Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
1
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Chapter 5:
I. Functions of several variables
𝜕𝑦
∂x
𝜕𝑦
∂z
= f
z
𝜕𝑓
∂x
− 0 = 20x
𝜕𝑓
∂y
= 0 − 2y = −2y
𝜕𝑓
∂x
𝜕𝑓
∂y
− 0 = 3x
𝜕
2
𝑦
∂𝑥
2
𝜕
2
𝑦
∂𝑧
2
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
2
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝜕
2
𝑦
∂𝑥 ∂z
𝜕
2
𝑦
∂𝑧 ∂x
𝜕𝑓
x1
𝜕
2
𝑓
∂𝑥1
2
𝜕
2
𝑦
∂𝑥2
x1
∆y ≈
𝜕𝑦
∂x
∆x +
𝜕𝑦
∂z
∆z
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
3
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝜕𝑧
∂x
𝜕𝑧
∂y
𝜕𝑧
∂x
= y − 5
𝜕𝑧
∂y
𝜕𝑧
∂x
𝜕𝑧
∂y
a) ∆x = −0.1, ∆y
1(−0.1) + 4(0.1) = 0.3, so z increases by approximately 0.3.
𝑑𝑦
𝑑𝑥
= −
𝑓𝑥
𝑓𝑦
𝑑𝑦
𝑑𝑥
−𝑦
x − 3y + 1
2
𝑑𝑦
𝑑𝑥
𝑦
2
5y
4
−2xy
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
4
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
II. Partial elasticity and marginal functions
P: the good’s price
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑛
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑃𝑟𝑖𝑐𝑒
𝑖𝑛
𝑃
𝑄
𝜕𝑄
𝜕
𝑃
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑛
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑃𝑟𝑖𝑐𝑒 𝐺𝑜𝑜𝑑 𝐴
𝑖𝑛 𝑜𝑓
𝑃𝐴
𝑄
𝜕𝑄
𝜕
𝑃𝐴
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑛
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝐼𝑛𝑐𝑜𝑚𝑒
𝑖𝑛
𝑌
𝑄
𝜕𝑄
𝜕
𝑌
+ Ey < 0 → inferior goods (white bread, instant noodle, bus transportation)
• < 1: normal goods
• >1: superior
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
5
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝜕𝑄
𝜕
𝑃
= −3 so E
20
430
x (−3) = −0.14
𝜕𝑄
𝜕
𝑃𝐴
= −2 so E
30
430
x (−2) = −0.14
𝜕𝑄
𝜕
𝑌
5000
430
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑛
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝐼𝑛𝑐𝑜𝑚𝑒
𝑖𝑛
III. Utility
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
6
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝜕𝑈
x1
𝜕𝑈
x2
𝜕𝑈
x1
∆x
𝜕𝑈
x2
𝜕
2
𝑈
∂𝑥1
2
𝜕
2
𝑢
∂𝑥2
2
An individual’s utility function is given by
𝜕𝑈
x1
𝜕𝑈
x2
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
7
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝜕𝑈
x1
− 4x
𝜕𝑈
x2
− 2x
𝜕𝑈
x1
𝜕𝑈
x2
∆x1 = −1. Also
∆U = 2948 x (−1) + 140 x 15 = −848
𝜕
2
𝑈
∂𝑥1
2
= −4 < 0 and
𝜕
2
𝑈
∂𝑥2
2
= −2 < 0
𝑑𝑥2
𝑑𝑥
1
=
𝜕𝑄
𝜕𝑥1
𝜕𝑄
𝜕𝑥
2
𝑑𝑥2
𝑑𝑥
1
=
𝜕𝑄
𝜕𝑥1
𝜕𝑄
𝜕𝑥
2
decreases by ∆x
= MRCS x ∆x
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
8
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
2948
140
IV. Production Functions
𝜕𝑄
∂K
𝜕𝑄
∂L
𝜕
2
𝑄
∂𝐾
2
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
9
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝜕
2
𝑄
∂𝐿
2
𝜕𝑄
∂K
𝜕𝑄
∂L
MPL
MPK
𝜕𝑄
∂K
𝜕𝑄
∂L
2𝐿
𝐾
𝜕𝑄
∂K
𝜕𝑄
∂L
MPL
MPK
4𝐿
2𝐾
2𝐿
𝐾
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
10
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝜕𝑄
∂K
𝜕𝑄
∂L
=
V. Optimisation problem
𝜕𝑦
∂x
𝜕𝑦
∂z
𝜕𝑦
∂x
𝜕𝑦
∂z
𝜕
2
𝑦
∂𝑥
2
) (
𝜕
2
𝑦
∂𝑧
2
) (
𝜕
2
𝑦
∂𝑥 ∂z
𝜕
2
𝑦
∂𝑥
2
(
𝜕
2
𝑦
∂𝑧
2
)
𝜕
2
𝑦
∂𝑥
2
(
𝜕
2
𝑦
∂𝑧
2
)
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
11
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
− fxy = 2 x (−6) − 0 = −12 < 0
Show that the firm’s profit function is
π = 50Q − 2Q − 95Q − 4Q − 3Q
which maximise π and deduce the
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
12
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
13
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
14
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
15
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝜑
B1: Dùng phương trình (x,y) = M để ết 1 phương trình mớ𝜑
B2: Thay phương trình mớ ết vào phương trình f(x,y) để ợc 1 phương trình đư
B3: Tìm f’(x), giải tìm x khi f’(x) = 0 có x tìm đượ
B4: Tìm f’’(x) <0 or >0 để
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
16
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
17
