Đề KSCL học kỳ 2 Toán 10 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc
Đề KSCL học kỳ 2 Toán 10 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc có mã đề 359, đề gồm 2 trang được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận theo, mời các bạn đón xem
Preview text:
SỞ GD&ĐT VĨNH PHÚC
HƯỚNG DẪN CHẤM KHẢO SÁT CHẤT LƯỢNG HỌC KỲ II
MÔN: TOÁN- LỚP 10;NĂM HỌC 2018-2019
I. PHẦN TRẮC NGHIỆM (3,0 điểm)
Mỗi câu đúng được 0,25 điểm Mã-Câu 1 2 3 4 5 6 7 8 9 10 11 12 132 D A C B C B D B A C B D 256 C D D A B C C A D A B A 359 A C B C B D D A B D C B 421 C B B A D D B C C B D C
II. PHẦN TỰ LUẬN (7,0 điểm) x 1 2x 3 (1)
Câu 13 (1,5 điểm): Giải hệ bất phương trình 3 2
x 7x 8 0 (2) NỘI DUNG ĐIỂM
Ta có (1) 6x 9 x 1 x 2. 0,50 (2) x 1 ; 8 . 0,50
Vậy tập nghiệm của hệ là: 1 ;2. 0,50
Câu 14 (1,5 điểm): Trên mặt phẳng với hệ tọa độ Oxy cho hai điểm ( A 1; 1 ), B(2;4). Viết
phương trình tổng quát của đường thẳng d, biết d chứa đường cao kẻ từ A của tam giác OAB. NỘI DUNG ĐIỂM
d có một véc tơ pháp tuyến là OB(2;4) . 0,50
d đi qua A nên phương trình tổng quát của d là: 0,50
2(x 1) 4( y 1) 0
x 2y 1 0. 0,50
sin x sin 2x sin 3x
Câu 15: (1,0 điểm) Rút gọn biểu thức A
cos x cos 2x cos 3x Nội dung Điểm
ĐK: cos x cos2x cos3x 0. 0,25 2sin 2 .
x cos x sin 2x 0,50 Ta có : A 2 cos 2 .
x cos x cos 2x
sin 2x 2cos x 1 0,25 x x tan 2 . x cos 2 2 cos 1
Câu 16: (1,0 điểm) Giải bất phương trình 2x 1 x 2 Nội dung Điểm x 2 0
Bất phương trình đã cho tương đương với 2x 1 0 0,25 2
2x 1 (x 2) x 2 0,25 2
x 6x 5 0 x 2 0,25 x 1 x 5
x 5. Vậy bất phương trình có tập nghiệm là 5;. 0,25
Câu 17: (1,0 điểm) Cho biểu thức 2
f (x) mx 2x 1. Tìm tất cả các giá trị của tham số m để
f (x) 0 với mọi số thực x. Nội dung Điểm 0,25
TH1. m 0 . Khi đó f x 1 2
x 1 0 x . Vậy m = 0 không thỏa mãn. 2 a m 0 0,50
TH2. m 0 . Khi đó: 2
f (x) mx 2x 1 0, x
m 0 m 1
. Vậy với m 1
thì f (x) 0 với mọi số thực x. 0,25
Câu 18. (1,0 điểm)
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại C, phương trình đường thẳng chứa 14 5 65
cạnh AB là x y 2 0. Biết tam giác ABC có trọng tâm G ; và diện tích bằng . Viết 3 3 2
phương trình đường tròn ngoại tiếp tam giác ABC. Nội dung Điểm
Gọi H là trung điểm của AB CH AB 0,25 14 5
Phương trình của CH là: (x
) ( y ) 0 x y 3 0 3 3
x y 3 0 Đặ 5 1 t H ( ;
x y) CH AB H ;
x y 2 0 2 2 Đặ 14 5 13 13 t C( ; x y) CG ; x
y ; HG ; 3 3 6 6
Do CG 2GH C(9;6) Đặt ( A ; a 2 a) ( B 5 ;
a a 3) (Do H là trung điểm AB) 13 13 AB (5 2 ;
a 2a 5); CH ; 2 2 65 1 65 Theo giả thiết : S A . B CH AB 5 2 ABC 2 2 2 0,25 a 0 |
2a 5 | 5 a 5
- Với a 0 A0;2; B5; 3
- Với a 5 A5; 3 ;B0;2.
Giả sử phương trình đường tròn ngoại tiếp tam giác ABC có dạng : 2 2 2 2
x y 2ax 2by c 0
(a b c 0) 0,25
Do đường tròn đi qua A, B, C nên ta có: 4b c 4 a 1 37 / 26 1
0a 6b c 3 4 b 5 9 / 26 (thỏa mãn)
18a 12b c 1 17 c 66 / 13 137 59 66 0,25
Vậy phương trình đường tròn cần tìm là: 2 2 x y x y 0. 13 13 13 ----- HẾT -----
Document Outline
- VINH PHUC 10
- ĐÁP ÁN TOÁN 10