Chuyên đề và bộ đề ôn thi học kỳ 1 Toán 10 năm học 2018 – 2019 – Lê Văn Đoàn

Nhằm hỗ trợ các em học sinh lớp 10 trong quá trình ôn thi HK1 Toán 10, VietJack giới thiệu đến các em tài liệu chuyên đề và bộ đề ôn thi học kỳ 1 Toán 10 năm học 2018 – 2019 do thầy Lê Văn Đoàn biên soạn và giảng dạy, tài liệu gồm 84 trang trình bày kiến thức và bài tập 7 chuyên đề Toán 10 giai đoạn học kỳ 1 và 13 đề thi HK1 Toán 10 của các trường THPT năm học 2017 – 2018.

N¨m häc 2018 2019
M«n To¸n – Líp 10
Trung taâm Hoaøng Gia
56 Phoá Chôï – P. Taân Thaønh – Q. Taân Ph
MC LC
Trang
Chun đề 1. Parabol & mt s vấn đề liên quan ..................................................................... 1
Chun đề 2. Gii và bin luận phương trình bc nht ........................................................... 5
Chun đề 3. Bài toán cha tham s trong phương trình bc hai .......................................... 7
Chun đề 4. Phương trình quy v phương trình bc hai ....................................................... 13
Chun đề 5. Bất đẳng thc và GTLN, GTNN ......................................................................... 23
Chun đề 6. H trc tọa độ ........................................................................................................ 29
Chun đề 7. Tích vô hướng h thức lượng ......................................................................... 42
Đề s 01. THPT Bình Hưng Hòa (2017 2018) .................................................................. 49
Đề s 02. THPT Trn Phú (2017 – 2018) .............................................................................. 51
Đề s 03. THPT Lê Trng Tn (2017 – 2018) ....................................................................... 53
Đề s 04. THPT Bình n (2017 2018) ............................................................................... 56
Đề s 05. THPT Nguyn Hu Cnh (2017 – 2018) ............................................................ 58
Đề s 06. THPT Trn Quang Khi (2017 – 2018) ................................................................ 61
Đề s 07. THPT Nguyễn Thượng Hin (2017 – 2018) ....................................................... 63
Đề s 08. THPT Hàn Thuyên (2017 2018) ........................................................................ 66
Đề s 09. THPT Nguyn Chí Thanh (2017 – 2018) ............................................................ 69
Đề s 10. THPT Tây Thnh (2017 2018) ............................................................................ 72
Đề s 11. THPT Chuyên Hng Phong (2017 – 2018) .................................................... 74
Đề s 12. THPT Nguyn Th Minh Khai (20172018) ..................................................... 77
Đề s 13. THPT Bùi Th Xuân (2017 – 2018) ....................................................................... 79
Chóc c¸c trß rÌn luyÖn tèt vµ ®¹t kÕt qu¶ cao trong kú thi s¾p ®Õn !
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 1 -
Chuyªn ®Ò 1. Parabol & mét sè bµi to¸n liªn quan
Cn nh: Parabol
2
( ) :
P y ax bx c
có đỉnh ;
2 4
b
I
a a
và trục đối xng
2
x
a
(hoành độ đỉnh). Khi
0 :
a
đồ th có dng
0 :
a
đồ th có dng
.
1. Tìm parabol
2
( ) : 4 ,
P y ax x c
biết
rằng
( )
P
đi qua
(1; 2)
A
(2;3).
B
2. Tìm parabol
2
( ): 2,
P y ax bx
biết rằng
( )
P
đi qua
(1;5), ( 2;8).
A B
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
3. Tìm parabol
2
( ) : 3,
P y ax bx
biết
( )
P
đi qua điểm
(3;0)
A
có trục đối
xứng là
1.
x
4. Tìm parabol
2
( ) : 4 ,
P y ax x c
biết
( )
P
có hoành độ đỉnh bằng
3
đi qua
điểm
( 2;1).
A
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 2 -
5. Tìm parabol
2
( ) : ,
P y ax bx c
biết
( )
P
đi qua
(1;0), (2;8), (0; 6).
A B C
6. Tìm parabol
2
( ) : ,
P y ax bx c
biết
( )
P
đi qua điểm
(0;5)
A
và có đỉnh
(3; 4).
I
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
7. Tìm parabol
2
( ) :
P y ax bx c
khi biết
bng biến thiên:
x
0
2
y
3
1
8. Tìm parabol
2
( ) :
P y ax bx c
khi biết
bng biến thiên:
x
1
3
y
4
0
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 3 -
9. Tìm parabol
2
( ) :
P y ax bx c
khi biết
đồ th ca nó là
10. Tìm parabol
2
( ) :
P y ax bx c
khi biết đồ
th ca nó
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
11. V parabol
2
( ) : 2 2.
P y x x
Dựa
vào đồ thị biện luận nghiệm phương
trình:
2
2 4 3 0.
x x m
12. V parabol
2
( ) : 4 5.
P y x x
Dựa
vào
đồ thị biện luận nghiệm phương trình:
2
4 5 0.
x x m
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 4 -
13. V parabol
2
( ) : 4 3.
P y x x
Tìm
m
đphương trình
2
4 0
x x m
2
nghiệm tha
1 2
0 2 .
x x
14. V parabol
2
( ) : 4 5.
P y x x
Dựa
vào đồ thị biện luận nghiệm phương trình:
2
4 5 0.
x x m
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
15. V parabol
2
( ) : 2 .
P y x x
Suy ra đồ
thị hàm s
2
( ) : 2 .
P y x x
16. V
2
( ) : 6 5.
P y x x
Hãy biên luận
nghiệm
2
6 4
x x m
trên
( 1; 4].
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 5 -
Chuyªn ®Ò 2. Ph¬ng tr×nh bËc nhÊt
1. Giải và biện luận:
( 1) 9 3.
m mx x
2. Giải và biện luận:
2
2 4 .
m x m x
Giải. Phương trình
2
9 3
m x m x
2
9 3
m x x m
2
( 9) 3
m x m
( )
Với
2
9 0 3.
m m
Khi
3
m
thì
( )
trở thành
0 6,
x
suy ra phương trình vô nghiệm.
Khi
3
m
thì
( )
trở thành
0 0
x
phương trình nghiệm đúng
.
x
Với
2
9 0 3
m m
2
3 1
( )
3
9
m
x
m
m
Kết luận:
3 :
m
Phương trình vô nghiệm.
3 :
m
Phương trình nghiệm đúng
.
x
3 :
m
Phương trình có nghiệm
1
3
x
m
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
3. Giải và biện luận:
2
( 2 8) 4 .
m m x m
4. Giải và biện luận:
2
(4 2) 1 2 .
m x m x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 6 -
5. Tìm
m
để phương trình có nghiệm:
3 2 5 3
1
1 1
x m x m
x
x x
6. Tìm
m
để phương trình có nghiệm:
2 1 1
2 1
1 1
mx m
x
x x
Giải. Điều kiện:
1 0 1.
x x
Quy đồng và b mẫu, phương trình đã cho
3 1 2 5 3
x m x x m
2 6 2
x m
3 1.
x m
1
x
nên phương trình có nghiệm
khi
2
3 1 1
3
x m m
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
7. Tìm tham s
m
để phương trình sau
nghiệm nguyên:
( 2) 1.
m x m
8. Tìm tham s
m
để phương trình sau
nghiệm nguyên:
( 3) .
m x x m
Giải. Với
2 0 2
m m
tphương
trình
1 ( 2) 3
2 2
m m
x
m m
3
1
2
x
m
x
nên
3 ( 2)
m
2 3 5
2 3 1
.
2 1 3
2 1 1
m m
m m
m m
m m
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
9. Tìm tham s
m
để phương trình
2 2
( ) 2 1
m m x x m
nghiệm.
10. Tìm tham s
m
để phương trình
2 2
4 2
m x x m m
có nghiệm.
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 7 -
Chuyªn ®Ò 3. Bµi to¸n chøa tham sè trong ph¬ng tr×nh bËc hai
1. Cho phương trình
2 2
(2 3) 4 0.
x m x m
Tìm tham s
m
để phương trình:
a) Có một nghiệm
7.
Tìm nghiệm còn
lại.
b) Có
2
nghiệm pb
1 2
,
x x
thỏa
2 2
1 2
17.
x x
Lời giải.
Thế
7
x
vào phương trình, ta được:
2 2
( 7) 7(2 3) 4 0
m m
2
2
14 24 0
12
m
m m
m
Với
2
m
thì phương trình trở thành:
2
7 0 0
x x x
hoặc
7.
x
Với
12
m
thì phương trình trở thành
2
27 140 0 7 20.
x x x x
Kết luận:
Với
2
m
thì nghiệm còn lại là
0.
x
Với
12
m
thì nghiệm còn lại là
20.
x
Lời giải. Phương trình có
2
nghiệm phân biệt
khi:
2 2
L1 0 :
(2
0
3) 4( 4)
0
0
a
m m
Đ
12
12 25 0
25
m m
( )
Theo Viét:
1 2
2 3
b
S x x m
a
2
1 2
4.
c
P x x m
a
Theo đề:
2 2 2
1 2
17 2 17
x x S P
2 2
(2 3) 2( 4) 17
m m
2
2 12 0 0
m m m
hoặc
6.
m
So vi
( ),
giá trị cần tìm là
0.
m
2. Cho phương trình
2 2
(2 3) 4 0.
x m x m
Tìm tham s
m
để phương trình:
a) Có
1
nghiệm
7.
Tìm nghiệm còn lại.
b) Có
2
nghiệm pb
1 2
,
x x
thỏa
2 2
1 2
17.
x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 8 -
3. Cho phương trình
2 2
2 3 0.
x mx m m
Tìm tham s
m
để phương trình:
a) Có nghiệm kép. Tính nghiệm kép đó.
b) Có
2
nghiệm pb
1 2
,
x x
thỏa
2 2
1 2
8.
x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
4. Cho phương trình
2
( 1) 3 1 0.
m x x
Tìm tham s
m
để phương trình:
a) 1 nghiệm bằng
3.
Tìm nghiệm còn lại.
b) Có
2
nghiệm pb
1 2
,
x x
thỏa
1 2
1 .
x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 9 -
5. Cho phương trình
2
(2 3) 2(2 3) 1 2 0.
m x m x m
Tìm
m
để phương trình:
a) 1 nghiệm bằng
1.
Tìm nghiệm còn
lại của phương trình.
b) Có
2
nghiệm phân biệt
1 2
,
x x
thỏa mãn
1 2 1 2
(5 1)(5 1) 13 1.
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
6. Cho phương trình
2
4 1 0.
x x m
Tìm tham s
m
để phương trình:
a) Có hai nghiệm trái dấu ?
hai nghiệm dương phân biệt.
b) Có
2
nghiệm phân biệt
1 2
,
x x
thỏa mãn
1 2 1 2
6 2 .
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 10 -
7. Cho phương trình
2
2( 3) 6 0.
mx m x m
Tìm tham s
m
để phương trình:
a)
2
nghiệm phân biệt thỏa
1 2
1 1
1.
x x
b) Có hai nghiệm trái dấu và có giá trị tuyệt
đối bằng nhau.
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
8. Cho phương trình
2
2 1 0.
mx x
Tìm tham s
m
để phương trình:
a) hai nghiệm trái dấu ? Có hai nghiệm
phân biệt cùng dương ? hai nghiệm
đối nhau ?
b) Có hai nghiệm độ dài của hai cạnh góc
vuông trong một tam giác vuông có độ dài
cạnh huyền bằng
2.
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 11 -
9. Cho phương trình
2
( 5) 0.
x m x m
Tìm tham s
m
để phương trình:
a) Chứng minh phương trình luôn có hai
nghiệm phân biệt. Tìm
m
đ phương
trình có hai nghiệm dương phân biệt ?
b) Có hai nghiệm phân biệt
1 2
,
x x
thỏa mãn
điều kiện
1 2
2 5.
x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
10. Cho phương trình
2 2
(2 2) 4 0.
x m x m
Tìm tham s
m
để phương trình:
a) Có nghiệm ? Có hai nghiệm pb dương ?
b) Có hai nghiệm pb
1 2
,
x x
thỏa
1 2
2 .
x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 12 -
11. Cho phương trình
2
( 2) ( 1) 4 0.
x x m x
Tìm tham s
m
để phương trình:
a) Có ba nghiệm phân biệt ? b) Có hai nghiệm ?
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
12. Cho phương trình
3 2
2 2 1 0.
x mx mx
Tìm tham s
m
để phương trình:
a) Có ba nghiệm phân biệt ? b) Có hai nghiệm ?
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 13 -
Chuyªn ®Ò 4. Ph¬ng tr×nh quy vÒ ph¬ng tr×nh bËc hai
1. Giải:
2 2 2
4(2 3 1)(2 4 1) 3 .
x x x x x
2. Giải:
2
( 1)( 2)( 6)( 12) 6 .
x x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
3. Giải:
2 2
2 13
6.
2 5 3 2 3
x x
x x x x
4. Giải:
2 2
4 5 10
9
2 3 4 3
x x
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
5. Giải:
2 2
2 2
2 3 5 3 3
4
4 3 6 3
x x x x
x x x x
6. Giải:
2
2 2
2 15 3
4 15 6 15
x x x
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 14 -
7. Gii:
2
4 1 2 4.
x x x
8. Giải:
2
3 5 2 3.
x x x
Lời giải. Áp dụng
0B
A B
A B
A B
Điều kiện:
2
2 4 0.
x x
Phương trình
2
2
4 1 2 4
4 1 ( 2 4)
x x x
x x x
2
2
1
3
2 3 0
.
3 2 3
6 3 0
3 2 3
x
x
x x
x
x x
x
Thế các nghiệm vào điều kiện, các nghiệm
thỏa mãn là
3
x
3 2 3.
x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
9. Gii:
2
2 4 2.
x x x
10. Giải:
2 2
2 2 7 9.
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
11. Gii:
2
4 2 2.
x x x
12. Giải:
2
2 3 1 1 2 .
x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 15 -
13. Gii:
2 2
3 2 6 .
x x x
14. Giải:
3 4 2 .
x x
Lời giải. Áp dụng
A B
A B
A B
thì
2 2
2 2
2 2
3 2 6
3 2 6
3 2 6
x x x
x x x
x x x
2
2
o
1
4 2 6 0
3
2 2 6 0 : VN
2
x
x x
x x
x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
15. Gii:
2 2
5 3 2 1 .
x x x
16. Giải:
2 2
2 2 2 .
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
17. Gii:
2
6 9 2 1 .
x x x
18. Giải:
2
4 12 9 3 2 .
x x x
Lời giải. Áp dụng
2
A B A B
thì phương trình
2
6 9 2 1
x x x
2 2
6 9 (2 1)
x x x
2 2
6 9 4 4 1
x x x x
2
2
3 10 8 0 4,
3
x x x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
19. Gii:
2 3 2 1 .
x x
20. Giải:
2
3 9 1 2 .
x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 16 -
21. Gii:
( 3). 1 4
x x x
( )
22. Giải:
( 1). 3 4( 2).
x x x
TH1
: N
ếu
1 0 1.
x x
( )
trở thành
( 3)( 1) 4
x x x
2
2 3 0 1, 3.
x x x x
So vi
1,
x
nhận nghiệm
3.
x
TH2: Nếu
1 0 1.
x x
( )
trở thành
( 3)(1 ) 4
x x x
2
6 3 0 3 2 3.
x x x
So vi
1
x
nhận nghiệm
3 2 3.
x
Kết luận: Tập nghiệm
{ 3 2 3;3}.
S
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
23. Gii:
2
4 2 2 1
2 1.
4 3
x x x
x
x
24. Giải:
2
1 1 2 1
1
x x
x
x x
x
...........................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
25. Gii:
2 1 2
2 1.
2 2 1
x x
x x
(ẩn phụ) 26. Giải:
2
2
1 1
10 2x x
x
x
(ẩn phụ)
...........................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 17 -
27. Gii:
2
3 2 3.
x x x
28. Giải:
2
6 4 3 4 0.
x x x
Lời giải.
0 (hay 0)
.
B A
A B
A B
Phương trình
2
3 0
3 2 3
x
x x x
2
3
3
4 1 0
2 3
x
x
x x
x
2 3
x
là nghiệm cần tìm.
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
29. Gii:
1 2 2 5.
x x
30. Giải:
2
3 1 8 11.
x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
31. Gii:
2
1 3 .
x x x
32. Giải:
2
5 21 8 2.
x x x
Lời giải. Áp dụng
2
0
.
B
A B
A B
Phương trình
2 2
3 0
1 (3 )
x
x x x
2 2
3
3
8
1 9 6
7
x
x
x x x x
x
8
7
x
là nghiệm cần tìm.
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
33. Gii:
2
2 3 2 1 1 3 .
x x x
34. Giải:
2
2 12 18 1 2.
x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 18 -
35. Giải:
2 2
5 4 5 5 28 0.
x x x x
36. Giải:
2 2
5 2 7 2 3.
x x x x
Lời giải. Đặt
2
5
t x x
thì phương trình tr
thành
4 5 28 0
t t
2
4 0
5 28 4
25( 28) ( 4)
t
t t
t t
2
4
4
36
36
17 684 0
19
t
t
t
t
t t
t
Với
2
4
36 5 36 .
9
x
t x x
x
Cách khác: Đặt
2 2
5 28 0 .
t x x t
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
37. Giải:
2 2
3 3 3 9 7 1 0.
x x x x
38. Giải:
2 2
2 6 12 7 0.
x x x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
39. Giải:
2
( 3)(1 ) 5 2 7.
x x x x
40.
4 3 2
( 2)( 3) 2 2 2.
x x x x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 19 -
41. Giải:
2 1 2 3.
x x
42. Giải:
4 2 6 1.
x x
Lời giải. Điều kiện
2 1 0
3.
3 0
x
x
x
Phương trình
2 1 2 3
x x
2 2
( 2 1) (2 3)
x x
2 1 4 4 3 3
x x x
2
0
4
4 3 .
12
16( 3)
x
x
x x
x
x x
So vi điều kiện và thử lại, suy ra
{4;12}.
S
Cần nhớ: Dạng tổng quát
.
A B C
Điều kiện
Chuyển vế sao cho hai vế dương
và bình phương, giải phương trình hệ quả.
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
43. Giải:
1 4 1 2.
x x x
44. Giải:
3 4 4 2 .
x x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
45. Giải:
4 1 1 2 .
x x x
46. Giải:
2 3 1 1 2 2 1.
x x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 20 -
47. Giải:
2
( 3) 5 4 2 6.
x x x x
48. Giải:
2 2
( 3) 4 9.
x x x
Lời giải. Điều kiện
2
5 4 0
x x
( )
PT
2
( 3) 5 4 2( 3) 0
x x x x
2
( 3) 5 4 2( 3) 0
x x x x
2
( 3)( 5 4 2) 0
x x x
2
2
3 0
3
5 4 4
5 4 2
x
x
x x
x x
3
.
0, 5
x
x x
Thế các nghiệm vào điều
kiện
( ),
nghiệm cần tìm là
0, 5.
x x
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
49. Giải:
2
( 1) 2 3 4 3.
x x x x
50. Giải:
2
(2 1) 1 2 7 3.
x x x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
51.
2
2 2 2 2 1.
x x x x
52.
2
3 2 1 2 4 3.
x x x x x x
Lời giải. Điều kiện
2 0
2.
1 0
x
x
x
PT
( 2)( 1) 2 2 ( 1 2)
x x x x
2.( 1 2) ( 1 2) 0
x x x
( 1 2).( 2 1) 0
x x
1 2 1 4
3.
2 1
2 1
x x
x
x
x
So vi điều kiện, nghiệm cần tìm là
3.
x
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 21 -
53.
3 6 3 (3 )(6 ).
x x x x
54.
2
2 2 2 4 2 2.
x x x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
55. Giải:
2 2
2 9 2 1 4.
x x x x x
56. Giải:
2 2
15 3 2 8.
x x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 22 -
57. Giải hệ:
2 2
2 7 0
2 2 4 0
x y
y x x y
58. Giải h:
2 2
6 2 0
8 0
x y x y
x y
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
59. Giải hệ:
2 2
5
8
x y xy
x y x y
60. Giải h:
2 2
3
2
x y xy
x y y x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 23 -
Chuyªn ®Ò 5. BÊt ®¼ng thøc – Gi¸ trÞ lín nhÊt & gi¸ trÞ nhá nhÊt
1. Chứng minh rằng vi mọi
,
x
ta luôn
4
4 3 0.
x x
2. Chứng minh rằng với mọi
, ,
a b c
thì
2 2
4 2 2 .
a b ab a b
Giải. Thêm bớt để đưa về hằng đẳng thức, tức
4 2 2 2 2
4 3 ( ) 2 1 2( 2 1)
x x x x x x
2 2 2
( 1) 2( 1) 0, .
x x x
Dấu
" "
xảy ra khi
2
1 0
1.
1 0
x
x
x
Nhận xét: Đối với bài toán
,
x
ta nên
sử dụng hằng đẳng thức để đưa về dạng:
2 2 2
0 :
A B C
luôn đúng và dấu
" "
xảy ra khi
0.
A B C
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
3. Chứng minh rằng với mọi
,
x y
thì ta
luôn có
2 2
3 3 3 0.
x y xy x y
4. Chứng minh rằng với mọi
, ,
a b c
thì có
2 2 2
12 4( ).
a b c a b c
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
5. Chứng minh rằng
0, 0
a b
ta luôn có
3 3 2 2
.
a b a b ab
6. Chứng minh rằng
0, 0
a b
ta luôn
4 4 3 3
.
a b a b ab
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 24 -
7. Chứng minh rằng với mọi
, , 0
a b c
ta
luôn có
2 2 2
.
a b c ab bc ca
8. Chứng minh với mọi
, , 0
a b c
thì
( ).
ab bc ca abc a b c
Gi
ải
.
Áp d
ụng BĐT Cauchy
Ta có:
Cauchy
2 2 2 2
Cauchy
2 2 2 2
Cauchy
2 2 2 2
2 2
2 2
2 2
a b a b ab
b c b c bc
c a c a ac
2 2 2
2( ) 2( )
a b c ab bc ca
2 2 2
a b c ab bc ca
(đpcm).
Dấu
" "
xảy ra khi
0.
a b c
Nhận xét: Nhận dạng
Tæng Tæng
Tæng ng sè
2
P
Cauchy xoay vòng, rồi cộng lại.
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
9. Chứng minh rằng với mọi
, , 0
a b c
t
1 1 1
a b c
bc ca ab a b c
10. Chứng minh rằng với mọi
, , 0
a b c
thì
3 3 3
.
a b c
ab bc ca
b c a
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
11. Chứng minh rằng với mọi
,
a b
thì ta
luôn có
2 2
4 9 5 4( 3 ).
a b a b
(Lưu ý:
2
).
x x x
12. Chứng minh rằng với
0 , ,
a b c
thì
2 2 2
2 2 2
a c b a b c
b c a
c b a
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 25 -
13. Chứng minh rằng với mọi
, , 0
a b c
ta
( )( )( ) 8 .
a b b c c a abc
14. Chứng minh rằng
, , 0
a b c
ta luôn
2 2 2
( 2)( 2)( 2) 16 2 .
a b c abc
Lời giải. Áp dụng bất đẳng thức Cauchy
Ta có:
Cauchy
Cauchy
Cauchy
2
2
2
a b ab
b c bc
c a ca
và nhân vế theo vế
nhân
2 2 2
( )( )( ) 8 8 .
a b b c c a a b c abc
Dấu
" "
xảy ra khi
0.
a b c
Nhận xét: Dạng
TÝch TÝch
TÝch H»ng
2
P
Cauchy trong dấu
( )
và nhân lại.
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
15. Chứng minh rằng với mọi
, , 0
a b c
ta
( )( )( ) 8 .
a b b c c a abc
16. Chứng minh rằng
, , 0
a b c
ta luôn
2 2 2
( )( ) 9 .
a b c a b c abc
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
17. Chứng minh rằng với mọi
0, 0
a b
ta
1 1
( 2). 4.
1 1
a b
a b
18. Chứng minh rằng
, , 0
a b c
ta có:
1 1 1 9
( )
2
a b c
a b b c c a
HD:
2 ( 1) ( 1).
a b a b
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
HD:
2( ) ( ) ( ) ( ).
a b c a b b c c a
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 26 -
19. Với
1,
x
hãy tìm giá tr nhỏ nhất của
hàm s
3 1
9
1
x
y x
x
20. Với
1,
x
hãy tìm giá trnhỏ nhất của
hàm s
2 1
3
1
x
y x
x
Giải. Ta có:
3( 1) 4
9( 1) 9
1
x
y x
x
4
9( 1) 12
1
a
b
y x
x
Cauchy
4
2. 9( 1) 12 24.
1
y x
x
Giá trị nhỏ nhất của hàm số là
24.
Dấu
" "
khi
4 5
9( 1)
1 3
x x
x
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
21. Với
1,
x
hãy tìm giá tr nhỏ nhất của
hàm s
4
1
3
y x
x
22. Với
1,
x
hãy tìm g tr nhỏ nhất
của hàm s
2
4
1
x x
y
x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
23. Với
2,
x
hãy tìm g tr nhỏ nhất của
hàm s
2
9
2
x x
y
x
24. Với
0,
x
hãy tìm giá trị nhỏ nhất của
hàm s
(2 5)(5 14)
x x
y
x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 27 -
25. Với
0,
x
hãy tìm giá tr nhỏ nhất của
hàm s
4
3y x
x
26. Với
0,
x
hãy tìm giá trị nhỏ nhất của
hàm s
2
100
5y x
x
Giải. Sử dụng
2 2
2 2
n mx mx n
y mx
x x
2
3 3 4
2 2
x x
y
x
Cauchy
3
3
2
3 3 4
3. 3 9.
2 2
x x
x
Suy ra giá trị nhỏ nhất của
y
3
3 9.
Dấu
" "
xảy ra khi
2
3
3 4 2
2
3
x
x
x
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
27. Với
0,
x
hãy tìm g tr nhỏ nhất của
hàm s
15
5y x
x
28. Với
0,
x
hãy tìm giá trnhỏ nhất của
hàm s
2
4
2y x
x
HD:
3 3
3 3 3
n mx mx mx n
y mx
x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
HD:
2 2
2 2
n n n
y mx mx
x x x
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
29. Với
0,
x
hãy tìm g tr nhỏ nhất của
hàm s
2
16
4y x
x
30. Với
0,
x
hãy tìm giá trnhỏ nhất của
hàm s
3
16
8y x
x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 28 -
31. Với
5
0; ,
2
x
hãy tìm giá trlớn nhất của
hàm s
(5 2 ).
y x x
32. Với
9
0; ,
5
x
hãy tìm giá trlớn nhất
của biểu thức
4 (9 5 ).
y x x
Giải. Áp dụng
2
( )
2
4
a b
a b ab ab
Ta có:
1
(5 2 ) (2 ).(5 2 )
2
b
a
y x x x x
Cauchy
2
1 [(2 ) (5 2 )] 25
2 4 8
x x
y
Suy ra giá trị nhỏ nhất của hàm s bằng
25
8
Dấu
" "
xảy ra khi
5
2 5 2
4
x x x
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
33. Với
0 3
x
0 4,
y
tìm giá tr
lớn nhất của
(3 )(4 )(2 3 ).
P x y x y
34. Với mọi
[ 2;2],
x
y tìm giá trlớn
nhất của hàm s
2
. 4 .
y x x
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
35. Tìm giá trị lớn nhất và giá trnhỏ nhất của
hàm s
2 6 .
y x x
36. Tìm gtrlớn nhất và giá trnhỏ nhất
của hàm s
1 5 .
y x x
Lời giải. Tập xác định
[2;6].
D
0
y
2
4 2 ( 2)(6 ) 4.
y x x
2 min 2
y y
khi
2
x
hoặc
6.
x
Ta lại có
2
4 2 ( 2).(6 )
a b
y x x
2
4 ( 2) (6 ) 8 2 2.
y x x y
max 2 2
y
khi
2 6 4.
x x x
Kết luận:
min 2
y
max 2 2.
y
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 29 -
37. Mt công ty đang lập cải tiến sản phẩm và
xác định rằng tổng chi phí dành cho việc
cải tiến là
2
( ) 2 4 , ( 6)
6
C x x x
x
trong đó
x
ssản phẩm được cải tiến.
Tìm ssản phẩm mà công ty cần cải tiến
để tổng chi phí là thấp nhất ?
38. Độ giảm huyết áp của bệnh nhân đư
ợc
cho bởi công thức
2
( ) 0,025 (30 ),
G x x x
trong đó
(mg)
x
liều lư
ợng thuốc
được tiêm cho b
ệnh nhân. Tính liều
lượng thuốc cần tiêm cho b
ệnh nhân để
huyết áp giảm nhiều nhất tính đ
giảm đó ?
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
39. Hình chữ nhật có chu vi không đổi là
8m.
Tìm diện tích lớn nhất
max
S
của hình ch
nhật đó.
40. Cho tam giác vuông t
ng một cạnh
góc vuông cạnh huyền bằng
2.
Tìm
độ dài ba c
ạnh của tam giác sao cho diện
tích của tam giác lớn nhất.
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
41. Tìm
max
V
giá trlớn nhất của thể tích các khối hộp chữ nhật có đường chéo bằng
3 2cm
và diện tích toàn phần bằng
2
18cm .
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
3 2
c
b
a
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 30 -
Chuyªn ®Ò 6. HÖ trôc täa ®é Oxy
1. Trong mặt phẳng ta độ
,
Oxy
cho ba điểm
(1;2), (3;5), ( 2; 3).
A B C
a) Chứng minh
, ,
A B C
tạo thành mt tam giác. Tìm trọng tâm
G
của tam giác
.
ABC
Tính
cosin góc
C
và cho biếtc
C
là góc nhn hay tù ?
Chứng minh
, ,
A B C
tạo thành một tam giác:
Ta có:
(2; 3)
2 3
3 5
( 3; 5)
AB
AC


