
dx.e
2
1
F
2
0
x2
1
==
π
π
#V_s_'(
4
1e
dx.x2cose
2
1
F
2
0
x2
2
==
π
π
#
Xe/
8
1e
dx.)xsin.e(F
2
0
2x
==
π
π
+C¸ch ®Æt 3.B6/:
[ ]
=
b
a
dx)x(Q.)x(PlnI Z
[
]
=
=
dx).x(Qdv
)x(Plnu
=
=
dx)x(Qv
dx
)x(P
)x('P
du
VÝ dô 7.
#
=
5
2
dx)1xln(.xI 
[
]
=
=
dx.xdv
1xlnu
=
=
2
x
v
dx
1x
1
du
2
=
5
2
2
5
2
2
dx
2x2
x
)1xln(
2
x
I
4
272ln48
+
=
$#
++=
3
0
2
dx)x1xln(J 
=
++=
dxdv
x1xlnu
2
=
+
=
xv
dx
x1
1
du
2
1)23ln(3J +=
&#
=
e
1
2
xdxln.xK

=
=
xdxdv
xlnu
2
,
=
e
1
e
1
2
2
xdxln.xxln
2
x
K
#NO
=
e
1
1
xdxln.xK
+
=
=
xdxdv
xlnu
Z
4
1e
K
4
1e
K
22
1
=
+
=
#
)#
=
2
1
5
dx
x
xln
H

=
=
dxxdv
xlnu
5
,
256
2ln415
dxx
4
1
xln
x4
1
H
e
1
5
2
1
4
=+=
#
<#
=
3/
6/
2
dx
xcos
)xln(sin
G
π
π

=
=
dx
xcos
1
dv
)xln(sinu
2
=
=
xtanv
xdxcotdu
=
3/
6/
3/
6/
dx)xln(sinxtanI
π
π
π
π
6
2ln343ln33
π
=
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 11
=#
dx)x(lnoscF
e
1
=
π

=
=
dxdv
)xcos(lnu
=
=
xv
dx
x
)xsin(ln
du
+=
π
π
e
1
e
1
dx)xsin(ln)xcos(lnxI
Ax#?O
=
π
e
1
1
dx)xsin(lnF 
=
=
dxdv
)xsin(lnu
=
=
xv
dx
x
)xcos(ln
du
Fdx)xcos(ln)xsin(lnxF
e
1
e
1
1
==
π
π

+Ax/
2
1e
FF1eF
+
==
π
π
#
mmmv'2Z`5@b
]Hi
=
==
= dx
)x(Q
)x(P
I
+.P(x), Q(x) x#
B−íc 1:
B6bËc cña P(x)
bËc cña Q(x) Z@P(x)chia cho Q(x)'('2A(x)+:'R(x)J
 P(x) = Q(x).A(x) + R(x)J+.bËc R(x) < bËc Q(x)#
V,
)x(Q
)x(R
)x(A
)x(Q
)x(P
+
++
+=
==
=
+
++
+=
==
= dx
)x(Q
)x(R
dx)x(Adx
)x(Q
)x(P

B−íc 2:

=
==
= dx
)x(Q
)x(R
I
J+.bËc R(x) < bËc Q(x)#
c/0?9,kh¶ n¨ng
+Kh¶ n¨ng 1:
X. cbxax)x(Q
2
+
++
++
++
+=
==
= JA
0
a
ZbËc R(x) < 2
R(x) = M.x+N v
cbxax
Nx.M
)x(Q
)x(R
2
+
++
++
++
+
+
++
+
=
==
=
TH1 :
Q(x)/$`x
1
, x
2
J Q(x) = a(x – x
1
)(x – x
2
)#
cypA, B
2121
xx
B
xx
A
)xx)(xx(a
Nx.M
)x(Q
)x(R
+
++
+
=
==
=
+
++
+
=
==
=
TH2 :
Q(x)/`\Ox
0
J 
2
0
)xx(a)x(Q
=
==
=
#
cypA, B
2
0
0
2
0
)xx(
B
xx
A
)xx(a
Nx.M
)x(Q
)x(R
+
++
+
=
==
=
+
++
+
=
==
=
TH3 :
Q(x)+`#cypA, B
B
)
(
'
Q
.
A
)
(
R
+
++
+
=
==
=
+à
)x(Q
B
)x(Q
)x('Q.A
)x(Q
)x(R
+
++
+=
==
=
+Kh¶ n¨ng 2:
X.
dcxbxax)x(Q
23
+
++
++
++
++
++
+=
==
=
JA
0
a
Z5eR(x) < 3
TH1:
Q(x)/&`
.x,x,x
321
 
)xx)(xx)(xx(a)x(Q
321
=
==
=
cypA, B, C 
321321
xx
C
xx
B
xx
A
)xx)(xx)(xx(a
)x(R
)x(Q
)x(R
+
++
+
+
++
+
=
==
=
=
==
=
TH2:
Q(x)/1 n
0
2
1
x
J1 n
0
kÐp
0
x
J 
2
01
)xx)(xx(a)x(Q
=
==
=
cypA, B, C
2
0
01
2
01
)xx(
C
xx
B
xx
A
)xx)(xx(a
)x(R
)x(Q
)x(R
+
++
+
+
++
+
=
==
=
=
==
=
TH3:
Q(x)/T`
0
x
A5T&J 
3
0
)xx(a)x(Q
=
==
=
cypA, B, C
3
0
2
0
0
3
0
)xx(
C
)xx(
B
xx
A
)xx(a
)x(R
)x(Q
)x(R
+
++
+
+
++
+
=
==
=
=
==
=
TH4:
Q(x)/®óng mét nghiÖm ®¬n
1
x
J  )xax)(xx()x(Q
2
1
γ
γγ
γβ
ββ
β
+
++
++
++
+
=
==
= Atrong ®ã 0a4
2
<
<<
<
=
==
=
γ
γγ
γβ
ββ
β
#
cypA, B, C
γ
γγ
γβ
ββ
βγ
γγ
γβ
ββ
β
+
++
++
++
+
+
++
+
+
++
+
=
==
=
+
++
++
++
+
=
==
=
xax
CBx
xx
A
)xax)(xx(
)x(R
)x(Q
)x(R
2
1
2
1
+Kh¶ n¨ng 3:
X.5e
)
(
Q
z&Z'{|A?50 29'
1
4
+
++
+
I
1
24
+
++
+
±
±±
±
I
1
6
+
++
+
X:;#
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 12
#
+
++
+
+
++
++
++
+
=
==
=
0
1
2
2
dx
2x3x
1xx
I
+6
+
+=
0
1
2
dx
2x3x
1x4
1I
++6
2x
B
1x
A
2x3x
1x4
2
+
=
+
V/y'(
]FH&IUF>#i/
(
)
3ln72ln102xln71xln3xI
0
1
=+=
#
$#
++
=
1
0
2
dx
1xx
x
J
+6?F]A?
$
?aU,]FL$IUFHL$#Xe
21
JJJ +=
+.
3ln
2
1
1xx
)1xx(d
2
1
J
1
0
2
2
1
=
++
++
=
+
+
+
=
++
=
1
0
2
1
0
2
2
1
2
1
x
3
2
dx
3
4
.
2
1
1xx
dx
2
1
J

utan
2
1
x
3
2
=
+
,
9
3
du
3
32
J
3/
6/
2
π
π
π
==
#
&#
+
=
3
1
3
dx
x3x
1
K
+6
3x
cBx
x
A
x3x
1
23
+
+
+=
+
/y'(]FL&JUFHL&JcFt#XZ6+6'(
3ln
6
1
dx
)3x(3
x
dx
x3
1
K
3
1
2
3
1
=
+
=
KXZ''(?+,+M#
)#
UYi
+
+
=
β
α
dx
xcosdxsinc
xcosbxsina
I
AJ:
tZ+6VF]#AnVU#AnVa y]JU
dcosx)'B(csinxdcosx)A(csinx bcosx asinx
+
+
+
=
+

2
x
tant =
2
t1
t2
xsin
+
=
2
2
t1
t1
xcos
+
=
X:;#
#
+
+
=
2/
0
dx
xcosxsin
xcos5xsin3
I
π
+6
sinx)-B(cosxcosx)A(sinx cosx 53sinx ++=+
,]F)IUF#
i/
( )
π
π
ππ
2xcosxsinlnx4
xcosxsin
)xcosx(sind
dx4I
2/
0
2/
0
2/
0
=++=
+
+
+=
$#
+
+
=
2/
0
3
dx
)xcosx(sin
xcosxsin3
J
π
+6
sinx)-B(cosxcosx)A(sinx cosx 3sinx ++=+
,]F$IUFH#
i/
2
)xcosx(sin2
1
)
4
xcot(
)xcosx(sin
)xcosx(sind
dx
)xcosx(sin
2
I
2/
0
2
2/
0
3
2/
0
2
=
+
++=
+
+
+
=
π
ππ
π
cYi
++
++
=
β
α
dx
nxcosdxsinc
mxcosbxsina
I
AJ:
tZ+6VF]#AnVU#AnVac#cy]JUJc
Cn)'dcosxB(csinxn)dcosxA(csinx mbcosx asinx ++++++=++
/0
2
x
tant =
2
t1
t2
xsin
+
=
2
2
t1
t1
xcos
+
=
X:;#
#
++
+
=
2/
0
dx
5xcos3xsin4
7xcosxsin7
I
π
+6
C3sinx)-B(4cosx)5cosx3A(4sinx 7cosx7sinx
+
+
+
+
=
+
i/]FIUFHIcF$+
++
+
++
++
=
2/
0
2/
0
2/
0
dx
5xcos3xsin4
2
dx
5xcos3xsin4
)5xcos3xsin4(d
dxI
πππ
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 13
NO
++
=
2/
0
1
dx
5xcos3xsin4
2
I
π

2
x
tant =
2
t1
t2
xsin
+
=
2
2
t1
t1
xcos
+
=
,
3
1
dt
)2t(
1
2I
1
0
2
1
=
+
=
#Xe
(
)
8
9
ln
3
1
2
I5xcos3xsin4lnxI
1
2/
0
+=+++=
π
π
Xv'2:4E\6
X:;#
#
+
=
2
0
xcosxsin
xdxsin
I
π
?OE 
+
=
2
0
xcosxsin
xdxcos
J
π
i/
2
JI
π
=+ Ax#
n\
0
xcosxsin
)xcosx(sind
xcosxsin
dx)xcosx(sin
JI
2
0
2
0
=
+
+
=
+
=
ππ
Axx#^9m`Ax+Axx,mFjF
4
π
#
$#
dx
xcosxsin
xsin
I
2
0
nn
n
n
+
=
π
?O
dx
xcosxsin
xcos
J
2
0
nn
n
n
+
=
π
#i/
2
JI
nn
π
=+ Ax
n\6?F
2
π
HZ
n
2
0
nn
n
2
0
nn
n
n
Jdx
xcosxsin
xcos
dt
tcostsin
tcos
I =
+
=
+
=
ππ
Axx#sAxJAxx/
4
I
n
π
=
&#
dx
xcosxsin
xsin
I
2
0
nn
n
n
+
=
π
'2W?O
dx
xcosxsin
xcos
J
2
0
nn
n
n
+
=
π
+,
4
JI
nn
π
==
)#
dx
xcos3xsin
xsin
E
6
0
2
+
=
π
+
dx
xcos3xsin
xcos
F
6
0
2
+
=
π
/
3ln
4
1
dx
xcos3xsin
1
FE
6
0
=
+
=+
π
Ax
/
31dx)xcos3x(sinF3E
6
0
==
π
Axx#^9m`AxJAxx'(
4
31
3ln
16
1
E
=
+
4
31
3ln
16
3
F
+=
#nl,T
==
+
=
EFdx
xcos3xsin
x2cos
E
6
0
π
2
31
3ln
8
1
+
-8?@
dx
xcos3xsin
x2cos
L
6
0
=
π
C¸c bi to¸n t−¬ng tù.
C¸c bi to¸n t−¬ng tù.C¸c bi to¸n t−¬ng tù.
C¸c bi to¸n t−¬ng tù.
A – Ph−¬ng ph¸p biÕn ®æi trùc tiÕp
#Q-GBBm#}q#]R
+
++
+
+
++
+
=
==
=
1
0
x2
2x
e1
dx)e1(
M
+ B×nh ph−¬ng v ph©n tÝch thnh 2 ph©n sè ®¬n gi¶n.
+ BiÕt ®æi biÕn.
^9
+
++
+
+
++
+
+
++
+
+
++
+
=
==
=
1
0
x2
x
1
0
x2
x2
e1
dxe2
e1
dxe1
M