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
L = f(x, z) + λ(M − g(x, z))
𝜕𝐿
∂x
𝜕𝐿
∂z
𝜕𝐿
∂λ
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
18
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
19
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
20
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
PL
PK
=
MPL
MPK
𝑀𝑃𝐿 𝑀𝑃𝐾:
MPL
PL
𝑀𝑃𝐾
PK
P1
P2
U1
U2
𝑈 𝑈
U1
P1
U2
P2
𝐊
𝐋
𝜷
𝐱𝟏 𝐱𝟐
𝜷
PL
PK
=
MPL
MPK
P1
P2
U1
U2
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
21
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
K
1/2
𝐿
1/4
λ K
1/2
𝐿
1/4
+λ
𝜕𝑔
∂K
λ
𝜕𝑔
∂L
5
2
λ
𝜕𝑔
λ
λ
5
2
λ
𝐿
𝐾
4
5
𝐿
𝐾
2
5
2𝐾
5
ế
2𝐾
5
2𝐾
5
)
PL
PK
=
MPL
MPK
5
4
=
5
2
𝐾
1/2
𝐿
−3/4
5
𝐿
1/4
𝐾
−1/2
5
4
=
1
2
𝐾
𝐿
𝐾
𝐿
5
2
5𝐿
2
ế
5𝐿
2
5𝐿
2
)
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
22
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Chapter 6:
1. Rules For Integration
∫ x
1
𝑛+1
∫ af(x)dx = a ∫ f(x)dx
1
𝑥
𝑙𝑛𝑥
1
𝑚
∫[f(x) ± g(x)]dx = ∫ f(x)dx ± ∫ g(x)dx
2. Application I: Revenue, Costs And Profit
TR(Q) = ∫MR(Q)
∫MC(Q)
∫ f(x) = F(x) + c
+ MC → TC: c = Fixed cost
(a) A firm’s marginal cost function is
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
23
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
TC = ∫ 2dQ = 2Q + c
∫(100 − 6Q)dQ = 100Q −
TR = 100Q − 3Q
𝑇𝑅
𝑄
100𝑄−3𝑄
2
𝑄
100Q − 3Q
= 100 − 3Q
3. Definite Integration
𝑓(𝑥)
𝑏
𝑎
= F(b) − F(a)
4.Application Ii: Consumer And Producer Surplus
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
24
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
CS =
𝐃(𝐐) 𝐏𝟏𝐐𝟏𝐝𝐐
𝑸𝟏
𝟎
PS = 𝐏𝟏𝐐𝟏
𝐒(𝐐) 𝐝𝐐
𝑸𝟏
𝟎
P = 50 − 2Q
(a) the consumer’s surplus
(b) the producer’s surplus
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
25
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
10
0
(50 − 2Q)dQ − 10 x 30 = 100
PS = 10 x 30 −
( )
10 2Q+ dQ
10
0
5. Application III: Investment Flow
𝑑𝐾
𝑑𝑡
𝐼
(
𝑡
)
𝑑𝑡
𝑡2
𝑡1
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
26
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
800𝑡
1/3
𝑑𝑡=9000
8
1
800𝑡
1/3
𝑑𝑡=
𝑥
0
6 Application IV: Discounting
𝑛
0
10
0
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
27
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Chapter 7:
I. Basic matrix operations
[
a11 13 a12 𝑎
𝑎 𝑎 𝑎21 22 23
𝑎 𝑎 𝑎
31 32 33
]
Matrix A (m x n) →
[
3 5 5
8 6 5
] [
3 8
5 6
5 5
]
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
28
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝑘𝑎11 𝑘𝑎 𝑘𝑎12 13
𝑘𝑎21 𝑘𝑎 𝑘𝑎22 23
ần lượ
𝐴𝐵=[
1 2
0 1
3 1
][
1 2
3 4
]=[
𝑐 𝑐11 12
𝑐 𝑐21 22
𝑐 𝑐
31 32
]
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
29
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
[
7 10
3 4
6
10
]
II. Matrix inversion
[
1 0
0 1
]
[
1 0 0
0 1 0
0 0 1
]
|
𝐴
|
𝑜𝑟 |
𝑎 𝑏
𝑐 𝑑
|
= 0 → singular
≠ 0 → non – singular → inverse
[
𝑎 𝑏
𝑐 𝑑
]
1
|
𝐴
|
[
𝑑 −𝑏
−𝑐 𝑎
]
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
30
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
31
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
[
a11 a12 a13
a21 a22 a23
a31 a32 a33
]
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
32
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Prefixed by a ‘–’ sign because from the pattern [
+ +
+
+ +
]
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
33
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
34
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
𝟏
| |
𝑨
Cramers rule
𝐴=[
𝑎 𝑎 𝑎11 12 13
𝑎 𝑎 𝑎21 22 23
𝑎 𝑎 𝑎
31 32 33
] [
𝑥1
𝑥2
𝑥3
] 𝑏=[
𝑏1
𝑏2
𝑏3
]
B2: Cramer’s
det ( )𝐴𝑖
det (𝐴)
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
35
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
36
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
37
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Chapter 8:
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com
38
MATH FOR BUSINESS TA: VŨ THỊ THU TRANG

