1 | M A T H F O R B U S I N E S S C H A P T E R 3
Ngô Minh Tuy t Ng c BABAIU19066 ¿ ß
For TA bookin Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
Chapter 3:
Mathematics of Finance
I. Percentages
1. Percentages
-
Percentage
|x2 x12 |
x1
x 100%
x2 x1 > 0 Increase
x2 x1 < 0 Decrease
- Scale Factor (h s t l ) ß ß ß ß
SF =
ýþā Āþÿþ
þþý Āþÿþ
=1 ±%
The new value
Overall Scale = SF x SF x
1 2
& x SF
n
2. Application
2.1. Index numbers
(The measure of change in a variable overtime)
Increase
Decrease
Giá tr c khi có r% ß tr±ß
Đề ÷ SF (SF= 1
đề ÷ ÿ (SF=
Giá tr sau khi có r% ß
Đß cho x SF (SF = 1+r)
Đß cho x SF (SF = 1 r)
x (1+10%)
2 | M A T H F O R B U S I N E S S C H A P T E R 3
Ngô Minh Tuy t Ng c BABAIU19066 ¿ ß
For TA bookin Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
-
Index number = scale factor from base year x 100 SF =
Index number
100
(1)
- Scale factor = (number of n^th year)/(number of base year) (2)
SF(2) và SF (1) là nh± nhau, b¿n có th nh %change cß ÿa nth year so v i base year r i c ß ßng thêm 1, tuy nhiên
khi làm b ng h¿ cho year và các s liß u thì có th dùng SF (2) cho nhanh ß
- Index number in base year = 100
- The value in n year = [(Index n)/100] x The value in base year
-
Index x
Index y
=
SF x
SF
y
= value x / value y
- Ex:
98.5 100 103.8 102.8 105.3
In this case, we get:
723.7
697.2
100= 103.8
This shows that the value of household spending in 2012 was 103.8% of its value in 2011. In other words, household spending
increased by 3.8% during 2012.
For the year 2013, the value of household spending was 716.6, giving an index number:
716.6
697.2
100 =102.8
This shows that the value of household spending in 2013 was 102.8% of its value in 2011. In other words, household spending
increased by 2.8% between 2011 and 2013. Notice that this is less than that calculated for 2012, reflecting the fact that spending
actually fell slightly during 2013.
- Meaning:
Các d ng bài t p:
2.2. Inflation
1. Calculate the index numbers for the data
2. Use the index numbers find percentage change in output from
3 | M A T H F O R B U S I N E S S C H A P T E R 3
Ngô Minh Tuy t Ng c BABAIU19066 ¿ ß
For TA bookin Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
(the average percentage change in a given selection of these goods and services, over the previous year.)
- Rate of inflation: the rate at which prices increase over time, causing the value of money to fall
- SF = 1 + Inflation(%)
- Nominal vs. real data
+ Nominal data: the original, raw data
+ Real data: adjusted to take inflation into account.
- Real data at Y
n
- Nominal data at Y
n
Note:
- Đß th±ß ng cho Nominal (giá tr nh real (giá tr b ß thô) và inflation đß ß ß ¿nh h±ßng bßi l¿m phát)
- Năm b¿t đ¿u l¿m phát real = Nominal
Sau l m phát: real < nominal ¿
Tr±ß ¿c l m phát: real > nominal
EXAMPLE
1989t
1990
1992
1993
1994
Nominal
70
72
94
100
106
Inf. Rate
7.1%
3.5%
2.3%
Real
(0)
(1)
(3)
(4)
(5)
(0) = 89 (1 + 3.9%)(1 + 10.7%) =
(1) = 72(1 + 10.7%) =
(2) = 89
(3) = 94 / (1 + 7.1%) =
(4) = 100 / [(1 + 7.1%)(1 + 3.5%)] =
(5) = 100 / [(1 + 7.1%)(1 + 3.5%)(1+ 2.3%)] =
II. Compound Interest
Kí hi u: ß
n
Real date
< base year
= Nominal x Overall
Scale
= base year
= Nominal
> base year
= Nominal ÷ Overall
Scale
n
Real date
< base year
= Real ÷ Overall Scale
= base year
= Nominal
> base year
= Real x Overall Scale
4 | M A T H F O R B U S I N E S S C H A P T E R 3
Ngô Minh Tuy t Ng c BABAIU19066 ¿ ß
For TA bookin Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
P: Principal
S: Future value - total sum in the future
n: number of period
r: interest rate
1. Simple Interest
(the amount of interest received is the same for all years.)
