PHƯƠNG PHÁP KRAME
Bài 1: t h phương trình tuyến tính 3 n:
2 x+ y z=3
3 x 2 y + 4 z=7
x+ 3 y+ 2 z=4
c 1: Viết ma trn h s tính đnh thc
Ma trn h s:
2
1
1
A
=
3
2
4
1
3
2
Định thc det(A) ca ma trn A :
2
4
3
4
3
2
= 2*det
3
2
- det
1
2
- det
1
3
= -45
c 2: Tính định thc các ma trn thay ct
Ma trn D1 (thay ct 1 bng vế phi):
3
1
1
D1 =
7
2
4
4 3 2
2
3
1
tương t như tính D => detD1 = - 75
D2
=
D3
=
3 7 4
1 4 2
2 1 3
3
2
7
1 3 4
tương t như nh D => detD2 = - 15
tương t như nh D => detD3 = - 30
c 3: Tính nghim
x
=
D 1
D
y
=
D 2
D
z
=
D 3
D
= 5/3
= 1/3
= 2/3
{
2
1
D = det
3
2
1
D
!=
0
3
Vy nghim ca h (5/3, 1/3, 2/3)
Bài 2: t h phương trình tuyến tính 4 n:
x+y+z+w=10
2x−y+3z−w=5
3x+2y−z+4w=7
x−2y+2z+3w=8
c 1: Viết ma trn h s tính đnh thc
Ma trn h s:
D
=
1
1
1
1
2
-1
3
-1
3
2
-1
4
1
-2
2
3
Định thức det(A) của ma trận A là:
1
3
1
2
3
1
2
1
1
D = det D
=
2
1
4
-
3
1
4
+
3
2
4
2
2
3
1
2
3
1
2
3
2
1
-
3 2
3
1
=
65
1
2
2
D
!=
0
c 2: Tính định thc các ma trn thay ct
Ma trn D1 (thay ct 1 bng vế phi):
D1
=
10
1
1
1
5
-1
3
-1
7
2
-1
4
8
-2
2
3
D2
=
tương t như tính D => detD1 = - 139
1 10 1 1
2 5 3 -1
4
3
tương t như tính D => detD2 = 272
D3
=
1
3
1
7
1
-1
1
2
1
-1
8
3
2
-1
3
2
-1
4
1
-2
2
3
tương t như tính D => detD3 = 348
D4
=
1 1 1 1
2 -1 3 -1
3 2 -1 4
1 -2 2 3
tương t như tính D => detD4 = 169
c 3: Tính nghim
x
=
D 1
D
y
=
D 2
D
z
=
D 3
D
w
=
D 4
D
= -2.13
= 4.18
= 5.35
= 2.6
Vy nghim ca h (-2.13, 4.18, 5.35 ,2.6)

Preview text:

PHƯƠNG PHÁP KRAME
Bài 1: Xét hệ phương trình tuyến tính 3 ẩn:
2 x+ y z=3
3 x −2 y + 4 z=7
{ x+ 3 y+ 2 z=4
Bước 1: Viết ma trận hệ số và tính định thức Ma trận hệ số: 2 1 −1 A = 3 −2 4 1 3 2
Định thức det(A) của ma trận A là: 2 1 −1 −2 4 3 4 3 −2 D = det 3 −2 4 = 2*det - det - det = -45 3 2 1 2 1 3 1 3 2 Vì D != 0
Bước 2: Tính định thức các ma trận thay cột
Ma trận D1 (thay cột 1 bằng vế phải): 3 1 −1 D1 = 7 −2 4
tương tự như tính D => detD1 = - 75 4 3 2 2 3 −1 D2 = 3 7 4
tương tự như tính D => detD2 = - 15 1 4 2 2 1 3 D3 = 3 −2 7
tương tự như tính D => detD3 = - 30 1 3 4 Bước 3: Tính nghiệm x = D 1 = 5/3 D y = D 2 = 1/3 D z = D 3 = 2/3 D
⇨ Vậy nghiệm của hệ là (5/3, 1/3, 2/3)
Bài 2: Xét hệ phương trình tuyến tính 4 ẩn: x+y+z+w=10 2x−y+3z−w=5 3x+2y−z+4w=7 x−2y+2z+3w=8
Bước 1: Viết ma trận hệ số và tính định thức Ma trận hệ số: D = 1 1 1 1 2 -1 3 -1 3 2 -1 4 1 -2 2 3
Định thức det(A) của ma trận A là: −1 3 −1 2 3 −1 2 −1 −1 D = det D = 2 −1 4 - 3 −1 4 + 3 2 4 −2 2 3 1 2 3 1 −2 3 2 −1 3 - 3 2 −1 = 65 1 −2 2 Vì D != 0
Bước 2: Tính định thức các ma trận thay cột
Ma trận D1 (thay cột 1 bằng vế phải): D1 = 10 1 1 1 5 -1 3 -1 7 2 -1 4 8 -2 2 3
tương tự như tính D => detD1 = - 139 D2 = 1 10 1 1 2 5 3 -1 4 1 3 1 7 1 -1 1 3 2 1 -18 3 2 -1 3 2 -1 4
tương tự như tính D => detD2 = 272 D3 = 1 -2 2 3
tương tự như tính D => detD3 = 348 D4 = 1 1 1 1 2 -1 3 -1 3 2 -1 4 1 -2 2 3
tương tự như tính D => detD4 = 169 Bước 3: Tính nghiệm x = D 1 = -2.13 D y = D 2 = 4.18 D z = D 3 = 5.35 D w = D 4 = 2.6 D
⇨ Vậy nghiệm của hệ là (-2.13, 4.18, 5.35 ,2.6)