AB

không cùng phương
AC

Suy ra
, ,
A B C
tạo thành một tam giác.
Tìm tọa độ trọng tâm
G
của tam giác
:
ABC
Ta có
G
là trọng tâm tam giác
ABC
1 3 ( 2) 2
2 3
3 3 3
;
2 5 ( 3) 3 3 4
3 3 4
A B C
G
A B C
G
x x x
x
G
y y y
y
Tính cosin góc
:
C
Ta có
(3;5), (5;8)
CA CB
 
2 2 2 2
. 3.5 5.8 55
. . .cos cos
3026
3 5 . 5 8
.
CACB
CACB CA CB C C
CA CB
 
   
 
cos 0
C
góc
C
là góc nhn.
b) Tìm giao điểm
E
của trục hoành với
.
AC
(tìm tọa điểm
E
trên trục hoành sao cho
, ,
E A C
thẳng hàng).
c) Tìm giao điểm
F
của trục tung với
.
BC
(Tìm tọa điểm
F
trên trục tung sao cho
, ,
F B C
thẳng hàng).
E Ox
nên gọi
( ;0)
E
E x
và
E AC
nên
, ,
E A C
thẳng hàng.
Ta có:
( 1; 2).
E
AE x

Để
, ,
E A C
thẳng hàng thì
AE

cùng
phương với
.
AC AE k AC
  
1
2 1
3 5 5
E
E
x
x
Kết luận:
1
;0
5
E
thỏa yêu cầu bài toán.
F Oy
nên gọi
(0; )
F
F y
F BC
nên
, ,
F B C
thẳng hàng.
Ta có:
( 3; 5).
F
BF y

Để
, ,
F B C
thẳng hàng thì
BF

cùng
phương với
CB

.
BF k CB
 
5
3 1
5 8 5
F
F
y
y
Kết luận:
1
0;
5
F
thỏa yêu cầu bài toán.
Cần nhớ:
a
cùng phương
b
cùng phương
.
a k b
Hoµnh Tung
Hoµnh Tung
Tích vô hướng
. . .cos( , ).
a b a b a b
Diện tích
( )( )( ).
S p p a p b p c
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 31 -
2. Trong mặt phẳng ta độ
,
Oxy
cho ba điểm
( 2; 3), ( 2; 4), (5;1).
A B C
a) Chứng minh
, ,
A B C
tạo thành mt tam giác. Tìm trọng tâm
G
của tam giác
.
ABC
Tính
cosin góc
A
và cho biếtc
A
là góc nhn hay tù ? Tìm chu vi và diện tích của tam giác.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
b) Tìm giao điểm của trục hoành với
.
AC
c) Tìm giao điểm của trục tung với
.
BC
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
d) Tìm tọa độ điểm
E
thuộc trục hoành sao cho
, ,
A E G
thẳng hàng.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 32 -
3. Trong mặt phẳng ta độ
,
Oxy
cho ba điểm
(10;1), ( 7; 2), (1;3).
A B C
a) Chứng minh
, ,
A B C
tạo thành mt tam giác. Tìm trọng tâm
G
của tam giác
.
ABC
Tính
cosin góc
B
và cho biếtc
B
là góc nhn hay tù ? Tìm chu vi và diện tích của tam giác.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
b) Tìm giao điểm của trục hoành với
.
AC
c) Tìm giao điểm của trục tung với
.
BC
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
d) Tìm tọa độ điểm
E
thuộc trục tung sao cho
, ,
A E G
thẳng hàng.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 33 -
4. Trong mặt phẳng ta độ
,
Oxy
cho hai điểm
(3;2), (1; 1).
A B
a) Tìm tọa độ điểm
M
thuộc trục hoành và
N
thuộc trục tung sao cho tam giác
AMN
nhận
B
là trọng tâm.
b) Hãy tìm tọa đđiểm
E
thuộc đường thẳng
: 2 4 3 0
d x y
để ba điểm
, ,
A B E
thẳng hàng.
Giải. Gi
( ;0)
M
M x Ox
(0; ) .
N
N y Oy
Để tam giác
AMN
nhận
B
trọng tâm,
nghĩa là
B
là trọng tâm
:
AMN
3 0
1
3 3
2 0
1
3 3
A M N M
B
A M N N
B
x x x x
x
y y y y
y
0
(0;0), (0; 5).
5
M
N
x
M N
y
Kết luận:
(0;0)
.
(0; 5)
M
N
Giải. Vì
: 2 4 3 0
E d x y
3 1
2 4 3 0
4 2
E E E E
x y y x
3 1
;
4 2
E E
E x x
1 5
( 2; 3), 3;
2 4
E E
AB AE x x
 
Để
, ,
A B E
thẳng hàng thì
AB

cùng phương
với
AE

2 3
3 5 1
4 2
E
E
x
x
13 7 13 7
;
4 8 4 8
E E
x y E
5. Trong mặt phẳng ta độ
,
Oxy
cho hai điểm
(1; 2), (2; 1).
A B
a) Tìm tọa độ điểm
M
thuộc trục hoành và
N
thuộc trục tung sao cho tam giác
AMN
nhận
B
là trọng tâm.
b) Hãy tìm tọa đđiểm
E
thuộc đường thẳng
: 2 1 0
d x y
để ba điểm
, ,
A B E
thẳng hàng.
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 34 -
6. Trong mặt phẳng ta độ
,
Oxy
cho hai điểm
(5;1), ( 3; 2).
A B
a) Tìm tọa độ điểm
M
thuộc trục hoành và
N
thuộc trục tung sao cho tam giác
BMN
nhận
A
là trọng tâm.
b) Hãy tìm tọa đđiểm
E
thuộc đường thẳng
: 3 0
d x y
sao cho ba điểm
, ,
A B E
thẳng hàng.
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
7. Trong mặt phẳng ta độ
,
Oxy
cho hai điểm
(1;4), ( 2;2).
A B
a) Tìm tọa độ điểm
M
thuộc trục hoành và
N
thuộc trục tung sao cho tam giác
BMN
nhận
A
là trọng tâm.
b) Hãy tìm tọa đđiểm
E
thuộc đường thẳng
: 4 2 5 0
d x y
để ba điểm
, ,
A B E
thẳng hàng.
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 35 -
8. Trong mặt phẳng ta độ
,
Oxy
cho tam giác
ABC
với
(2;3), (0;2), (4; 1).
A B C
a) Hãy tính chu vi và diện tích của tam giác
.
ABC
b) Tìm tọa độ tâm
I
bán kính đường tròn
ngoại tiếp tam giác
.
ABC
2 2
( 2; 1) 2 1 5.
AB AB

2 2
(2; 4) 2 4 2 5.
AC AC

2 2
(4; 3) 4 3 5.
BC BC

Nhận thấy
2 2 2
AB AC BC
nên theo
Pitago đảo thì tam giác
ABC
vuông tại
.
A
Chu vi
:
ABC
ABC
C AB AC BC
5 2 5 5 3 5 5.
Diện tích tam giác
:
ABC
1 1
. 5.2 5 5.
2 2
ABC
S AB AC
tam giác
ABC
vuông tại
A
nên tâm
I
đường tròn ngoại tiếp tam giác
ABC
nằm tại
trung điểm cạnh huyền
.
BC
0 4
2
1
2 2
2;
2 1
2
1
2 2 2
B C
I
B C
I
x x
x
I
y y
y
R
bán kính đường tròn ngoại tiếp tam giác
ABC
5
2 2
BC
R IA IB IC
Kết luận: Tâm
1
2;
2
I
và bán kính
5
2
R
c) Tìm ta độ điểm
J
là điểm đối xứng của
A
qua
.
I
b) Hãy tìm ta đ
K
giao điểm của hai
đường chéo trong hình bình hành
.
ABCD
Ta có
J
là điểm đối xứng của
A
qua
I
I
là trung điểm
AJ
nên
2
2
2
2 2
3 2
1
2 2 2
A J J
I
J
A J J J
I
x x x
x
x
y y y y
y
Kết luận:
(2; 2).
J
K
giao điểm của hai đường chéo trong
ABCD
nên
K
là trung điểm của
.
AC
2 4
3
2 2
(3;1).
3 1
1
2 2
A C
K
A C
K
x x
x
K
y y
y
Kết luận:
(3;1).
K
9. Trong mặt phẳng ta độ
,
Oxy
cho tam giác
ABC
với
(1; 1), (5; 3), (2;0).
A B C
a) Hãy tính chu vi và diện tích của tam giác
.
ABC
b) Tìm tọa độ tâm
I
bán kính đường tròn
ngoại tiếp tam giác
.
ABC
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
c) Tìm ta độ điểm
J
là điểm đối xứng của
A
qua
.
I
b) Hãy tìm ta đ
K
giao điểm của hai
đường chéo trong hình bình hành
.
ABCD
..............................................................................
..............................................................................
..............................................................................
..............................................................................
................................................................................
................................................................................
................................................................................
................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 36 -
10. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
(1; 1), (5;1), (3;5).
A B C
a) Hãy tính chu vi và diện tích của tam giác
.
ABC
b) Tìm tọa độ tâm
I
bán kính đường tròn
ngoại tiếp tam giác
.
ABC
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
c) Tìm ta độ điểm
J
là điểm đối xứng của
C
qua
.
B
b) Hãy tìm ta đ
H
giao điểm của hai
đường chéo trong hình bình hành
.
ABDC
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
11. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
(4;1), (1;4), (2; 1).
A B C
a) Hãy tính chu vi và diện tích của tam giác
.
ABC
b) Tìm tọa độ tâm
I
bán kính đường tròn
ngoại tiếp tam giác
.
ABC
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
c) Tìm ta độ điểm
J
là điểm đối xứng của
A
qua
.
B
b) Hãy tìm tọa độ
F
giao điểm của hai
đường chéo trong hình bình hành
.
ABCD
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 37 -
12. Trong mặt phẳng tọa độ
,
Oxy
cho hai điểm
(3;2), (1; 1).
A B
a) Tìm tọa độ điểm
M
thuộc trục hoành sao
cho tam giác
ABM
vuông tại
.
M
b) Tìm ta độ điểm
N
thuộc trục tung sao cho
tam giác
ABN
vuông tại
.
A
Giải. Vì
M Ox
nên gọi
( ;0).
M
M x
Ta có:
( 3; 2)
( 1;1)
M
M
AM x
BM x


Để tam giác
ABM
vuông tại
M
thì
. 0
AM BM AM BM
   
( 3)( 1) 2 0
M M
x x
2
4 1 0
M M
x x
2 3
2 3
M
M
x
x
Do đó:
(2 3;0)
M
hoặc
(2 3;0).
M
Giải. Vì
N Oy
nên gọi
(0; ).
N
N y
Ta có:
( 3; 2)
( 2; 3)
N
AN y
AB


Để tam giác
ABN
vuông tại
A
thì
. 0
AN AB AN AB
   
( 3).( 2) ( 2).( 3) 0
N
y
6 3 6 0
N
y
4.
N
y
Vậy
(0; 4)
N
là điểm thỏa yêu cầu bài toán.
13. Trong mặt phẳng tọa độ
,
Oxy
cho hai điểm
(1; 3), (2;5).
A B
a) Tìm tọa độ điểm
M
thuộc trục hoành sao
cho tam giác
ABM
vuông tại
.
M
b) Tìm ta độ điểm
N
thuộc trục tung sao cho
tam giác
ABN
vuông tại
.
A
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
14. Trong mặt phẳng tọa độ
,
Oxy
cho hai điểm
(1; 1), (3; 2)
A B
O
là gốc ta độ.
a) Tìm tọa độ điểm
M
thuộc trục hoành sao
cho tam giác
OBM
vuông tại
.
B
b) Tìm ta độ điểm
N
thuộc trục tung sao cho
tam giác
ABN
vuông tại
.
A
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 38 -
15. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
(1;3), (2; 1), (2; 3).
A B C
a) Hãy tìm ta độ trực tâm
H
của tam giác
.
ABC
b) Gọi
K
hình chiếu vuông góc của
C
lên
cạnh
.
AB
Tìm tọa độ của
.
K
Giải. Gi
( ; )
H H
H x y
là trực tâm
.
ABC
Ta có:
. 0
. 0
AH BC AH BC
BH AC
BH AC
 
 
( )
( 1; 3)
H H
AH x y

(0; 2)
BC

( 2; 1)
H H
BH x y

(1; 6).
AC

2( 3) 0 3
( ) .
2 6( 1) 0 26
H H
H H H
y y
x y x
Suy ra
(3;26).
H
Kết luận:
(3;26)
H
thỏa yêu cầu bài toán.
Giải. Gọi
( ; )
K K
K x y
hình chiếu vuông c
của
C
lên cạnh
.
AB
CK AB
, ,
K A B
thẳng hàng.
Ta có
( 2; 3), (1; 4)
K K
CK x y AB
 