+
++
+
=
==
=
1
0
x2
x
1
e1
dxe2
M

(
((
(
)
))
)
2/;2/t,ttane
x
π
ππ
ππ
ππ
π
=
==
=
\/+.
α
F1+
+
=
α
π
4/
22
1
tcos)ttan1(
tdttan2
M
F
2
e1
ln
ttan1
1
ln2tcosln2tdttan2
2
4/
2
4/
4/
+
=
+
==
α
π
α
π
α
π
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
+
^9
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
+
^9
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 14
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
+
^9
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
+
^9
#Q-GBBm#}q#]R
+
+
1
0
x2
2x
e1
dx)e1(
$#Q-Gci#}>R
+
2
0
3
xcos1
xdxsin3
π
ππ
π
&#Q-GUi#}qR
+
2
0
44
dx)xcosx(sinx2cos
π
ππ
π
)#Q-G3-#}qR
++
2
1
1x1x
dx
<#
+
6
0
dx
)
6
xcos(.xcos
1
π
ππ
π
π
ππ
π
=#
+
2
e
e
dx
x
)xln(lnxln
>#Q-Gn~#ttR
+
3
6
dx
)
6
xsin(xsin
1
π
ππ
π
π
ππ
π
π
ππ
π
q#
3
0
4
xdx2sinxcos
π
ππ
π
}#Q-GBB#tR
+
4
0
66
dx
xcosxsin
x4sin
π
ππ
π
t#Q-GBBm#tR
2
4
4
6
dx
xsin
xcos
π
ππ
π
π
ππ
π
#
3
4
4
xdxtg
π
ππ
π
π
ππ
π
12. [C§GTVT.01]
+
3
2
2
dx.x3x
&#Qc-VvUB#ttR
+
3
0
2
dx4x4x
)#
π
ππ
π
0
dxxsinxcos
<#
+
3
6
22
dx2xgcotxtg
π
ππ
π
π
ππ
π
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 15
=#
+
3
0
23
dxxx2x
>#
1
1
dxx4
-
)35(2
q#
1
1
dxxx
3
22
}#
( )
+
5
3
dx2x2x
q
$t#
+
+
3
0
2
2
dx.
2xx
1xx
$#
+
π
ππ
π
0
dxx2cos22
)
$$#
π
ππ
π
0
dxx2sin1
22
$&#
+
2/
0
dxxsin1
π
ππ
π
24
$)#
1
0
Ra;dxax
<+
+
1m0~2/1mm
0m~2/1m
2
$<#
++
2
1
2
Ra;dxax)1a(x
2
a
ZA&Y<L=I
••$ZAH
&
L&YA&H<L=
ZA<Y&L=
$=#
+
2
0
3
dx
xcos1
xcos
π
ππ
π
$q#Q-G#$tt<#3R
+
++
+
2
0
xsin
xdxcos)xcose(
π
ππ
π
$q#Q-G#$tt&#3R
2
0
2
dxxx
$}#Q-G#$tt&#UR
+
++
+
4/
0
2
dx
x2sin1
xsin21
π
ππ
π
$}#
(
((
( )
))
)
dx.xcos.xsinxcosxsinM
2
0
2266
+
++
+=
==
=
π
ππ
π
&t#
dx.
xcos
xsin
N
4
0
8
2
=
==
=
π
ππ
π
&#
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 16
B – Ph−¬ng ph¸p ®æi biÕn
#Qc-UB#tR
+
1
0
32
3
dx
)x1(
x
G3
fsf
$#QvXU#tR
1
0
23
dx.x1x
&#
+
3ln
0
x
2e
dx
)#Qc-N3#tR
+
2
0
2
dx
xcos1
x2sin
π
ππ
π
<#Q-Gi|3#}>R
1
0
635
dx)x1(x
-8?@
1
0
72
dx)x1(x
=#Q-G|^#}>#UR
+
1
0
x1
dx
>#Q-G#$tt)#]R
+
2
1
1x1
xdx
€€q#Q-G#$tt&#]R
+
32
5
2
4xx
dx
}#Q-GVvGB#tt#UR
π
ππ
π
0
222
dxxax
t#Q-GUi#ttR
+
2ln
0
x
x2
1e
dxe
#
++
23
14
2x58x
dx
$#
( )
+
2
0
2
dx
xsin2
x2sin
π
ππ
π
&#
4
0
3
xcos
dx
π
ππ
π
)#
++
6
2
dx
1x4x2
1
<#
+
3
0
25
dxx1x
=#
+
2
e
e
dx
x
)xln(lnxln
>#
+
4
2
dx
x
1x
q#
++
+++
1
0
22
23
dx
1x)x1(
x101x3x10
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 17
}#
e
1
2
dx
xln1x
1
$t#
+
e
1
dx
xln1x
xln
$#
+++
4
0
3
dx
1x21x2
1
$&#
+
4
7
2
9x.x
dx
$)#
++
7
2
dx.
2xx
1
$<#
( )
+
1
0
2
2
x31
dx
$=#Q^X#ttR
+
++
+
2
2
2
dx
xsin4
xcosx
π
ππ
π
π
ππ
π
$>#Q-G]B#}>R
+
++
+
π
ππ
π
0
2
xcos1
xdxsinx
$q#Q-GB#ttR
+
++
++
++
+
2
0
dx
xcosxsin2
1
π
ππ
π
$}#Q-GG-#ttR
+
++
+
4
0
dx
tgx1
1
π
ππ
π
&t#Q-GXG#tR
+
++
+
4
0
dx
x2cosx2sin
xcosxsin
π
ππ
π
&#QGXUcX#}qR
+
++
+
2
0
2
3
xcos1
xdxcosxsin
π
ππ
π
&$#
+
++
+
=
==
=
1
1
22
dx
)1x(
1
I
&&#Q-GB#tR
+
++
+
+
++
+
+
++
+
2)51(
1
24
2
dx
1xx
1x
&)#Q-Gci#ttR
+
++
++
++
+
1
0
24
dx
1xx
x
&<#QGXi|V#}qR
+
++
++
++
++
++
+
1
1
2
)x1x1(
dx
&=#QvXU#tR
1
0
23
dx.x1x
&>#Q-G#$tt)#UR
+
++
+
e
1
dx
x
xlnxln31
&q#Q-G#$tt<#]R
+
++
+
+
++
+
2
0
dx
xcos31
xsinx2sin
π
ππ
π
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 18
&}#Q-G#$tt=#]R
+
++
+
2
0
22
dx
xsin4xcos
x2sin
π
ππ
π
)t#Q-G#$tt<#UR
+
++
+
2
0
dx
xcos1
xcosx2sin
π
ππ
π
)##Q-G#$tt<#UR
+
++
+
5ln
3ln
xx
3e2e
dx
)$#Q-G#$tt&#]R
+
++
+
32
5
2
4xx
dx
)&#Q-G#$tt)#]R
+
++
+
2
1
dx
1x1
x
))#Q-G#$ttq#]R
6/
0
4
dx
x2cos
xtan
π
ππ
π
)<#Q-8C-GR
+
++
+
4/
0
66
dx
xcosxsin
x4sin
π
ππ
π
)=#Q-8C-GR
+
++
+
+
++
+
e
1
2
dx.xln.x
xln1.x
1
)>#Q-8C-GR
+
++
+
4
0
1x2
dxe
)q#Q-8C-GR
+
++
+
2
0
3
dx
)xsin1(2
x2sin
π
ππ
π
G3-
sin
1
t
+
++
+
=
==
=
8
1
t2
dt)1t(2
2
1
3
=
==
=
)}#
=
==
=
8
4
2
dx
x
16x
I
<t#
+
++
++
++
+
=
==
=
4
2
dx
x
1x1x
J
<#
+
++
++
++
+
+
++
++
++
++
++
+
=
==
=
1
0
22
23
dx
1x)x1(
x101x3x10
K
<$#
=
==
=
2ln
2ln
x2
x
dx
e1
e
H
<&#
+
++
+
=
==
=
3ln
0
x2
1e
dx
G
<)#
+
++
++
++
+
=
==
=
2
0
xcos3xsin53
dx
F
π
ππ
π
<<#
+
++
+
=
==
=
2
0
24
3
dx
3xcos3xcos
xcos
D
π
ππ
π
<=#
+
++
+
=
==
=
5ln
0
x
xx
3e
dx1ee
S
<>#
+
++
+
=
==
=
π
ππ
π
π
ππ
π
2
xcosxsin2
dx
T
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 19
<q#
+
++
+
=
==
=
4
7
2
9x.x
dx
R
<}#
+
++
++
++
+
=
==
=
7
2
dx.
2xx
1
E
=t#
+
++
++
++
+
+
++
+
=
==
=
4
0
dx.
1x21
1x2
W
=#
+
++
+
=
==
=
2/
0
xcos2
dx
Q
π
ππ
π
-
2
x
tant =
==
=
Z
9
3
t)3(
dt
Q
utan3t
1
0
22
π
ππ
π
=
==
=
====
========
====
+
++
+
=
==
=
=$#
+
++
++
++
+
=
==
=
2
0
2
1x6x3
dx
M
C – Ph−¬ng ph¸p tÝch ph©n tõng phÇn
#Q-Gc-#}>R
+
++
+
1
0
x22
dxe)x1(
$#Q-Gci#}qR
4
0
2
dx)1xcos2(x
π
ππ
π
&#
+
++
+
2
0
23
dx)1xln(x +
10
0
2
xdxlgx
)#QvXU#}qR
e
1
2
dx)xlnx(
<#QGXBG#}qR
π
ππ
π
0
2
xdxcosxsinx
=#Q-Gc-#ttR
+
++
+
2
1
2
x
dx)1xln(
>#Q-G#tR
+
++
+
4
0
dx)tgx1ln(
π
ππ
π
q#
2
0
2
xdxxtg
π
ππ
π
}#Q-G•GB#tR
3
2
2
dx.1x
t#Q-8CR
2
1
2
dx)xx3ln(x
#Q-G#$tt>#3R
e
1
22
xdxlnx
$#Q-G#$tt=#3R
1
0
x2
dxe)2x(
&#
+
++
++
++
+=
==
=
0
1
3
x2
dx)1xe(xI
)#
+
++
+
=
==
=
2
e
e
dx
x
)xln(lnxln
J
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985
www.MATHVN.com CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
GV Vũ S Minh - Email:
vusyminh@gmail.com - www.mathvn.com 20
<#
=
==
=
π
ππ
π
0
2
dx)xsinx(K
=#
+
++
+
=
==
=
1
0
2
dx
)1x2(sin
x
H
>#
=
==
=
4
0
3
dx
xcos
xsin.x
G
π
ππ
π
q#
=
==
=
2ln
0
x5
dxe.xF
2
}#
+
++
+
+
++
+
=
==
=
4
1
dx
xx
)1xln(
D
$t#
+
++
+
+
++
+
=
==
=
e
1
2
dxxln
xln1x
xln
S
$#
=
==
=
2
2
4/
2
dx.xcosA
π
ππ
π
π
ππ
π
$$#
(
((
( )
))
)
=
==
=
π
ππ
π
0
2
x
dxxcos.eP
$&#
dx.xsin.xU
2
0
=
==
=
π
ππ
π
$)#
dx.xcos.xsin.xY
2
0
=
==
=
π
ππ
π
$<#
+
++
+
+
++
+
=
==
=
3/
0
x
dxe
xcosxsin
xsin1
T
π
ππ
π
-
=
==
=
+
++
+
+
++
+
=
==
= dv;
xcosxsin
xsin1
u ##NO
+
++
+
=
==
=
3/
0
x
1
dxe
xcos1
xsin
T
π
ππ
π
+,
3
e
xcos1
xsine
T
3
3/
0
x
π
ππ
π
π
ππ
π
=
==
=
+
++
+
=
==
=
$=#
+
++
+=
==
=
1
0
2
dxx1R
-
2
)21ln(2 +
++
++
++
+
$>#
+
++
+=
==
=
1
0
2
dx)1xln(xE
-V
2
1
2ln
$q#
+
++
+=
==
=
2/
0
dx)xcos1ln(xcosW
π
ππ
π
-
1
2
π
ππ
π
$}#
+
++
+
=
==
=
e
e/1
2
dx
)1x(
xln
Q
-
1e
e2
+
++
+
&t#
+
++
+
+
++
+
=
==
=
2/
3/
dx
xcos1
xsinx
M
π
ππ
π
π
ππ
π
X6nFn
n
$
#X.
2
3
lndx
xcos1
xsin
M
2/
3/
1
=
==
=
+
++
+
=
==
=
π
ππ
π
π
ππ
π
+
++
+
=
==
=
3/
6/
2
dx
xcos1
x
M
π
ππ
π
π
ππ
π
#
-
+
++
+
=
==
=
=
==
=
dx
xcos1
1
dv
xu
=
==
=
=
==
=
2
x
cot2v
dxdu
4ln
3
)323(
M
2
=
==
=
π
ππ
π
Xe
8
3
ln
3
)323(
M +
++
+
=
==
=
π
ππ
π
Downloaded by Châu Bùi (Vj7@gmail.com)
lOMoARcPSD|46342985