Preview text:

1 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG Chapter 5:
I. Functions of several variables 𝜕𝑦 ∂x 𝜕𝑦 = fz ∂z – 𝜕𝑓 − 0 = 20x ∂x 𝜕𝑓 = 0 − 2y = −2y ∂y – 𝜕𝑓 – ∂x 𝜕𝑓 − 0 = 3x ∂y 𝜕2𝑦 𝜕2𝑦 ∂𝑥2 ∂𝑧2
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

2 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG 𝜕2𝑦 𝜕2𝑦 ∂𝑥 ∂z ∂𝑧 ∂x – – – 𝜕𝑓 ∂x1 𝜕2𝑓 ∂𝑥12 𝜕2𝑦 ∂𝑥2 ∂x 1 𝜕𝑦 ∆y ≈ 𝜕𝑦 ∂x ∆x + ∆z ∂z
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

3 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG – 𝜕𝑧 𝜕𝑧 ∂x ∂y 𝜕𝑧 = y − 5 ∂x 𝜕𝑧 ∂y 𝜕𝑧 𝜕𝑧 ∂x ∂y a) ∆x = −0.1, ∆y
≅ 1(−0.1) + 4(0.1) = 0.3, so z increases by approximately 0.3. 𝑑𝑦= − 𝑓𝑥 𝑑𝑥 𝑓𝑦 – – 𝑑𝑦 −𝑦 𝑑𝑥 x − 3y2 + 1 𝑑𝑦 𝑦2 𝑑𝑥 5y4−2xy
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

4 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
II. Partial elasticity and marginal functions P: the good’s price
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑒𝑚𝑎𝑛𝑑 𝑃 𝜕𝑄
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑃𝑟𝑖𝑐𝑒 𝑄 𝜕𝑃
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑒𝑚𝑎𝑛𝑑 𝑃𝐴 𝜕𝑄
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑃𝑟𝑖𝑐𝑒 𝑜𝑓 𝐺𝑜𝑜𝑑 𝐴 𝑄 𝜕𝑃𝐴
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑒𝑚𝑎𝑛𝑑 𝑌 𝜕𝑄
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐼𝑛𝑐𝑜𝑚𝑒 𝑄 𝜕𝑌
+ Ey < 0 → inferior goods (white bread, instant noodle, bus transportation) • < 1: normal goods • >1: superior
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

