Đề giữa học kì 2 Toán 8 năm 2022 – 2023 trường THCS Ngô Sĩ Liên – Hà Nội

Xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Ngô Sĩ Liên, thành phố Hà Nội; đề thi hình thức 100% trắc nghiệm với 06 bài toán, thời gian làm bài 90 phút.

Chủ đề:
Môn:

Toán 8 1.7 K tài liệu

Thông tin:
4 trang 10 tháng trước

Bình luận

Vui lòng đăng nhập hoặc đăng ký để gửi bình luận.

Đề giữa học kì 2 Toán 8 năm 2022 – 2023 trường THCS Ngô Sĩ Liên – Hà Nội

Xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra chất lượng giữa học kì 2 môn Toán 8 năm học 2022 – 2023 trường THCS Ngô Sĩ Liên, thành phố Hà Nội; đề thi hình thức 100% trắc nghiệm với 06 bài toán, thời gian làm bài 90 phút.

52 26 lượt tải Tải xuống
TRƯỜNG THCS NGÔ SĨ LIÊN ĐỀ KIM TRA GIA HC KÌ II MÔN TOÁN LP 8
Năm học 2022 2023 Thi gian làm bài: 90 phút
H và tên hc sinh: ...................................................................... Lp: ...............................
Bài 1 (2,0 điểm). Cho hai biu thc
5
7
x
A
x
2
2
7 3 49
7 7 49
xx
B
x x x
với x ≠ ±7, x 5
a. Tính giá tr ca biu thc A khi
9x 
.
b. Chng t rng
2
7
x
B
x
.
c. Tìm giá tr nguyên ca x để biu thc
:C B A
đạt giá tr nguyên.
Bài 2 (2,0 điểm). Gii các phương trình sau:
a.
8 2( 1) 20x
b.
2 4 14 4 0x x x
c.
Bài 3 (2,0 điểm). Gii bài toán sau đây bng cách lập phương trình:
Mt nghip kí hợp đồng dt mt s tm thm len trong 17 ngày. Do ci tiến thuật, năng
sut mỗi ngày tăng thêm 7 tấm nên không nhng nghiệp đã hoàn thành kế hoch sớm hơn 2 ngày
mà còn dệt thêm được 7 tm na. Tính s thm len mà xí nghip phi dt theo hợp đồng.
Bài 4 (1,0 điểm).
Để đo chiều cao của trường hc, bạn Phúc đã dùng ống
ngắm như hình vẽ thước y đ đo được CA = 2m,
CA
1
= 40m. Tính chiều cao trường hc mà bạn Phúc đã
đo được, biết rng chiu cao ca ng ngm AB = 1,4m.
(Gi s các đoạn AB, A
1
B
1
đều vuông góc vi mt đất).
Bài 5 (2,5 điểm). Cho tam giác ABC vuông ti A (AB < AC) có AH là đường cao.
a. Chng minh rng
CBA CAH
2
.AC BC HC
.
b. Tia phân giác ca góc
AHC
ct AC ti K. Biết rng độ dài các cnh AH HC lần t
6cm và 8cm. Tính độ dài BC và AK.
c. Ly M là trung điểm của BC, N là trung điểm ca AB. Qua B k đưng thng vuông góc vi
CB ct đưng thng MN ti D. Ni CD ct AH ti I. Chứng minh I là trung đim ca AH.
Bài 6 (0,5 điểm). Cho
0xy
2
2 5 2x y x y
. Tính giá tr ca biu thc
xy
H
xy
.
Hết
ng dn chm
Bài
Ni dung
Đim
Bài 1
2,0
a.
Thay x = –9 (tmđk) vào biểu thc A
0,25
Tính đưc A = 7
0,25
b.
2
2 2 2
7 7 7
3 49
49 49 49
x x x
x
B
x x x