Preview text:

lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN Chuyªn ®Ò 1: C¸ C c ¸ ph p − h ¬ng n p h p ¸ h p p t Ý t nh n h tÝ t ch h p h p © h n
Th«ng thường ta gÆp c¸c lo¹i tÝch ph©n sau ®©y:
+) Loại 1: TÝch ph©n cña h m sè ®a thøc ph©n thøc h÷u tû.
+) Loại 2: TÝch ph©n cña h m sè chøa c¨n thøc
+) Loại 3: TÝch ph©n cña h m sè l−îng gi¸c
+) Loại 4: TÝch ph©n cña h m sè mò v logarit
§èi víi c¸c tÝch ph©n ®ã cã thÓ tÝch theo c¸c ph−¬ng ph¸p sau:
I) Ph−¬ng ph¸p biÕn ®æi trùc tiÕp b
Dïng c¸c c«ng thøc biÕn ®æi vÒ c¸c tÝch ph©n ®¬n gi¶n v ¸p dông ®−îc b f (x d ) x ∫ = ∫ F(x)
= F(b) F(a) a a
+) BiÕn ®æi ph©n thøc vÒ tæng hiÖu c¸c ph©n thøc ®¬n gi¶n VÝ dô 1. TÝnh: 2 2 2 2   1. 1 2 2 Ix − =
2x dx ta cã I = ( − )dx = ln x +  = (ln2 + )1 − (ln1+ ) 2 = ln 2 −1 ∫ 3 x x x 2  x  1 1 1 2 e 2 e 2 x −  4  2 e 2. = ∫ −1/2 2x
− 3+ dx = (4 x −3x + 4ln x ) J = ∫ 3x + 4 dx = − 2 e 3 + e 4 + 7 x  x  1 1 1 8 3 5 8 8 4 x −  4 1   4 3  3. 207 K = ∫
3x 1 dx = ∫ x − 1/3 x − −2 / 3 x dx =  2 x − 3 4 x − 3 x  = 3 2  3 3   3 4  4 1 3 x 1 1
+) BiÕn ®æi nhê c¸c c«ng thøc l−îng gi¸c VÝ dô 2. TÝnh: π / 2 π / 2 π / 2   1. 1 1 sin 2x sin 8x
I = ∫ cos 3xcos5xdx = ∫ (cos2x +cos8x)dx =  +  = 0 2 2  2 8  −π / 2 −π / 2 −π / 2 π / 2 π / 2 π / 2   2. 1 1 sin 5x sin 9x 4
J = ∫ sin2xsin7xdx = ∫ (cos( 5 − x) − cos9x)dx =  −  = 2 2  5 9  45 −π / 2 −π / 2 −π / 2 π / 2 π / 2 π / 2 π / 2   3. 1 1 cos 4x cos10x
K = ∫ cos 3xsin7xdx = sin 7x cos x 3 dx = ∫
∫ (sin4x +sin10x)dx = −  +  = 0 2 2  4 10  −π / 2 −π / 2 −π / 2 −π / 2 π π 1 + π cos 2x  1 1  4. H = ∫ 2
sin 2x cos xdx = ∫sin 2x dx =  − cos 2x − cos 4x  = 0 hoÆc biÕn ®æi 0 2  4 16  0 0 0 π π 1 + π cos 2x  1 1  H = ∫ 2
sin 2x cos xdx = ∫sin 2x dx =  − cos 2x − cos 4x  = 0 2  4 16  0 0 0 π / 2 π / 2 π / 2 1 + sin 2x + 2 2 2 + + − 5. (sin x cos x) cos x sin x π / 2 G = ∫ cos 2x = dx = 2 cos xdx = ∫ ∫ (−2sin x) = 1 − sin x + dx + cosx sin x + cos x π / 6 π / 6 π / 6 π / 6 π / 2 π / 2 2 π / 2 π / 2  −    π 6. 1 cos 2x 1 1 sin 4x 3 E = ∫ 4 sin xdx =   dx = ∫
∫(3+cos4x −4cos2x)dx = 3x + − sin 2x =  2  8 8  4  16 0 0 0 0 π / 4 π / 4 π   / 2 π −π 7. 1 / 4 4 F = ∫ 2 tan xdx =  −1dx = − = ∫ . §Ò xuÊt: F cot xdx v 1 = ∫ 2 2 (tan x x)  cos x 0  4 0 0 π / 4 π / 4 F = ∫ 4 tan xdx 2 0
+) BiÕn ®æi biÓu thøc ë ngo i vi ph©n v o trong vi ph©n VÝ dô 3. TÝnh: 1 1 1 4 + 1. 1 3 1 (2x ) 1
I = ∫ (2x + 3 ) 1 dx = (2x + ) 1 d(2x + ) 1 = = 10 ∫ 2 2 4 0 0 0 2 2 1 1 −2 − + 2. = ∫ 1 1 3 1 (2x ) 1 1 1 J dx = (2x − ) 1 d(2x − ) 1 = = − = 0 ∫ (2x 3 ) 1 2 2 − 2 4 (2x − ) 1 2 1 1 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 1
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 7 / 3 7 / 3 7 / 3 3. 1 1/ 2 2 3 16
K = ∫ 3x 3dx = x 3 ( − ) 3 d 3 ( x − ) 3 = 3 ( x − ) 3 = ∫ 3 9 9 1 1 1 4 4 1 − − 4. = ∫ dx 1 1/ 2 2 1/ 2 10 2 13 H = − (25 − x 3 ) d(25 − 3x) = (25 − 3x) = ∫ − 25 3x 3 3 3 0 − 0 0 2 2 2   + − −   − − 5. = ∫ 1 x 1 x 1 1 3 2 1 G dx = dx = ( x +1 − x −1)dx = ∫  ∫  x + 1 x 1 (x − ) 1 − (x + ) 1 2 3 1 + + − 1  1 
(Nh©n c¶ tö v mÉu víi bt liªn hîp cña mÉu sè) §Ò xuÊt 1 1   G = dx ∫ = ∫
(ax + b)3 + (ax + c)3  + C víi a ≠ ; 0 b ≠ c 1
ax + b + ax + c a(b c)   1 1 1 1 6. 4
P = ∫ x 1 xdx = ∫ (x −1+ ) 1 1− xdx = −∫ (x − ) 1 1− xd 1 ( − x) + ∫ 1− xdx = 5 0 0 0 0 1 1 7. 2 1 1 2 2 Q1− = x e xdx = − e1−x d 1 ( − x 2 ) = −e1−x = e −1 ∫ 2 0 0 0 1 − §Ò xuÊt 4 6 2 Q = x3 1 ∫ + ∫ x 2 dx =
HD ®−a x v o trong vi ph©n v thªm bít (x2 + 1 H 1). 1 15 0 VÝ dô 4. TÝnh: π π / 2 π / 2 1. 1 I = (2 cos 3x ∫ + ∫ 3 sin 2x d
) x = 0 ; I = sin3 x cos xdx ∫ = ∫ v I = ecosx sin xdx ∫ = ∫ e 1 1 2 4 3 0 0 0 π / 4 π / 2 π / 4 2. sin x 2 J = tan xdx ∫ = ∫ ln 2 ; J = cot xdx ∫ = ∫ ln 2 v J = dx ∫ = ∫ ln 2 1 2 3 1 + 3 cos x 3 0 π / 6 0
(®−a sinx, cosx v o trong vi ph©n) e 2 e 3 e 3. sin(ln x) cos(ln x) 1 K = dx ∫ = ∫
1 cos1 ; K = dx ∫ = ∫
1 cos 2 v K = dx ∫ = ∫ 2 1 x 2 x 3 x 1 + ln x 1 1 1
{®−a 1/x v o trong vi ph©n ®Ó ®−îc d(lnx)} ln 3 x ln 3 4. e x 5 H dx = ln 2 + e = ln
1 = ∫ 2 + x e 1 2 + e 1 ln 2 ln 2 ln 2 ln 2 1 x 1+ x e − x x e 2e e H dx = ∫ dx = dx 2 dx 3ln 2 2 ln 3 x ∫ − ∫ = −
2 = ∫ 1 + x e 1+ e 1 + x e 0 0 0 0 ln 2 ln 2 ln 2 ln 2 ln 2 x x x + −   dx 1 (e 5 e )dx 1 1 e dx 1 1 x 1 12 H = = dx −  = x − ln e + 5  = ln ∫ ∫ ∫ 3 = ∫ x e + 5 5 ex + 5 5 5 ex + 5  5 5  5 7 0 0 0 0 0 1 x 1 1 e dx 2x 2 e dx 1 1 e 1 H = ∫ 2x + = ln e +1 = ln 4 = ∫ xe + x e 2x e +1 2 2 2 0 0 0 b
+) BiÕn ®æi nhê viÖc xÐt dÊu c¸c biÓu thøc trong gi¸ trÞ tuyÖt ®èi ®Ó tÝnh I = ∫ f(x,m)dx a
H XÐt dÊu h m sè f(x,m) trong ®o¹n [a; b] v chia [a;b]= [a;c ]∪[c ;c ]∪...∪[c ;b] trªn mçi ®o¹n h m sè f(x,m) 1 1 2 n gi÷ mét dÊu c c 1 2 b
H TÝnh I = ∫ f(x,m)dx + ∫ f(x,m)dx +...+ ∫ f(x,m)dx a c c 1 n VÝ dô 5. TÝnh: 2 1. I = ∫ 2
x + 2x 3 dx Ta xÐt pt: x 2 + 2 x 3 = 0
⇔ x = 1∨ x = 3 . B¶ng xÐt dÊu f(x) 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 2
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 1 2 1 2
Suy ra I = x2 + 2x − 3dx + x2 + 2x − 3dx = − (x2 + 2x − ) 3 dx + (x 2 + 2x − ) 3 dx = 4 ∫ ∫ ∫ ∫ 0 1 0 1 1 −2 0 1
2. J = ∫ 4x 3
x dx tÝnh t−¬ng tù ta cã J = 4x − x3 dx + 4x − x3 dx + 4x − x3 dx = 16 ∫ ∫ ∫ −3 −3 −2 0 3 3. 1 K = 2x ∫ − ∫ 4 dx = 4 + ln 2 0 2π 2π π 2π 4. H 1 cos 2xdx = 2 sin x dx = 2 sin x dx + 2 sin x dx = 2 2 ∫ ∫ ∫ 1 = ∫ − 0 0 0 π π H 1
sin 2xdx {ViÕt (1 – sin2x) vÒ b×nh ph−¬ng cña mét biÓu thøc råi khai c¨n} 2 = ∫ − 0 π π / 4 3π / 4 3π / 2
= sin x + cos x dx = sin x + cos x dx + sin x + cos x dx + sin x + cos x dx = 2 2 ∫ ∫ ∫ ∫ 0 0 π / 4 3π / 4
II) Ph−¬ng ph¸p ®æi biÕn sè
A ' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 1: b
Gi¶ sö cÇn tÝnh tÝch ph©n I = ∫ f(x)dx ta thùc hiÖn c¸c b−íc sau: a H B−íc 1. §Æt x = u(t)
H B−íc 2. LÊy vi ph©n dx = u’(t)dt v biÓu thÞ f(x)dx theo t v dt. Ch¼ng h¹n f(x)dx = g(t)dt
H B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β β
