14:37, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
of the discrete-time system is he z-transform x(n)
efined as the power series
Where - complex variable. z
sometimes called the direct z-transform.
he inverse procedure is called the inverse z-transfo
X(z) Z { x(n) } (3.1.2)
x(n) X(z) (3.1.3)
( ) of is the sehe region of convergence ROC X(z)
l values z for which X(z) attains a finite value .
©2013, CE Departm
z
Chapter 3: The Z – Transform and its Application
the Analysis of LTI System
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1 The z-transform
Let us express the in polar formcomplex variable z
z = r ejθ (3.1.4)
r = |z| and = z θ , Then
In the of ROC X(z), | x (z) | < , then
©2013, CE Departm
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
gure 3.1 for Region of convergence X(z) and its correspond
causal and anticausal components.
for the first sum consists of all points in a circle of somROC
radius r < . 1
©2013, CE Departm
r1
z"#plane
Re(z)
(a)
Region#of#convergence#for#
Im*(z)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
©2013, CE Departm
Im(z)
r2 z%&plane
Re(z)
Region#of#convergence#for#
(b)
ROC for the second sum consists of all points outside a
circle of radius r > r 2
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
©2013, CE Departm
z"#plane
Re(z)
(c)
Region#of#convergence#for#|
X(z)|*r2*<*r*<*r1
Im*(z)
r1
r2
ROC of X(z) is generally specified as the annular region in th
plane , r2 < r < r1,
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
A discrete–time is determined by x(n) uniquely its
transform x(z) region of convergence of x(z and the
Table 3.1 Characteristic Families of signal with
their corresponding ROC.
©2013, CE Departm
Signal# ROC
Finite%&Dura3on&Signal&
Causal#
n
En3re&z%plane
except&z=0
0
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
©2013, CE Departm
En3re&z%plane&&
except&&z&=&∞
n
An3causal
0
0
En3re&z%plane&&
except&z&=&0&&
and&&z&=&∞
n
Two%sided
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
©2013, CE Departm
Infinite&–&Dura3on&Signals
|z|*>*r2
n
Causal
r2
r1
|z|*<*r1
n
An3causal
0
0
n
Two&%sided
0
r2
r1
r2&<&|z|&<&r1
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
These types of signal are called right-sided
left-sided, and finite-duration two-sided,
signals.
If there is a ROC for an infinite duration two-
sided signal, it is a ring (annular region) in
the z-plane.
The one-sided or unilateral z-transform
given by
©2013, CE Department
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.2 The Inverse z-Transform
The procedure for transform from the z-dom
to the time domain is called the inversion z-
transform.
Cauchy integral theorem.
We have
then
Where C the closed contour in the ROC of X(z
2013, CE Department
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.2 The Inverse z-Transform
or
Figure 3.1.5 Contour for integral in (3.1.13) C
©2013, CE Departm
r2
r1 Re*(z)
Im*(z)
C
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
+ Linearity
if x1(n) X (z) and x (n) X (z) 1 2 2
then
(3x(n) = a (n) + a (n) X(z) = a (z) + a1x1 2x2 1X1 2X (z)2
+ Time shifting
if x(n) X(z)
then x(n-k) z X(z) -k (3.2.5)
+ Scaling in the z-domain
If x(n) X(z), ROC: r < |z| < r1 2
(3.2.9then an x(n) X(a z), : | a|r < |z| < |a|r -1 ROC 1 2
or any constant , real or complex. a
©2013, CE Departm
z z
z
z
z
z
z
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
ime reversal
x(n) X(z), ROC: r 1 < |z| < r2
(3.2hen x(-n) X (z ), -1 ROC: 1/r2 < |z| < 1/r1
ifferentiation in the z-domain
x(n) X(z)
hen nx(n) -z dX(z) ⁄ dz (3.2.14)
onvolution of two sequences
x1(n) X 1(z), x2(n) X 2(z),
(3.2hen x(n) = x (n) * x (n) X(z) = X (z) X (z) 1 2 1 2
, CE Department
z
z
z
z
z z
z
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
orrelation of two sequences
x1(n) X (z), 1 and x (n) X (z) 2 2
en
ultiplication of two sequences
x1(n) X (z), x (n) X (z) 1 2 2
en
closed contour that encloses the origin and lies within th
gion of convergence common to both X (v)1 and X (1/v)2
©2013, CE Departm
z z
z z
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
Parsevals relation
f x (n)1 and x (n)2 are complex-valued sequences , th
provided that r r r1l 2l < 1 < r1u 2u,
where and r1l < lzl < r 1u r2l < lzl < r2u are the ROC of
X (z) X1 and 2 (z).