S = P(1 + nr)
Ex: G i 10tr vào ngân hàng. Lãi su t 5% m c 500K ti n lãi. Sau 5 ¿ ßt năm. Mßi năm thu đ±ÿ ß năm rút ra
tßng cßng 10tr2500K (trong đó có 2500K tißn lãi)
2. Compound interest
( <interest on the interest= – tißn lãi sau mßi chu kì s¿ đ±ÿc cßng vào d n vào v n ti p tß ß đß ¿ ÿc tính lãi)
S = P (1 + r)
n
Tng quát
S = P (1 +
)
kn
k = 1: annually
k = 4: quarterly
k = 12: monthly
k = 52: weekly
k = 365: daily
3. Continuous compound interest (lãi kép liên tÿc)
S = Pe
rn
n: tính theo năm
4. APR và AER
- Annual percentage rate (APR): n, APR ch c cái ch s lãi h ng Dùng khi mình đi vay m±ÿ ß ra đ±ÿ ß ß ¿
năm c¿n tr¿.
Annual i ti t ki m, ti n lãi khi g i m c equivilent (effective) rate (AER): Dùng khi đi gử ¿ ß ß ßi năm đ±ÿ
bao nhiêu
AER/APR = ( +
ý
)
k
- 1
= e
rn
1
(continuos compound interest)
III. Geometric series:
1. Recognise a geometric progression.
- Geometric series : c p s nhân (Ex: ¿ ß 2, 4, 8, 16, 32, 64 & – multiply 2 each time)
5 | M A T H F O R B U S I N E S S C H A P T E R 3
Ngô Minh Tuy t Ng c BABAIU19066 ¿ ß
For TA bookin Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
- Arithmetic progression: c p s c¿ ß ßng (Ex: 5, 10, 15, 20, 25, 30 add 5 each time) & –
2. Evaluate a geometric series.
a, ar, ar , ar , . . . is a geometric progression with geometric ratio, r
2 3
Ex: Geometric series 2, 6, 18, 54, 162, 486
2 + 6 + 18 + 54 + 162 + 486 = 728
Áp d ng Geometric series này vào dành ti n & tr n nh ti n thì có 2 d ng là lãi tính ÿ bài toán đß ß ¿ ÿ. Đß ß ¿
đ¿u kì dí cußi kì.