H B−íc 4. BiÕn ®æi I = ∫g(t)dt (tÝch ph©n n y dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa) α
C¸ch ®Æt ®æi biÕn d¹ng 1.
C¸ch ®Æt 1.
NÕu h m sè chøa 2
1 x th× ®Æt x = sin ; t t [ π − / ; 2 π / ]
2 hoÆc ®Æt x = cos ; t t [ ; 0 π ] VÝ dô 1. TÝnh: 1 2 1. A1− =
x dx ta ®Æt x = sin t;t ∈[ π − / ;
2 π / 2] ⇒ dx = cost.dt; ®æi cËn khi x = 2 /2 th× t = π / 4 ; khi x 2 x 2 / 2 π / 2 π / 2 π / 2 2 2 2 − − − π = 1 th× t = π 1 sin t cos t 1 sin t 4 / 2 . Khi ®ã A = cos t d . t = d . t = d . t = ∫ ∫ ∫ sin 2 t sin 2 t sin 2 t 4 π / 4 π / 4 π / 4 1 2 1 2 2. = ∫ x x B dx ta viÕt B = ∫ dx . 2 2 2 1 (x / 2) 0 − 0 4 x §Æt (x / 2) = cos t; t ∈ ; 0
[ π ] ⇒ x = 2 cos t ⇒ dx = 2 − sin tdt π / 3 π / 2 π / 2 2 π §æi cËn suy ra (2 cos t) B = ( 2 − sin tdt) = 4cos2 tdt = 2 ∫ ∫ ∫(1+ cos2t) 3 dt = − 2 3 2 π − / 2 2 1 cos t π / 3 π / 3 1 1  2 3. 3 x . C = ∫ 2 x 4 2
3x dx Tr−íc hÕt ta viÕt C = 2∫ 2   x 1 −   dx .  2  0 0 §Æt 3 x = sin t; t ∈[ π − / ;
2 π / 2] ®−a tÝch ph©n vÒ d¹ng: 2 π / 3 π / 3 16 − π 2 2 4 1 cos 4t 2 3 1 C = sin t cos tdt = dt = + ∫ ∫ 3 3 3 3 2 27 12 0 0 Chó ý:
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 3
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN  x = sin t;t ∈[−π π 2 / ; 2 / ] 2    H NÕu h m sè chøa x a
a x2 ,a > 0 th× ta viÕt 2 a − x = a 1 −    v ®Æt  a   x  = cos t; t ∈[ ; 0 π ]  a  b π π 2  x = sin t; t ∈[− / ; 2 / ] 2   H NÕu h m sè chøa b  a
a bx2 ,a,b > 0 th× ta viÕt 2 a − bx = a 1  − x    v ®Æt   a   b x = cost;t ∈[ ; 0 π ]  a VÝ dô 2. TÝnh: 2 1. = ∫ 1 E
dx {ViÕt tÝch ph©n vÒ d¹ng 2 1 − X } 2 x x 1 2 / 3 − 2 π / 3 π ta viÕt = ∫ 1 1 E dx v ®Æt = sin t; t ∈ [− π / ; 2 π / 2] suy ra E = dt = ∫ 2 2 x 1 1/ x x 12 2 / 3 − ( ) π / 4 2 2 / 3 2 2. G3x − =
4 dx {ViÕt tÝch ph©n vÒ d¹ng 2 1 − X } 3 x 2 / 3 2 2 / 3 3 . x . 1 (2 / 3x)2 ta viÕt 2 G ∫ − = dx v ®Æt = sin t; t ∈ [− π / ;
2 π / 2] suy ra tÝch ph©n cã d¹ng 3 x 3x 2 / 3 π / 3 3 3 + − 2 3( 6 3 3) G = cos tdt = ∫ π
{NÕu tÝch ph©n cã d¹ng ax 2 − b th× viÕt vÒ d¹ng 2 1 − X } 2 16 π / 4
C¸ch ®Æt 2. NÕu tÝch ph©n cã chøa 2 1 + x hoÆc ( 2
1 + x ) th× ta ®Æt x = tan t;t ∈ (− π / ; 2 π / 2) hoÆc x = cot t; t ∈ ( ; 0 π ) VÝ dô 3. TÝnh: 3 π / 3 π 1. = ∫ 1 M
dx ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2) suy ra M = dt = ∫ 1 + 2 x 6 1 / 3 π / 6 3 π / 3 − 2. = ∫ 1 cos t 18 2 3 N
dx ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2) suy ra N = dt = ∫ 2 2 2 x . 1 x sin t. 3 1 + π / 4 a 3. = ∫ 1 P d ; x a 0 2 (a + 2 2 x ) 0 a π / 4 + ta viÕt = ∫ 1 x 1 2 P dx v ®Æt = tan t; ⇒ 2 P = cos tdt = ∫ π  3 3 x  2 a a 4a 0 4 2 a 1 + ( )  0  a  1 4. = ∫ 1 Q dx 2 x + x + 1 0 1   1 π ta viÕt = 4 2 1 4 3 3 Q ∫ 1 dx v ®Æt
 x +  = tan t; t ∈ (− π / ; 2 π / 2) ⇒ Q = dt = ∫ 3  2 3  2  3 2 9 0 1 + 2 1 0  (x + )  3 2 
Chó ý: NÕu gÆp tÝch ph©n chøa 2 a + bx hoÆc 2
a + bx th× ta viÕt:  2    2  b  2   b   b a + bx = a 1 + x hoÆc 2 a + bx = a 1  + x  v ta ®Æt x = tan t; t ∈ (− π / ; 2 π / 2)         a    a  a
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 4
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN − +
C¸ch ®Æt 3. NÕu tÝch ph©n cã chøa a x hoÆc a x th× ta ®Æt ta ®Æt x = acos t 2 ;t [ ;
0 π / 2] v l−u ý vËn dông a + x a x 1 − cos 2t = 2sin2 t  1 + cos 2t = 2cos2 t VÝ dô 4. TÝnh: 0 π / 4 a + 1 + − π 1. cos 2t 4 I = ∫ x d ;
x a > ta ®Æt x = a cos 2t; t ∈ ; 0 [ π / 2] suy ra I = ∫ (−2a sin 2t)dt = a a 0x 1 − cos 2t 4 −a π / 2 2 / 2 π / 8 1 + 1 + 2. cos 2t J = ∫
x dx ta ®Æt x = cos2t;t ∈[ ;0π / 2] suy ra J = ∫ (−2 sin 2t d ) t = 1 x 1 − cos 2t 0 π / 4 π / 4 + − 1 + x 2 4 2 2 J = 4 cos tdt = ∫ π {cã thÓ ®Æt
= t suy rra tÝch ph©n J vÒ d¹ng tÝch ph©n cña h m sè h÷u tû} 4 1 x π / 8
B ' Ph−¬ng ph¸p ®æi biÕn sè d¹ng 2: b
Gi¶ sö cÇn tÝnh tÝch ph©n I = ∫ f(x d
) x ta thùc hiÖn c¸c b−íc sau: a H B−íc 1. §Æt t = v(x)
H B−íc 2. LÊy vi ph©n dx = u’(t)dt v biÓu thÞ f(x)dx theo t v dt. Ch¼ng h¹n f(x)dx = g(t)dt
H B−íc 3. §æi cËn khi x = a th× u(t) = a øng víi t = α ; khi x = b th× u(t) = b øng víi t = β β
H B−íc 4. BiÕn ®æi I = ∫g(t)dt (tÝch ph©n n y dÔ tÝnh h¬n th× phÐp ®æi biÕn míi cã ý nghÜa) α
C¸ch ®Æt ®æi biÕn d¹ng 2.
C¸ch ®Æt 1.
NÕu h m sè chøa Èn ë mÉu th× ®Æt t = mÉu sè. VÝ dô 1. TÝnh: π / 2 4 1. dt 4
I = ∫ sin 2x dx ta cã thÓ ®Æt t = 4 H cos2x suy ra I = = ln ∫ 4 2 cos x t 3 0 3 π / 4 2 2. dt 3 J = ∫ sin 2x
dx ®Æt t = sin 2 x + 2 cos2 x = 1 + cos2 x suy ra J = ∫ = ln 2 sin x + 2 2cos x t 4 0 3 / 2
{cã thÓ h¹ bËc ®Ó biÕn ®æi tiÕp mÉu sè vÒ cos2x sau ®ã ®−a sin2x v o trong vi ph©n} π / 2 §Ò xuÊt: sin x cos x J
dx víi a 2 + b2 > 0 1 = ∫ 2 2 a sin x + 2 2 b cos x 0 ln 2 3. = ∫ 1 K
dx ta ®Æt t = ex + 5 ⇒ ex = t − 5 ⇒ exdx = dt sau ®ã l m xuÊt hiÖn trong tÝch ph©n biÓu x e + 5 0 ln 2 7 7 x − thøc e dx dt 1 t 5 1 12 ex dx ⇒ K = = = ln = ln ∫ ∫ ex (ex + ) 5 t(t − ) 5 5 t 5 7 6 0 6 ln 2 ln 2 ln 2 x x x x + − +
{Cã thÓ biÕn ®æi trùc tiÕp 1 e 5 e 1 e 5 1 e 1 12 K = dx = dx − dx = ln ∫ ∫ ∫ } 5 e x + 5 5 e x + 5 5 e x + 5 5 7 0 0 0 π / 2 7 sin 2x + 4. 1 1 2 H = ∫ cos x
dx ta ®Æt t = 2sin x − cos 2x + 4 ⇒ H = dt = ∫
(2sin x cos 2x + 2 4) 2 t 2 21 0 3
{®«I khi kh«ng ®Æt c¶ MS} π / 2 3
5. G = ∫ sinxcos x dx chó ý r»ng t¸ch mò 3 = 2 +1 ®Æt 1 + 2 cos x 0 2 2 1 (t − ) 1  1  1 − ln 2 t = 1 cos2 +
x ⇒ cos2 x = t −1 ⇒ 2sin x cos xdx = −dt khi ®ã: G = dt =  (t − ln t ) = ∫ 2 t  2  2 1 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 5
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π / 4 6. M = ∫ cos 2x dx
sin x + cos x + 2 0
ta ®Æt t = sin x + cos x + 2 ⇒ dt = (cos x − sin x)dx l−u ý cos2x = (cosx+sinx)(cosxHsinx) π / 4 2+ 2
(cos x + sin x)(cos x − sin x) (t − 2)dt 2+ 2 + M = dx = = ∫ ∫ (t − 2lnt ) 2 2 = 2 −1 + ln sin x + cos x + 2 t 3 3 0 3 π / 4 7. N = ∫ cos 2x
dx ®Æt t = sin x + cos x + 2 suy ra (sin x + cos x + 3 2) 0 2+ 2 2+ 2 (t − ) 2 dt  1 1  1 1 1 1 2 1 N = =  −  = − − + = − ∫ t 3  t 2 t  (2 + 2)2 2 + 2 9 3 9 2 1 ( + 2 ) 3 3 π / 4 π / 4 §Ò xuÊt: cos 2x cos 2x M dx v N dx 1 = ∫