. 0
CK AB CK AB
 
2 4( 3) 0 4 14
K K K K
x y x y
( 1; 3)
K K
AK x y

AB AK

 
nên
1
1
3 4
K
K
x
y
4 14 1
1
3 4
K
K
y
y
49 434
17 17
K K
y x
434 49
;
17 17
K
16. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
(3;8), (7; 2), (1;1).
A B C
a) Hãy tìm tọa độ trực tâm
H
của tam giác
.
ABC
b) Gọi
K
hình chiếu vuông góc của
A
lên
cạnh
BC
. Tìm tọa độ điểm
.
K
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
17. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
(2; 4), (5;0), (3;2).
A B C
a) Hãy tìm tọa độ trực tâm
H
của tam giác
.
ABC
b) Gi
E
trung điểm
.
HC
Tìm ta độ điểm
D
sao cho
O
là trực tâm tam giác
.
AEC
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
...............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 39 -
18. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
(3;8), (7; 2), (1;1).
A B C
a) Tìm tâm bán kính đường tròn ngoại
tiếp tam giác
.
ABC
b) m tọa độ điểm
: 2 4 0
N d x y
để
tam giác
ABN
cân tại
.
A
Giải. Gọi
( ; )
I I
I x y
tâm đường tròn ngoại
tiếp
.
ABC R IA IB IC
2 2
2 2
2 2
( 3) ( 8)
( 7) ( 2)
( 1) ( 1)
I I
I I
I I
AI x y
BI x y
CI x y
Ta có:
2 2
2 2
IA IB IA IB
IA IC
IA IC
2 2 2 2
2 2 2 2
( 3) ( 8) ( 7) ( 2)
( 3) ( 8) ( 1) ( 1)
I I I I
I I I I
x y x y
x y x y
6 16 73 14 4 53
6 16 73 2 2 2
I I I I
I I I I
x y x y
x y x y
Suy ra
95
16
I
x
27
8
I
y
Tâm
95 27
;
16 8
I
7685
16
R IA
Giải. Gi
( ;2 4) : 2 4 0.
N a a d x y
ABN
cân tại
A
nên
.
AN AB
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
................................................................................
19. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
( 2; 3), ( 2; 4), (5;1).
A B C
a) Tìm tâm bán kính đường tròn ngoại
tiếp tam giác
.
ABC
b) Tìm tọa đđiểm
: 3 10 0
N d x y
để tam giác
ABN
cân tại
.
N
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 40 -
20. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
(2;3), (3;2), (4; 1).
A B C
a) Tìm ta độ điểm
D
sao cho
ABCD
hình bình hành.
b) m tọa đ điểm
I
thuộc trục hoành sao
cho
ABCI
là hình thang nhận
AB
là đáy.
Giải. Gọi
( ; )
D D
D x y
đỉnh thứ tư của hình
bình hành
ABCD
AB DC
 
( )
Ta có
(1; 1)
.
(4 ; 1 )
D D
AB
DC x y


1 4 3
( ) (3;0).
1 1 0
D D
D D
x x
D
y y
Giải. Vì
I Ox
nên gọi
( ; 0).
I
I x
Ta có
( 4;1).
I
CI x

Để
ABCI
hình thang nhận
AB
đáy thì
AB


CI

1 1
3.
4 1
I
I
x
x
Vậy
(3; 0)
I
thỏa mãn yêu cầu bài toán.
c) Tìm tọa độ điểm
J
là chân đường phân giác trong của góc
A
trong tam giác
.
ABC
Giải. Gọi
( ; )
J J
J x y
là chân đường phân giác trong của
A
.
BJ AB AB
BJ JC
CJ AC AC
 
Ta có:
(1; 1) 2
1 1
.
2 2
(2; 2) 2 2
AB AB
AB
BJ JC
AC
AC AC

 

( 3; 2)
1 1 1 1
(4 ; 1 ) 2 ;
2 2 2 2
J J
J J J J
BJ x y
CJ x y CJ x y

 
1
3 2
2
1 1
2
2 2
J J
J J
x x
y y
10
10
;1
3
3
1
J
J
x
J
y
thỏa mãn yêu cầu bài toán.
21. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
(1; 1), (5; 3), (2;0).
A B C
a) Tìm ta độ điểm
D
sao cho
ABCD
hình bình hành.
b) m tọa đ điểm
I
thuộc trục hoành sao
cho
ABCI
là hình thang nhận
AB
là đáy.
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
c) Tìm tọa độ điểm
J
là chân đường phân giác trong của góc
A
trong tam giác
.
ABC
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 41 -
22. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
( 1; 4), (1;2), ( 8; 5).
A B C
a) Tìm ta độ điểm
D
sao cho
ABCD
hình bình hành.
b) m tọa đ điểm
I
thuộc trục hoành sao
cho
BACI
là hình thang nhận
AB
là đáy.
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
c) Tìm tọa độ điểm
J
là chân đường phân giác trong của góc
A
trong tam giác
.
ABC
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
23. Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
với
(10;5), (3;2), (6; 5).
A B C
a) Tìm ta độ điểm
D
sao cho
ABCD
hình bình hành.
b) m tọa đ điểm
I
thuộc trục hoành sao
cho
ABCI
là hình thang nhận
AB
là đáy.
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
c) Tìm tọa độ điểm
J
là chân đường phân giác trong của góc
A
trong tam giác
.
ABC
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 42 -
Chuyªn ®Ò 7. ch v« híng & HÖ thøc lîng
1. Cho tam giác
ABC
đều cạnh
,
a
tâm
.
O
Hãy tính:
a)
.
AB AC
 
b)
. .
AB BC
 
Ta có
. . cos( , )
AB AC AB AC AB AC
     
2
1
. .cos 60 . .
2 2
a
AB AC a a
Ta có:
. .
AB BC BA BC
  
. cos( , )
BA BC BA BC
   
2
1
. .cos 60 . .
2 2
a
BA BC a a
b)
( )( ).
OB OC AB AC
   
c)
( 2 )( 3 ).
AB AC AB BC
   
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
2. Cho hình thang
ABCD
có đáy lớn
3 ,
BC a
đáy nhỏ
,
AD a
đường cao
2 .
AB a
b)
( )( ).
OB OC AB AC
   
c) Gọi
I
là trung điểm
.
CD
Tính
(
).
;
AI B
D
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
..............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
O
E
A
B
C
Cn nh:
. . .cos( , )
a b a b a b
Bình phương vô hướng:
2
2
a a
2
2
2
( ) 2 .
a b a a b b
2
2
( )( ).
a b a b a b
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 43 -
3. Cho tam giác
ABC
có
6, 19
AB BC
15.
AC
Tính bán kính đường tròn
ngoại tiếp, ni tiếp của tam giác
.
ABC
4. Cho tam giác
ABC
có
2, 4
AB BC
2 7.
CA
Tính bán kính đường tròn
ngoại tiếp, ni tiếp của tam giác
.
ABC
Lời giải. Nửa chu vi
19 15 6
20.
2
p
Diện tích
( )( )( )
S p p a p b p c
20(20 19)(20 15)(20 6) 10 14.
Bán kính đường tròn ngoại tiếp
:
ABC
19.15.6 171 14
4 4 56
4.10 14
abc abc
S R
R S
Bán kính đường tròn ni tiếp
:
ABC
10 14 14
20 2
S
S pr r
p
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
5. Cho tam giác
ABC
10, 16
AB AC
14.
BC
Tính bán kính đường tròn
ngoại tiếp, ni tiếp, của tam giác
.
ABC
6. Cho tam giác
ABC
5, 7
AB AC
10.
BC
Tính bán kính đường tr
òn
ngoại tiếp, ni tiếp, của tam giác
.
ABC
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 44 -
7. Cho tam giác
ABC
6, 8
AB AC
60 .
BAC
Tính
, ,
a
h R r
với
,
R r
lần ợt bán kính đường tròn ngoại tiếp,
ni tiếp tam giác
.
ABC
8. Cho tam giác
ABC
6, 10
AB AC
120 .
BAC
Tính
, ,
a
h R r
với
,
R r
lần lượt là bán kính đường tròn ngoại
tiếp, nội tiếp tam giác
.
ABC
Lời giải. Theo định lý hàm cos, ta có:
2 2 2
2 cos
a b c bc A
0
64 36 2.8.6.cos60 49 7.
a
Diện tích tam giác
:
ABC
1 1
sin .8.6.sin 60 10 3.
2 2
ABC
S bc A
Đường cao xuất phát từ đỉnh
:
A
1 2 2.10 3 20 3
.
2 7 7
ABC a a
S
S a h h
a
Áp dụng định hàm sin, suy ra bán kính
đường tròn ngọa tiếp tam giác
:
ABC
7 7 3
2
sin 2.sin 60 3
a
R R
A
Nửa chu vi
7 8 6 21
2 2 2
a b c
p
Bán kính đường tròn ni tiếp
:
ABC
2.10 3 20 3
21 21
ABC
ABC
S
S pr r
p
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
9. Cho tam giác
ABC
13, 14
AB AC
15.
BC
Tính diện tích tam giác
, sin ,
ABC A
độ dài đường trung tuyến kẻ
t
C
của tam gc
.
ABC
10. Cho tam giác
ABC
5, 7
AB AC
8.
BC
Tính diện tích tam giác
, sin ,
ABC A
độ dài đường trung tuyến
kẻ từ
A
của tam giác
.
ABC
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 45 -
11. Cho
ABC
2 , 3
AB a AC a
60 .
BAC
Gọi
M
là trung điểm
.
BC
a) Tính cạnh
,
BC
trung tuyến
AM
bán
kính đường tròn ngoại tiếp
.
ABC
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
b) Gi
N
điểm trên cạnh
AC
sao cho
5 7 0.
NA NC
 
CM:
.
AM BN
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
12. Cho hình bình hành
ABCD
5 , 8 , 60 .
AB a AD a BAD
a) Tính các tích vô hướng:
. , . .
AB AD AC AD
  
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
b) Tính độ dài đoạn
BD
bán kính đường
tròn ngoại tiếp tam giác
.
ABC
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
60
o
C
A
D
B
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 46 -
13. Cho tam giác
ABC
10cm, 16cm, 14cm.
AB AC BC
a) Hãy tính sđo góc
BAC
, tính diện tích tam
giác
,
ABC
tính bán kính đường tròn ngoại
tiếp
R
và tính bán kính đường tròn nội tiếp
r
của tam giác
.
ABC
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
b) Gi
M
là trung điểm
BC
G
là trọng
tâm tam giác
.
ABC
Tính độ dài
AM
tích hướng
. .
AG BC
 
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
14. Cho hình thang vuông
ABCD
vuông tại
A
B
vi
3 ,
BC a AD a
2 .
AB a
Tính:
. ; . ; . .
AB CD BC BD AC BD
    
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
A
C
B
A
B
C
D
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 47 -
15. Cho tam giác
ABC
, 2, 135 .
AB a AC a BAC
Gi
M
điểm thỏa mãn:
3 .
AM AC
 
a) Tính
.
AB AC
 
. .
BABM
 
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
b) Tính độ dài
BM
và cosin của góc
.
ABM
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
16. Cho tam giác
ABC
có
6, 5, 60 .
AB AC BAC
Gi
I
tha mãn đẳng thức
véctơ:
2 0.
IB IC

a) Chứng minh:
2 3 .
AB AC AI
  
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
b) Tính
.
AB AC
 
và độ dài đoạn thẳng
.
AI
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 48 -
17. Cho tam giác
ABC
5, 8, 60 .
AB AC A
a) Tính độ dài cạnh
BC
của tam gc.
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
b) Gi
K
trung điểm
.
BC
Tính
. .
AK BC
 
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
18. Cho tam giác
.
ABC
a) Gi
,
M D
lần ợt trung điểm
, .
BC AM
Chứng minh:
2 0.
DB DC DA
  
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
b) Biết
2, 3
AB AC
120 .
BAC
Tính
.
AB AC
 
bán kính đường tròn
ngoại tiếp tam giác
.
ABC
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
19. Cho tam giác
ABC
5, 8, 120 .
AB AC BAC
a) Tính
.
AB AC
 
và độ dài
.
BC
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
b)
G
là trọng tâm
.
ABC
Tính
. .
AG BC
 
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
.............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 49 -
ĐỀ S 01 – THPT BÌNH HƯNG HÒA (2017 – 2018)
Câu 1. (4,0 điểm) Giải các phương trình sau:
a)
2
2 6 2 3.
x x x
b)
2 2
3 4 5 4 9.
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
c)
2 1 6
4 2 4( 2)
x x
x x
d)
2
27
3 1 ( 1).
4
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Câu 2. (1,0 điểm) Tìm tất cả các giá trị của tham số
m
để phương trình
2
2 2 0
x x m
có hai nghiệm dương phân biệt.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (1,0 điểm) Tìm tham s
m
để phương trình
2 2
2( 1) 3 0
x m x m
có hai
nghiệm phân biệt
1 2
,
x x
thỏa mãn
2 2
1 2
4.
x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 50 -
Câu 4. (1,0 điểm) Chng minh rằng
1 1 1
a b c
bc ac ab a b c
với mọi
, , 0.
a b c
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 5. (3,0 điểm) Trong mặt phẳng
,
Oxy
cho ba điểm
( 1;3), ( 4; 5)
A B
(1; 2).
C
a) Chứng t
, ,
A B C
ba đỉnh của tam
giác và tìm trọng tâm
của
.
ABC
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
b) Tìm tọa độ điểm
D
để
ABC
D
hình bình
hành. Tìm tọa độ trực tâm H của
.
ABC
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
c) Tìm tọa độ điểm
M
thuộc trục hoành sao cho 2
MA MC
 
đạt giá trị nhỏ nhất.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 51 -
ĐỀ S 02 – THPT TRN PHÚ (2017 – 2018)
Câu 1. (1,0 điểm) Cho ba tập hợp:
( 4;4), [4;6], (0; 8).
A B C
Tìm
( ) .
A B C
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
( ) (0;6].
A B C
..............................................................................................................
Câu 2. (1,0 điểm) Tìm tập xác định của hàm số: 1
2
x
y x
x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
[ 1; ) \ {2}.

D
..............................................................................................................
Câu 3. (1,0 điểm) Cho đường thẳng
: 1
d y x
parabol
2
( ) : 2 .
P y x x
Gọi
I
đỉnh
của
( )
P
M
là điểm trên
d
sao cho
1
2
MI
Tìm tọa độ điểm
.
M
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1 1
;
2 2
M
..............................................................................................................................
Câu 4. (1,0 điểm) Cho phương trình
2
2( 1) 2( 2) 0 (1).
x m x m
Chứng minh rằng
phương trình
(1)
luôn có hai nghiệm phân biệt
1 2
,
x x
tìm tham s
m
để biểu thức
2
1 2 1 2
( ) 8 1
A x x x x
đạt giá trị nhỏ nhất.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
A
đạt giá trị nhỏ nhất bằng
1
khi
3.
m
..........................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 52 -
Câu 5. (1,0 điểm) Giải phương trình
( 1)( 4 1 1) 0.
x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
0.
x
.......................................................................................................................................
Câu 6. (1,0 điểm) Giải phương trình
2 2
3 4 5 4 1 0.
x x x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2.
x
.......................................................................................................................................
Câu 7. (1,0 điểm) Tìm giá trị nhỏ nhất của hàm số:
8
( )
2 2
x
f x
x
khi
2.
x
..................................................................................................................................................................
..................................................................................................................................................................
Đáp s: Giá trị nhỏ nhất của
( )
f x
bằng
5
tại
6.
x
......................................................................
Câu 8. (1,0 điểm) Cho tam giác
ABC
có
2, 2 3,
AB AC
c
30 .
A
Tính độ dài
cạnh
,
BC
bán kính đường tròn ngoại tiếp và diện tích tam giác
.
ABC
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2, 2, 3.
BC R S
.....................................................................................................
Câu 9. (1,0 điểm) Cho tam gc
.
ABC
Gọi
M
điểm trên cạnh
BC
sao cho
2 .
MB MC
Hãy phân tích
AM

theo
, .
AB AC
 
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1 2
.
3 3
AM AB AC
  
............................................................................................................
Câu 10. (1,0 điểm) Cho tam giác
ABC
vi
( 1;1), (1;2), (3; 4).
A B C
Gọi
M
trung điểm
,
BC K
là điểm trên đường thẳng
AC
sao cho
.
BK AM
Tìm tọa độ điểm
.
K
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
3 1
;
11 11
K
...........................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 53 -
ĐỀ S 03 – THPT LÊ TRNG TN (2017 – 2018)
Câu 1. (1,0 điểm) Xét tính chẵn lẻ của hàm s
4 2
1
x x
y
x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: Hàm số lẻ..................................................................................................................................
Câu 2. (1,0 điểm) Khảo sát sự biến thiên và vẽ đồ thị của hàm s
2
4 3.
y x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (1,0 điểm) Xác định parabol
2
( ) : ,
P y ax bx c
biết
( )
P
đi qua
(1; 3)
A
và có ta
độ đỉnh là
1 3
;
2 4
I
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2
( ) : 1.
P y x x
.............................................................................................................
Câu 4. (2,0 điểm) Giải các phương trình sau:
a)
5 1 .
x x
b)
2
6 3 3.
x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
8.
x
.................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
{5;6}.
S
...............................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 54 -
c)
2
2 (6 )(4 ) 12.
x x x x
d)
3 1 8 1.
x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
{ 2; 4}.
S
.......................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
{8}.
S
..................................................
Câu 5. (1,0 điểm) Cho phương trình:
2
2( 1) 3 0
mx m x m
(
m
tham số). Xác định
m
để phương trình có
2
nghiệm phân biệt
1 2
,
x x
thỏa mãn
1 2
1 1 1
6
x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
9
11
m
...............................................................................................................................
Câu 6. (1,0 điểm) Cho tam giác
ABC
3, 4, 120 .
AB BC ABC
a) Tính tích vô hướng
. .
BA BC
 
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
. 6.
BA BC
 
...................................
b) Tính độ dài cnh
.
AC
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
37.
AC
.............................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 55 -
Câu 7. (3,0 điểm) Trong mặt phẳng
,
Oxy
cho
ABC
( 2; 0), (5; 3)
A B
(3; 2).
C
a) Chứng minh
ABC
vuông cân. b) Tìm điểm
E
sao cho
A
là trung điểm
.
BE
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số: Tam giác vuông cân tại
.
C
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
( 9; 3).
E
...............................................
c) Tìm ta đđiểm
,
M N
sao cho
,
M N
chia đoạn
AB
thành
3
đoạn bằng nhau.
d) Tìm ta độ điểm
D
sao cho
ABC
D
hình
bình hành.
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
1
;1
3
M
8
;2
3
N
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp s:
( 4; 5).
D
..............................................
e) Tìm tâm đường tròn ngoại tiếp
I
và trực tâm
H
của tam giác
.
ABC
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
3 3
;
2 2
I
....................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 56 -
ĐỀ S 04 – THPT BÌNH TÂN (2017 – 2018)
Câu 1. (1,0 điểm) Xác định parabol
2
( ) : 2,
P y ax bx
biết
( )
P
đi qua hai điểm
(4; 6)
A
( 1; 4).
B
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2
( ) : 5 2.
P y x x
.........................................................................................................
Câu 2. (1,0 điểm) Tìm tham s
m
để phương trình
2 2
2 2 1 0
x mx m m
hai
nghiệm phân biệt dương.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1
2
m
.....................................................................................................................................
Câu 3. (1,0 điểm) Tìm tham s
m
để phương trình
2 2
(2 1) 2 0
x m x m
hai
nghiệm thỏa mãn
1 2 1 2
3 . 5( ) 7 0.
x x x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2.
m
......................................................................................................................................
Câu 4. (1,0 điểm) Giải phương trình
1 3 2 2 .
x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
3
; 1.
4
x x
.........................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 57 -
Câu 5. (1,0 điểm) Giải hệ phương trình
2 2
41
.
1
x y
x y
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
( ; ) {( 4; 5),(5;4)}.
S x y
..............................................................................................
Câu 6. (1,0 điểm) Cho hai số
, 4.
a b
Chứng minh rằng
4 4
2
ab
a b b a
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: Dấu
" "
xảy ra khi và chỉ khi
8.
a b
........................................................................
Câu 7. (1,0 điểm) Cho bốn điểm
, , , .
A B C D
Chứng minh rằng
.
AB CD CA DB
  
..................................................................................................................................................................
..................................................................................................................................................................
Câu 8. (1,0 điểm) Trong mặt phẳng
,
Oxy
cho ba điểm
( 4;1), (2; 4), ( 1; 5).
A B C
Tìm tọa
độ điểm
D
biết
2 3 .
DA BD CB
  