The initial value theorem
is f x(n) causal then
©2013, CE Departm
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
+ Table 3.2 Properties of the z-transform
©2013, CE Departm
Property Time#Domain# z"#Domain## ROC
Nota=on######x"(n)#############X"(z)###ROC:#r "<"|z|"<"r2 1
"""x1"(n)#############X1"(z)###ROC1
x2"(n)#########X2"(z)"##############ROC2
Linearity#""""""""""a1x1"(n)+######## At#least#intersec=on#of################a1X X1"(z)"+a2 2"(z)""""""
############a2x2"(n)#############ROC#1#and#ROC2
Time#shiDing#############x"(n/k)"#########z/k"X(z)###That#of#X#(z),#except#z=0#if###########
#########k=0 z"="∞"#and# if#k"<"0
Scaling#in#the##an"x"(n)#########X""(a/1"z)###|a|r2"<"|z|"<|a|"r1"
#"domain
Time#reversal#### ########x"(/n)### X""(z/1)###1/r1"<"|z|"<"1/r2"""
Conjuga=on#### ########################x*"(n)# X*"(z*)####ROC
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
©2013, CE Departm
eal#part#####Re{x"(n)} #1/2[X"(z)+X*(z*)] Includes#ROC
aginary#part#####Im X"(z)"/"X{x"(n)} 1/2j[ *(z*)] Includes#ROC
fferen=a=on#in#####nx"(n)## r "<"|z|"<"r2 1
onvolu=on############## )########Xx1"(n)"*x2"(n 1#(z)#X2(z)#########################At#least,#the##interse
#######of##ROC#1#and#ROC2
orrela=on############### ######rx1x2"(l)"=## R "(z)="X "(z)"Xx1x2 1 2"(z )""""""/1 At#least,#the##intersec=o
###########x1"(l)"*"x2"(/l)"####################################ROC# #(z)#and#X1#of#X1 2(z"1)
=al#value############If#x"(n)#causal#"x"(0)"=""lim"X(z)"
eorem#####
#####
##
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
Table 3.3 Some common z-transform pairs
©2013, CE Departm
Signal,# z"#transform,# ROCx(n) x(z)
1#####δ"(n)" 1# #################All#z###############
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
©2013, CE Departm
Signal,# z"#transform,# ROCx(n) x(z)
CuuDuongThanCong.com https://fb.com/tailieudientucntt
14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.3 Rational z- transforms
+ Poles and Zeros
of a z-transform are the The zeros X(z)
values of for which z X(z) = 0
of a z-transform are value of for The pole z
which X(z) =
+ If X(z) is a rational function, then
©2013, CE Departm
CuuDuongThanCong.com https://fb.com/tailieudientucntt

Preview text:

14:37, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
Chapter 3: The Z – Transform and its Application
the Analysis of LTI System
he z-transform of the discrete-time system x(n) is efined as the power series
Where z - complex variable.
sometimes called the direct z-transform.
he inverse procedure is called the inverse z-transfo X(z) ≡ Z { x(n) } (3.1.2) z x(n) ↔ X(z) (3.1.3)
he region of convergence ( ROC) of X(z) is the se
l values z for which X(z) attains a finite value .
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu 3.1 The z-transform
Let us express the complex variable z in polar form z = r ejθ (3.1.4)
r = |z| and θ = z , Then
In the ROC of X(z), | x (z) | < ∞ , then
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
gure 3.1 Region of convergence for X(z) and its correspond
causal and anticausal components.
ROC for the first sum consists of all points in a circle of som radius r1 < . ∞ Im*(z) z"#plane r1 Re(z) Region#of#convergence#for# (a)
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
ROC for the second sum consists of all points outside a
circle of radius r > r2 Im(z)
r2 z%&plane Re(z) Region#of#convergence#for# (b)
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
ROC of X(z) is generally specified as the annular region in th
plane , r2 < r < r1, Im*(z) z"#plane r2 Re(z) r1
Region#of#convergence#for#|
X(z)|*r2*<*r*<*r1
(c)
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
A discrete–time x(n) is uniquely determined by its
transform x(z)
and the region of convergence of x(z
Table 3.1 Characteristic Families of signal with their corresponding ROC. Signal# ROC
Finite%&Dura3on&Signal& Causal# En3re&z%plane except&z=0 0 n
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform An3causal En3re&z%plane&&
except&&z&=&∞
0 n Two%sided En3re&z%plane&&
except&z&=&0&&
and&&z&=&∞
0 n
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
Infinite&–&Dura3on&Signals Causal r2 |z|*>*r2 0 n An3causal r1 |z|*<*r1 0 n Two&%sided r2
r2&<&|z|&<&r1 0 n r1
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.1 The direct z-transform
These types of signal are called right-sided
left-sided, and finite-duration two-sided, signals.
If there is a ROC for an infinite duration two-
sided signal, it is a ring (annular region) in the z-plane.