3. Calculate the total investment obtained from a regular savings plan.
*Mßi kì có A ti v dành, sau n kì thì lãi s b ng lãi m i kì c ng l i v i nhau. Lãi c a ßn đß ô ngân hàng đß ¿ ¿ ß ß ¿ ß ÿ
mßi kì thì tính nh± compound interest kì vô đ±ÿ, rßi cßng lãi mßi c lãi cußi cùng rút ra
3.1. The payment - at the beginning of each period:
Gi kho¿n ti n A, lãi suß ¿t r
- Kì th nh t: A(1 + r) ÿ ¿
- Kì th 2: A(1 + r) ÿ
2
- Kì th 3: A(1 + r) ÿ
3
&
- Kì th n: A(1 + r) ÿ
n
S = A(1 + r) + A(1 + r) + A(1 + r) =
2 3
+ … + A(1 + r)
n
( +)
(
+
)
2
3.2. If the payment - at the end of each period:
- Kì th 1: A ÿ
- Kì th 2: A(1 + r) ÿ
- Kì th 3: A(1 + r) ÿ
2
- &
- Kì th n: A(1 + r) ÿ
n - 1
S = A + A(1 + r) + A(1 + r) =
2
+ … + A(1 + r)
n - 1
(
+
)
2
4. Calculate the instalments needed to repay a loan
Vay ti n 1 kho n Lß ¿ , và tr 1 kho n A sau m i cu i n kì ¿ ¿ ß ß
6 | M A T H F O R B U S I N E S S C H A P T E R 3
Ngô Minh Tuy t Ng c BABAIU19066 ¿ ß
For TA bookin Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
- Sß ti n còn l i sau kì tr th 1: L(1 + r) A ß ¿ ¿ ÿ
- Sß ti n còn l i sau kì tr th 2: [L(1 + r) A](1 + r) A = L(1 + r) A(1 + r) A ß ¿ ¿ ÿ
2
- Sß ti n còn l i sau kì tr th 3: [L(1 + r) A(1 + r) A](1 + r) A = L(1 + r) A(1 + r) A(1 + r) ß ¿ ¿ ÿ
2
3
2
A
&
- Sß ti n còn l i sau kì tr th n: L(1 + r) A(1 + r) ß ¿ ¿ ÿ
n
n - 1
& A(1 + r) A
*Tr¿ h¿t n trong n tháng L(1 + r) A(1 + r) ÿ
n
n - 1
& A(1 + r) A = 0
(1+)
n
= (1+)
n - 1 n - 2
+ (1+) ++ (1+r) + A
L(1 + r) =
n
(
+
)
2
(V¿ trái: s ti n t ng c trong n g m n g c và lãi ß ß ß ßng đã nÿ ß ÿ ß
V¿ ph i: s ti¿ ß ß ¿n tß ßng c ng ph i tr¿
Tr¿ h¿t n v trái = v ph i) ÿ ¿ ¿ ¿
Payout figure: Payout Figure is the present value of all remaining repayments (s ti n mình còn n ß ß ÿ
sau m t kho n th i gian tr n ). After A years (x payments) ß ¿ ß ¿ ÿ
Ex: Vay ngân hàng m t kho n ti n A, sau tng th nh t hoàn n s tiß ¿ ß ÿ ¿ ÿ ß ßn X. Sß tißn còn l¿i sau n tháng
PV
x
=
*Amortized loan: a loan that is repaid in equal payments over its life (including both interset &
principal) payment amount is set such that the present value of all payments equals the loan amount
Ex: mortage loans, auto loans,&
=Ā [
1 2
(
1 +
)
2
]
, where PV: present value
PMT: Payment amount the present value of all payments equals the loan amount
IV. Investment appraisal
1. Calculate present values
7 | M A T H F O R B U S I N E S S C H A P T E R 3
Ngô Minh Tuy t Ng c BABAIU19066 ¿ ß
For TA bookin Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
Given any three of these variables it is possible to work out the
value of the remaining variable.
P = principal
S = future value
r = interest rate
t = time (Discrete compounding t = the number of time periods; continuous
compounding, t is measured in years.)