5 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG – – – – 𝜕𝑄 𝜕𝑃 = −3 so E 20 x (−3) = −0.14 430 𝜕𝑄 30 = −2 so E x (−2) = −0.14 𝜕𝑃𝐴 430 𝜕𝑄 5000 𝜕𝑌 430
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐷𝑒𝑚𝑎𝑛𝑑
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐼𝑛𝑐𝑜𝑚𝑒 III. Utility
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

6 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG 𝜕𝑈 𝜕𝑈 ∂x1 ∂x2 𝜕𝑈 ∆ ≈ 𝜕𝑈 ∂x1 ∆x ∆ ∂x2 𝜕2𝑈 𝜕2𝑢 ∂𝑥12 ∂𝑥22
An individual’s utility function is given by – – 𝜕𝑈 𝜕𝑈 ∂x1 ∂x2
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

7 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG 𝜕𝑈 − 4x ∂x1 𝜕𝑈 − 2x ∂x2 𝜕𝑈 𝜕𝑈 ∂x1 ∂x2 ∆x1 = −1. Also ∆
∆U = 2948 x (−1) + 140 x 15 = −848 𝜕2𝑈 𝜕2𝑈 = −4 < 0 and ∂𝑥12 = −2 < 0 ∂𝑥22 𝜕𝑄 𝑑𝑥2= − 𝜕𝑥1 𝑑𝑥1 𝜕𝑄 𝜕𝑥2 𝜕𝑄 − 𝑑𝑥2= 𝜕𝑥1 𝑑𝑥1 𝜕𝑄 𝜕𝑥2 decreases by ∆x ∆ = MRCS x ∆x
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

8 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG 2948 140
IV. Production Functions 𝜕𝑄 ∂K 𝜕𝑄 ∂L 𝜕2𝑄 ∂𝐾2
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

9 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG 𝜕2𝑄 ∂𝐿2 𝜕𝑄 ∆ ≈ 𝜕𝑄 ∂K ∆ ∆ ∂L MPL MPK 𝜕𝑄 𝜕𝑄 ∂K ∂L 2𝐿 𝜕𝑄 𝐾 𝜕𝑄 ∂K ∂L MPL 4𝐿 2𝐿 MPK 2𝐾 𝐾
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

10 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG 𝜕𝑄 𝜕𝑄 = ∂K ∂L
V. Optimisation problem 𝜕𝑦 𝜕𝑦 ∂x ∂z 𝜕𝑦 𝜕𝑦 ∂x ∂z ∇
𝜕2𝑦) (𝜕2𝑦 ) − ( 𝜕2𝑦 ∂𝑥2 ∂𝑧2 ∂𝑥 ∂z 𝜕2𝑦 ) ∂𝑥2 (𝜕2𝑦 ∇ ∂𝑧2 𝜕2𝑦 ) ∇ ∂𝑥2 (𝜕2𝑦 ∂𝑧2 ∇ – – –
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

11 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
− fxy = 2 x (−6) − 0 = −12 < 0 – –
Show that the firm’s profit function is
π = 50Q − 2Q − 95Q − 4Q − 3Q
which maximise π and deduce the
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

12 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

13 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

14 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

15 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG 𝜑
B1: Dùng phương trình 𝜑(x,y) = M để ết 1 phương trình mớ B2: Thay phương trình mớ
ết vào phương trình f(x,y) để được 1 phương trình ứ ẩ
B3: Tìm f’(x), giải tìm x khi f’(x) = 0 ⟶ có x tìm đượ
B4: Tìm f’’(x) <0 or >0 để
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

16 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

17 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
L = f(x, z) + λ(M − g(x, z)) 𝜕𝐿 𝜕𝐿 𝜕𝐿 ∂x ∂z ∂λ
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

18 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

19 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

20 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG PL MPL PK = MPK 𝑀𝑃𝐿 𝑀𝑃𝐾: MPL 𝑀𝑃𝐾 PL PK P1 U1 P2 U2 𝑈 𝑈 U1 U2 P1 ạ ặ P2 ớ 𝐊∝ 𝐋𝜷 ặ 𝐱𝟏∝ 𝐱𝟐𝜷 PL= MPL PK ớ U1 MPK ặ P1 P2 U2
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

21 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG K1/2𝐿1/4 λ K1/2𝐿1/4 + λ 𝜕𝑔 λ ∂K 𝜕𝑔 5 ∂L λ 𝜕𝑔 2 ∂λ λ 5 λ 2 𝐿4 𝐿 2 2𝐾 𝐾 5 𝐾 5 2𝐾 5 ế 2𝐾 ) 5 5 5 PL= MPL 5 = 2𝐾1/2𝐿−3/4 5 = 1 𝐾 𝐾 5 5𝐿 PK MPK 4 5𝐿1/4𝐾−1/2 4 2 𝐿 𝐿 2 2 ế 5𝐿 5𝐿 ) 2 2
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