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
(17;34).
D
.................................................................................................................................
Câu 9. (1,0 điểm) Tìm tọa độ trực tâm
H
của
MNP
với
(1;2), ( 2; 1), (3;1).
M N P
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 10. (1,0 điểm) Cho
ABC
trc tâm
H
M
trung điểm của
.
BC
Chứng minh
rằng:
2
4 . .
MH MA BC
 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 58 -
ĐỀ S 05 – THPT NGUYN HU CNH (2017 – 2018)
Câu 1. (1,0 điểm) Khảo sát sự biến thiên và vẽ đồ thị hàm s
2
2 1.
y x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 2. (1,0 điểm) Giải và biện luận phương trình
2
( 1) 1.
m x m x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (3,0 điểm) Giải các phương trình sau:
a)
1
1
1 2
x x
x x
b)
2
5 4 4.
x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
{0;5}.
S
..........................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
{0;6}.
S
...............................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 59 -
c)
2
2
1 1
4 2 6 0.
x x
x
x
d)
2
2 6 10 5( 2) 1 0.
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
{ 0,5; 1}.
S
................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
{3;8}.
S
...............................................
Câu 4. (1,0 điểm) Cho phương trình
2 2
(2 1) 3 2 0
x m x m m
vi
m
tham số.
Định
m
để phương trình có hai nghiệm phân biệt
1 2
,
x x
thỏa
1 2
1 1 3
4
x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1.
m
......................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 60 -
Câu 5. (1,0 điểm) Giải hệ phương trình
2
2 5
.
3 0
x y
x y x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
( ; ) {(1;3);(2;1)}.
x y
Câu 6. (2,0 điểm) Trong hệ trục tọa độ
,
Oxy
cho
ABC
(2;3), (4;1), ( 1; 2).
A B C
a) Tìm điểm
D
thỏa
2 3 .
AD AC BC
  
b) CM:
ABC
và tính diện tích
.
ABC
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
(8;5).
D
...............................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
8.
S
......................................................
Câu 7. (1,0 điểm) Cho tam gc đều
,
ABC
cạnh
.
a
Trên hai cạnh
,
AB AC
lần lượt lấy hai
điểm
,
M N
sao cho
1 1
, .
3 5
AM AB AN AC
Chứng minh:
.
BN CM
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 61 -
ĐỀ S 06 – THPT TRN QUANG KHI (2017 – 2018)
Câu 1. (4,0 điểm) Giải các phương trình sau:
a)
2
5 9 2 1.
x x x
b)
2
3 3 3 2.
x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
{1;2}.
S
..........................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
{1}.
S
...................................................
c)
2 2
4 4 4 4 9 0.
x x x x
d)
2
1 1 4 3 .
x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
5
;1
4
S
....................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
1
2
S
.................................................
Câu 2. (2,0 điểm) Cho phương trình
2
2 3 2 0.
x mx m
a) Tìm tham s
m
để phương trình có hai nghiệm trái dấu .........................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2
3
m
.....................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 62 -
b) Tìm
m
để phương trình có hai nghiệm phân biệt
1 2
,
x x
thỏa mãn
2 2
1 2 1 2
4 .
x x x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
0.
m
......................................................................................................................................
Câu 3. (1,0 điểm) Với
0, 0,
a b
chứng minh bất đẳng thức
1 1 4
a b a b
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 4. (3,0 điểm) Trong mặt phẳng
,
Oxy
cho tam giác
ABC
với
(1;2), ( 2;6), (9;8).
A B C
a) Chứng minh rằng tam giác
ABC
vuông
tại
.
A
b) m
M
trung điểm của
AC
nh độ
dài trung tuyến
BM
của tam gc
.
ABC
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
(5;5), 5 2.
M BM
.............................
c) Gi
N
là điểm trên cạnh
BC
sao cho
3 .
BN NC
 
Tính diện tích tam giác
.
ABN
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
3 75
4 4
ABN ABC
S S
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 63 -
ĐỀ S 07 – THPT NGUYỄN THƯỢNG HIN (2017 – 2018)
Câu 1. (1,0 điểm) Xác định parabol
2
( ) : ,
P y ax bx c
biết rằng nó đi qua gc tọa đ
O
và có đỉnh
(1; 4).
I
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2
( ) : 4 8 .
P y x x
................................................................................................................
Câu 2. (2,0 điểm) Cho phương trình
2
3 2 2 0.
x x m
Tìm
m
để phương trình hai
nghiệm phân biệt
1 2
,
x x
thỏa mãn
2 2
1 2 1 2
4( ) 17 . .
x x x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1
m
hoặc
43
25
m
.........................................................................................................
Câu 3. (2,0 điểm) Giải các phương trình sau:
a)
2 2
2 5 2 3.
x x x x
b)
3
2 7 343.
x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
{1}.
S
..............................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
{7}.
S
..................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 64 -
Câu 4. (1,0 điểm) Tìm giá trị nhỏ nhất của hàm số
8
2 1
x
y
x
với
1.
x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: Giá trị nhỏ nhất của
y
bằng
9
2
khi
5.
x
.........................................................................
Câu 5. (2,0 điểm) Trong mặt phẳng ta độ
,
Oxy
cho
ABC
với
(0;4), ( 6;1), ( 2;8).
A B C
a) Chng minh tam giác
ABC
tam giác vuông. Tìm ta độ tâm và tính bán kính đường tròn
ngoi tiếp tam giác
.
ABC
..............................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: Tam giác
ABC
vuông tại
A
nên tâm
4;
2
I
là trung điểm
BC
65
2
R
.....
b) Tìm tọa độ điểm
M
thuộc
Ox
sao cho tam giác
MAB
vuông tại
.
M
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1
( 3 5;0)
M hoặc
2
( 3 5;0).
M ...............................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 65 -
Câu 6. (2,0 điểm) Cho tam giác
ABC
2, 2 7
AB AC
4.
BC
a) Tính góc
,
B
bán kính đường tròn ngoi tiếp tam giác
ABC
và din tích tam giác
.
ABC
.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2 21
B 120 , ,
3
R
2 3.
ABC
S ..................................................................................
b) Tính độ dài đường phân giác trong của góc
B
của tam giác
.
ABC
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
4
3
BD
.................................................................................................................................
c) Tìm tập hợp các điểm
M
thỏa
( 2 ).( ) 0.
MA MB AB AC
   
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
MI CB
Tập hợp các điểm
M
là đường thẳng đi qua
I
và vuông góc với
.
CB
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 66 -
ĐỀ S 08 – THPT HÀN THUYÊN (2017 – 2018)
Câu 1. (0,75 điểm) Tìm tập xác định của hàm s
2
1 3
2 8
x x
y
x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
[ 1; ) \ {2}.

D
..............................................................................................................
Câu 2. (1,0 điểm) Tìm parabol
2
( ) : 2,
P y ax bx
biết parabol có đỉnh
(2; 2).
I
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2
( ) : 4 2.
P x x
....................................................................................................................
Câu 3. (2,5 điểm) Giải các phương trình sau:
a)
2 3
5 3 .
1
x
x
x
b)
2
2
2
8.
1
x
x
x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
{1}.
S
.............................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
{7}.
S
..................................................
c)
3 5 3 2 .
x x
d)
2 2
2 3 11 3 4 .
x x x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
4
;2
3
S
........................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
{2; 1 3}.
S
..................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 67 -
Câu 4. (0,75 điểm) Giải và biện luận phương trình:
2
( 2) 7 (6 )( ) 2.
m x m m x m
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
3 :
m
PTVN,
2 :
m
PT có nghiệm tùy ý,
1
3, 2 :
3
m
m m x
m
Câu 5. (0,75 điểm) Giải hệ phương trình
4 5
3
.
8 15
11
x y x y
x y x y
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
( ; ) {(3; 2)}.
x y
....................................................................................................................
Câu 6. (1,5 điểm) Trong mặt phẳng
,
Oxy
cho
ABC
( 1;1), (3;5), (2; 3).
A B C
a) Tìm
D
để
ABCD
là hình bình hành. b) Tìm tọa đ trực tâm
của tam gc
.
ABC
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 68 -
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
( 2; 7).
D
.........................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
15 8
;
7 7
H
...........................................
Câu 7. (2,5 điểm) Cho hình chnhật
ABCD
tâm
,
O
có cạnh bằng
3 , 2 .
AD a AB a
Lấy
điểm
M
trên cạnh
AD
sao cho
1
.
3
AM AD
a) Chứng minh rằng
0.
OA OB OC OD
   
...........................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
b) Tính tích vô hướng:
. .
AB AC
 
.........................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2
. 4 .
AB AC a
 
........................................................................................................................
c) Gi
I
là trung điểm của
.
MC
Tính góc giữa hai véc
BM

.
AI

......................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
( ; ) 90 .
BM AI

.....................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 69 -
ĐỀ S 09 – THPT NGUYN CHÍ THANH (2017 – 2018)
Câu 1. (1,0 điểm) Xét tính chẵn lẻ của hàm s
2
2018 2018
( )
9
x x
y f x
x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 2. (1,0 điểm) Xác định parabol
2
( ) : ,
P y ax bx c
biết
( )
P
trục đối xứng
2
x
và đi qua các điểm
(4;2), (1; 1).
A B
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (1,0 điểm) Giải phương trình
2
2 6 1 2 .
x x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 4. (1,0 điểm) Giải hệ phương trình
2 2
8 0
.
6 2 0
x y
x y x y
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 70 -
Câu 5. (1,0 điểm) Tính tuổi của cha hiện nay, biết rằng trước đây hai năm thì tui cha gấp bảy
lần tuổi con và sau ba năm nữa thì tui cha chỉ còn gấp bốn lần tuổi con.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 6. (1,0 điểm) Chứng minh
( 1) ( 1) 1 ; , 0.
a b b a a b ab a b
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 7. (2,0 điểm) Cho tam giác
ABC
5, 8, 60 .
AB AC BAC
a) Tìm độ dài cạnh
BC
và bán kính đường
tròn ngoại tiếp tam giác
.
ABC
b) Tính diện tích tam giác
ABC
bán kính
đường tròn ni tiếp tam giác
.
ABC
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 71 -
Câu 8. (1,0 điểm) Trong mặt phẳng tọa độ
,
Oxy
cho hai điểm
(1; 3), (4;2).
A B
Chứng minh
tam giác
OAB
vuông cân và tính diện tích tam giác
.
OAB
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 9. (1,0 điểm) Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
biết
( 2;3), (4;1)
A B
(0; 3).
C
Tìm tọa độ điểm
A
là hình chiếu vuông góc của
A
lên
.
BC
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 72 -
ĐỀ S 10 – THPT TÂY THNH (2017 – 2018)
Câu 1. (1,0 điểm) Tìm tọa độ giao điểm của đường thẳng : 2d y x
2
( ) : 2 2 2.
P y x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: (1; 2), ( 1;2).A B ..................................................................................................................
Câu 2. (1,0 điểm) Lập bảng biến thiên và vẽ đồ thị của hàm s
2
2 4 1.y x x
............................................................................................
............................................................................................
............................................................................................
............................................................................................
............................................................................................
............................................................................................
............................................................................................
............................................................................................
Đồ thị của parabol:
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
..................................................................
Câu 3. (1,0 điểm) Cho parabol
2
( ) : , ( 0)P y ax bx c a có đồ thị như hình vbên dưới.
Hãy trình bày cách tìm , , a b c và suy ra tng
3 .a b c
............................................................................................................
............................................................................................................
............................................................................................................
............................................................................................................
............................................................................................................
............................................................................................................
............................................................................................................
Đáp số: 1, 2, 1a b c
3 0.a b c
.......................................................................
Câu 4. (1,0 điểm) Giải phương trình
2
2 2 .x x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: 2.x ....................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 73 -
Câu 5. (1,0 điểm) Giải phương trình
4 2
( 1) 3( 2 ) 3 0.
x x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1, 1 3, 1 3.
x x x
.................................................................................
Câu 6. (1,0 điểm) Tìm tất ccác giá trị của tham s
m
để phương trình
2 2
( 1) 1 0
x m x
có hai nghiệm phân biệt sao cho
2 2
1 2
0.
x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1, 1.
m m
.....................................................................................................................
Câu 7. (1,0 điểm) Tìm tham s
m
để phương trình
2
( 1) (2 1) 0
m x m x m
có nghiệm
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
.
m
...........................................................................................................................................
Câu 8. (1,5 điểm) Cho tam giác
ABC
điểm
M
trên cạnh
AB
sao cho
2 0,
MA MB
 
là trọng tâm tam giác
.
ACM
a) Chứng minh:
3 2 .
CM CA CB
 
b) Phân tích
GB

theo hai véctơ
, .
GA GC
 
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
5 3 .
GB GA GC
  
.............................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 74 -
Câu 9. (1,5 điểm) Trong mặt phẳng tọa đ
,
Oxy
cho
ABC
(0;2), (0; 3), (2; 1).
A B C
a) Tìm ta độ
tha
0.
GA GB GC
  
b) Tìm tọa đđiểm
D Ox
đ
ABCD
hình
thang với hai đáy là
, .
AB CD
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
2 2
;
3 3
G
.........................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
(2;0).
D
....................................................
ĐỀ S 11 – THPT CHUYÊN LÊ HNG PHONG (2017 – 2018)
Câu 1. (1,0 điểm) Giải phương trình:
2
2 3 1 1.
x x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 2. (1,0 điểm) Giải hệ phương trình:
2 2
3 1
.
1
x y xy
x y xy
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (1,0 điểm) Tìm parabol
2
( ) : , ( 0),
P y ax bx c a
biết rằng
( )
P
đỉnh
(2;1)
I
và đi qua điểm
(3;2).
A
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 75 -
Câu 4. (1,0 điểm) Cho phương trình
2
( 3)( 2 4) 0 (1) (
x x mx m m
tham số). Định
m
để phương trình
(1)
có ba nghiệm phân biệt, trong đó hai nghiệm dương một
nghiệm âm.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 5. (1,0 điểm) Tìm các giá trnguyên âm của
m
để hệ phương trình
2 1
3
mx y m
x my m
có nghiệm duy nhất
( ; )
x y
sao cho
,
x y
là các s nguyên.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 6. (1,0 điểm) Định
m
để bất phương trình
2
( 2 3) 2 1 0
m m x m
nghiệm.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 76 -
Câu 7. (1,0 điểm) Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
vi
(1;2), (3;5)
A B
(4;7).
C
Tìm tọa độ trực tâm
của tam giác
.
ABC
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 8. (1,0 điểm) Cho tam giác
ABC
7, 8, 13.
AB BC BC
Tính
. .
AB AC
 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 9. (1,5 điểm) Cho tam giác
ABC
có
2, 3
AB AC
120 .
BAC
Tính độ dài
,
BC
diện tích tam giác
,
ABC
bán kính đường tròn ngoại tiếp và độ dài đường phân
giác trong
AD
của tam giác
.
ABC
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 10. (0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức
1 2
( )
1
f x
x x
với
0 1.
x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 77 -
ĐỀ S 12 – THPT NGUYN TH MINH KHAI (2017 – 2018)
Câu 1. (3,0 điểm) Giải các phương trình và hệ phương trình sau:
a)
2
1 5 3 2 .
x x x
...................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1.
x
....................................................................................................................................
b)
2 3
3 5 1 4 4 3 .
x x x x x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
3.
x
.......................................................................................................................................
c)
2 2
5
5
x y xy
x y
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
( ; ) {(2;1);(1;2)}.
x y
..............................................................................................................
Câu 2. (2,0 điểm) Tìm tham s
m
sao cho:
a) Phương trình
2 2
4 2
m x x m m
nghiệm tủy ý.
b) Phương trình
2
2 4 0
x mx
có hai
nghiệm
1 2
,
x x
thỏa mãn
1 2
2 2.
x x
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
2.
m
................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
6.
m
...............................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 78 -
Câu 3. (1,0 điểm) Tìm giá trị lớn nhất của hàm s
2
1
y x x
với
0 1.
x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 4. (2,0 điểm) Cho tam giác
ABC
có
trung điểm của
.
BC
Gọi
,
I J
các điểm thỏa
mãn
1
3
AI AC
 
2 .
JB JC
 
a) Chứng minh rằng: ba điểm
, ,
K I J
thẳng hàng.
b) Tìm tập hợp các điểm
M
thỏa mãn:
2 3 2 .
MA MB MC MB MC
    
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
3
KJ IK

, ,
K I J
thẳng hàng
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số: Đường tròn tâm
,
L
bán kính
1
.
3
BC
Câu 5. (2,0 điểm) Trong mặt phẳng
,
Oxy
cho
( 2;2), (1; 0), (3; 3).
A B C
a) Tìm tọa độ trực tâm
của tam giác
.
ABC
b) Tìm
D Oy
để
ABCD
là hình thang với
đáy lớn là
.
BC
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
(13;12).
H
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số: Không có điểm
D
thỏa giả thiết.
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 79 -
ĐỀ S 13 – THPT BÙI TH XUÂN (2017 – 2018)
Câu 1. (3,0 điểm) Cho phương trình
2
( 1) 2( 4) 1 0.
m x m x m
a) Tìm
m
để phương trình trên có nghiệm. .....................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
17
8
m
...............................................................................................................................
b) Tìm
m
để phương trình có hai nghiệm
1 2
,
x x
trái dấu sao cho
1
2
2
x
x
..........................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1
3
m
.....................................................................................................................................
c) Tìm tất cả giá trị nguyên âm của tham số
m
để phương trình có hai nghiệm
1 2
,
x x
đều là
các s nguyên. ...................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
1
m
và thử lại. ................................................................................................................
Câu 2. (3,0 điểm)
a) Giải và biện luận phương trình
2
( 2) 24 16 2
m x x m
theo tham s
.
m
.....................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2( 3)
4 , 4 , 4
m 4
m
m S m S m S
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 80 -
b) Định
m
để hệ phương trình
2 2
2 2
( 1) 1
mx y m
m x y m
nghiệm..........................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
2.
m
......................................................................................................................................
c) Giải hệ phương trình:
2 2
2 2
( 2) 6( 2) 4 20
.
( 3) 2 (2 1)
x x y y
x y
..........................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số:
4, 1.
x y
....................................................................................................................
Câu 3. (2,0 điểm) Trong mặt phẳng tọa độ
,
Oxy
cho tam giác
ABC
ó
( 2; 4), ( 3; 1),
A B
(1; 1)
C
là trọng tâm tam giác
.
ABC
a) Tìm
M
thỏa
3 .
AM AG BC
  
b) Tìm tâm đường tròn ngoại tiếp
.
ABC
............................................................................
............................................................................
............................................................................
.................................................................................
.................................................................................
.................................................................................
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 81 -
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
(4;2).
M
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
( 1; 2).
I
Câu 4. (2,0 điểm) Cho tam giác
ABC
3, 5
AB AC
60 .
BAC
Gọi
M
là trung
điểm của
AB
E
là điểm trên cạnh
AC
sao cho
4 .
AC AE
 
a) Tính
CM
và bán kính ni tiếp
.
AMC
b) Tính tích vô hướng
. .
BE AC
 
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
............................................................................
Đáp số:
79
2
CM
15 3
8
AMC
S
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
.................................................................................
Đáp số:
5
.
4
BE AC
 
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 82 -
MC LC
Trang
Chuyên đề 1. Parabol & mt s vấn đề liên quan ..................................................................... 1
Chuyên đề 2. Gii và bin luận phương trình bc nht ........................................................... 5
Chuyên đề 3. Bài toán cha tham s trong phương trình bc hai .......................................... 7
Chuyên đề 4. Phương trình quy v phương trình bc hai ....................................................... 13
Chuyên đề 5. Bất đẳng thc và GTLN, GTNN .......................................................................... 23
Chuyên đề 6. H trc ta độ ......................................................................................................... 29
Chuyên đề 7. Tích vông và h thức lượng ......................................................................... 42
Đề s 01. THPT Bình Hưng Hòa (2017 – 2018) ................................................................... 49
Đề s 02. THPT Trn Phú (2017 – 2018) .............................................................................. 51
Đề s 03. THPT Lê Trng Tn (2017 – 2018) ....................................................................... 53
Đề s 04. THPT Bình Tân (2017 – 2018) ............................................................................... 56
Đề s 05. THPT Nguyn Hu Cnh (2017 – 2018) ............................................................. 58
Đề s 06. THPT Trn Quang Khi (2017 – 2018) ................................................................ 61
Đề s 07. THPT Nguyễn Thượng Hin (2017 – 2018) ........................................................ 63
Đề s 08. THPT Hàn Thuyên (2017 – 2018) ......................................................................... 66
Đề s 09. THPT Nguyn Chí Thanh (2017 – 2018) ............................................................. 69
Đề s 10. THPT Tây Thnh (2017 – 2018) ............................................................................ 72
Đề s 11. THPT Chuyên Lê Hng Phong (2017 – 2018) .................................................... 74
Đề s 12. THPT Nguyn Th Minh Khai (2017 – 2018) ...................................................... 77
Đề s 13. THPT Bùi Th Xuân (2017 – 2018) ........................................................................ 79
Chóc c¸c trß rÌn luyÖn tèt vµ ®¹t kÕt qu¶ cao trong kú thi s¾p ®Õn !
| 1/84

Preview text:


Trung taâm Hoaøng Gia
56 Phoá Chôï – P. Taân Thaønh – Q. Taân Phuù M«n To¸n – Líp 10 N¨m häc 2018 – 2019 MỤC LỤC Trang
Chuyên đề 1. Parabol & một số vấn đề liên quan ..................................................................... 1
Chuyên đề 2. Giải và biện luận phương trình bậc nhất ........................................................... 5
Chuyên đề 3. Bài toán chứa tham số trong phương trình bậc hai .......................................... 7
Chuyên đề 4. Phương trình quy về phương trình bậc hai ....................................................... 13
Chuyên đề 5. Bất đẳng thức và GTLN, GTNN ......................................................................... 23
Chuyên đề 6. Hệ trục tọa độ ........................................................................................................ 29
Chuyên đề 7. Tích vô hướng và hệ thức lượng ......................................................................... 42
Đề số 01. THPT Bình Hưng Hòa (2017 – 2018) .................................................................. 49
Đề số 02. THPT Trần Phú (2017 – 2018) .............................................................................. 51
Đề số 03. THPT Lê Trọng Tấn (2017 – 2018) ....................................................................... 53
Đề số 04. THPT Bình Tân (2017 – 2018) ............................................................................... 56
Đề số 05. THPT Nguyễn Hữu Cảnh (2017 – 2018) ............................................................ 58
Đề số 06. THPT Trần Quang Khải (2017 – 2018) ................................................................ 61
Đề số 07. THPT Nguyễn Thượng Hiền (2017 – 2018) ....................................................... 63
Đề số 08. THPT Hàn Thuyên (2017 – 2018) ........................................................................ 66
Đề số 09. THPT Nguyễn Chí Thanh (2017 – 2018) ............................................................ 69
Đề số 10. THPT Tây Thạnh (2017 – 2018) ............................................................................ 72
Đề số 11. THPT Chuyên Lê Hồng Phong (2017 – 2018) .................................................... 74
Đề số 12. THPT Nguyễn Thị Minh Khai (2017 – 2018) ..................................................... 77
Đề số 13. THPT Bùi Thị Xuân (2017 – 2018) ....................................................................... 79
Chóc c¸c trß rÌn luyÖn tèt vµ ®¹t kÕt qu¶ cao trong kú thi s¾p ®Õn !
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Chuyªn ®Ò 1. Parabol & mét sè bµi to¸n liªn quan  b     b
 Cần nhớ: Parabol 2
(P) : y ax bx c có đỉnh I   ;   x    và trục đối xứng  2a 4a  2a
(hoành độ đỉnh). Khi a  0 : đồ thị có dạng  và a  0 : đồ thị có dạng .  1. Tìm parabol 2
(P) : y ax  4x  , c biết 2. Tìm parabol 2 ( )
P : y ax bx 2, biết rằng rằng (P) đi qua ( A 1; 2  ) và B(2;3). (P) đi qua ( A 1;5), ( B 2  ;8).
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 3. Tìm parabol 2
(P) : y ax bx  3, biết 4. Tìm parabol 2
(P) : y ax  4x c, biết (P) đi qua điểm (
A 3;0) và có trục đối
(P) có hoành độ đỉnh bằng 3 và đi qua xứng là x  1. điểm ( A 2  ;1).
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 1 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 5. Tìm parabol 2
(P) : y ax bx  ,
c biết 6. Tìm parabol 2
(P) : y ax bx  , c biết (P) (P) đi qua ( A 1;0), ( B 2;8), C(0; 6  ). đi qua điểm (
A 0;5) và có đỉnh I(3; 4  ).
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 7. Tìm parabol 2 ( )
P : y ax bx c khi biết 8. Tìm parabol 2 ( )
P : y ax bx c khi biết bảng biến thiên: bảng biến thiên: x  0 2  x  1 3      y y 3 4  1  0
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 2 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 9. Tìm parabol 2 ( )
P : y ax bx c khi biết 10. Tìm parabol 2 ( )
P : y ax bx c khi biết đồ đồ thị của nó là thị của nó là
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 11. Vẽ parabol 2
(P) : y x  2x  2. Dựa 12. Vẽ parabol 2
(P) : y x
  4x  5. Dựa vào
vào đồ thị biện luận nghiệm phương
đồ thị biện luận nghiệm phương trình: trình: 2
2x  4x m  3  0. 2
x  4x  5  m  0.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 3 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 13. Vẽ parabol 2
(P) : y x
  4x  3. Tìm 14. Vẽ parabol 2
(P) : y x
  4x  5. Dựa
m để phương trình 2
x  4x m  0 có
vào đồ thị biện luận nghiệm phương trình:
2 nghiệm thỏa 0  x  2  x . 2
x  4x  5  m  0. 1 2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 15. Vẽ parabol 2
(P) : y x  2x. Suy ra đồ 16. Vẽ 2
(P) : y x
  6x  5. Hãy biên luận thị hàm số 2 (P )
 : y x  2x . nghiệm 2
x  6 x  4  m trên (1; 4].
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 4 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Chuyªn ®Ò 2. Ph­¬ng tr×nh bËc nhÊt
1. Giải và biện luận: (
m mx 1)  9x  3. 2. Giải và biện luận: 2
m x  2  m  4x.
Giải. Phương trình 2
m x m  9x  3
................................................................................. 2
m x  9x m  3
................................................................................. 2
 (m  9)x m  3
................................................................................. ( ) 
.................................................................................  Với 2
m  9  0  m  3  .
................................................................................. Khi m  3 thì ( )
 trở thành 0x  6,
suy ra phương trình vô nghiệm.
................................................................................. Khi m  3  thì ( )
 trở thành 0x  0
.................................................................................
 phương trình nghiệm đúng x  .
 .................................................................................  Với 2
m  9  0  m  3 
................................................................................. m  3 1
................................................................................. ( )   x    2 m  9 m  3
................................................................................. Kết luận:
.................................................................................
m  3 :Phương trình vô nghiệm.
................................................................................. m  3
 :Phương trình nghiệm đúng x   .
 ................................................................................. 1
................................................................................. m  3
 :Phương trình có nghiệm x  m 3 
.................................................................................
3. Giải và biện luận: 2
(m 2m8)x  4 .
m 4. Giải và biện luận: 2
(4m 2)x  1 2m x.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 5 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
5. Tìm m để phương trình có nghiệm:
6. Tìm m để phương trình có nghiệm: 3x m 2x  5m  3 2mx  1 m  1  x  1    2 x  1   x  1 x  1 x  1 x  1
Giải. Điều kiện: x  1  0  x  1  .
.................................................................................
Quy đồng và bỏ mẫu, phương trình đã cho .................................................................................
 3x m x  1  2x  5m  3
.................................................................................
 2x  6m  2
.................................................................................
x  3m  1.
.................................................................................
x  1 nên phương trình có nghiệm
................................................................................. 2
khi x  3m  1  1  m   
................................................................................. 3
7. Tìm tham số m để phương trình sau có 8. Tìm tham số m để phương trình sau có
nghiệm nguyên: (m  2)x m  1. nghiệm nguyên: (
m x  3)  x  . m
Giải. Với m  2  0  m  2 thì phương ................................................................................. m  1 (m  2)  3 trình  x  
................................................................................. m  2 m  2
................................................................................. 3  x  1 
................................................................................. m  2
.................................................................................
x   nên 3(m  2)
................................................................................. m  2 3    m  5   m  2 3     m  1
.................................................................................     . m  2 1    m  3  
................................................................................. m   2 1     m  1  
.................................................................................
9. Tìm tham số m để phương trình
10. Tìm tham số m để phương trình 2 2
(m m)x  2x m 1 vô nghiệm. 2 2
m x  4x m m  2 có nghiệm.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 6 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Chuyªn ®Ò 3. Bµi to¸n chøa tham sè trong ph­¬ng tr×nh bËc hai
1. Cho phương trình 2 2
x  (2m  3)x m  4  0. Tìm tham số m để phương trình:
a) Có một nghiệm 7. Tìm nghiệm còn
b) Có 2 nghiệm pb x , x thỏa 2 2 x x  17. 1 2 1 2 lại. Lời giải.
Lời giải. Phương trình có 2 nghiệm phân biệt   Thế x  7
 vào phương trình, ta được: a  0 1   0 : L   Đ khi:    2 2 ( 7
 )  7(2m  3)  m  4  0 2 2   0 (
 2m  3)  4(m 4) 0      m   2 12 2 m 14m 24 0       
 12m  25  0  m  ( )  m   12  25 b  Với m  2
 thì phương trình trở thành: Theo Viét: S x x    2m  3 và 1 2 a 2
x  7x  0  x  0 hoặc x  7  . c 2 P x x   m  4.  Với m  1
 2 thì phương trình trở thành 1 2 a 2
x  27x  140  0  x  7   x  2  0. 2 2 2
Theo đề: x x  17  S  2P  17 1 2 Kết luận: 2 2
 (2m  3)  2(m  4)  17 Với m  2
 thì nghiệm còn lại là x  0. 2
 2m 12m  0  m  0 hoặc m  6. Với m  1
 2 thì nghiệm còn lại là x  2  0. So với ( )
 , giá trị cần tìm là m  0.
2. Cho phương trình 2 2
x  (2m  3)x m  4  0. Tìm tham số m để phương trình:
a) Có 1 nghiệm 7. Tìm nghiệm còn lại.
b) Có 2 nghiệm pb x , x thỏa 2 2 x x  17. 1 2 1 2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 7 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
3. Cho phương trình 2 2
x  2mx m  3m  0. Tìm tham số m để phương trình:
a) Có nghiệm kép. Tính nghiệm kép đó.
b) Có 2 nghiệm pb x , x thỏa 2 2 x x  8. 1 2 1 2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 4. Cho phương trình 2
(m 1)x  3x 1  0. Tìm tham số m để phương trình:
a) Có 1 nghiệm bằng 3. Tìm nghiệm còn lại. b) Có 2 nghiệm pb x , x thỏa x  1  x . 1 2 1 2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 8 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 5. Cho phương trình 2
(2m  3)x  2(2m  3)x  1  2m  0. Tìm m để phương trình: a) Có 1 nghiệm bằng 1
 . Tìm nghiệm còn b) Có 2 nghiệm phân biệt x , x thỏa mãn 1 2 lại của phương trình.
(5x  1)(5x  1)  13x x  1. 1 2 1 2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
6. Cho phương trình 2
x  4x m  1  0. Tìm tham số m để phương trình:
a) Có hai nghiệm trái dấu ?
b) Có 2 nghiệm phân biệt x , x thỏa mãn 1 2
Có hai nghiệm dương phân biệt.
x x  6  2 x x . 1 2 1 2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 9 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 7. Cho phương trình 2
mx  2(m  3)x m  6  0. Tìm tham số m để phương trình: 1 1
b) Có hai nghiệm trái dấu và có giá trị tuyệt
a) Có 2 nghiệm phân biệt thỏa   1  . x x đối bằng nhau. 1 2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 8. Cho phương trình 2
mx  2x  1  0. Tìm tham số m để phương trình:
a) Có hai nghiệm trái dấu ? Có hai nghiệm b) Có hai nghiệm là độ dài của hai cạnh góc
phân biệt cùng dương ? Có hai nghiệm
vuông trong một tam giác vuông có độ dài đối nhau ? cạnh huyền bằng 2.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 10 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
9. Cho phương trình 2
x (m  5)x m  0. Tìm tham số m để phương trình:
a) Chứng minh phương trình luôn có hai b) Có hai nghiệm phân biệt x , x thỏa mãn 1 2
nghiệm phân biệt. Tìm m để phương
điều kiện x  2x  5. 1 2
trình có hai nghiệm dương phân biệt ?
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
10. Cho phương trình 2 2
x (2m  2)x m  4  0. Tìm tham số m để phương trình:
a) Có nghiệm ? Có hai nghiệm pb dương ?
b) Có hai nghiệm pb x , x thỏa x  2x . 1 2 1 2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 11 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
11. Cho phương trình  2 (x 2) x (m 1)x 4      0.  
Tìm tham số m để phương trình:
a) Có ba nghiệm phân biệt ? b) Có hai nghiệm ?
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................
12. Cho phương trình 3 2
x  2mx  2mx  1  0. Tìm tham số m để phương trình:
a) Có ba nghiệm phân biệt ? b) Có hai nghiệm ?
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 12 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Chuyªn ®Ò 4. Ph­¬ng tr×nh quy vÒ ph­¬ng tr×nh bËc hai 1. Giải: 2 2 2
4(2x 3x 1)(2x  4x 1)  3x . 2. Giải: 2
(x 1)(x  2)(x  6)(x  12)  6x .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 2x 13x 4x 5x 10 3. Giải:   6. 4. Giải:    2 2 2x  5x  3 2x x  3 2 2 x  2x  3 x  4x  3 9
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 2 2 x  2x  3 x  5x  3 3 2 x  2x  15 3x 5. Giải:    6. Giải:   2 2 x  4x  3 x  6x  3 4 2 2 x  4x  15 x  6x  15
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 13 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 7. Giải: 2
4x  1  x  2x  4. 8. Giải: 2
3x  5  2x x  3. B   0 
................................................................................. 
Lời giải. Áp dụng A B   A   B  
.................................................................................  A   B   
................................................................................. Điều kiện: 2
x  2x  4  0.
.................................................................................  2
4x  1  x  2x  4 
................................................................................. Phương trình   2 4x  1  (
x  2x  4) 
................................................................................. x  1  
................................................................................. 2 
x  2x  3  0 x  3  
.................................................................................    .  2
x  6x  3  0 x  3   2 3  
................................................................................. x  3   2 3 
.................................................................................
Thế các nghiệm vào điều kiện, các nghiệm .................................................................................
thỏa mãn là x  3 và x  3   2 3.
................................................................................. 9. Giải: 2
x  2  x  4x  2. 10. Giải: 2 2
x  2x  2  x  7x  9.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 11. Giải: 2
x  4x  2  x  2. 12. Giải: 2
2x  3x  1  1  2x.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 14 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 13. Giải: 2 2
3x  2x  6  x .
14. Giải: 3x  4  x  2 . A B
.................................................................................
Lời giải. Áp dụng A B     thì A B  
................................................................................. 
.................................................................................  2 2
3x  2x  6  x 2 2 3x 2x 6 x      
................................................................................. 2 2
3x  2x x  6 
.................................................................................   2 x  1
4x  2x  6  0  
.................................................................................      2 3
2x  2x  6  0 : VN   x
................................................................................. o   2 15. Giải: 2 2
5x  3x  2  x  1 . 16. Giải: 2 2
x  2x  2x x  2 .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 17. Giải: 2
x  6x  9  2x 1 . 18. Giải: 2
4x 12x  9  3x  2 .
.................................................................................
Lời giải. Áp dụng 2
A B A B
................................................................................. thì phương trình 2
x  6x  9  2x  1
................................................................................. 2 2
x  6x  9  (2x  1)
................................................................................. 2 2
x  6x  9  4x  4x  1
................................................................................. 2 2
 3x  10x  8  0  x  4, x   
................................................................................. 3
.................................................................................
19. Giải: 2 3  2x x  1 . 20. Giải: 2
3x  9x  1  x  2 .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 15 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
21. Giải: (x  3). x  1  4x ( ) 
22. Giải: (x  1). x  3  4(x  2).
TH1: Nếu x 1  0  x  1.
................................................................................. ( )
 trở thành (x  3)(x  1)  4x 2
x  2x  3  0  x  1  , x  3.
.................................................................................
So với x  1, nhận nghiệm x  3.
.................................................................................
TH2: Nếu x 1  0  x  1.
................................................................................. ( )
 trở thành (x  3)(1  x)  4x
................................................................................. 2
x  6x  3  0  x  3  2 3.
.................................................................................
So với x  1 nhận nghiệm x  3
  2 3. .................................................................................
Kết luận: Tập nghiệm S  { 3   2 3;3}. 2
4x  2x  2x  1 x 1 1 2x 1 23. Giải:  2x  1. 24. Giải:    4x  3 2 x x  1 x x
........................................................................... .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 2x  1 x  2 1 1 25. Giải:  2
 1. (ẩn phụ) 26. Giải: 2 x   10  2 x   (ẩn phụ) x  2 2x  1 2 x x
........................................................................... .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 16 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 27. Giải: 2
x  3x  2  x  3. 28. Giải: 2
6x  4x  3  x  4  0. B
  0 (hay A  0) 
.................................................................................
Lời giải. A B   . A   B 
................................................................................. x   3  0 
................................................................................. Phương trình   2 x
  3x  2  x  3 
................................................................................. x   3 x   3  
.................................................................................     2 x   4x  1  0 x   2  3  
.................................................................................
x  2  3 là nghiệm cần tìm.
.................................................................................
29. Giải: x  1  2 2x  5. 30. Giải: 2
3 x  1  x  8x  11.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 31. Giải: 2
x x  1  3  x. 32. Giải: 2
5x  21x  8  x  2. B   0 
.................................................................................
Lời giải. Áp dụng A B   . 2 A   B 
................................................................................. 3   x  0 
................................................................................. Phương trình   2 2 x
  x  1  (3  x) 
.................................................................................  x   3 x   3 
.................................................................................       2 2 8 x
  x  1  9  6x xx
.................................................................................      7
................................................................................. 8
x  là nghiệm cần tìm. 7
................................................................................. 33. Giải: 2
2 3x  2x  1  1  3x. 34. Giải: 2
2x  12x  18x  1  2.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 17 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 35. Giải: 2 2
x  5x  4  5 x  5x  28  0. 36. Giải: 2 2
5 x  2x  7  x  2x  3. Lời giải. Đặt 2
t x  5x thì phương trình trở .............................................................................
thành t  4  5 t  28  0
............................................................................. t   4  0 5 t 28 t 4       
............................................................................. 2 25
 (t  28)  (t  4) 
............................................................................. t   4
............................................................................. t   4     
  t  36  t  36 2
t  17t  684  0   
.............................................................................     t  19  
.............................................................................
............................................................................. x  4  Với 2
t  36  x  5x  36  . 
............................................................................. x  9 
.............................................................................
 Cách khác: Đặt 2 2
t x  5x 28  0 t . 37. Giải: 2 2
x  3x  3 3x  9x  7  1  0. 38. Giải: 2 2
2x x  6x  12x  7  0.
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. ............................................................................. 39. Giải: 2
(x  3)(1  x)  5
x  2x  7. 40. 4 3 2
(x 2)(x  3)  x  2x x 2  2.
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 18 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
41. Giải: 2x  1  2  x  3.
42. Giải: x  4  2x  6  1. 2  x  1  0 
Lời giải. Điều kiện   x  3.
............................................................................. x   3  0 
.............................................................................
Phương trình  2x  1  2  x  3
............................................................................. 2 2
 ( 2x  1)  (2  x  3)
.............................................................................
 2x  1  4  4 x  3  x  3
............................................................................. x   0 x  4
............................................................................. 4 x 3 x         . 2
16(x  3)  x   x  12    
.............................................................................
So với điều kiện và thử lại, suy ra S  {4;12}. .............................................................................
 Cần nhớ: Dạng tổng quát A B C . .............................................................................
Điều kiện  Chuyển vế sao cho hai vế dương .............................................................................
và bình phương, giải phương trình hệ quả.
43. Giải: x  1  4x  1  x  2.
44. Giải: 3x  4  x  4  2 x .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
45. Giải: x  4  1  x  1  2x .
46. Giải: 2 3x  1  x  1  2 2x  1.
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 19 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 47. Giải: 2
(x  3) x  5x  4  2x  6. 48. Giải: 2 2
(x  3) x  4  x  9.
Lời giải. Điều kiện 2
x  5x  4  0 ( ) 
............................................................................. PT 2
 (x  3) x  5x  4  2(x  3)  0
............................................................................. 2
 (x  3) x  5x  4  2(x  3)  0
.............................................................................
............................................................................. 2
 (x  3)( x  5x  4  2)  0
............................................................................. x   3  0 x   3     
............................................................................. 2  2
x  5x  4  2
x  5x  4  4   
............................................................................. x  3   .
............................................................................. 
Thế các nghiệm vào điều x  0, x  5 
............................................................................. kiện ( )
 , nghiệm cần tìm là x  0, x  5.
............................................................................. 49. Giải: 2
(x  1) 2x  3  x  4x  3. 50. Giải: 2
(2x  1) x  1  2x  7x  3.
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. ............................................................................. 51. 2
x x  2  2 x  2  2  x  1. 52. 2
x 3 2x x 1  2x x  4x 3. x   2  0 
.............................................................................
Lời giải. Điều kiện   x  2. x   1  0 
.............................................................................
.............................................................................
PT  (x 2)(x  1)  2 x  2  ( x  1  2)
.............................................................................
x  2.( x  1  2)( x  1  2)  0
.............................................................................
 ( x  1 2).( x  2 1)  0
.............................................................................  x 1 2    x  1  4  
.............................................................................     x  3.   x  2  1 x  2  1   
.............................................................................
So với điều kiện, nghiệm cần tìm là x  3.
.............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 20 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 53.
3 x  6x  3  (3 x)(6 x). 54. 2
x 2  x 2  2 x 4 2x 2.
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. ............................................................................. 55. Giải: 2 2
2x x 9  2x x 1  x  4. 56. Giải: 2 2
x  15  3x  2  x  8.
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 21 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 2
 x y  7  0   2 2  x
y  6x  2y  0  57. Giải hệ:     2 2 58. Giải hệ: y
  x  2x  2y  4  0        x y 8 0 
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. ............................................................................. x
  y xy  5   x
  y xy  3  59. Giải hệ:     2 2 60. Giải hệ: x
y x y  8 2 2       x y y x 2 
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 22 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Chuyªn ®Ò 5. BÊt ®¼ng thøc – Gi¸ trÞ lín nhÊt & gi¸ trÞ nhá nhÊt
1. Chứng minh rằng với mọi x  ,
 ta luôn 2. Chứng minh rằng với mọi a, , b c   có 4
x  4x  3  0. thì 2 2
a b  4  ab  2a  2 . b
Giải. Thêm bớt để đưa về hằng đẳng thức, tức ............................................................................. 4 2 2 2 2 x 4x 3 (x ) 2x 1    
  2(x 2x 1) 
.............................................................................  
............................................................................. 2 2 2
 (x 1)  2(x  1)  0, x   . 
.............................................................................  2 x  1  0  Dấu "  " xảy ra khi   x  1.
............................................................................. x  1  0 
.............................................................................
 Nhận xét: Đối với bài toán x  ,  ta nên
.............................................................................
sử dụng hằng đẳng thức để đưa về dạng:
............................................................................. 2 2 2
A B C  0 : luôn đúng và dấu "  "
.............................................................................
xảy ra khi A B C  0.
3. Chứng minh rằng với mọi x, y   thì ta 4. Chứng minh rằng với mọi a, , b c   luôn có 2 2
x y xy  3x  3y  3  0. thì có 2 2 2
a b c  12  4(a b c).
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
5. Chứng minh rằng a  0, b  0 ta luôn có 6. Chứng minh rằng a  0, b  0 ta luôn 3 3 2 2
a b a b ab . có 4 4 3 3
a b a b ab .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 23 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
7. Chứng minh rằng với mọi a, ,
b c  0 ta 8. Chứng minh với mọi a, , b c  0 thì luôn có 2 2 2
a b c ab bc ca.
ab bc ca abc( a b c).
Giải. Áp dụng BĐT Cauchy 
............................................................................. Cauchy  2 2 2 2 a   b
 2 a b  2ab
.............................................................................  Cauchy  Ta có: 2 2 2 2 b   c
 2 b c  2bc
.............................................................................   Cauchy  2 2 2 2
............................................................................. c
 a  2 c a  2ac 
.............................................................................  2 2 2
 2(a b c )  2(ab bc ca)
............................................................................. 2 2 2
a b c ab bc ca (đpcm).
.............................................................................
Dấu "  " xảy ra khi a b c  0.
............................................................................. Tæng  Tæng
 Nhận xét: Nhận dạng 
............................................................................. Tæng   H»ng sè
............................................................................. 2 P 
 Cauchy xoay vòng, rồi cộng lại.
9. Chứng minh rằng với mọi a, ,
b c  0 thì 10. Chứng minh rằng với mọi a, , b c  0 a b c 1 1 1 3 3 3       a b c  
ab bc ca. bc ca ab a b c thì b c a
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
11. Chứng minh rằng với mọi a, b   thì ta 12. Chứng minh rằng với 0  a, , b c   luôn có 2 2
4a  9b  5  4(a  3b). 2 2 2 a c b a b c thì       2 2 2 c b a b c a (Lưu ý: 2
x x x).
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 24 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
13. Chứng minh rằng với mọi a, ,
b c  0 ta 14. Chứng minh rằng a, ,
b c  0 ta luôn
có (a b)(b c)(c a)  8ab . c có 2 2 2
(a  2)(b  2)(c  2)  16 2ab . c
Lời giải. Áp dụng bất đẳng thức Cauchy
.............................................................................  Cauchy
a b  2 ab
.............................................................................  Cauchy 
............................................................................. Ta có: b
  c  2 bc  và nhân vế theo vế  Cauchy 
............................................................................. c
 a  2 ca 
............................................................................. nhân
............................................................................. 2 2 2
 (a b)(b c)(c a)  8 a b c  8abc.
.............................................................................
Dấu "  " xảy ra khi a b c  0. 
............................................................................. TÝch  TÝch
 Nhận xét: Dạng 
............................................................................. TÝch   H»ng sè 2
............................................................................. P 
 Cauchy trong dấu (  ) và nhân lại.
15. Chứng minh rằng với mọi a, ,
b c  0 ta 16. Chứng minh rằng a, ,
b c  0 ta luôn
có (a b)(b c)(c a)  8ab . c có 2 2 2
(a b c)(a b c )  9ab . c
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
17. Chứng minh rằng với mọi a  0, b  0 ta 18. Chứng minh rằng a, ,
b c  0 ta có:  1 1     1 1 1    9
có (a b  2).    4. 
(a b c)       a  1 b  1
a b b c c a 2
HD: a b  2  (a  1)  (b  1).
HD: 2(a b  ) c  (a  ) b (b  ) c (c  ) a .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 25 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
19. Với x  1, hãy tìm giá trị nhỏ nhất của 20. Với x  1, hãy tìm giá trị nhỏ nhất của 3x  1 2x  1
hàm số y  9x  
hàm số y  3x   x  1 x  1 3(x  1)  4
.............................................................................
Giải. Ta có: y  9(x  1)  9  x  1
............................................................................. 4
y  9(x  1)   12
.............................................................................   x  1 a
............................................................................. b Cauchy
............................................................................. 4
y  2. 9(x 1)  12  24. x  1
.............................................................................
 Giá trị nhỏ nhất của hàm số là 24.
............................................................................. 4 5
.............................................................................
Dấu "  " khi 9(x  1)   x   x  1 3
.............................................................................
21. Với x  1, hãy tìm giá trị nhỏ nhất của 22. Với x  1, hãy tìm giá trị nhỏ nhất 4 2 x x  4
hàm số y x  1   của hàm số y   x  3 x  1
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
23. Với x  2, hãy tìm giá trị nhỏ nhất của 24. Với x  0, hãy tìm giá trị nhỏ nhất của 2 x x  9
(2x  5)(5x  14) hàm số y   hàm số y   x  2 x
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 26 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
25. Với x  0, hãy tìm giá trị nhỏ nhất của 26. Với x  0, hãy tìm giá trị nhỏ nhất của 4 100
hàm số y  3x  
hàm số y  5x   2 x 2 x n mx mx n
.............................................................................
Giải. Sử dụng y mx     2 2 x 2 2 x
............................................................................. 3x 3x 4 Cauchy 3x 3x 4
............................................................................. y    3 3  3.  3 9. 2 2 2 x 2 2 2 x
.............................................................................
Suy ra giá trị nhỏ nhất của y là 3 3 9.
............................................................................. 3x 4 2
............................................................................. Dấu "  " xảy ra khi   x   2 3 2 x 3
.............................................................................
27. Với x  0, hãy tìm giá trị nhỏ nhất của 28. Với x  0, hãy tìm giá trị nhỏ nhất của 15 4
hàm số y  5x   hàm số 2
y  2x   3 x x n mx mx mx n n n n
HD: y mx       HD: 2 2 y mx   mx    3 3 x 3 3 3 x x 2x 2x
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
29. Với x  0, hãy tìm giá trị nhỏ nhất của 30. Với x  0, hãy tìm giá trị nhỏ nhất của 16 16 hàm số 2 y  4x   hàm số 3 y  8x   x x
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 27 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019  5  9
31. Với x  0;  ,    
hãy tìm giá trị lớn nhất của 32. Với x
0; , hãy tìm giá trị lớn nhất 2     5  
hàm số y x(5  2x ).
của biểu thức y  4x(9  5x). 2 (a b)
.............................................................................
Giải. Áp dụng a b  2 ab ab  4
............................................................................. 1
Ta có: y x(5  2x)    (2x).(5  2x)
............................................................................. 2  a b
............................................................................. Cauchy 2
1 [(2x)  (5  2x)] 25  y     2 4 8
............................................................................. 25
.............................................................................
Suy ra giá trị nhỏ nhất của hàm số bằng  8
............................................................................. 5
Dấu "  " xảy ra khi 2x  5  2x x  
............................................................................. 4
33. Với 0  x  3 và 0  y  4, tìm giá trị 34. Với mọi x  [ 2
 ;2], hãy tìm giá trị lớn
lớn nhất của P  (3  x)(4  y)(2x  3y). nhất của hàm số 2
y x . 4  x .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
35. Tìm giá trị lớn nhất và giá trị nhỏ nhất của 36. Tìm giá trị lớn nhất và giá trị nhỏ nhất
hàm số y x  2  6  x .
của hàm số y x  1  5  x .
Lời giải. Tập xác định D  [2;6].
............................................................................. Vì y  0  2
y  4  2 (x  2)(6  x)  4.
.............................................................................
y  2  miny  2 khi x  2 hoặc x  6. .............................................................................
............................................................................. Ta lại có 2
y  4  2 (x  2).(6  x)
 