The one-sided or unilateral z-transform given by
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Department 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.2 The Inverse z-Transform
The procedure for transform from the z-dom
to the time domain is called the inversion z- transform.
Cauchy integral theorem. We have then
Where C the closed contour in the ROC of X(z
CuuDuongThanCong.com https://fb.com/tailieudientucntt 2013, CE Department 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.1.2 The Inverse z-Transform or
Figure 3.1.5 Contour C for integral in (3.1.13) Im*(z) r C 2 r1 Re*(z)
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform + Linearity z z if x1(n) X 1(z) and x2(n) X 2(z) then z
x(n) = a1x1(n) + a2x2(n) X(z) = a
1X1(z) + a2X2(z) (3 + Time shifting z if x(n) ↔ X(z)
then x(n-k) ↔ z z -k X(z) (3.2.5)
+ Scaling in the z-domain z If
x(n) ↔ X(z),
ROC: r1 < |z| < r2 then a z n x(n) X(a
-1z), ROC: | a|r1 < |z| < |a|r2 (3.2.9
or any constant a, real or complex.
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform ime reversal z x(n) X(z),
ROC: r1 < |z| < r2 hen x(-n) ↔ z X (z-1),
ROC: 1/r2 < |z| < 1/r1 (3.2
ifferentiation in the z-domain z x(n) ↔ X(z) z hen nx(n) -z dX(z) ⁄ dz (3.2.14)
onvolution of two sequences z z
x1(n) ↔ X1(z), x2(n) X 2(z), z
hen x(n) = x1(n) * x2(n) X(z) = X 1(z) X2(z) (3.2
CuuDuongThanCong.com https://fb.com/tailieudientucntt , CE Department 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
orrelation of two sequences z z x1(n) X
1(z), and x2(n) X 2(z) en
ultiplication of two sequences z z x1(n) X 1(z), x2(n) X 2(z) en
closed contour that encloses the origin and lies within th
gion of convergence common to both X1(v) and X2(1/v)
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
Parsevals relation
f x1(n) and x2(n) are complex-valued sequences , th
provided that r1lr2l < 1 < r1ur2u,
where r1l < lzl < r1u and r2l < lzl < r2u are the ROC of
X1(z) and X2 (z).
The initial value theorem
f x(n) is causal then
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
+ Table 3.2 Properties of the z-transform
Property Time#Domain# z"#Domain## ROC
Nota=on######x"(n)#############X"(z)###ROC:#r2"<"|z|"<"r1
"""x1"(n)# ############X1"(z)###ROC1 x2"(n)##
#######X2"(z)"##############ROC2
Linearity#""""""""""a1x1"(n)+########a1X1"(z)"+a2X2"(z)""""""At#least#intersec=on#of################ ############a2x2"(n)### ##########ROC#1#and#ROC2
Time#shiDing#############x"(n/k)"#########z/k"X(z)###That#of#X#(z),#except#z=0#if########### ### ######
k=0#and#z"="∞"if#k"<"0
Scaling#in#the##an"x"(n)#########X""(a/1"z)###|a|r2"<"|z|"<|a|"r1" #"domain
Time#reversal####x"(/n)###########X""(z/1)###1/r1"<"|z|"<"1/r2"""
Conjuga=on####x*"(n)#########################X*"(z*)####ROC
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
eal#part#####Re{x"(n)} #1/2[X"(z)+X*(z*)] Includes#ROC
aginary#part#####Im{x"(n)} 1/2j[X"(z)"/"X*(z*)] Includes#ROC
fferen=a=on#in#####nx"(n) r2 ## "<"|z|"<"r1
onvolu=on##############x1"(n)"*x2"(n)########X1#(z)#X2(z)#########################At#least,#the##interse ####### of##ROC#1#and#ROC2
orrela=on###############rx1x2"(l)"=########Rx1x2"(z)="X1"(z)"X2"(z/1)""""""At#least,#the##intersec=o
###########x1"(l)"*"x2"(/l) "####################################ROC#1#of#X1#(z)#and#X2(z"1)
=al#value############If#x"(n)#causal#"x"(0)"=""lim"X(z)" eorem##### ##### ##
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
Table 3.3 Some common z-transform pairs
Signal,#x(n) z"#transform,#x(z) ROC 1#####δ"(n) 1# "
#################All#z###############
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.2 Properties of the z–Transform
Signal,#x(n) z"#transform,#x(z) ROC
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm 14:38, 10/01/2026
Chương 3: Z-Transform và Ứng Dụng trong Phân Tích Hệ LTI - CNTT 101 - Studocu
3.3 Rational z- transforms + Poles and Zeros
The zeros of a z-transform X(z) are the values of for which z X(z) = 0
The pole of a z-transform are value of for z
which X(z) = ∞
+ If X(z) is a rational function, then
CuuDuongThanCong.com https://fb.com/tailieudientucntt ©2013, CE Departm