1 = ∫ sin x cos x + 2
(sin x cos x + 3 2) 0 0 8.
C¸ch ®Æt 2. NÕu h m sè chøa c¨n thøc n ϕ(x) th× ®Æt n
t = ϕ(x) sau ®ã luü thõa 2 vÕ v lÊy vi ph©n 2 vÕ. VÝ dô 1. TÝnh: 1 4x − 1. 1 2 I = ∫ 3 dx ta ®Æt t = x 3 + 1 ⇒ x =
(t2 − )1⇒ dx = tdt khi ®ã ®−a tÝch ph©n vÒ d¹ng:
2 + 3x + 1 3 3 0 2 2 2 3 − 2 4t 13t 2 I = dt = ∫ ∫(4t2 −8t + 3) 2 6 2 4 4 dt − dt = − ln ∫ 9 2 + t 9 9 2 + t 27 3 3 1 1 1 7 3 2 2. = ∫ x 3 4 141 J dx ta ®Æt 3 2 t = 1 + x
⇒ x 2 = t3 −1 ⇒ 2xdx 3t 2 = dt ⇒ J = (t − t)dt = ∫ 3 2 2 20 0 1 + x 1 2 5 5 − 3. = ∫ 1 tdt 1 t 1 K dx ta ®Æt 2 t = 1 + x
⇒ x 2 = t2 −1 ⇒ xdx = tdt ⇒ J = = ln ∫ 2 2 (t − ) 1 t 2 t + 1 1 x 1 + x 2 2 2 4. = ∫ 1 H dx ta ®Æt 3
t = 1 + x ⇒ x 3 = t 2 − 1 ⇒ 3x2dx = t
2 dt nh©n c¶ tö v mÉu sè víi x2 ta ®−îc: 3 1 x 1 + x 2 3 3 xdx 2 dt 1 t −1 2 2 + 1 H = = = ln = ln ∫ ∫ 2 3 3 t 2 + −1 3 t +1 3 1 x 1 x 2 2 2 3 5 x + 3 5. G = ∫ 2x dx ta ®Æt 2 t = 1 + x
⇒ x 2 = t2 −1 ⇒ xdx = tdt nhãm x2.x.(x2 +2) ta ®−îc: 2 0 x + 1 2 3 2 (x 2 + ) 2 x 2 x . (t 2 + ) 1 (t 2 − ) 1 tdt  t5  26 G = dx = = − t = ∫ ∫   2 t +  5  5 0 x 1 1 1 6 6. = ∫ 1 1 2 M dx ta ®Æt 6 t = 9x + 1 ⇒ x = (t6 − )1 ⇒ dx t5 =
dt luü thõa bËc hai v bËc ba
9x + 1 + 3 9x + 9 3 − 1 1 2 2 2 2 t 5dt 2 t 3dt 2 2 1 2  11 2  ta cã: M = = = (t − t + 1 − )dt =  + ln  ∫ 3 2 ∫ ∫ 3 t + t 3 t + 1 3 t +1 3  6 3  1 1 1 VÝ dô 2. TÝnh: π / 2 sin 2x + 1. [§H.2005.A] 1 2 P = ∫
sin x dx ta ®Æt t = 1+ 3cosx ⇒ cosx = (t2 − )1 ⇒ sin xdx = − tdt nhãm 1 + 3 cos x 3 3 0 π / 2 2 2 (2 cos x + 3   nh©n tö sinx ta cã: 2 2 2 2t 34 P = ∫ )
1 sin xdx = ∫(2t + )1dx =  + t = 1 + 3cos x 9 9  3  27 0 1 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 6
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 2 + 2. cos 3x sin 2x 1 2 Q = d . x
ta ®Æt t = 1+ 3sin x ⇒ sin x = (t 2 − ) 1 ⇒ cos xdx = tdt ¸p dông c«ng thøc 1 + 3 sin x 3 3 0 π π 2 3 − + 2 2 − − +
nh©n ®«i v nh©n 3 ta viÕt: 4 cos x 3 cos x 2 sin x cos x 4 4 sin x 3 2 sin x Q = d . x ∫ = .cos xdx ∫ 1 + 3sin x 1 + 3sin x 0 0 2 2   VËy = 2 2 4 5 14 3 206 Q ∫(− 4 4t + 2 14t − d ) 1 t =  − t + t − t  = 27 27  5 3  405 1 1 π 2 3. [§H.2006.A] 2 1 R = ∫ sin 2x
dx ta ®Æt t = 1 3sin 2 + x ⇒ sin x = (t 2 − ) 1 ⇒ 2 2 3 0 cos x + 4 sin x 2 2 2 2 tdt 2 2 sin 2xdx = tdt . khi ®ã: R = = t = ∫ 3 3 t 3 3 1 1 4. VÝ dô 3. TÝnh: e 1. P lnx 1 + = 3 ln x dx x 1 2 Ta ®Æt 1 dx 2 2 4 116 t = 1 + 3ln x ⇒ ln x = (t 2 − ) 1 ⇒
= tdt khi ®ã: P = ∫(t − t)dx = 3 x 3 9 135 1 e 3 − 2. Q = ∫ 2 ln x dx x 1 + 2 ln x 1 Ta ®Æt 1 dx t = 1 + 2 ln x ⇒ ln x = (t 2 − ) 1 ⇒ = tdt . Khi ®ã: 2 x 3 2 2 3 − (t 2 − ) 1 tdt   − 2 t 3 9 3 11 Q = = (4 − t )dt = 4t − = ∫ ∫   t  3  3 1 1 1 2 ln 2 5 2dt 5 − 1 3 + 3. = ∫ dx 1 R
. Ta ®Æt t = ex + 1 suy ra exdx = 2tdt ⇒ R = ∫ = ln . x 2 t − 1 5 + 1 3 − 1 ln 2 e + 1 3 3 e 4. = ∫ dx d 3 x e 2 S . Ta ®Æt 3 x t = e suy ra S = = 3ln ∫ 3 x t(t + ) 1 e + 1 0 1 + e 1 ln 5 x x e e − 5. X = ∫ d 1 x x e + 3 0
C¸ch ®Æt 3. NÕu h m sè chøa c¸c ®¹i l−îng x x
sin x , cos x v tan
th× ta ®Æt t = tan khi ®ã 2 2 t 2 2 1 t sin x = , cos x = 2 1 + t 2 1 + t VÝ dô 4. TÝnh: π / 2 1. 1 Q = d . x ∫ 5 sin x + 3cos x + 5 0 1 1 + Ta ®Æt x 2dt 1 1 t 1 1 8 t = tan ⇒ dx = v Q = dt = ln = ln ∫ 2 2 1 + t t 2 + 5t + 4 3 t + 4 3 5 0 0 x π / 3 tan 1 / 3 1 / 3 2. 2 x d 2 t 2tdt 2 10 L = d . x ∫ ta ®Æt t = tan ⇒ dx = v L = = ln t + 3 = ln ∫ cos x + 2 2 2 1 + t t 2 + 3 0 9 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 7
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 4 1 1 ( + 1 1 3. dt t)dt dt tdt V = ∫ cos 2x dx ta ®Æt t = tan x ⇒ dx = v V = ∫ = 2 ∫ + 2 ∫ cos 2x + sin 2x + 1 2 1 + t 2 1 ( + t ) 2 1 ( + t ) 1 ( 2 + 2 t ) 0 0 0 0 1 π 4 1 1 t =tan y π + 2 = dt cos 2x 2 ln 2 V + ln t + 1 ta tÝnh V = = ∫ suy ra V = dx = ∫ π 1 1 2 0 4 1 ( 2 + t ) 8 cos 2x + sin 2x + 1 8 0 0 π 4 π 4 1 + 2 1 + 2 4. tan x N = ∫ tan x dx ta viÕt N = ∫ dx v ®Æt 2 cos x + sin 2x − 2 sin x + 1 cos 2x + sin 2x + 1 0 0 1 1 dt 1 1 + t 2 1  t 2  3 + 2 ln 2 t = tan x ⇒ dx = suy ra N = dt = + t + ln t +1 = ∫ 2   1 + t 2 t + 1 2  2  4 0 0  π  π 4 sin x −  π 4 1 (sin x − cosx) 5. [§H.2008.B] F = ∫  4  dx ta viÕt F = ∫ dx dùa sin 2x + 2 1 ( + sin x + cos x) 2 2 sin x cos x + 1 ( 2 + sin x + cos x) 0 0
v o mèi quan hÖ gi÷a sin x + cos x v sin x cos x ta ®Æt t = sin x + cos x ⇒ dt = (cos x − sin x)dx v 2 2 2 t 2 − 1 1 − dt 1 dt 1 1 1 1 sin x cos x = khi ®ã F = ∫ = − 2 ∫ = = − 2 2 t − 1 + 1 ( 2 + 2 t) 2 t + 2t + 1 2 t + 1 2 2 2 2 1 1 + 1
C¸ch ®Æt 4. Dùa v o ®Æc ®iÓm hai cËn cña tÝch ph©n. a 0 a 0
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ viÕt I = ∫f(x)dx + ∫f(x)dx ®Æt t = H x ®Ó biÕn ®æi I f (x d ) x 1 = ∫ −a −a 0 −a π
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = π H x 0 π 2
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = 2π H x 0 π / 2 π
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = H x 2 0 b
NÕu tÝch ph©n cã d¹ng I = ∫f(x)dx th× ta cã thÓ ®Æt t = (a + b) H x a VÝ dô 4. TÝnh: 1 0 1 1. I = ∫ 2008 x sin xdx ta viÕt I = 2008 x sin xdx + ∫ x 2008 sin xdx = A + B ∫
. Ta ®Æt t = Hx th× A = H B. vËy I = 0. −1 −1 0 π π π π 2. sin t t sin t
J = ∫ x sin x dx ta ®Æt t = π − x khi ®ã J = ∫ dt − dt ta ®æi biÕn tiÕp: 2 ∫ 1 + 2 cos x 1 + cos t 1 + 2 cos t 0 0 0 π π π sin t 2 cos t =tan u π t sin t t =−x 2 2 π π J = dt ==== ∫ v J = dt === J ∫ .VËy J = − J ⇒ J = 1 2 1 + cos2 t 2 1 + cos2 t 2 4 0 0
C¸ch ®Æt 4. NÕu tÝch ph©n cã chøa ax 2 + bx + c; a > 0 th× ta cã thÓ ®Æt t − ax = ax 2 + bx + c sau ®ã tÝnh x theo t
v tÝnh dx theo t v dt.{PhÐp thÕ ¬le} VÝ dô 5. TÝnh: 1 2 − 2 1. = ∫ dx 1 t 2dt I
ta ®Æt t − x = x 2 − x + 1 ⇒ x = ⇒ I = = ln 3 ∫ 2 2t + 1 2t − 1 0 x − x + 1 1 1 2 − 2 2 − 2. = ∫ dx t 1 dt 1 6 2 1 J
ta ®Æt t − 3x = 9x 2 − 2x + 1 ⇒ x = ⇒ J = = ln ∫ 2 ( 2 3t − ) 1 t 3 − 1 3 2 0 9x − 2x + 1 1