............................................................................. a b 2 
.............................................................................
y  4  (x  2)  (6  x)  8  y  2 2.
.............................................................................
 max y  2 2 khi x  2  6  x x  4.
.............................................................................
Kết luận: miny  2 và max y  2 2.
.............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 28 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
37. Một công ty đang lập cải tiến sản phẩm và 38. Độ giảm huyết áp của bệnh nhân được
xác định rằng tổng chi phí dành cho việc cho bởi công thức 2 (
G x)  0,025x (30 x), 2 x
cải tiến là C(x)  2x  4  , (x  6) trong đó
(mg) là liều lượng thuốc x  6
được tiêm cho bệnh nhân. Tính liều
trong đó x là số sản phẩm được cải tiến.
lượng thuốc cần tiêm cho bệnh nhân để
Tìm số sản phẩm mà công ty cần cải tiến
huyết áp giảm nhiều nhất và tính độ
để tổng chi phí là thấp nhất ? giảm đó ?
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
39. Hình chữ nhật có chu vi không đổi là 8m. 40. Cho tam giác vuông có tổng một cạnh
Tìm diện tích lớn nhất S của hình chữ
góc vuông và cạnh huyền bằng 2. Tìm max
độ dài ba cạnh của tam giác sao cho diện nhật đó.
tích của tam giác lớn nhất.
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. ............................................................................. 41. Tìm V
là giá trị lớn nhất của thể tích các khối hộp chữ nhật có đường chéo bằng max
3 2cm và diện tích toàn phần bằng 2 18cm .
.............................................................................
............................................................................. c 3 2
............................................................................. a b
.............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 29 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Chuyªn ®Ò 6. HÖ trôc täa ®é Oxy
1. Trong mặt phẳng tọa độ Oxy, cho ba điểm (
A 1;2), B(3;5), C (2;3). a) Chứng minh ,
A B, C tạo thành một tam giác. Tìm trọng tâm G của tam giác ABC . Tính
cosin góc C và cho biết góc C là góc nhọn hay tù ? Chứng minh ,
A B, C tạo thành một tam giác:  A  B  (2;3) 2 3    Ta có:   
AB không cùng phương AC A
 C  (3;5) 3 5  Suy ra ,
A B, C tạo thành một tam giác.
Tìm tọa độ trọng tâm G của tam giác ABC : 
x x x 1  3  (2) 2  A B C x        G 2 3   
Ta có G là trọng tâm tam giác ABC 3 3 3   G  ;  
y y y 2  5  (3) 3   3 4 A B C y     G  3 3 4  
Tính cosin góc C : Ta có CA  (3; 5), CB  (5; 8)       C . ACB 3.5  5.8 55 C .
ACB CA . CB .cosC  cosC       2 2 2 2 CA . CB 3  5 . 5  8 3026
Vì cosC  0  góc C là góc nhọn.
b) Tìm giao điểm E của trục hoành với AC . c) Tìm giao điểm F của trục tung với BC .
(tìm tọa điểm E trên trục hoành sao cho
(Tìm tọa điểm F trên trục tung sao cho E, ,
A C thẳng hàng).
F, B, C thẳng hàng).
E Ox nên gọi E(x ; 0) và E AC nên Vì F Oy nên gọi F(0;y ) và F BC nên E F E, ,
A C thẳng hàng.
F, B, C thẳng hàng.  
Ta có: AE  (x  1;2).
Ta có: BF  (3;y  5). E F   Để E, ,
A C thẳng hàng thì AE cùng Để F, B, C thẳng hàng thì BF cùng      
phương với AC AE k.AC
phương với CB BF k.CB x  1 2 1 3 y  5 1 E    x    F     y   3 5 E 5 5 8 F 5  1     1  
Kết luận: E   ;0  F 0;  
thỏa yêu cầu bài toán. Kết luận:
thỏa yêu cầu bài toán.  5   5     Hoµnh Tung
 Cần nhớ: a cùng phương b cùng phương  a k.b    Hoµnh Tung      
Tích vô hướng a.b a . b . cos(a,b ). Diện tích S  (
p p a)(p b)(p c).
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 30 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
2. Trong mặt phẳng tọa độ Oxy, cho ba điểm (
A 2;3), B(2; 4), C(5;1). a) Chứng minh ,
A B, C tạo thành một tam giác. Tìm trọng tâm G của tam giác ABC . Tính
cosin góc A và cho biết góc A là góc nhọn hay tù ? Tìm chu vi và diện tích của tam giác.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
b) Tìm giao điểm của trục hoành với AC .
c) Tìm giao điểm của trục tung với BC .
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
d) Tìm tọa độ điểm E thuộc trục hoành sao cho ,
A E, G thẳng hàng.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 31 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
3. Trong mặt phẳng tọa độ Oxy, cho ba điểm (
A 10;1), B(7;2), C (1;3). a) Chứng minh ,
A B, C tạo thành một tam giác. Tìm trọng tâm G của tam giác ABC . Tính
cosin góc B và cho biết góc B là góc nhọn hay tù ? Tìm chu vi và diện tích của tam giác.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
b) Tìm giao điểm của trục hoành với AC .
c) Tìm giao điểm của trục tung với BC .
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
d) Tìm tọa độ điểm E thuộc trục tung sao cho ,
A E, G thẳng hàng.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 32 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
4. Trong mặt phẳng tọa độ Oxy, cho hai điểm (
A 3;2), B(1;1).
a) Tìm tọa độ điểm M thuộc trục hoành và b) Hãy tìm tọa độ điểm E thuộc đường thẳng
N thuộc trục tung sao cho tam giác
d : 2x  4y  3  0 để ba điểm , A B, E
AMN nhận B là trọng tâm. thẳng hàng.
Giải. Vì E d : 2x  4y  3  0
Giải. Gọi M(x ; 0)  Ox N (0;y )  Oy. M N 3 1
 2x  4y  3  0  y   x
Để tam giác AMN nhận B là trọng tâm, E E E 4 2 E
nghĩa là B là trọng tâm AMN :  3 1   E x
 ;  x     
x x x  3  x  0 E E     4 2  A M N x   1  M    B  3  3        1 5   
y y y  2  0  y AB  ( 2
 ;3), AE x   3; x    Có   A M N yE E     1 N   2 4 B  3    3  Để ,
A B, E thẳng hàng thì AB cùng phương x   0   M  
M(0; 0), N(0;5). 2  3  y   5 với AE    Nx  3 5 1 Ex 4 2 E M  (0;0)  Kết luận:  . 13 7 13 7  N  (0;5)     x
y    E  ;   E 4 E 8  4 8 
5. Trong mặt phẳng tọa độ Oxy, cho hai điểm (
A 1;2), B(2;1).
a) Tìm tọa độ điểm M thuộc trục hoành và b) Hãy tìm tọa độ điểm E thuộc đường thẳng
N thuộc trục tung sao cho tam giác
d : 2x y  1  0 để ba điểm , A B, E
AMN nhận B là trọng tâm. thẳng hàng.
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 33 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
6. Trong mặt phẳng tọa độ Oxy, cho hai điểm (
A 5;1), B(3;2).
a) Tìm tọa độ điểm M thuộc trục hoành và b) Hãy tìm tọa độ điểm E thuộc đường thẳng
N thuộc trục tung sao cho tam giác
d : x y  3  0 sao cho ba điểm , A B, E
BMN nhận A là trọng tâm. thẳng hàng.
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
7. Trong mặt phẳng tọa độ Oxy, cho hai điểm (
A 1; 4), B(2;2).
a) Tìm tọa độ điểm M thuộc trục hoành và b) Hãy tìm tọa độ điểm E thuộc đường thẳng
N thuộc trục tung sao cho tam giác
d : 4x  2y  5  0 để ba điểm , A B, E
BMN nhận A là trọng tâm. thẳng hàng.
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 34 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
8. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 2;3), B(0;2), C(4;1).
a) Hãy tính chu vi và diện tích của tam giác b) Tìm tọa độ tâm I và bán kính đường tròn ABC .
ngoại tiếp tam giác ABC . 
Vì tam giác ABC vuông tại A nên tâm I 2 2
AB  (2;1)  AB  2  1  5. 
đường tròn ngoại tiếp tam giác ABC nằm tại 2 2
AC  (2;4)  AC  2  4  2 5. trung điểm cạnh huyền BC.   2 2 
BC  (4;3)  BC  4  3  5. x x 0  4  B C x     2 I   1  2 2         Nhận thấy 2 2 2
AB AC BC nên theo   y y    I 2; 2 1   1  2 
Pitago đảo thì tam giác ABC vuông tại . A B C y      I  2 2 2
Chu vi ABC : C
AB AC BC ABC
R là bán kính đường tròn ngoại tiếp tam giác
 5  2 5  5  3 5  5. BC 5
ABC R IA IB IC   
Diện tích tam giác ABC : 2 2   1 1 1   5 SAB.AC  5.2 5  5. I 2  ;  R   Kết luận: Tâm   và bán kính ABC 2 2  2 2
c) Tìm tọa độ điểm J là điểm đối xứng của b) Hãy tìm tọa độ K là giao điểm của hai A qua I.
đường chéo trong hình bình hành ABCD.
Ta có J là điểm đối xứng của A qua I I K là giao điểm của hai đường chéo trong
là trung điểm AJ nên
ABCD nên K là trung điểm của AC.  x x  2  x    x x 2  4 A J x   2  J     A Cx     3 I   x   2 2  2  JK       2 2   K(3;1).  y y 1 3  y y   2   y y 3  1 A JJJ y       A C y     1 I  2   2 2 K  2 2
Kết luận: J (2;2).
Kết luận: K(3;1).
9. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 1;1), B(5;3), C (2;0).
a) Hãy tính chu vi và diện tích của tam giác b) Tìm tọa độ tâm I và bán kính đường tròn ABC .
ngoại tiếp tam giác ABC .
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
c) Tìm tọa độ điểm J là điểm đối xứng của b) Hãy tìm tọa độ K là giao điểm của hai A qua I.
đường chéo trong hình bình hành ABCD.
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 35 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
10. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 1;1), B(5;1), C (3;5).
a) Hãy tính chu vi và diện tích của tam giác b) Tìm tọa độ tâm I và bán kính đường tròn ABC .
ngoại tiếp tam giác ABC .
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
c) Tìm tọa độ điểm J là điểm đối xứng của b) Hãy tìm tọa độ H là giao điểm của hai C qua B.
đường chéo trong hình bình hành ABDC .
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
11. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 4;1), B(1;4), C (2;1).
a) Hãy tính chu vi và diện tích của tam giác b) Tìm tọa độ tâm I và bán kính đường tròn ABC .
ngoại tiếp tam giác ABC .
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
c) Tìm tọa độ điểm J là điểm đối xứng của b) Hãy tìm tọa độ F là giao điểm của hai A qua B.
đường chéo trong hình bình hành ABCD.
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 36 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
12. Trong mặt phẳng tọa độ Oxy, cho hai điểm (
A 3;2), B(1;1).
a) Tìm tọa độ điểm M thuộc trục hoành sao b) Tìm tọa độ điểm N thuộc trục tung sao cho
cho tam giác ABM vuông tại M .
tam giác ABN vuông tại . A
Giải. Vì M Ox nên gọi M(x ; 0).
Giải. Vì N Oy nên gọi N(0;y ). M N   A
 M  (x  3;2)   A
N  (3;y  2)  Ta có: M   Ta có: N   B
 M  (x 1;1) A
 B  (2;3) M  
Để tam giác ABM vuông tại M thì
Để tam giác ABN vuông tại A thì        
AM BM AM.BM  0
AN AB AN.AB  0
 (x  3)(x  1)  2  0  ( 3  ).( 2  )  (y  2).( 3  )  0 M M Nx  2  3
 6  3y  6  0 N 2  
x  4x  1  0 M   M Mx  2  3  y  4. MN N
Do đó: M (2  3; 0) hoặc M(2  3; 0).
Vậy (0; 4) là điểm thỏa yêu cầu bài toán.
13. Trong mặt phẳng tọa độ Oxy, cho hai điểm (
A 1;3), B(2;5).
a) Tìm tọa độ điểm M thuộc trục hoành sao b) Tìm tọa độ điểm N thuộc trục tung sao cho
cho tam giác ABM vuông tại M .
tam giác ABN vuông tại . A
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
14. Trong mặt phẳng tọa độ Oxy, cho hai điểm (
A 1;1), B(3;2) và O là gốc tọa độ.
a) Tìm tọa độ điểm M thuộc trục hoành sao b) Tìm tọa độ điểm N thuộc trục tung sao cho
cho tam giác OBM vuông tại B.
tam giác ABN vuông tại . A
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
.............................................................................. ................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 37 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
15. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 1; 3), B(2;1), C(2;3).
a) Hãy tìm tọa độ trực tâm H của tam giác b) Gọi K là hình chiếu vuông góc của C lên ABC .
cạnh AB. Tìm tọa độ của K.
Giải. Gọi H(x ;y ) là trực tâm ABC .
Giải. Gọi K(x ;y ) là hình chiếu vuông góc H H K K  
của C lên cạnh AB. A  H BC A
 H.BC  0    CK AB K A B Ta có: 
   ( )  và , , thẳng hàng. BH AC    B    H.AC  0 
Ta có CK  (x  2;y  3), AB  (1;4)   K K  
AH  (x  1;y  3) và BC  (0;2)
CK AB CK.AB  0 H H  
x  2  4(y  3)  0  x  4y  14
BH  (x  2;y  1) K K K KAC  (1;6).    H H
AK x y    Mà ( 1; 3) và AB AK nên 2(y  3)  0 y   3 K K ( )  HH      . x  1 1 4y  14  1 1 x
 2  6(y  1)  0 x   26  KK   H H   Hy  3 4  y  3 4  K K Suy ra H (3;26). 49 434 434 49 y    x   K  ;   
Kết luận: H (3;26) thỏa yêu cầu bài toán. K 17 K 17  17 17 
16. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 3;8), B(7;2), C (1;1).
a) Hãy tìm tọa độ trực tâm H của tam giác b) Gọi K là hình chiếu vuông góc của A lên ABC .
cạnh BC . Tìm tọa độ điểm K.
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
17. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 2;4), B(5;0), C (3;2).
a) Hãy tìm tọa độ trực tâm H của tam giác b) Gọi E là trung điểm HC . Tìm tọa độ điểm ABC .
D sao cho O là trực tâm tam giác AEC.
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
.............................................................................. ...............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 38 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
18. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 3;8), B(7;2), C (1;1).
a) Tìm tâm và bán kính đường tròn ngoại b) Tìm tọa độ điểm N d : 2x y  4  0 để tiếp tam giác ABC .
tam giác ABN cân tại . A
Giải. Gọi I(x ;y ) là tâm đường tròn ngoại N a a   d x y   I I Giải. Gọi ( ;2 4) : 2 4 0. tiếp A
BC R IA IB IC.
Vì ABN cân tại A nên AN AB. 2 2
AI  (x  3)  (y  8) I I
................................................................................ 2 2
BI  (x  7)  (y  2) I I
................................................................................ 2 2
CI  (x  1)  (y  1) I I
................................................................................   2 2 IA IB IA IB  
................................................................................ Ta có:    2 2 IA IC IA IC  
................................................................................  2 2 2 2 (
x  3)  (y  8)  (x  7)  (y  2) 
................................................................................ I I I I  2 2 2 2 (
x  3)  (y  8)  (x 1)  (y 1) 
................................................................................ I I I I 
6x 16y  73  14x  4y  53
................................................................................  I I I I  
6x  16y  73  2x  2y  2 
................................................................................ I I I I  95 27
................................................................................ Suy ra x  và y   I 16 I 8
................................................................................ 95 27 7685
................................................................................    Tâm I  ;   R IA    và 16 8  16
................................................................................
19. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 2;3), B(2; 4), C(5;1).
a) Tìm tâm và bán kính đường tròn ngoại b) Tìm tọa độ điểm N d : x  3y  10  0 tiếp tam giác ABC .
để tam giác ABN cân tại N .
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 39 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
20. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 2;3), B(3;2), C(4;1).
a) Tìm tọa độ điểm D sao cho ABCD là b) Tìm tọa độ điểm I thuộc trục hoành sao hình bình hành.
cho ABCI là hình thang nhận AB là đáy.
Giải. Gọi D(x ;y ) là đỉnh thứ tư của hình D D
Giải. Vì I Ox nên gọi I(x ; 0).   I 
bình hành ABCD AB DC ( ) 
Ta có CI  (x  4;1).  I A  B  (1;1)  Ta có  .
Để ABCI là hình thang nhận AB là đáy thì D
 C  (4  x ;1y )   1 1 D D  AB  CI    x  3. 1   4  x x   3 x  4 1 I I ( )  DD       D(3;0).  1  1  y y   0 I
Vậy (3; 0) thỏa mãn yêu cầu bài toán. D   D
c) Tìm tọa độ điểm J là chân đường phân giác trong của góc A trong tam giác ABC .    BJ AB AB
Giải. Gọi J(x ;y ) là chân đường phân giác trong của A    BJ   JC. J J CJ AC AC  A
 B  (1;1)  AB  2 AB 1  1   Ta có:   
BJ  JC. A
 C  (2;2)  AC  2 2 AC 2 2    B
 J  (x  3;y 2)  1  J Jx   3  2  xJ J  Mà  1   1 1 1  2   C
 J  (4  x ;1y )  CJ  2
  x ;  y   1 1 J J   2  y   2    y   2 J 2 2 J   J  2 2 J  10 x    10    J     3  J  ;1  
thỏa mãn yêu cầu bài toán.   3  y   1   J 
21. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 1;1), B(5;3), C (2;0).
a) Tìm tọa độ điểm D sao cho ABCD là b) Tìm tọa độ điểm I thuộc trục hoành sao hình bình hành.
cho ABCI là hình thang nhận AB là đáy.
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
c) Tìm tọa độ điểm J là chân đường phân giác trong của góc A trong tam giác ABC .
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 40 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
22. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 1;4), B(1;2), C (8;5).
a) Tìm tọa độ điểm D sao cho ABCD là b) Tìm tọa độ điểm I thuộc trục hoành sao hình bình hành.
cho BACI là hình thang nhận AB là đáy.
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
c) Tìm tọa độ điểm J là chân đường phân giác trong của góc A trong tam giác ABC .
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
23. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với (
A 10;5), B(3;2), C (6;5).
a) Tìm tọa độ điểm D sao cho ABCD là b) Tìm tọa độ điểm I thuộc trục hoành sao hình bình hành.
cho ABCI là hình thang nhận AB là đáy.
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
.............................................................................. ..............................................................................
c) Tìm tọa độ điểm J là chân đường phân giác trong của góc A trong tam giác ABC .
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
...................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 41 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Chuyªn ®Ò 7. TÝch v« h­íng & HÖ thøc l­îng
1. Cho tam giác ABC đều cạnh a, tâm O. Hãy tính: A      
Cần nhớ: a.b a . b . cos(a,b )   2 Bình phương vô hướng: 2 a a O    2   2  2  2      2
 (a b )  a  2a.b b a b  (a b )(a b ). B E C     a) AB.AC b) AB.BC .          
Ta có: AB.BC B  . A BC
Ta có AB.AC AB . AC cos(A , B AC )    
  BA . BC cos(B , A BC ) 2 1 a
AB.AC.cos 60  a.a.   2 1 a 2 2   .
BA BC.cos 60  a  .a.    2 2        
b) (OB OC )(AB AC ).
c) (AB  2AC )(AB  3BC ).
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
2. Cho hình thang ABCD có đáy lớn BC  3a, đáy nhỏ AD a, đường cao AB  2a.     
b) (OB OC )(AB AC ).
c) Gọi I là trung điểm CD. Tính (AI ;BD).
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
.............................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 42 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
3. Cho tam giác ABC AB  6, BC  19 4. Cho tam giác ABC AB  2, BC  4
AC  15. Tính bán kính đường tròn
CA  2 7. Tính bán kính đường tròn
ngoại tiếp, nội tiếp của tam giác ABC .
ngoại tiếp, nội tiếp của tam giác ABC . 19  15  6
.............................................................................
Lời giải. Nửa chu vi p   20. 2
............................................................................. Diện tích S  (
p p a)(p b)(p c)
.............................................................................
 20(20  19)(20  15)(20  6)  10 14.
.............................................................................
Bán kính đường tròn ngoại tiếp ABC :
.............................................................................
............................................................................. abc abc 19.15.6 171 14 S   R     4R 4S 56 4.10 14
.............................................................................
.............................................................................
Bán kính đường tròn nội tiếp ABC :
............................................................................. S 10 14 14
S pr r     p 20 2
.............................................................................
5. Cho tam giác ABC AB  10, AC  16 6. Cho tam giác ABC AB  5, AC  7
BC  14. Tính bán kính đường tròn
BC  10. Tính bán kính đường tròn
ngoại tiếp, nội tiếp, của tam giác ABC .
ngoại tiếp, nội tiếp, của tam giác ABC .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 43 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
7. Cho tam giác ABC AB  6, AC  8 8. Cho tam giác ABC AB  6,AC  10  
BAC  60. Tính h , , R r với , R r
BAC  120. Tính h , , R r với , R r a a
lần lượt là bán kính đường tròn ngoại tiếp,
lần lượt là bán kính đường tròn ngoại
nội tiếp tam giác ABC .
tiếp, nội tiếp tam giác ABC .
Lời giải. Theo định lý hàm cos, ta có:
............................................................................. 2 2 2
a b c  2bc cos A
............................................................................. 0
 64  36  2.8.6.cos 60  49  a  7.
.............................................................................
Diện tích tam giác ABC :
............................................................................. 1 1
............................................................................. S
bc sin A  .8.6.sin 60  10 3. ABC 2 2
.............................................................................
Đường cao xuất phát từ đỉnh A :
............................................................................. 1 2S 2.10 3 20 3
............................................................................. S
a.h h     ABC 2 a a a 7 7
.............................................................................
Áp dụng định lý hàm sin, suy ra bán kính .............................................................................
đường tròn ngọa tiếp tam giác ABC :
............................................................................. a 7 7 3  2R R   
............................................................................. sin A 2.sin 60 3
.............................................................................
a b c 7  8  6 21 Nửa chu vi p   
 ............................................................................. 2 2 2
.............................................................................
Bán kính đường tròn nội tiếp ABC :
............................................................................. S 2.10 3 20 3 ABC Spr r   
 ............................................................................. ABC p 21 21
9. Cho tam giác ABC AB  13, AC  14 10. Cho tam giác ABC AB  5,AC  7
BC  15. Tính diện tích tam giác
BC  8. Tính diện tích tam giác ABC, sin ,
A độ dài đường trung tuyến kẻ ABC, sin ,
A độ dài đường trung tuyến
từ C của tam giác ABC .
kẻ từ A của tam giác ABC .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 44 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
11. Cho ABC AB  2 ,
a AC  3a BAC  60. Gọi M là trung điểm BC.
a) Tính cạnh BC, trung tuyến AM và bán b) Gọi N là điểm trên cạnh AC sao cho   
kính đường tròn ngoại tiếp ABC .
5NA  7NC  0. CM: AM BN .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. ............................................................................. 
12. Cho hình bình hành ABCD AB  5a, AD  8a, BAD  60.
   