2. Use net present values to appraise investment projects.
Net present value (NPV): Giá tr hi n t i ròng ß ß ¿
PV: present value
P
0
: initial outlay (kho u) ¿n đ¿u t± ban đ¿
NPV > 0: worth to invest (PV > P0)
NPV = 0: neutral
NPV < 0: not worth to invest (PV < P0)
Internal rate of return (IRR): T su t thu nh p n i b => dùng khi NPV = 0, tính interest rate và so sánh ß ¿ ¿ ß ß
interest rate v ßi market rate xem có nên đ¿u t±:
P
0
=
1
(+)
-1
+
2
(+ +⋯+ )
-2
n
(+ )
-n
If rIRR > rmarket : worth to invest
If rIRR < rmarket : not worth to invest
NPV = PV P
0

Preview text:

1 | M A T H F O R B U S I N E S S C H A P T E R 3 Chapter 3: Mathematics of Finance I. Percentages 1. Percentages |x22x1| - Percentage x 100% x1
• x2 – x1 > 0 → Increase
• x2 – x1 < 0 → Decrease -
Scale Factor (hß sß tß lß)
SF = ýþā Ā�㕎þÿþ = 1 ± �㕟% þþý Ā�㕎þÿþ → The new value Increase Decrease Giá trß tr±ßc khi có r%
Đề �㕐ℎ�㕜 ÷ SF (SF= 1 đề �㕐ℎ�㕜 ÷ ÿ�㔹 (SF= Giá trß sau khi có r% Đß cho x SF (SF = 1+r) Đß cho x SF (SF = 1 – r)
Overall Scale = SF1 x SF2 x & x SFn x (1+10%) 2. Application 2.1. Index numbers
(The measure of change in a variable overtime)
Ngô Minh Tuy¿t Ngßc – BABAIU19066
For TA bookin – Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
2 | M A T H F O R B U S I N E S S C H A P T E R 3 Index number -
Index number = scale factor from base year x 100 → SF = (1) 100 -
Scale factor = (number of n^th year)/(number of base year) (2)
SF(2) và SF (1) là nh± nhau, b¿n có thß tính %change cÿa nth year so vi base year rßi cßng thêm 1, tuy nhiên
khi làm b
¿ng h cho year và các sß liu thì có thß dùng SF (2) cho nhanh -
Index number in base year = 100 -
The value in n year = [(Index n)/100] x The value in base year
- Index x = SF x = value x / value y Index y SF y - Ex: 98.5 100 103.8 102.8 105.3
In this case, we get: 723.7 �㕥 100 = 103.8 697.2
This shows that the value of household spending in 2012 was 103.8% of its value in 2011. In other words, household spending
increased by 3.8% during 2012.
For the year 2013, the value of household spending was 716.6, giving an index number:
716.6 �㕥 100 = 102.8 697.2
This shows that the value of household spending in 2013 was 102.8% of its value in 2011. In other words, household spending
increased by 2.8% between 2011 and 2013. Notice that this is less than that calculated for 2012, reflecting the fact that spe nding
actually fell slightly during 2013.
- Meaning:
Các dng bài tp:
1. Calculate the index numbers for the data
2. Use the index numbers → find percentage change in output from 2.2. Inflation
Ngô Minh Tuy¿t Ngßc – BABAIU19066
For TA bookin – Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
3 | M A T H F O R B U S I N E S S C H A P T E R 3
(the average percentage change in a given selection of these goods and services, over the previous year.) -
Rate of inflation: the rate at which prices increase over time, causing the value of money to fall - SF = 1 + Inflation(%) - Nominal vs. real data
+ Nominal data: the original, raw data