II )Ph−¬ng ph¸p tÝch ph©n tõng phÇn
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 8
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN b
HGi¶ sö cÇn tÝnh tÝch ph©n I = ∫f(x)dx . Khi ®ã ta thùc hiÖn c¸c b−íc t×nh: a b b
B−íc 1. ViÕt tÝch ph©n d−íi d¹ng: I = ∫f(x)dx = ∫g(x) h.(x)dx a a  du = u = g(x)  g' (x)dx B−íc 2. §Æt  ⇒  dv = h(x) d . x v =  ∫h(x) d.x b b
B−íc 3. ¸p dông c«ng thøc: hay ∫ u d.v = b v . u − d . v u a ∫ a a
C¸c c¸ch ®Æt ®Ó tÝch ph©n tõng phÇn: b du =  P' (x)dx u = P(x) 
+C¸ch ®Æt 1. NÕu tÝch ph©n cã d¹ng I = ∫ P(x).sin ax d.x th× ta sÏ ®Æt  ⇒  cos ax dv = sin ax d . x v = − a  a b du =  P' (x)dx u = P(x) 
NÕu tÝch ph©n cã d¹ng ∫ P(x).cosax d.x th× ta ®Æt  ⇒  sin ax dv = cos ax d . x v = a  a du = b  P' (x)dx u = P(x)  NÕu tÝch ph©n cã d¹ng ∫ ax P(x) e . d . x th× ta ®Æt  ⇒  eax dv = eax d . x v = a  a VÝ dô 5. TÝnh: π 1. I = ∫( x 3 − ) 1 .sin 2 d . x x ta ®Æt 0 du =  d 3 x π π u = x 3 − 1  cos 2x 3 3π  ⇒  cos 2x ⇒ I = − ( x 3 − ) 1 + cos 2x d . x = − ∫ dv = sin 2x d . x v = − 2 2 2  2 0 0 π / 2 u = x2 + du = 2xdx 2. 1 J = ∫ 2 (x + ) 1 .cos x d . x ta ®Æt  ⇒  dv = cos d . x x v = sin x 0 π π 2 / 2 π + ⇒ / 2 4 2 J = (x + ) 1 sin x − 2 . x .sin x d . x = − 2J ∫ π ta tÝnh J . x sin d . x x b»ng c¸ch ®Æt 1 = ∫ 1 0 4 0 0  π / 2 u = x π 2 2 / 2 π + 4 π − 4 
sau ®ã suy ra J = − x cos x + cos xdx =1 ∫ .VËy J = − 2 = dv = sin d . x x 1 0 4 4 0 1 3. L = ∫ 2 (x − x + 3x ) 1 e . d . x ta ®Æt 0  1 1 u = x 2 − x + 1 3 1 1 e − 1 1  ⇒ 2 3x 3x L = (x − x + ) 1 e − (2x − ) 1 e . d . x = − L ∫  1 dv = e3x d . x 3 3 3 3 0 0 1 u = 2x − 1 3 − 3 − TÝnh tiÕp 4e 4 e 5 5 L (2x ) 1 e . d . x ®Æt  ⇒ L = suy ra L = 1 = ∫ − 3x 1 dv = e3x d . x 9 27 0 π π π 1 cos 2x x 1 2 − π π 2 4. M = ∫ 2 ( x sin x) d . x ta viÕt M = ∫ x sin d . x x = ∫ x d . x = − ∫ x cos2xdx 2 4 2 0 0 0 0 0 π u =x 2 π xÐt M = x cos 2x d . x 0 ∫ === . vËy ta cã M = 1 4 dv=cos 2xdx 0 2 π / 4 π / 2 u = 2t
5. M = ∫sin x d.x ta ®æi biÕn t = x ®Ó ®−a M = ∫ 2tsin tdt b»ng c¸ch ®Æt  ⇒ M = 2 dv = sin t d . t 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 9
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN du = b  b cos bxdx u = sin bx 
+C¸ch ®Æt 2. NÕu tÝch ph©n cã d¹ng I = ∫ ax e sin bx d . x th× ta ®Æt  ⇒  eax dv = eax d . x v = a  a du = − b  b sin bxdx u = cos bx 
NÕu tÝch ph©n cã d¹ng I = ∫ ax e cos bx d . x th× ta ®Æt  ⇒  eax dv = eax d . x v = a  a VÝ dô 6. TÝnh: π du = / 2  3 cos x 3 dx u = sin x 3  1. I = ∫ 2x e .sin 3 d . x x ta ®Æt  ⇒  e 2x dv = e2x dx v = 0  2 π / 2 π π 2x π u = cos3x ⇒ e 3 e 3 2 x I = sin x 3 − e cos x 3 d . x = − − I ∫ (*). Ta xÐt I e cos 3 d . x x v ®Æt  ⇒ 1 = ∫ 2x 1 2 2 2 2 dv = e2x dx 0 0 0 π / 2 π e2x 3 eπ 3  1 3  π 2e + 3 2 x 1 3 I = −cos 3x + e sin 3 d . x x = + I ∫ thay v o (*) ta cã: I = − −  + I ⇒ I = − 1 2 2 2 2 2 2  2 2  13 0 0 π π 1 cos 2x 1 1 2x − π π 2. F = ∫ x 2 (e .sin x) d . x ta viÕt F = ∫ e d . x = ∫ 2x e d . x − ∫ 2x e cos 2 d . x x 2 2 2 0 0 0 0 π π 2π − 2π − Ta xÐt 1 1 2x e 1 2x e 1 F = e d . x = ∫
. Sau hai lÇn tÝch ph©n tõng phÇn ta tÝnh ®−îc F = e cos 2x d . x = ∫ . 1 2 2 2 2 4 0 0 π 2π − VËy ta cã: x 2 e 1 F = (e .sin x) d . x = ∫ 8 0  P' (x) b  du = dx u = ln[P(x)] 
+C¸ch ®Æt 3. NÕu tÝch ph©n cã d¹ng I = ∫ ln[P(x)]Q . (x)dx th× ta ®Æt  ⇒  P(x) dv = Q(x) d . x  a v = ∫  Q(x)dx VÝ dô 7. TÝnh:  1 5 du =  dx 5 5 u = ln[x − ] 1  2 2 1. x − 1 x x I = ∫ . x ln(x − ) 1 dx ta ®Æt  ⇒  ⇒ I = ln(x − ) 1 − ∫ dx dv = x d . x  x 2 2 2x − 2 2 2 v = 2  2 48 ln 2 + 27 = 4  1 3    2  u = ln x + 1 + x du = dx 2. J = ∫ln(x + 1+ 2 x )dx ta ®Æt    ⇒  1 + x 2 ⇒ J = 3 ln( 3 + 2) −1   0 dv = dx v = x e  e e e u = 2 2 3. ln x x K = ∫ 2 . x ln xdx ta ®Æt  suy ra K = 2 ln x − ∫ x.ln xdx . XÐt K x.ln xdx v ®Æt 1 = ∫ dv = xdx 2 1 1 1 1 u = ln x e2 + 1 e 2 − 1  th× K = ⇒ K = . dv = xdx 1 4 4 2 u = ln x 2 e − 4. 1 1 5 15 4 ln 2 H = ∫ ln x dx ta ®Æt  suy ra H = − ln x + x dx = ∫ − . 5 x dv = − x 5dx 4x 4 4 256 1 1 1 π / 3 5. G = ∫ ln(sin x) dx ®Æt 2 cos x π / 6 u = ln(sin x) π   / 3 du = cot xdx π / 3 3 3l 3 n −4 3l 2 n −π  1 ⇒ ⇒ I = tan x ln(sin x) − dx = π / 6 ∫ dv = dx v = tan x 6  cos2 x π / 6
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 10
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π π e   sin(ln x) e u = cos(ln x) du = − π 6. dx e F = o c s(ln x)dx ∫ ®Æt  ⇒ x ⇒ I = x cos(ln x) + sin(ln x)dx (*). Ta xÐt 1 ∫ dv = dx  1 v = x 1 π π e   cos(ln x) e u = sin(ln x) du = dx π e F sin(ln x)dx ®Æt  ⇒ ⇒ F = x sin(ln x) − cos(ln x)dx = −F ∫ thay 1 = ∫ x dv = dx 1  1 1 v = x 1 π π + v o (*) ta cã: e 1
F = −e − 1 − F ⇒ F = − . 2
II )Ph−¬ng ph¸p t×m hÖ sè bÊt ®Þnh AH Khi gÆp tÝch ph©n:
I = ∫ P(x) dx víi P(x), Q(x) l c¸c ®a thøc cña x. Q(x)
B−íc 1: NÕu bËc cña P(x) bËc cña Q(x) th× ta lÊy P(x) chia cho Q(x) ®−îc th−¬ng A(x) v d− R(x),
tøc l P(x) = Q(x).A(x) + R(x), víi bËc R(x) < bËc Q(x). Suy ra : P(x) R(x) = P(x) R(x) A(x) + ⇒ ∫ dx = ∫ A(x d ) x + ∫ dx ( Q x) ( Q x) ( Q x) ( Q x)
B−íc 2: Ta ®i tÝnh : I = ∫ R(x) dx , víi bËc R(x) < bËc Q(x). Q(x)
Cã thÓ x¶y ra c¸c kh¶ n¨ng sau : + +Kh¶ n¨ng 1: Víi R(x) M x . N
Q(x) = ax2 + bx + c ,( a 0 ) th× bËc R(x) < 2R(x) = M.x+N v = ( Q x)
ax2 + bx + c
TH1 : Q(x) cã 2 nghiÖm x , x , tøc l : Q(x) = a(x – x )(x – x ). 1 2 1 2 +
Chän h»ng sè A, B sao cho: R(x) M x . N A B = = + Q(x)
a(x x )(x x ) x x x x 1 2 1 2
TH2 : Q(x) cã nghiÖm kÐp x , tøc l : 2 = − . 0 Q(x) a(x x ) 0 +
Chän h»ng sè A, B sao cho: R(x) M x . N A B = = + 2 2 Q(x) a(x x ) x x (x x ) 0 0 0
TH3 : Q(x) v« nghiÖm. Chän h»ng sè A, B sao cho: R(x) A ' Q . (x) B R(x) = A ' Q . (x) + B và = + ( Q x) Q(x) Q(x)
+Kh¶ n¨ng 2: Víi Q(x) = ax3 + bx2 + cx + d ,( a ≠ 0 ) th× bËc R(x) < 3
TH1: Q(x) cã 3 nghiÖm x ,x ,x . tøc l : Q(x) = a(x x )(x x )(x x ) 1 2 3 1 2 3
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + + Q(x)