a) Tính các tích vô hướng: AB.AD, AC.AD.
b) Tính độ dài đoạn BD và bán kính đường
tròn ngoại tiếp tam giác ABC . B C
.............................................................................
............................................................................. 60o
............................................................................. A D
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 45 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
13. Cho tam giác ABC AB  10cm, AC  16cm, BC  14cm. 
a) Hãy tính số đo góc BAC , tính diện tích tam b) Gọi M là trung điểm BC G là trọng
giác ABC, tính bán kính đường tròn ngoại
tâm tam giác ABC . Tính độ dài AM và  
tiếp R và tính bán kính đường tròn nội tiếp
tích vô hướng AG.BC.
r của tam giác ABC .
............................................................................. B
.............................................................................
.............................................................................
............................................................................. A C
.............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
.................................................................................
14. Cho hình thang vuông ABCD vuông tại A B với BC  3 ,
a AD a AB  2a.
     
Tính: AB.CD; BC .BD; AC .BD. A D
.............................................................................
.............................................................................
............................................................................. B C
.............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 46 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
15. Cho tam giác ABC AB a, AC a 2, BAC  135. Gọi M là điểm thỏa mãn:   3AM AC.      a) Tính . AB AC và . BABM.
b) Tính độ dài BM và cosin của góc ABM.
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. ............................................................................. 
16. Cho tam giác ABC AB  6, AC  5, BAC  60. Gọi I thỏa mãn đẳng thức   
véctơ: IB  2IC  0.     
a) Chứng minh: AB  2AC  3AI . b) Tính .
AB AC và độ dài đoạn thẳng AI.
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 47 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
17. Cho tam giác ABC AB  5, AC  8, A  60 .   
a) Tính độ dài cạnh BC của tam giác.
b) Gọi K là trung điểm BC . Tính AK .BC .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
18. Cho tam giác ABC .
a) Gọi M, D lần lượt là trung điểm BC, AM.     
b) Biết AB  2, AC  3 và BAC  120.  
Chứng minh: DB DC  2DA  0.
Tính AB.AC và bán kính đường tròn ABC
................................................................................. ngoại tiếp tam giác .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. ............................................................................. 
19. Cho tam giác ABC AB  5, AC  8, BAC  120.    
a) Tính AB.AC và độ dài BC .
b) G là trọng tâm ABC . Tính AG.BC .
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
................................................................................. .............................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 48 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 01 – THPT BÌNH HƯNG HÒA (2017 – 2018)
Câu 1. (4,0 điểm) Giải các phương trình sau: a) 2
x  2x  6  2x  3. b) 2 2
3 x  4x  5  x  4x  9.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. x  2 1 x  6 27 c)        4 x  2 4(x  2) d) 2 x 3x x 1 (x 1). 4
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Câu 2. (1,0 điểm) Tìm tất cả các giá trị của tham số m để phương trình 2
x  2x m  2  0
có hai nghiệm dương phân biệt.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (1,0 điểm) Tìm tham số m để phương trình 2 2
x  2(m  1)x m  3  0 có hai
nghiệm phân biệt x , x thỏa mãn 2 2 x x  4. 1 2 1 2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 49 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 a b c 1 1 1
Câu 4. (1,0 điểm) Chứng minh rằng  
   với mọi a, , b c  0. bc ac ab a b c
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 5. (3,0 điểm) Trong mặt phẳng Oxy, cho ba điểm (
A 1; 3), B(4;5) và C (1;2). a) Chứng tỏ ,
A B, C là ba đỉnh của tam b) Tìm tọa độ điểm D để ABCD là hình bình
giác và tìm trọng tâm G của ABC.
hành. Tìm tọa độ trực tâm H của ABC.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................  
c) Tìm tọa độ điểm M thuộc trục hoành sao cho 2MA MC đạt giá trị nhỏ nhất.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 50 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 02 – THPT TRẦN PHÚ (2017 – 2018)
Câu 1. (1,0 điểm) Cho ba tập hợp: A  (4; 4), B  [4; 6], C  (0; 8). Tìm (A B)  C .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: (A B)  C  (0;6]. .............................................................................................................. x
Câu 2. (1,0 điểm) Tìm tập xác định của hàm số: y x  1   x  2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: D  [1;  )
 \ {2}. ..............................................................................................................
Câu 3. (1,0 điểm) Cho đường thẳng d : y x  1 và parabol 2
(P) : y x  2x. Gọi I là đỉnh 1
của (P ) và M là điểm trên d sao cho MI
 Tìm tọa độ điểm M . 2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 1 1  
Đáp số: M  ;   
.............................................................................................................................. 2 2
Câu 4. (1,0 điểm) Cho phương trình 2
x  2(m  1)x  2(m  2)  0 (1). Chứng minh rằng
phương trình (1) luôn có hai nghiệm phân biệt x , x và tìm tham số m để biểu thức 1 2 2
A  (x x )  8x x  1 đạt giá trị nhỏ nhất. 1 2 1 2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: A đạt giá trị nhỏ nhất bằng 1 khi m  3. ..........................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 51 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 5. (1,0 điểm) Giải phương trình (x  1)( 4x  1  1)  0.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: x  0. .......................................................................................................................................
Câu 6. (1,0 điểm) Giải phương trình 2 x x  2 3 4
5  x  4x  1  0.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: x  2. ....................................................................................................................................... x 8
Câu 7. (1,0 điểm) Tìm giá trị nhỏ nhất của hàm số: f (x)   khi x  2. 2 x  2
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: Giá trị nhỏ nhất của f (x ) bằng 5 tại x  6. ......................................................................
Câu 8. (1,0 điểm) Cho tam giác ABC AB  2 , AC  2 3, góc A  30. Tính độ dài
cạnh BC , bán kính đường tròn ngoại tiếp và diện tích tam giác ABC .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: BC  2, R  2, S  3. .....................................................................................................
Câu 9. (1,0 điểm) Cho tam giác ABC . Gọi M là điểm trên cạnh BC sao cho MB  2MC .   
Hãy phân tích AM theo AB , AC .
..................................................................................................................................................................
..................................................................................................................................................................  1  2 
Đáp số: AM
AB AC. ............................................................................................................ 3 3
Câu 10. (1,0 điểm) Cho tam giác ABC với (
A 1;1), B(1;2), C (3;4). Gọi M là trung điểm
BC, K là điểm trên đường thẳng AC sao cho BK AM. Tìm tọa độ điểm K.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................  3 1   
Đáp số: K   ;   
...........................................................................................................................  11 11
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 52 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 03 – THPT LÊ TRỌNG TẤN (2017 – 2018) 4 2 x   x  1
Câu 1. (1,0 điểm) Xét tính chẵn lẻ của hàm số y   x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: Hàm số lẻ..................................................................................................................................
Câu 2. (1,0 điểm) Khảo sát sự biến thiên và vẽ đồ thị của hàm số 2 y x   4x  3.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (1,0 điểm) Xác định parabol 2
(P) : y ax bx  ,
c biết (P ) đi qua ( A 1; 3) và có tọa  1 3   độ đỉnh là I   ;     2 4
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. Đáp số: 2
(P) : y x x  1. .............................................................................................................
Câu 4. (2,0 điểm) Giải các phương trình sau:
a) 5  x  1  x. b) 2
x  6x  3  x  3.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: x  8. ................................................. Đáp số: S  {5;6}. ...............................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 53 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 c) 2
x  2x  (6  x)(4  x)  12.
d) 3x  1  8  x  1.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: S  {2; 4}........................................ Đáp số: S  {8}. ..................................................
Câu 5. (1,0 điểm) Cho phương trình: 2
mx  2(m  1)x m  3  0 (m tham số). Xác định 1 1 1
m để phương trình có 2 nghiệm phân biệt x , x thỏa mãn    1 2 x x 6 1 2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 9
Đáp số: m  
 ............................................................................................................................... 11 
Câu 6. (1,0 điểm) Cho tam giác ABC AB  3, BC  4, ABC  120.  
a) Tính tích vô hướng B . A BC.
b) Tính độ dài cạnh AC.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................   Đáp số: B .
A BC  6. ................................... Đáp số: AC  37. .............................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 54 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 7. (3,0 điểm) Trong mặt phẳng Oxy, cho ABC có ( A 2; 0), B
(5; 3) và C (3;2).
a) Chứng minh ABC vuông cân.
b) Tìm điểm E sao cho A là trung điểm BE.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: Tam giác vuông cân tại C .
Đáp số: E(9;3). ...............................................
c) Tìm tọa độ điểm M , N sao cho M , N d) Tìm tọa độ điểm D sao cho ABCD là hình
chia đoạn AB thành 3 đoạn bằng nhau. bình hành.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 1    8   
.................................................................................
Đáp số: M  ;1  N  ;2  và 3  3 
Đáp số: D(4;5). ..............................................
e) Tìm tâm đường tròn ngoại tiếp I và trực tâm H của tam giác ABC .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 3 3  
Đáp số: I  ;   
.................................................................................................................................... 2 2
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 55 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 04 – THPT BÌNH TÂN (2017 – 2018)
Câu 1. (1,0 điểm) Xác định parabol 2
(P) : y ax bx  2, biết (P ) đi qua hai điểm (4 A ; 6) và B(1;4).
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. Đáp số: 2
(P) : y x
  5x  2. .........................................................................................................
Câu 2. (1,0 điểm) Tìm tham số m để phương trình 2 2
x  2mx m  2m  1  0 có hai
nghiệm phân biệt dương.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 1
Đáp số: m
 ..................................................................................................................................... 2
Câu 3. (1,0 điểm) Tìm tham số m để phương trình 2 2
x  (2m  1)x m  2  0 có hai
nghiệm thỏa mãn 3x .x  5(x x )  7  0. 1 2 1 2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: m  2. ......................................................................................................................................
Câu 4. (1,0 điểm) Giải phương trình 1  3x  2  2x.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 3
Đáp số: x
; x  1. ......................................................................................................................... 4
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 56 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019  2 2 x   y  41 
Câu 5. (1,0 điểm) Giải hệ phương trình  . x   y  1 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: S  (x;y)  {(4;5),(5; 4)}. .............................................................................................. ab
Câu 6. (1,0 điểm) Cho hai số a, b  4. Chứng minh rằng a b  4  b a  4   2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: Dấu "  " xảy ra khi và chỉ khi a b  8. ........................................................................    
Câu 7. (1,0 điểm) Cho bốn điểm ,
A B, C, D. Chứng minh rằng AB CD CA DB.
..................................................................................................................................................................
..................................................................................................................................................................
Câu 8. (1,0 điểm) Trong mặt phẳng Oxy, cho ba điểm (
A 4;1), B(2; 4), C (1;5). Tìm tọa   
độ điểm D biết DA  2BD  3CB.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: D(17; 34). .................................................................................................................................
Câu 9. (1,0 điểm) Tìm tọa độ trực tâm H của M
NP với M (1;2), N(2;1), P(3;1).
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 10. (1,0 điểm) Cho ABC có trực tâm H M là trung điểm của BC . Chứng minh   rằng: 2
4MH.MA BC .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 57 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 05 – THPT NGUYỄN HỮU CẢNH (2017 – 2018)
Câu 1. (1,0 điểm) Khảo sát sự biến thiên và vẽ đồ thị hàm số 2
y x  2x  1.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 2. (1,0 điểm) Giải và biện luận phương trình 2
m x m(x  1)  1.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (3,0 điểm) Giải các phương trình sau: x  1 x a)  1   b) 2
x  5x  4  x  4. x  1 x  2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: S  {0;5}. .......................................... Đáp số: S  {0;6}. ...............................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 58 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 1 1 c) 2 4x   2x   6  0.       2 x x x x x x d) 2 2 6 10 5( 2) 1 0.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: S  { 0  ,5; 1
 }. ................................ Đáp số: S  {3;8}. ...............................................
Câu 4. (1,0 điểm) Cho phương trình 2 2
x  (2m  1)x m  3m  2  0 với m là tham số. 1 1 3
Định m để phương trình có hai nghiệm phân biệt x , x thỏa     1 2 x x 4 1 2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: m  1. ......................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 59 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 2
 x y  5 
Câu 5. (1,0 điểm) Giải hệ phương trình  . 2 x
y x  3  0 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: (x;y)  {(1;3);(2;1)}.
Câu 6. (2,0 điểm) Trong hệ trục tọa độ Ox , y cho ABC có ( A 2;3), ( B 4;1), C( 1  ; 2  ).   
a) Tìm điểm D thỏa 2AD AC  3BC . b) CM: A
BC và tính diện tích ABC.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. Đáp số: (
D 8;5). ............................................... Đáp số: S  8. ......................................................
Câu 7. (1,0 điểm) Cho tam giác đều ABC, cạnh a. Trên hai cạnh A ,
B AC lần lượt lấy hai 1 1
điểm M, N sao cho AM A ,
B AN AC. Chứng minh: BN CM. 3 5
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 60 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 06 – THPT TRẦN QUANG KHẢI (2017 – 2018)
Câu 1. (4,0 điểm) Giải các phương trình sau: a) 2
x  5x  9  2x  1. b) 2
x  3x  3  3x  2.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: S  {1;2}. .......................................... Đáp số: S  {1}. ................................................... c) 2 2
4x x  4 4x x  4  9  0. d) 2
x  1  1  4x  3x .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................  5    1  
Đáp số: S    ;1  S     
.................................... Đáp số:
................................................. 4    2  
Câu 2. (2,0 điểm) Cho phương trình 2
x  2mx  3m  2  0.
a) Tìm tham số m để phương trình có hai nghiệm trái dấu .........................................................
..................................................................................................................................................................
.................................................................................................................................................................. 2
Đáp số: m
 ..................................................................................................................................... 3
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 61 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
b) Tìm m để phương trình có hai nghiệm phân biệt x , x thỏa mãn 2 2
x x  4  x x . 1 2 1 2 1 2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: m  0. ...................................................................................................................................... 1 1 4
Câu 3. (1,0 điểm) Với a  0, b  0, chứng minh bất đẳng thức    a b a b
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 4. (3,0 điểm) Trong mặt phẳng Ox ,
y cho tam giác ABC với ( A 1;2), ( B 2  ;6), C(9;8).
a) Chứng minh rằng tam giác ABC vuông b) Tìm M là trung điểm của AC và tính độ tại . A
dài trung tuyến BM của tam giác ABC .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ Đáp số: M(5;5), BM  5 2. .............................  
c) Gọi N là điểm trên cạnh BC sao cho BN  3NC . Tính diện tích tam giác ABN .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 3 75 Đáp số: SS   ABN 4 ABC 4
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 62 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 07 – THPT NGUYỄN THƯỢNG HIỀN (2017 – 2018)
Câu 1. (1,0 điểm) Xác định parabol 2
(P) : y ax bx  ,
c biết rằng nó đi qua gốc tọa độ O và có đỉnh I(1; 4  ).
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. Đáp số: 2
(P) : y  4x  8x. ................................................................................................................
Câu 2. (2,0 điểm) Cho phương trình 2
x  3x  2m  2  0. Tìm m để phương trình có hai
nghiệm phân biệt x , x thỏa mãn 2 2
4(x x )  17 x .x . 1 2 1 2 1 2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 43
Đáp số: m  1 hoặc m
 ......................................................................................................... 25
Câu 3. (2,0 điểm) Giải các phương trình sau: a) 2 2
x  2x  5  x  2x  3. b) 3
2x  7  x x  343.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: S  {1}. .............................................. Đáp số: S  {7}. ..................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 63 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 x 8
Câu 4. (1,0 điểm) Tìm giá trị nhỏ nhất của hàm số y   với x  1. 2 x 1
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 9
Đáp số: Giá trị nhỏ nhất của y bằng khi x  5. ......................................................................... 2
Câu 5. (2,0 điểm) Trong mặt phẳng tọa độ Ox , y cho ABC với ( A 0;4), ( B 6  ;1), C( 2  ;8).
a) Chứng minh tam giác ABC tam giác vuông. Tìm tọa độ tâm và tính bán kính đường tròn
ngoại tiếp tam giác ABC . ..............................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................  9   65
Đáp số: Tam giác ABC vuông tại A nên tâm I   4;   R   
là trung điểm BC và .....  2 2
b) Tìm tọa độ điểm M thuộc Ox sao cho tam giác MAB vuông tại M .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: M (3  5; 0) hoặc M (3  5; 0). ............................................................................... 1 2
