Đề học sinh giỏi Toán 10 năm 2022 – 2023 cụm Tân Yên – Bắc Giang
Giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi văn hóa cấp cơ sở môn Toán 10 năm học 2022 – 2023 cụm Tân Yên, tỉnh Bắc Giang
Preview text:
SỞ GD & ĐT BẮC GIANG
ĐỀ THI HỌC SINH GIỎI VĂN HÓA CỤM HUYỆN TÂN YÊN
CỤM HUYỆN TÂN YÊN NĂM HỌC 2022-2023 ĐỀ THI CHÍNH THỨC MÔN: TOÁN LỚP 10 (Đề thi có 5 trang)
Thời gian làm bài: 120 phút, không kể thời gian phát đề Đề 101
Họ, tên thí sinh:.....................................................................SBD: .............................
I. PHẦN TRẮC NGHIỆM ( 14,0 điểm) CÂU 1: 1
Tập xác định của hàm số 2 y
x 3x 2 là x 3 A. 3 ; 2 1 ;. B. 1 ;. C. 3 ;. D. ; 2 1 ;.
CÂU 2: Cho đồ thị hàm số y f x 2
ax bx ,
c a 0 như hình vẽ. Đặt 2
b 4ac . Mệnh đề nào dưới đây là đúng ? 0 0 0 0 A. . B. . C. . D. . a 0 a 0 a 0 a 0
CÂU 3: Gọi S là tập hợp chứa các giá trị của tham số m để Parabol P 2
y x m 2 : 2
1 x m 3 cắt
trục hoành tại hai điểm phân biệt có hoành độ x , x sao cho x .x 1. Tính tổng các phần tử của tập S . 1 2 1 2 A. 0. B. 2. C. 4. D. -2.
CÂU 4: Cho bất phương trình : 2
x m 2 2 4
1 x 15m 2m 7 0 . Có bao nhiêu giá trị nguyên của
tham số m để bất phương trình trên có tập nghiệm là ? A. 3. B. 2. C. 0. D. 1.
CÂU 5: Cho bốn điểm ,
A B, C, D phân biệt. Số vectơ khác 0 có điểm đầu và điểm cuối lấy từ các điểm ,
A B, C, D là A. 10. B. 14. C. 8. D. 12.
CÂU 6: Cho tam giác ABC có ·
AC = 2 3, BC = 6, BAC = 150° . Độ dài đoạn thẳng AB là A. AB = - 3+ 33 . B. AB = 3 + 33 . C. AB = 2 + 13 . D. AB = - 2 + 13 . ìï x + y £ 5 ïïï x+ 2y£ 6 CÂU 7: ï
Cho hai số thực x, y thỏa mãn í
. Giá trị lớn nhất của biểu thức F = 3x + 5 y bằng ï x ³ 0 ïïïï0£ y£ 2 î A. F = 15. B. F = 17. C. F = 12. D. F = 24. max max max max
Trang 1/5 - Mã đề thi 101 CÂU 8: 2 Cho cos với 0 0
0 180 . Tính giá trị biểu thức cot 3 tan P . 3 2 cot tan 19 19 19 19 A. P . B. P . C. P . D. P . 3 3 13 13
CÂU 9: Cho tam thức f x 2
x 8x 16 . Khẳng định nào sau đây là đúng?
A. Phương trình f x 0 vô nghiệm.
B. f x 0 khi x 4 .
C. f x 0 với mọi x .
D. f x 0 với mọi x .
CÂU 10: Cho các vectơ a,b biết a 1, b 2 và góc tạo bởi hai vectơ bằng 0
60 . Đặt u a 2b ,
v a b , khi đó cosu,v bằng 7 2 7 2 7 7 A. . B. . C. . D. . 14 7 7 14
CÂU 11: Cho tam giác ABC có AB = 5, BC = 6, CA = 7. Các đường phân giác trong của tam giác ABC
đi qua A, B cắt BC và AC lần lượt tại M, N. Mệnh đề nào dưới đây đúng ? 5 5 7 5 A. MN AB AC MN AB AC 12 132 . B. 12 132 . 7 5 7 5 C. MN AB AC MN AB AC 12 78 . D. 11 132 . 2 x 2 3 khi x 2
CÂU 12: Cho hàm số f x x 1
. Tính P 3 f 2 4 f 2 . 2 x 1 khi x 2 A. P 23. B. P 6. C. P 17. D. P 23.
CÂU 13: Cho hình vuông ABCD cạnh bằng 3 . Tính giá trị biểu thức P AB ADBD BC . A. 9 2. B. 9. C. 3. D. 3 2.