a(x x )(x x )(x x ) x x x x x x 1 2 3 1 2 3
TH2: Q(x)1 n ®¬n kÐp = − − 0 x , 1 n x , tøc l : 2 Q(x) ( a x x )(x x ) 1 0 0 1 0
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + + 2 2 ( Q x) (
a x x )(x x ) x x x x (x x ) 1 0 1 0 0
TH3: Q(x) cã mét nghiÖm x (béi 3), tøc l : 3
Q(x) = a(x x ) 0 0
Chän h»ng sè A, B, C sao cho: R(x) R(x) A B C = = + + 3 2 3 Q(x) ( a x x ) x x (x x ) (x x ) 0 0 0 0
TH4: Q(x)®óng mét nghiÖm ®¬n x , tøc l : Q(x) = (x x ) a
( x2 + βx + γ ) (trong ®ã 2 ∆ = β − a 4 γ < 0 ). 1 1 R(x) R(x) A Bx +
Chän h»ng sè A, B, C sao cho: = = + C ( Q x) (x x ) a ( x2 1
+ βx + γ ) x x ax2 1 + βx + γ
+Kh¶ n¨ng 3: Víi bËc Q(x) >3 th× th«ng th−êng ta gÆp Q(x) l c¸c biÓu thøc ®¬n gi¶n nh−: x4 + 1 ; x4 ± x2 + 1 ; x6 + 1
VÝ dô 1. TÝnh c¸c tÝch ph©n:
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 11
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 0 2 0 x + x +  4x − 1  − 1. 4x 1 A B I = ∫
1 dx ta viÕt I = ∫1+ dx v viÕt = + Sau ®ã chän ®−îc 2
x 3x + 2  2 x − x 3 + 2  x 2 − x 3 + 2 x − 1 x − 2 −1 −1 A = H3; B = 7. Khi ®ã: 0
I = (x − 3ln x − 1 + 7 ln x − 2 ) = 10 ln 2 − 7 ln 3 . 1 − 1 2. = ∫ x J
dx ta viÕt x = A(x2 + x + 1)’ + B suy ra A = 1/2; B = H 1/2. VËy J = J + J víi 2 1 2 x + x + 1 0 1 1 1 1 d(x 2 + x + ) 1 1 1 dx 1 4 dx J = = ln 3 ∫ v J . 2 = − ∫ = − 2 ∫ 1 2 x 2 + x + 1 2 2 x + x + 1 2 3  2 0 0 2  1  0   x +  + 1  3  2  π   / 3 π Ta ®Æt 2 1  2 3 3 x +  = tan u suy ra J = − du = ∫ . 2 3  2  3 9 π / 6 3 + 3. = ∫ 1 1 A Bx c K dx ta viÕt = +
sau ®ã chän ®−îc A = 1/3, B = H 1/3, C = 0. V× thÕ viÕt ®−îc 3 x + x 3 x 3 + 3x x x 2 + 3 1 3 3 1 x 1 K = dx − dx = ln 3 ∫ ∫
{V× ®−a ®−îc x v o trong vi ph©n}. 3x ( 3 x 2 + ) 3 6 1 1 4. β a sin x +
B – Khi gÆp tÝch ph©n I = ∫
b cos x dx (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ tøc l chän A, B sao cho: c sin x + d cos x α x 2t 2 1 − t asinx + b cosx = A
(csinx + dcosx) + B(csinx + dcosx)' hoÆc ®Æt t = tan ⇒ sin x = cos x = 2 2 1 + t 2 1 + t VÝ dô 1. TÝnh: π / 2 3sin x + 1. I = ∫ 5 cos x dx ta viÕt 3sinx + c 5 osx = A
(sinx + cosx) + B(cosx - sinx) suy ra A = 4; B = 1. sin x + cos x 0 π / 2 π / 2 + Khi ®ã: d(sin x cos x) / 2 I = d 4 x + = ∫ ∫ (4x + lnsinx + cosx )π = π2 sin x + cos x 0 0 0 π / 2 3sin x + 2. J = ∫
cos x dx ta viÕt 3sinx + cosx = A
(sinx + cosx) + B(cosx - sinx) suy ra A = 2; B = H1. (sin x + 3 cos x) 0 π / 2 π / 2 π / 2   + π Khi ®ã: 2 d(sin x cos x) 1 I = dx  − = − cot(x + )  + = 2 ∫ ∫   (sin x + cos x)2 (sin x + cos x)3  4 2(sin x + cos x)2  0 0 0 β a sin x + bcos x +
C – Khi gÆp tÝch ph©n I = ∫
m dx (c, d ≠ 0) th× ta viÕt TS = A.(MS) + B.(MS)’ + C. Chän A, B,C sao cho: c sin x + d cos x + n α asinx + b cosx + m = A
(csinx + dcosx + n) + B(csinx + dcosx + n)'+C hoÆc cã thÓ ®Æt x 2t 2 1 − t t = tan ⇒ sin x = cos x = 2 2 1 + t 2 1 + t VÝ dô 1. TÝnh: π / 2 7sin x − cos x + 1. I = ∫
7 dx ta viÕt 7sinx − cosx + 7= A (4sinx + c 3 osx + ) 5 + B(4cosx - 3sinx) + C 4 sin x + 3cos x + 5 0 π / 2 π / 2 π d(4 sin x + 3 cos x + / 2
Khi ®ã A = 1; B = H1; C = 2 v I = ∫dx − ∫ ) 5 + ∫ 2 dx dx 4 sin x + 3cos x + 5 4 sin x + 3 cos x + 5 0 0 0
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 12
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π / 2 2 − XÐt 2 x 2t 1 t I dx ®Æt t = tan ⇒ sin x = cos x = suy ra 1 = ∫ 4 sin x + 3cos x + 5 2 2 1 + t 2 1 + t 0 1 1 1 π / 2 π 1 9 I = 2 dt = ∫
. VËy I = (x − ln 4sin x + 3cos x + 5 ) + I = + − ln 1 1 (t + ) 2 2 3 0 2 3 8 0
V)Ph−¬ng ph¸p dïng tÝch ph©n liªn kÕt VÝ dô 1. TÝnh: π 2 π 2 π 1. cos xdx
I = ∫ sin xdx ta xÐt thªm tÝch ph©n thø hai: J = ∫ Khi ®ã: I + J = (*). sin x + cos x sin x + cos x 2 0 0 π 2 π 2 − + π MÆt kh¸c (sin x cos x)dx d(sin x cos x) I − J = = − = 0 ∫ ∫
(**). Gi¶I hÖ (*) v (**) suy ra I = J = . sin x + cos x sin x + cos x 4 0 0 π 2 π n 2 n π 2. sin x cos x I = dx ∫ ta xÐt J = dx ∫ . Khi ®ã: I + J = (*) n n n n sin n x + cosn x sin n x + cosn x 2 0 0 π π 2 π 2 n n π MÆt kh¸c nÕu ®Æt x = H t th× cos t cos x I = dt = dx = J ∫ ∫
(**). Tõ (*), (**) ta cã I = 2 n n n n n n n sin t + cos t sin x + cos x 4 0 0 π 2 π 2 n n π 3. sin x cos x I = dx ∫ t−¬ng tù xÐt J = dx ∫ v suy ra I = J = n n n n n sin x n + cos x n sin x n + cos x 4 0 0 π 6 π π 2 6 2 6 4. sin x cos x 1 1 E = dx ∫ v F = dx ∫ ta cã E + F = dx = ln 3 ∫ (*) sin x + 3 cos x sin x + 3 cos x sin x + 3 cos x 4 0 0 0 π 6 − L¹i cã 1 1 3 E − F 3 = (sin x − 3 cos x d ) x = 1 − 3 ∫
(**). Gi¶I hÖ (*), (**) ta ®−îc: E = ln 3 − v 16 4 0 π 6 3 1 − 3 cos 2x 1 1 − 3 F = ln 3 + . Më réng tÝnh E = dx = F − = ∫ E ln 3 + 16 4 sin x + 3 cos x 8 2 0 π 6 §Ò xuÊt cos 2x L = dx ∫ sin x − 3 cos x 0 C¸c ¸ c b i t o¸n ¸ n t− t ¬ − ng n tù t . ù
A – Ph−¬ng ph¸p biÕn ®æi trùc tiÕp 1
+ B×nh ph−¬ng v ph©n tÝch th nh 2 ph©n sè ®¬n gi¶n. 1 ( + x 2
1. [§HNNI.98.A] M = ∫ e ) dx + BiÕt ®æi biÕn. 1 + 2x e 0 1 1 1 + 1 2x x x Gi¶i: e 2 dx M = ∫ e dx + e 2 dx ta tÝnh M
®Æt ex = tan t,t ∈ (− π / ;
2 π / 2) khi ®ã víi tan α =e v 1 = ∫ 2x1 + e 1 + 2x e 1 + 2x e 0 0 0 α α α 2 tan tdt α 1 1 + e 2 M = 2 tan tdt = −2 ln cos t = 2 − ln = ln ∫ 1 = ∫ 1 ( + 2 2 tan t) cos t π / 1 + tan 2 4 t 2 π / 4 π / 4 π / 4 π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i: π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i:
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 13
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i: π 2 + 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 Gi¶i: 1 1 ( + x 2 1. [§HNNI.98.A] ∫ e ) dx 1 + 2x e 0 π 2 3
2. [§HTCKT.97] ∫ 3sin xdx 1 + cos x 0 π 2 3. [§HBK.98] ∫ 4 cos 2 ( x sin x + 4 cos x d ) x 0 2 4. [§HDL§.98] dx
x + 1 + x 1 1 π 6 5. ∫ 1 dx π 0 cos x. cos(x + ) 6 2 e
6. ∫ ln x + ln(ln x) dx x e π 3 7. [§HMá.00] 1 dx π π 6sin x sin(x + ) 6 π 3 8. ∫ 4 cos x sin 2xdx 0 π 4 9. [§HNN.01] ∫ sin 4x dx 6 sin x + 6 cos x 0 π 2 6