+ Real data: adjusted to take inflation into account. - Real data at Yn n Real date < base year = Nominal x Overall Scale = base year = Nominal > base year = Nominal ÷ Overall Scale - Nominal data at Yn n Real date < base year = Real ÷ Overall Scale = base year = Nominal Note: > base year = Real x Overall Scale -
Đß th±ßng cho Nominal (giá trß thô) và inflation đß tính real (giá trß bß ¿nh h±ßng bßi l¿m phát) -
Năm b¿t đ¿u l¿m phát real = Nominal
Sau l¿m phát: real < nominal
Tr±ßc l¿m phát: real > nominal EXAMPLE 1989t 1990 1991 1992 1993 1994 Nominal 70 72 89 94 100 106 Inf. Rate 10.7% 7.1% 3.5% 2.3% Real (0) (1) (2) (3) (4) (5)
(0) = 89 (1 + 3.9%)(1 + 10.7%) = (1) = 72(1 + 10.7%) = (2) = 89 (3) = 94 / (1 + 7.1%) =
(4) = 100 / [(1 + 7.1%)(1 + 3.5%)] =
(5) = 100 / [(1 + 7.1%)(1 + 3.5%)(1+ 2.3%)] = II. Compound Interest Kí hißu:
Ngô Minh Tuy¿t Ngßc – BABAIU19066
For TA bookin – Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
4 | M A T H F O R B U S I N E S S C H A P T E R 3 • P: Principal
• S: Future value - total sum in the future • n: number of period • r: interest rate
1. Simple Interest
(the amount of interest received is the same for all years.) S = P(1 + nr)
Ex: Gửi 10tr vào ngân hàng. Lãi su¿t 5% mßt năm. Mßi năm thu đ±ÿc 500K tißn lãi. Sau 5 năm rút ra
tßng cßng 10tr2500K (trong đó có 2500K tißn lãi)
2. Compound interest
( tißn lãi sau mßi chu kì s¿ đ±ÿc cßng vào dßn vào vßn đß ti¿p tÿc tính lãi) S = P (1 + r) n
Tng quát �㖓 S = P (1 + )kn �㖌 • k = 1: annually • k = 4: quarterly • k = 12: monthly • k = 52: weekly • k = 365: daily
3. Continuous compound interest (lãi kép liên tÿc) S = Pern n: tính theo năm 4. APR và AER -
Annual percentage rate (APR): Dùng khi mình đi vay m±ÿn, APR chß ra đ±ÿc cái chß sß lãi h¿ng năm c¿n tr¿.
Annual equivilent (effective) rate (AER): Dùng khi đi gửi ti¿t kißm, tißn lãi khi gửi mßi năm đ±ÿc bao nhiêu AER/APR = (�㗏 �㕟 + ) k ý - 1 = ern – 1 (continuos compound interest) III. Geometric series:
1. Recognise a geometric progression. -
Geometric series : c¿p sß nhân (Ex: 2, 4, 8, 16, 32, 64 & – multiply 2 each time)
Ngô Minh Tuy¿t Ngßc – BABAIU19066
For TA bookin – Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
5 | M A T H F O R B U S I N E S S C H A P T E R 3 -
Arithmetic progression: c¿p sß cßng (Ex: 5, 10, 15, 20, 25, 30& – add 5 each time)
2. Evaluate a geometric series.
a, ar, ar2 , ar3 , . . . is a geometric progression with geometric ratio, r
Ex: Geometric series 2, 6, 18, 54, 162, 486
2 + 6 + 18 + 54 + 162 + 486 = 728
Áp dÿng Geometric series này vào bài toán đß dành tißn & tr¿ nÿ. Đß dành tißn thì có 2 d¿ng là lãi tính đ¿u kì dí cußi kì.
3. Calculate the total investment obtained from a regular savings plan.
*Mßi kì có A tißn đß vô ngân hàng đß dành, sau n kì thì lãi s¿ b¿ng lãi mßi kì cßng l¿i vßi nhau. Lãi cÿa
mßi kì thì tính nh± compound interest, rßi cßng lãi mßi kì vô đ±ÿc lãi cußi cùng rút ra 3.1.
The payment - at the beginning of each period:
Gửi kho¿n tißn A, lãi su¿t r - Kì thÿ nh¿t: A(1 + r) - Kì thÿ 2: A(1 + r)2 - Kì thÿ 3: A(1 + r)3 & - Kì thÿ n: A(1 + r)n
S = A(1 + r) + A(1 + r)2 + A(1 + r)3 + … + A(1 + r)n = �㕨(�㗏 + �㖓) (�㗏 + �㔫)�㔧 2 �㗏 � 㔫 3.2.