CÂU 14: Trong mặt phẳng tọa độ Oxy , cho A 4 ;2, B6; 4 ,C 0; 6
. Tìm tọa độ điểm D sao cho
ABCD là hình bình hành.
A. D 10;0.
B. D 10;6. C. D 1 0;0. D. D 1 0;6.
CÂU 15: Tính góc A của tam giác ABC biết các cạnh a,b, c thỏa mãn 2 2 2 2 b b a c a c . A. 0 45 . B. 0 120 . C. 0 60 . D. 0 30 .
CÂU 16: Gọi S là tập nghiệm của phương trình x 2 2 3
10 x x x 12 . Số phần tử của tập S là A. 3. B. 1. C. 0. D. 2. CÂU 17: 9 Cho hai số dương , x y thỏa mãn 4 x +
= 25 . Giá trị nhỏ nhất của biểu thức A = + y bằng y x 3 1 A. . B. 2. C. . D. 1. 4 2 B B 3 3 sin cos
cos A C
CÂU 18: Cho tam giác ABC . Giá trị biểu thức 2 2 T . tan B bằng A C A C sin B cos sin 2 2 A. 1. B. 0. C. -1. D. 2.
Trang 2/5 - Mã đề thi 101
CÂU 19: Tìm tất cả các giá trị của tham số m sao cho phương trình 2
x 2m
1 x 9m 5 0 có hai nghiệm âm phân biệt. 5 m 1 1 m 1 A. m 6. B. 9 . C. . D. 1 m 6. m 6 m 6 CÂU 20: Cho hàm số 2
y ax bx c có đồ thị như hình dưới đây. y 1 x 1 O 3
Khẳng định nào sau đây đúng ?
A. a 0 , b 0, c 0 .
B. a 0 , b 0 , c 0 .
C. a 0 , b 0 , c 0 .
D. a 0 , b 0 , c 0 .
CÂU 21: Nhân dịp tết nguyên đán 2023, bà X gói bánh chưng để bán. Người này ước tính rằng nguyên
liệu để làm mỗi cái bánh là 20 nghìn đồng, và nếu mỗi cái bánh được bán ra với giá x nghìn đồng thì mỗi
ngày khách hàng sẽ mua (80 x ) cái. Hỏi bà X bán mỗi cái bánh chưng giá bao nhiêu thì thu được lãi nhiều nhất ? A. 45 nghìn đồng. B. 40 nghìn đồng. C. 50 nghìn đồng. D. 55 nghìn đồng. CÂU 22: Cho parabol 2
y ax bx c có đồ thị ở hình dưới đây.
Giá trị của biểu thức 2 2 2
a b 2c là A. 20. B. 16. C. 22. D. 18.
CÂU 23: Cho tam giác đều ABC cạnh bằng 5 . Gọi G là trọng tâm tam giác ABC và I là trung điểm
của AG . Tính BA BG . 5 21 10 21 5 21 15 5 3 A. . B. . C. . D. . 3 3 6 3
CÂU 24: Một lớp học có 48 học sinh, trong đó có 30 em biết chơi bóng chuyền, 25 em biết chơi bóng đá,
10 em biết chơi cả bóng đá và bóng chuyền. Hỏi có bao nhiêu em không biết chơi môn nào trong hai môn ở trên? A. 5. B. 0. C. 3. D. 10.
CÂU 25: Cho tập hợp A x :x
3 và B x : 2 x
4 .Tập hợp A \ B là A. 2;3. B. 4; . C. 3;4. D. 4; .
CÂU 26: Mệnh đề phủ định của mệnh đề 2 P :" x
: x 3x 7 0" là A. 2 P :" x
: x 3x 7 0". B. 2 P :" x
:x 3x 7 0". C. 2 P :" x
: x 3x 7 0". D. 2 P :" x
: x 3x 7 0".
Trang 3/5 - Mã đề thi 101
CÂU 27: Có bao nhiêu giá trị nguyên của dương của m để hàm số 2
y = x - (2m- 1 )
3 x + m đồng biến trên khoảng (3;+ ¥ ) ? A. 8. B. 6. C. 7. D. 9.
CÂU 28: Cặp số ;
x y nào dưới đây không là nghiệm của bất phương trình 2x y 4 x 3y 1 ? 1 4 A. 1 ;1 . B. 0 ;1 . C. ; . D. 1; 1 . 2 13
CÂU 29: Tính tổng các nghiệm của phương trình 2 2
2x 3x 1
x 2x 3 . A. 4. B. 1. C. 5. D. -5.