22 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG Chapter 6:
1. Rules For Integration ∫ x 1 𝑛+1 ∫ af(x)dx = a ∫ f(x)dx 1 ∫ 𝑙𝑛𝑥 𝑥 ∫ 1 𝑚
∫[f(x) ± g(x)]dx = ∫ f(x)dx ± ∫ g(x)dx
2. Application I: Revenue, Costs And Profit
∫ ∫ TR(Q) = ∫MR(Q) ∫MC(Q) ∫ f(x) = F(x) + c + MC → TC: c = Fixed cost ạ
(a) A firm’s marginal cost function is
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

23 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG – TC = ∫ 2dQ = 2Q + c ∫(100 − 6Q)dQ = 100Q − TR = 100Q − 3Q
𝑇𝑅 100𝑄−3𝑄2 100Q − 3Q 𝑄 𝑄 = 100 − 3Q
3. Definite Integration ∫𝑏 𝑓(𝑥) = F(b) − F(a) 𝑎
4.Application Ii: Consumer And Producer Surplus
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

24 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
CS = ∫𝑸𝟏 𝐃(𝐐)𝐝𝐐 − 𝐏𝟏𝐐𝟏 𝟎
PS = 𝐏𝟏𝐐𝟏 − ∫𝑸𝟏 𝐒(𝐐)𝐝𝐐 𝟎 P = 50 − 2Q (a) the consumer’s surplus (b) the producer’s surplus –
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

25 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG – – ∫10
0 (50 − 2Q)dQ − 10 x 30 = 100 10
PS = 10 x 30 − ∫ (10 + 2Q)dQ 0
5. Application III: Investment Flow 𝑑𝐾 𝑑𝑡 ➔ → 𝑡2 ∫ 𝐼(𝑡)𝑑𝑡 𝑡1
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

26 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
∫8 800𝑡1/3𝑑𝑡 = 9000 1∫𝑥 800𝑡1/3𝑑𝑡 = 0
6 Application IV: Discounting ∫𝑛 − 0 ∫10 − 0
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

27 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG Chapter 7: I.
Basic matrix operations a11 a12 𝑎13 [ 𝑎21 𝑎22 𝑎23] 𝑎31 𝑎32 𝑎33 Matrix A (m x n) → – 3 8 [3 5 5 8 6 5] [5 6] 5 5
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

28 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG 𝑘𝑎11 𝑘𝑎1 2 𝑘𝑎13 𝑘𝑎21 𝑘𝑎2 2 𝑘𝑎23 ần lượ ấ ọ ồ ộ ạ 1 2 𝑐11 𝑐12 𝐴𝐵 = [0 1] [1 2 𝑐21 𝑐22] 3 1 3 4] = [𝑐31 𝑐32
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

29 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG 7 10 [3 4 ] 6 10 ≠ II. Matrix inversion [1 0 0 1] 1 0 0 [0 1 0] 0 0 1 |𝐴| 𝑜𝑟 |𝑎 𝑏 𝑐 𝑑| = 0 → singular
≠ 0 → non – singular → inverse [𝑎 𝑏 𝑐 𝑑] 1 [ 𝑑 −𝑏 |𝐴| −𝑐 𝑎 ]
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

30 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

31 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG a11 a12 a13 [a21 a22 a23] a31 a32 a33 •
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

32 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG + − +
• Prefixed by a ‘–’ sign because from the pattern [− + −] + − +
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

33 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

34 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG • ố • 𝟏 |𝑨| Cramer’s rule 𝑎11 𝑎12 𝑎13 𝑥1 𝑏1 𝐴 = [𝑎21 𝑎22 𝑎23] [𝑥2] 𝑏 = [𝑏2] 𝑎31 𝑎32 𝑎33 𝑥3 𝑏3 ộ det (𝐴𝑖) B2: Cramer’s det (𝐴)
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

35 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

36 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

37 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG Chapter 8: • • •
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com

38 MATH FOR BUSINESS TA: VŨ THỊ THU TRANG
Contact: https://www.facebook.com/thutrang.vu308
Email: vuthithutrang2003@gmail.com