0,25
2
2
14 2
49
xx
B
x
0,25
2x 7
77
x
B
xx


0,25
2x
7
B
x
0,25
c.
2x 10
: 2 5 10
55
C B A Z x U
xx

Loi nghim
7x
5;0;3;4;6;10;15x
0.5
Không loi nghim tr 0,25
Bài 2
2,0
a.
Tính đưc
7x
0,5
b.
Biến đổi đưc
2x 14 4 0x
0,25
TH1:
7x
0,25
TH2:
4x
0,25
c.
: 0 ; 2DK x x
0,25
7
0
2
x
xx

0,25
7x
(tmđk)
0,25
Bài 3
2,0
Gi s thm len phi dt trong 1 ny theo hợp đồng là
x
(tm,
0x
)
0,25
Lp luận để rút ra phương trình:
17 7 15 7xx
1
Giải phương trình tính được:
49x
(tmđk)
0,5
Vy, s tm thm phi dt theo hợp đồng là:
17.49 833
(tm)
0,25
Cách làm khác ra đưc kết qu đúng cho điểm ti đa
Bài
Ni dung
Đim
Bài 4
1,0
Ch ra đưc
AB
//
11
AB
0,25
Theo Talet ta có:
1 1 1
AB CA
A B CA
0,25
Thay s tính được:
11
28AB
(m)
0,25
Vy chiu cao ca trưng hc là 28m
0,25
Bài 5
2,5
V hình đúng đến câu a
0,25
a.
Xét tam giác:
CBA
CAH
C
chung
90
o
AHC BAC
CBA CAH g g
0,5
2
.
AC HC
AC HC BC dpcm
BC AC
0,25
b.
Theo Pytago
2 2 2
100 10AC AH HC AC cm
0,25
Theo câu a,
2
. 12,5AC HC BC BC cm
0,25
Xét
AHC
có AK là phân giác
KA HA
tc
KC HC

0,25
30
7
KA cm
0,25
c.
Gi E là giao đim ca DB và AC.
Chng minh D là trung điểm ca BE. Chng minh BE // AH
Theo Talet :
IH IC
IH IA
DB CD
IA IC
DB DE
DE CD

.
DB BE cmt IA IH
0,5
Bài 6
0,5
Theo đ bài ta có:
22
2x 2 5xyy
2
2
29
2
x y xy
x y xy


2
2
2
2
9
2
xy
H
xy
0,25
0 0 3x y H H
0,25
E
K
I
N
M
H
D
C
B
A
| 1/4

Preview text:

TRƯỜNG THCS NGÔ SĨ LIÊN ĐỀ KIỂM TRA GIỮA HỌC KÌ II MÔN TOÁN LỚP 8
Năm học 2022 – 2023

Thời gian làm bài: 90 phút
Họ và tên học sinh: ...................................................................... Lớp: ............................... x  5 2 7 x 3x  49
Bài 1 (2,0 điểm). Cho hai biểu thức A B    x  và 7 2 x  7 x  7 x
với x ≠ ±7, x ≠ 5 49
a. Tính giá trị của biểu thức A khi x  9  . 2  x
b. Chứng tỏ rằng B x  . 7
c. Tìm giá trị nguyên của x để biểu thức C B : A đạt giá trị nguyên.
Bài 2 (2,0 điểm). Giải các phương trình sau:
a. 8  2(x 1)  20
b. 2x x  4 144  x  0 3 1 x 1 c.   x x  2 x(x  2)
Bài 3 (2,0 điểm). Giải bài toán sau đây bằng cách lập phương trình:
Một xí nghiệp kí hợp đồng dệt một số tấm thảm len trong 17 ngày. Do cải tiến kĩ thuật, năng
suất mỗi ngày tăng thêm 7 tấm nên không những xí nghiệp đã hoàn thành kế hoạch sớm hơn 2 ngày
mà còn dệt thêm được 7 tấm nữa. Tính số thảm len mà xí nghiệp phải dệt theo hợp đồng.
Bài 4 (1,0 điểm).
Để đo chiều cao của trường học, bạn Phúc đã dùng ống
ngắm như hình vẽ và thước dây để đo được CA = 2m,
CA1 = 40m. Tính chiều cao trường học mà bạn Phúc đã
đo được, biết rằng chiều cao của ống ngắm AB = 1,4m.
(Giả sử các đoạn AB, A1B1 đều vuông góc với mặt đất).
Bài 5 (2,5 điểm). Cho tam giác ABC vuông tại A (AB < AC) có AH là đường cao.
a. Chứng minh rằng CBA CAH và 2 AC B . C HC .
b. Tia phân giác của góc AHC cắt AC tại K. Biết rằng độ dài các cạnh AH và HC lần lượt là
6cm và 8cm. Tính độ dài BC và AK.
c. Lấy M là trung điểm của BC, N là trung điểm của AB. Qua B kẻ đường thẳng vuông góc với
CB cắt đường thẳng MN tại D. Nối CD cắt AH tại I. Chứng minh I là trung điểm của AH. x y
Bài 6 (0,5 điểm). Cho x y  0 và 2
2x y 5x  2 y . Tính giá trị của biểu thức H x  . y – Hết –
Hướng dẫn chấm Bài Nội dung Điểm Bài 1 2,0
Thay x = –9 (tmđk) vào biểu thức A 0,25 a. Tính được A = 7 0,25 7 x  7 x x  7 2 3x  49 B    2 2 2 x  49 x  49 x  0,25 49 2 14x  2x B  2 x  0,25 49 b. 2  x x  7 B   0,25
x  7 x  7 2x  B   0,25 x  7 2  x 10
C B : A   2  
Z x  5U 10 x  5 x  5 c.
Loại nghiệm x  7 0.5  x  5  ;0;3;4;6;10;  15
Không loại nghiệm trừ 0,25 Bài 2 2,0 a. Tính được x  7 0,5
Biến đổi được 2x 14 x  4  0 0,25 b. TH1: x  7 0,25 TH2: x  4 0,25
DK : x  0 ; x  2 0,25 x  7 c.   0,25 x x   0 2  x  7 (tmđk) 0,25 Bài 3 2,0
Gọi số thảm len phải dệt trong 1 ngày theo hợp đồng là x (tấm, x  0 ) 0,25
Lập luận để rút ra phương trình: 17x  7  15 x  7 1
Giải phương trình tính được: x  49 (tmđk) 0,5
Vậy, số tấm thảm phải dệt theo hợp đồng là: 17.49  833 (tấm) 0,25
Cách làm khác ra được kết quả đúng cho điểm tối đa Bài Nội dung Điểm Bài 4 1,0
Chỉ ra được AB // A B 0,25 1 1 AB CA Theo Talet ta có:  0,25 A B CA 1 1 1
Thay số tính được: A B  28 (m) 0,25 1 1
Vậy chiều cao của trường học là 28m 0,25 Bài 5 2,5
Vẽ hình đúng đến câu a B H 0,25 N D M I E A K C Xét tam giác: CBACAH C chung 0,5   a. 90o AHC BACCBA C
AH g g AC HC 2  
AC HC.BC dpcm 0,25 BC AC Theo Pytago 2 2 2
AC AH HC  100  AC  10cm 0,25 Theo câu a, 2
AC HC.BC BC  12,5cm 0,25 b. KA HA Xét A
HC có AK là phân giác  tc 0,25 KC HC 30  KA  cm 0,25 7
Gọi E là giao điểm của DB và AC.
Chứng minh D là trung điểm của BE. Chứng minh BE // AH IH IC  c.   0,5 DB CD IH IA Theo Talet :   
. Mà DB BE cmt   IA IH IA IC DB DE   DE CD   Bài 6 0,5 2
  x y2  9xy 2 x y 2  2 Theo đề bài ta có: 2 2
2x  2 y  5xy    H   9 0,25  2 2
  x y2  xy 2 x y
x y  0  H  0  H  3 0,25