CÂU 30: Biết phương trình 2
3x 6x 3 2x 1 có nghiệm x a b c , với a,b,c là các số nguyên.
Tính S a b c . A. S 5. B. S 3. C. S 4. D. S 2.
CÂU 31: Miền tam giác ABC kể cả ba cạnh sau đây là miền nghiệm của hệ bất phương trình nào trong
bốn hệ bất phương trình dưới đây? x 0 x 0 x 0 y 0
A. 4x 5y 10. B. 5
x 4y 10. C. 5
x 4y 10. D. 5
x 4y 10.
5x 4 y 10 4x 5y 10 4x 5y 10
5x 4 y 10
CÂU 32: Trong mặt phẳng Oxy, cho các điểm A(- 2; ) 1 , B(- 3; ) 2 , C (4; ) 5 và điểm M ( ; a b) nằm trên
cạnh BC sao cho diện tích tam giác ABM bằng 3 lần diện tích tam giác ACM . Mệnh đề nào dưới đây đúng 9 17 A. a = . B. a = . C. a = - 2 . D. a = 1. 4 4
CÂU 33: Cho tam giác ABC có AB 6, AC 8 , góc 0
BAC 120 . Bán kính đường tròn ngoại tiếp tam giác ABC bằng 111 2 37 37 2 111 A. . B. . C. . D. . 3 3 3 3
CÂU 34: Có bao nhiêu giá trị nguyên của m để bất phương trình 2 x - ( m + ) 2 2
3 x + m + 3m- 10 £ 0
nghiệm đúng với mọi x thuộc khoảng (0; ) 3 ? A. 5. B. 4. C. 3. D. 2.
Trang 4/5 - Mã đề thi 101
CÂU 35: Trong mặt phẳng tọa độ Oxy , cho tam giác ABC vuông cân tại B , biết A2;4, B1; 1 và
C a;b với a 0 . Giá trị của 4
a b bằng A. 14. B. 10. C. 10. D. 16.
x 2y 0
CÂU 36: Cho hệ bất phương trình x 3y 2
. Biết giá trị lớn nhất của biểu thức T 2x 3y trên miền x 0
nghiệm của hệ bất phương trình đã cho đạt tại điểm có tọa độ x ; y . Giá trị của 2x 3y bằng 0 0 0 0 14 14 A. 2. B. . C. 2. D. . 5 5
CÂU 37: Phương trình 2 a + b - c x - 6x + 5 +
x + 1 = 0 có tổng tất cả các nghiệm là với b, c là 2
các số nguyên tố, a là số nguyên. Mệnh đề nào dưới đây đúng ?
A. a + b + c = 42.
B. a + b + c = 32.
C. a + b + c = 36.
D. a + b + c = 16.
CÂU 38: Trong mặt phẳng tọa độ Oxy , cho a 1;2,b 3;
1 , c 6;5 . Biết m là giá trị của tham số 0 r
m sao cho ma b cùng phương với c . Giá trị của 2 2m 2 bằng 0 A. 20. B. 30. C. 40. D. 10.
CÂU 39: Cho tam giác ABC có 0 0
BAC 60 , ABC 45 , AC 2 . Tính độ dài cạnh BC . A. BC 2. B. BC 2. C. BC 3. D. BC 6.
CÂU 40: Cho tam giác ABC . Lấy điểm I thuộc đoạn BC sao cho 2CI 3BI và J thuộc BC sao cho 2 JB
JC . Gọi G là trọng tâm tam giác ABC . Biết rằng AG mAI nAJ . Tính . m n . 5 35 35 105 105 A. . B. . C. . D. . 768 768 256 256
-----------------------------------------------
II. PHẦN TỰ LUẬN (6 điểm)
CÂU 1. ( 3 điểm) Giải các phương trình sau a) 2
x - 6x + 2 = 2x + 5 . b) 2 2 x - 3x + 1 = 3x - 4x - 2 .
CÂU 2. ( 2 điểm) Cho tam giác ABC có AB = c, BC = a,CA = b thỏa mãn a = 2bcosC. Chứng minh
tam giác ABC là tam giác cân.
CÂU 3. ( 1 điểm) Cho hai số thực x, y thỏa mãn 2 2
x + y - 4x - 2 y - 1£ 0 . Tìm giá trị lớn nhất của biểu
thức P = 2x - y + 3 .
----------------------------------------------- ----------- HẾT ----------
Cán bộ coi thi không giải thích gì thêm
CBCT 1………………………………….. CBCT 2……………………………………..
Trang 5/5 - Mã đề thi 101