If the payment - at the end of each period: - Kì thÿ 1: A - Kì thÿ 2: A(1 + r) - Kì thÿ 3: A(1 + r)2 - & - Kì thÿ n: A(1 + r)n - 1
S = A + A(1 + r) + A(1 + r)2 + … + A(1 + r)n - 1 = �㕨 (�㗏 + �㔫)�㔧 2 �㗏 � 㔫
4. Calculate the instalments needed to repay a loan
Vay tißn 1 kho¿n L, và tr¿ 1 kho¿n A sau mßi cußi n kì
Ngô Minh Tuy¿t Ngßc – BABAIU19066
For TA bookin – Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
6 | M A T H F O R B U S I N E S S C H A P T E R 3 -
Sß tißn còn l¿i sau kì tr¿ thÿ 1: L(1 + r) – A -
Sß tißn còn l¿i sau kì tr¿ thÿ 2: [L(1 + r) – A](1 + r) – A = L(1 + r)2 – A(1 + r) – A -
Sß tißn còn l¿i sau kì tr¿ thÿ 3: [L(1 + r)2 – A(1 + r) – A](1 + r) – A = L(1 + r)3 – A(1 + r)2 – A(1 + r) – A & -
Sß tißn còn l¿i sau kì tr¿ thÿ n: L(1 + r)n – A(1 + r)n - 1 – & – A(1 + r) – A
*Tr¿ h¿t nÿ trong n tháng → L(1 + r)n – A(1 + r)n - 1 – & – A(1 + r) – A = 0
 �㔿(1+�㕟)n = �㔴(1+�㕟)n - 1 n - 2 + �㔴(1+�㕟) +⋯+ �㔴(1+r) + A
 L(1 + r)n = � 㕨 (�㗏 + �㔫)�㔧 2 �㗏 � 㔫
(V¿ trái: sß tißn tßng cßng đã nÿ trong n – gßm nÿ gßc và lãi
V¿ ph¿i: sß tißn tßng cßng ph¿i tr¿
➔ Tr¿ h¿t nÿ → v¿ trái = v¿ ph¿i)
Payout figure: Payout Figure is the present value of all remaining repayments (sß tißn mình còn nÿ
sau mßt kho¿n thßi gian tr¿ nÿ). After A years (x payments)
Ex: Vay ngân hàng mßt kho¿n tißn A, sau tháng thÿ nh¿t hoàn nÿ sß tißn X. Sß tißn còn l¿i sau n tháng PVx =
*Amortized loan: a loan that is repaid in equal payments over its life (including both interset &
principal) → payment amount is set such that the present value of all payments equals the loan amount
Ex: mortage loans, auto loans,& 1 2 (1 + �㕟)2�㕛
�㕃�㕉 = �㕃�㕀Ā [ � 㕟 ] , where PV: present value
PMT: Payment amount – the present value of all payments equals the loan amount IV. Investment appraisal
1. Calculate present values
Ngô Minh Tuy¿t Ngßc – BABAIU19066
For TA bookin – Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com
7 | M A T H F O R B U S I N E S S C H A P T E R 3
Given any three of these variables it is possible to work out the
value of the remaining variable. P = principal S = future value r = interest rate
t = time (Discrete compounding t = the number of time periods; continuous
compounding, t is measured in years.)
2. Use net present values to appraise investment projects.
Net present value (NPV): Giá trß hißn t¿i ròng NPV = PV P 0 PV: present value
P0: initial outlay (kho¿n đ¿u t± ban đ¿u)
NPV > 0: worth to invest (PV > P0) NPV = 0: neutral
NPV < 0: not worth to invest (PV < P0)
Internal rate of return (IRR): Tß su¿t thu nh¿p nßi bß => dùng khi NPV = 0, tính interest rate và so sánh
interest rate vßi market rate xem có nên đ¿u t±:
P0 = �㕪1(�㗏+�㖓�㕰�㕹�㕹)-1+�㕪2(�㗏+�㖓�㕰�㕹�㕹)-2+⋯+�㕪n(�㗏+�㖓�㕰�㕹�㕹)-n
If rIRR > rmarket : worth to invest
If rIRR < rmarket : not worth to invest
Ngô Minh Tuy¿t Ngßc – BABAIU19066
For TA bookin – Fb https://www.facebook.com/nmtngoc
Gmail ngominhtuyetngoc216@gmail.com