10. [§HNNI.01] ∫ cos x dx 4 sin x π 4 π 3 11. ∫ 4 tg xdx π 4 3
12. [C§GTVT.01] 2 x + 3x d . x 2 3
13. [C§SPBN.00] 2
x 4x + 4dx 0 π 14. ∫ cosx sinxdx 0 π 3 15. ∫ 2 tg x + 2
cot g x 2dx π 6
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 14
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 3 16. ∫ 3 x 2 2x + xdx 0 1
17. ∫ 4 x dx §¸p: ( 2 5 3 ) 1 1
18. ∫ x xdx 2 2 3 1 5
19. ∫(x + 2 x 2 )dx 8 −3 3 2
x + x 1 20. ∫ d . x 2
x + x 2 0 π
21. ∫ 2 + 2cos2xdx 4 0 π
22. ∫ 1 sin2xdx 2 2 0 π / 2
23. ∫ 1 + sinxdx 4 2 0 1
− m + 1 / 2 ~ m 0
24. ∫ x ad ; x a R
m 2 m + 1 / 2 ~ 0 < m 1 0 2
a 2 th× ®s: (3a – 5)/6; 25. ∫ 2
x (a + ) 1 x + a d ; x a R
1 < a < 2 th× ®s: (aH1)3/3 – (3a H 5)/6 1
a ≤ 1 th× ®s: (5 – 3a)/6 π 2 3 26. ∫ cos x dx 1 + cos x 0 π 2
28. [§H.2005.D] ∫ sinx (e + cos x) cos xdx 0 2 28. [§H.2003.D] ∫ 2 x x dx 0 π / 4 1 2 29. [§H.2003.B] ∫ 2 sin x dx 1 + sin 2x 0 π 2
29. M = ∫ (sin6 x + cos6 x sin2 x.cos2 x)d.x 0 π 4 2 30. sin x N = d . x cos8 x 0 31.
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 15
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN
B – Ph−¬ng ph¸p ®æi biÕn 1 3 1. [C§BN.01] ∫ x dx HD ®Æt fsf 1 ( + 2 3 x ) 0 1
2. [PVB.01] 3 x 1 2 x d . x 0 ln 3 3. ∫ dx x e + 2 0 π 2
4. [C§XD.01] ∫ sin2x dx 1 + 2 cos x 0 1 1 5. [§HKTQD.97] ∫ 5 x 1 ( 3 6 x ) dx §Ò xuÊt: ∫ 2 x 1 ( 7 x) dx 0 0 1
6. [§HQG.97.B] ∫ dx 1 + x 0 2
7. [§H.2004.A] ∫ xdx
1 + x 1 1 2 3 ``8. [§H.2003.A] dx 2 x x 4 5 + π
9. [§HSPHN.00.B] 2 2 x a 2 x dx 0 ln 2 2x
10. [§HBK.00] e dx x 0 e + 1 23 11. dx
x + 8 5 x + 2 14 π 2 12. ∫ sin2x dx 2 2 sin x 0 ( + ) π 4 13. ∫ dx 3 cos x 0 6 14. ∫ 1 dx
2x + 4x + 1 2 3 15. ∫ 5 x 1 + 2 x dx 0 2 e
16. ∫ ln x + ln(ln x) dx x e 4
17. ∫ x + 1 dx x 2 1 3 10x + 2 3 x + 1 + 18. ∫ 10x dx 2 2 0 1
( + x ) x + 1
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 16
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN e 19. ∫ 1 dx 2 1 x 1 ln x e   20. ∫ lnx   dx
x 1 + ln x 1 4 21. ∫ 1 dx
3 2x + 1 + 2x + 1 0 4 23. ∫ dx 2 x. x 9 7 + 7 24. ∫ 1 d . x x + x + 2 2 1 25. ∫ dx 2 2 1 3x 0 ( + ) π 2 x + 26. [GTVT.00] cos x dx 4 2 sin x −π 2 π
27. [§HAN.97] ∫ xsinxdx 1 + 2 cos x 0 π 2 28. [§HLN.00] ∫ 1 2 + dx + sinx + cosx 0 π 4 29. [§HH§.00] ∫ 1 1 + dx + tgx 0 π 4
30. [§HVH.01] ∫ sinxcosx sin 2x + dx + cos2x 0 π 2 3
31. [HVBCVT.98] sinxcos xdx 1 + 2 cos x 0 1 32. = ∫ 1 I dx 2 (x + 2 ) 11 (1+ 5 ) 2 2 x + 33. [§HTN.01] 1 dx 4 x 2 x + 1 1 1 34. [§HTCKT.00] ∫ x dx 4 x + 2 x + 1 0 1 35. [HVKTQS.98] dx 21 ( x 1 x ) 1 + + + 1
36. [PVB¸o.01] 3 x 1 2 x d . x 0 e
37. [§H.2004.B] 1+ 3ln x ln x dx x 1 π 2sin 2x + 38. [§H.2005.A] ∫ sin x dx 1 3 cos x 0 +
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 17
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 2 39. [§H.2006.A] ∫ sin 2x dx 2 2 cos x 4sin x 0 + π 2
40. [§H.2005.B] ∫ sin 2xcos x dx 1 + cos x 0 ln 5 41. . [§H.2005.B] ∫ dx x e + −x e 23 ln 3 2 3 42. [§H.2003.A] ∫ dx 2 x x 4 5 + 2 43. [§H.2004.A] ∫ x dx 1 x 1 1 + − π / 6 4
44. [§H.2008.A] ∫ tan x dx cos 2x 0 π / 4 45. [§Ò thi thö §H] ∫ sin 4x dx 6 sin x + 6 cos x 0 e  
46. [§Ò thi thö §H] ∫  1 2  
+ x .ln x d.x x. 1 + ln x 1 +  4
47. [§Ò thi thö §H] ∫ 2x+1 e dx 0 π 2 2 ( 2 t d ) 1 t 1
48. [§Ò thi thö §H] ∫ sin2x = + ⇒ ∫ = ∫ dx HD: §Æt t 1 sin x 2t 3 8 1 ( 2 + 3 sin x) 1 0 8 2 49. I x − = 16 dx x 4 4 x 1 + 50. J = ∫ x + 1 dx x 2 1 3 10x + 2 3 x + 1 + 51. K = ∫ 10x dx 2 2 0 1
( + x ) x + 1ln 2 x 52. = ∫ e H dx 2xln 2 1 e ln 3 53. = ∫ dx G 2x 0 e + 1 π 2 54. = ∫ dx F
3 + 5 sin x + 3 cos x 0 π 3 55. D = ∫ cos x 2 dx 4 2 0
cos x 3 cos x + 3 ln 5 x x e e − 56. S = ∫ d 1 x x e + 3 0 π 57. = ∫ dx T π
2 + sin x cos x 2
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 18
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN 4 58. = ∫ dx R 2 x. x 9 7 + 7 59. = ∫ 1 E d . x x + x + 2 2 4 2x + 60. W = ∫ 1 d . x 1 + 2x 1 0 + + π / 2 1 t = 3 tan u π 61. = ∫ dx x dt 3 Q
§Æt t = tan th× Q = ∫ = ∫ === 2 + cos x 2 ( 3 )2 + t 2 9 0 0 2 62. = ∫ dx M 2 0
3x + 6x + 1
C – Ph−¬ng ph¸p tÝch ph©n tõng phÇn
1 1. [§HC§.97] ∫ 1 ( + 2 2x x) e dx 0 π 4 2. [§HTCKT.98] ∫ 2 ( x 2 cos x d ) 1 x 0 2 10 3. ∫ 3 2 x ln(x + d ) 1 x v ∫ 2 xlg xdx 0 0 e 4. [PVB¸o.98] ∫ 2 (x ln x) dx 1 π 5. [HVNH.98] 2 xsin xcos xdx 0 2
6. [§HC§.00] ∫ ln(x + d ) 1 x 2 x 1 π 4
7. [§HTL.01] ln 1 ( + tgx d ) x 0 π 2 8. ∫ 2 xtg xdx 0 3
9. [§HYHN.01] 2 x 1 d . x 2 2
10. [§Ò thi thö] ∫ xln(3x 2 x d ) x 1 e
11. [§H.2007.D] ∫ 2 2 x ln xdx 1 1
12. [§H.2006.D] ∫ (x 2x 2 e ) dx 0 0 13. I = ∫ 2x x e ( + 3 x + 1 d ) x 1 2 e 14. Jlnx + = ln(ln x) dx x e
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 19
Downloaded by Châu Bùi (Vj7@gmail.com) lOMoARcPSD|46342985 www.MATHVN.com
CÁC PHƯƠNG PHÁP TÍNH TÍCH PHÂN π 15. K = ∫ 2 (x sin x) dx 0 1 16. = ∫ x H dx 2 sin (2x + ) 1 0 π 4
17. G = ∫ x.sin x dx 3 cos x 0 ln 2 18. 2 F = ∫ 5 x x e . dx 0 4 ln( x + 19. D = ∫ ) 1 dx x + x 1 e  
20. S = ∫  lnx 2   + ln xdx x 1 + ln x1 2 π 21. A = ∫ 2 cos x d . x 2 π / 4 π
22. P = ∫ (e .cosx)2 x dx 0 2 π 23. U = x . sin x d . x0 π 24. Y = x.si x n . cos 2 x d . x0 π / 3 1 + §Æt sin x u = sin x ;dv = ..XÐt T
e dx v ®Æt tptp suy ra 1 = ∫ x π / 3 sin x + 1 + 1 + cos x cos x 25. 0 T = ∫ sin x x sin x + e dx + cos x π / 3 x 3 π 0 e sin x e T = = 1 + cos x 3 0 1 26. 2 + ln 1 ( + 2 )
R = ∫ 1 + 2 x dx §s: 2 0 1 27. 1 E = ∫ 2 x ln(x + d ) 1 x §S: ln 2 2 0 π / 2 28. π
W = ∫ cos x ln 1 ( + cos x d ) x §s: − 1 2 0 e 29. e 2
Q = ∫ ln x dx §s: (x + 2 ) 1 e + 1 1 / e π / 2 π / 3 ViÕt M = M sin x 3 x 1 + M2. Víi M = dx ∫ = ∫ ln & M dx . 2 = ∫ 1 1 + cos x 2 1 + cos x π / 3 π / 6 π / 2u = du = x + = xdx 30. M = ∫ sin x   − π §Æt ⇒ ⇒ (3 2 3 ) = − 1 + dx + cos x1x M ln 4 2 π dv = v = / 3  = dx 2 cot 3    1 + cos x2 − π VËy (3 2 3 ) 3 M = + ln 3 8
GV Vũ Sỹ Minh - Email: vusyminh@gmail.com - www.mathvn.com 20
Downloaded by Châu Bùi (Vj7@gmail.com)