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 64 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 6. (2,0 điểm) Cho tam giác ABC AB  2, AC  2 7 và BC  4. a) Tính góc ,
B bán kính đường tròn ngoại tiếp tam giác ABC và diện tích tam giác ABC . .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................  2 21 Đáp số: B  120 ,  R  , S
 2 3. .................................................................................. 3 ABC
b) Tính độ dài đường phân giác trong của góc B của tam giác ABC .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 4
Đáp số: BD
 ................................................................................................................................. 3    
c) Tìm tập hợp các điểm M thỏa (MA  2MB).(AB AC )  0.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................  
Đáp số: MI CB  Tập hợp các điểm M là đường thẳng đi qua I và vuông góc với CB.
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 65 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 08 – THPT HÀN THUYÊN (2017 – 2018)
x  1  x  3
Câu 1. (0,75 điểm) Tìm tập xác định của hàm số y   2 x  2x  8
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. Đáp số: D  [ 1  ; )
 \ {2}. ..............................................................................................................
Câu 2. (1,0 điểm) Tìm parabol 2
(P) : y ax bx  2, biết parabol có đỉnh I(2; 2  ).
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. Đáp số: 2
(P) : x  4x  2. ....................................................................................................................
Câu 3. (2,5 điểm) Giải các phương trình sau: 2x  3 2 2  x  a)  5  3x. 2 x       8. x  1 b)   x  1
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: S  {1}. ............................................. Đáp số: S  {7}. ..................................................
c) x  3  5  3 2  x . d) 2 2
2 x  3x  11  3x  4  x .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 4   
.................................................................................
Đáp số: S   ;2  
........................................ 3   
Đáp số: S  {2; 1
  3}. ..................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 66 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 4. (0,75 điểm) Giải và biện luận phương trình: 2
m (x  2)  7m  (6  m)(x m)  2.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. m  1
Đáp số: m  3 : PTVN, m  2 : PT có nghiệm tùy ý, m  3, m  2 : x   m  3  4 5    3
 x y x y
Câu 5. (0,75 điểm) Giải hệ phương trình  .  8 15    11 x y x y 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: (x;y)  {(3; 2
 )}. ....................................................................................................................
Câu 6. (1,5 điểm) Trong mặt phẳng Ox , y cho ABC có ( A 1
 ;1), B(3;5), C(2; 3  ).
a) Tìm D để ABCD là hình bình hành.
b) Tìm tọa độ trực tâm H của tam giác ABC .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 67 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................  15 8  
Đáp số: H   ;     
 ........................................... Đáp số: D( 2  ; 7
 ). .........................................  7 7
Câu 7. (2,5 điểm) Cho hình chữ nhật ABCD tâm ,
O có cạnh bằng AD  3 ,
a AB  2a. Lấy 1
điểm M trên cạnh AD sao cho AM AD. 3     
a) Chứng minh rằng OA OB OC OD  0. ...........................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................  
b) Tính tích vô hướng: AB.AC. .........................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................   Đáp số: 2
AB.AC  4a . ........................................................................................................................  
c) Gọi I là trung điểm của MC. Tính góc giữa hai véctơ BM AI. ......................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................  
Đáp số: (BM;AI )  90 .
 .....................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 68 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 09 – THPT NGUYỄN CHÍ THANH (2017 – 2018)
x  2018  x  2018
Câu 1. (1,0 điểm) Xét tính chẵn lẻ của hàm số y f (x)   2 x  9
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 2. (1,0 điểm) Xác định parabol 2
(P) : y ax bx  ,
c biết (P) có trục đối xứng x  2 và đi qua các điểm ( A 4;2), B(1; 1  ).
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (1,0 điểm) Giải phương trình 2
x  2x  6  1  2x.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. x
  y  8  0 
Câu 4. (1,0 điểm) Giải hệ phương trình  . 2 2 x
y  6x  2y  0 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 69 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 5. (1,0 điểm) Tính tuổi của cha hiện nay, biết rằng trước đây hai năm thì tuổi cha gấp bảy
lần tuổi con và sau ba năm nữa thì tuổi cha chỉ còn gấp bốn lần tuổi con.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 6. (1,0 điểm) Chứng minh (a  1) b  (b  1) a  1  a b a ; b  , a b  0.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 
Câu 7. (2,0 điểm) Cho tam giác ABC AB  5, AC  8, BAC  60.
a) Tìm độ dài cạnh BC và bán kính đường b) Tính diện tích tam giác ABC và bán kính
tròn ngoại tiếp tam giác ABC .
đường tròn nội tiếp tam giác ABC .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 70 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 8. (1,0 điểm) Trong mặt phẳng tọa độ Ox , y cho hai điểm (
A 1; 3), B(4;2). Chứng minh
tam giác OAB vuông cân và tính diện tích tam giác OAB.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 9. (1,0 điểm) Trong mặt phẳng tọa độ Ox ,
y cho tam giác ABC biết ( A 2  ; 3), B(4;1) và C(0; 3
 ). Tìm tọa độ điểm A là hình chiếu vuông góc của A lên BC.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 71 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 10 – THPT TÂY THẠNH (2017 – 2018)
Câu 1. (1,0 điểm) Tìm tọa độ giao điểm của đường thẳng d : y  2  x và 2 ( )
P : y  2x 2x 2.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. Đáp số: ( A 1; 2  ),B( 1
 ;2). ..................................................................................................................
Câu 2. (1,0 điểm) Lập bảng biến thiên và vẽ đồ thị của hàm số 2
y  2x  4x  1.
............................................................................................ Đồ thị của parabol:
............................................................................................ ..................................................................
............................................................................................ ..................................................................
............................................................................................ ..................................................................
............................................................................................ ..................................................................
............................................................................................ ..................................................................
............................................................................................ ..................................................................
............................................................................................ ..................................................................
Câu 3. (1,0 điểm) Cho parabol 2
(P) : y ax bx  ,
c (a  0) có đồ thị như hình vẽ bên dưới.
Hãy trình bày cách tìm a, ,
b c và suy ra tổng 3a b c.
............................................................................................................
............................................................................................................
............................................................................................................
............................................................................................................
............................................................................................................
............................................................................................................
............................................................................................................
Đáp số: a  1, b  2  , c  1
và 3a b c  0. .......................................................................
Câu 4. (1,0 điểm) Giải phương trình 2
2x x  2  x  .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: x  2. ....................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 72 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 5. (1,0 điểm) Giải phương trình 4 2
(x  1)  3(x  2x)  3  0.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: x  1  , x  1   3, x  1
  3. .................................................................................
Câu 6. (1,0 điểm) Tìm tất cả các giá trị của tham số m để phương trình 2 2
x  (m  1)x  1  0
có hai nghiệm phân biệt sao cho 2 2 x x  0. 1 2
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: m  1
 , m  1. .....................................................................................................................
Câu 7. (1,0 điểm) Tìm tham số m để phương trình 2
(m  1)x  (2m  1)x m  0 có nghiệm
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: m. ...........................................................................................................................................   
Câu 8. (1,5 điểm) Cho tam giác ABC và điểm M trên cạnh AB sao cho 2MA MB  0,
G là trọng tâm tam giác ACM.      
a) Chứng minh: 3CM  2CA CB.
b) Phân tích GB theo hai véctơ G , A GC.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................   
............................................................................ Đáp số: GB  5GA  3GC. .............................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 73 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 9. (1,5 điểm) Trong mặt phẳng tọa độ Ox , y cho ABC có ( A 0;2), B(0; 3  ), C(2; 1  ).    
b) Tìm tọa độ điểm D Ox để ABCD là hình
a) Tìm tọa độ G thỏa GA GB GC  0.
thang với hai đáy là A , B CD.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ ................................................................................. 2 2  
.................................................................................
Đáp số: G  ;   
......................................... 3 3
Đáp số: D(2; 0). ....................................................
ĐỀ SỐ 11 – THPT CHUYÊN LÊ HỒNG PHONG (2017 – 2018)
Câu 1. (1,0 điểm) Giải phương trình: 2
2x  3x  1  x  1.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................  2 2 x
y  3xy  1 
Câu 2. (1,0 điểm) Giải hệ phương trình:  . x
  y xy  1 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 3. (1,0 điểm) Tìm parabol 2
(P) : y ax bx  ,
c (a  0), biết rằng (P) có đỉnh I(2;1) và đi qua điểm ( A 3;2).
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 74 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 4. (1,0 điểm) Cho phương trình 2
(x  3)(x  2mx m  4)  0 (1) (m là tham số). Định
m để phương trình (1) có ba nghiệm phân biệt, trong đó có hai nghiệm dương và một nghiệm âm.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. m
 x y  2m  1 
Câu 5. (1,0 điểm) Tìm các giá trị nguyên âm của m để hệ phương trình  x
  my  3m 
có nghiệm duy nhất (x;y) sao cho x, y là các số nguyên.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 6. (1,0 điểm) Định m để bất phương trình 2
(m  2m  3)x  2m  1  0 vô nghiệm.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 75 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 7. (1,0 điểm) Trong mặt phẳng tọa độ Ox ,
y cho tam giác ABC với (
A 1;2), B(3;5) và
C(4;7). Tìm tọa độ trực tâm H của tam giác ABC.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................  
Câu 8. (1,0 điểm) Cho tam giác ABC AB  7, BC  8, BC  13. Tính AB.AC.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 
Câu 9. (1,5 điểm) Cho tam giác ABC AB  2, AC  3 và BAC  120. Tính độ dài
BC, diện tích tam giác ABC, bán kính đường tròn ngoại tiếp và độ dài đường phân
giác trong AD của tam giác ABC .
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 1 2
Câu 10. (0,5 điểm) Tìm giá trị nhỏ nhất của biểu thức f (x)   với 0  x  1. x 1  x
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 76 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 12 – THPT NGUYỄN THỊ MINH KHAI (2017 – 2018)
Câu 1. (3,0 điểm) Giải các phương trình và hệ phương trình sau: a) 2
1  5  3x x  2x. ...................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: x  1. .................................................................................................................................... b) 2 3
3x  5  x  1  4  4x x  3x.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: x  3. ....................................................................................................................................... x
  y xy  5  c)   2 2 x   y  5 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: (x;y)  {(2;1);(1;2)}. ..............................................................................................................
Câu 2. (2,0 điểm) Tìm tham số m sao cho: a) Phương trình 2 2
m x  4x  2m m có b) Phương trình 2
x  2mx  4  0 có hai nghiệm tủy ý.
nghiệm x , x thỏa mãn x x  2 2. 1 2 1 2
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: m  2. ................................................ Đáp số: m   6. ...............................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 77 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
Câu 3. (1,0 điểm) Tìm giá trị lớn nhất của hàm số 2
y x 1  x với 0  x  1.
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Câu 4. (2,0 điểm) Cho tam giác ABC K là trung điểm của BC . Gọi I, J là các điểm thỏa  1    mãn AI
AC và 2JB JC. 3
a) Chứng minh rằng: ba điểm K, I, J
b) Tìm tập hợp các điểm M thỏa mãn:      thẳng hàng.
2MA  3MB  2MC MB MC .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................   1
Đáp số: KJ  3IK K, I, J thẳng hàng Đáp số: Đường tròn tâm ,
L bán kính BC. 3
Câu 5. (2,0 điểm) Trong mặt phẳng Ox , y cho ( A 2
 ;2), B(1; 0), C(3; 3  ).
a) Tìm tọa độ trực tâm H của tam giác b) Tìm D Oy để ABCD là hình thang với ABC. đáy lớn là BC .
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: H (13;12).
Đáp số: Không có điểm D thỏa giả thiết.
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 78 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
ĐỀ SỐ 13 – THPT BÙI THỊ XUÂN (2017 – 2018)
Câu 1. (3,0 điểm) Cho phương trình 2
(m  1)x  2(m  4)x m  1  0.
a) Tìm m để phương trình trên có nghiệm. .....................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 17
Đáp số: m  
 ............................................................................................................................... 8 2
b) Tìm m để phương trình có hai nghiệm x , x trái dấu sao cho x
 .......................... 1 2 1 x2
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 1
Đáp số: m
 ..................................................................................................................................... 3
c) Tìm tất cả giá trị nguyên âm của tham số m để phương trình có hai nghiệm x , x đều là 1 2
các số nguyên. ...................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: m  1 và thử lại. ................................................................................................................ Câu 2. (3,0 điểm)
a) Giải và biện luận phương trình 2
m (x  2)  24  16x  2m theo tham số m. .....................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
.................................................................................................................................................................. 2(m  3)  
Đáp số: m  4  S  ,
m  4  S  ,
m  4  S      m 4   
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 79 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 m
 x  2y m  2 
b) Định m để hệ phương trình  2 2
vô nghiệm.......................................... (
m 1) x y m  1 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: m  2. ......................................................................................................................................  2 2 (
x  2)  6(x  2)y  4y  20 
c) Giải hệ phương trình: 
. .......................................................... 2 2 (
x  3)  2 (2y  1) 
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
..................................................................................................................................................................
Đáp số: x  4  , y  1
 . ....................................................................................................................
Câu 3. (2,0 điểm) Trong mặt phẳng tọa độ Ox ,
y cho tam giác ABC ó ( A 2  ;4), B( 3  ; 1  ), C(1; 1
 ) và G là trọng tâm tam giác ABC.   
a) Tìm M thỏa AM  3AG BC.
b) Tìm tâm đường tròn ngoại tiếp ABC.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 80 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
Đáp số: M(4;2). Đáp số: I( 1  ; 2  ). 
Câu 4. (2,0 điểm) Cho tam giác ABC AB  3, AC  5 và BAC  60. Gọi M là trung  
điểm của AB E là điểm trên cạnh AC sao cho AC  4AE.  
a) Tính CM và bán kính nội tiếp AMC. b) Tính tích vô hướng BE.AC.
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................
............................................................................ .................................................................................   79 15 3 5
Đáp số: CM  và S  
Đáp số: BE.AC    2 AMC 8 4
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 81 -
¤n tËp thi häc k× 1 líp 10 n¨m häc 2018 – 2019 MỤC LỤC Trang
Chuyên đề 1. Parabol & một số vấn đề liên quan ..................................................................... 1
Chuyên đề 2. Giải và biện luận phương trình bậc nhất ........................................................... 5
Chuyên đề 3. Bài toán chứa tham số trong phương trình bậc hai .......................................... 7
Chuyên đề 4. Phương trình quy về phương trình bậc hai ....................................................... 13
Chuyên đề 5. Bất đẳng thức và GTLN, GTNN .......................................................................... 23
Chuyên đề 6. Hệ trục tọa độ ......................................................................................................... 29
Chuyên đề 7. Tích vô hướng và hệ thức lượng ......................................................................... 42
Đề số 01. THPT Bình Hưng Hòa (2017 – 2018) ................................................................... 49
Đề số 02. THPT Trần Phú (2017 – 2018) .............................................................................. 51
Đề số 03. THPT Lê Trọng Tấn (2017 – 2018) ....................................................................... 53
Đề số 04. THPT Bình Tân (2017 – 2018) ............................................................................... 56
Đề số 05. THPT Nguyễn Hữu Cảnh (2017 – 2018) ............................................................. 58
Đề số 06. THPT Trần Quang Khải (2017 – 2018) ................................................................ 61
Đề số 07. THPT Nguyễn Thượng Hiền (2017 – 2018) ........................................................ 63
Đề số 08. THPT Hàn Thuyên (2017 – 2018) ......................................................................... 66
Đề số 09. THPT Nguyễn Chí Thanh (2017 – 2018) ............................................................. 69
Đề số 10. THPT Tây Thạnh (2017 – 2018) ............................................................................ 72
Đề số 11. THPT Chuyên Lê Hồng Phong (2017 – 2018) .................................................... 74
Đề số 12. THPT Nguyễn Thị Minh Khai (2017 – 2018) ...................................................... 77
Đề số 13. THPT Bùi Thị Xuân (2017 – 2018) ........................................................................ 79
Chóc c¸c trß rÌn luyÖn tèt vµ ®¹t kÕt qu¶ cao trong kú thi s¾p ®Õn !
Biªn so¹n & gi¶ng d¹y: Ths. Lª V¨n §oµn – 0933.755.607 Trang - 82 -