Đề thi HK2 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Chí Thanh – TP HCM

Đề thi HK2 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Chí Thanh – TP HCM được biên soạn theo dạng đề tự luận hoàn toàn, học sinh có 90 phút để hoàn thành bài thi HK2 Toán 10, đề thi có lời giải chi tiết và thang chấm điểm, mời các bạn đón xem

S GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIM TRA HC KÌ II NĂM HC 2018 -2019
TP H CHÍ MINH MÔN TN - Khi 10
TRG THPT NGUYN CHÍ THANH
ĐỀ CHÍNH THC
Thi gian làm bài 90 phút
(Không tính thời gian phát đề )
i 1: (1 điểm) Tìm m để bất pơng trình
2
1 2 3 1 2 1 0
m x m x m
có tp nghim là R
i 2: (2 điểm) Gii các bất phương trình sau:
1)
x x x
2
2 4 1 1
2)
2
2 5 2
i 3: (1 điểm) Cho
12 3
cos ,
13 2
x x
.Tính sin ,tan ,cos2 ,sin
3
x x x x
i 4: (1 điểm) Chng minh rng:
sinx 1
cotx
1 cosx sinx
i 5: (1 điểm) Chng minh rằng:
6 6 2
1
sin cos cos sin 4
2 2 4
x x
x x
i 6:(2 điểm) Cho đường thng d:
x 2 3t
y 1 t
, (t R) và hai điểm
1;2
A ,
1; 4
B
.
1) Tìm tọa độ trung điểm M của AB và viết phương trình đường trung trc của đoạn thng AB
2) Viết phương trình đường tròn có tâm thuộc đường thẳng d và đi qua 2 điểm A, B.
i 7:(2 điểm) Trong mặt phẳng Oxy cho đưng thẳng d:
1 0
x y
và đường tròn (C) phương
trình:
2 2
x 2 2 2 0
y x y
.
1) Viết phương trình tiếp tuyến
1
của (C) biết
1
song song vi d.
2) Viết phương trình đường thẳng
2
vuông góc với d và cắt (C) tại hai điểm phân biệt M, N sao cho
tam giác IMN có diện tích bằng 2, với I là tâm của đường tròn (C)
––––––––––––––––––––Hết––––––––––––––––––
Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . .
ĐÁP ÁN ĐỀ KIỂM TRA HỌC KÌ II – NĂM HỌC 2018 – 2019
MÔN TOÁN LỚP 10
Bài Ý NỘI DUNG ĐIỂM
2
( 1) 2(3 1) 2 1 0, (*)
m x m x m x R
TH1:
1
1, 8 1 0
8
m bpt x x
không thỏa (*) nên loại
1
m
0,25
TH2:
1
m
/ 2
0 1 0
(*)
0 7 9 0
a m
m m
0,25
1
1
9
0
9
70
7
m
m
m
0,25+0,25
x
x x x x x
x x x
2 2
2 2
1 0
2 4 1 1 2 4 1 0
2 4 1 ( 1)
0,25
x
x x
x
1
2 2 2 2
2 2
2 0
Hs giải đúng 2 bpt đầu được 0,25đ, đúng bpt th3 được 0,25đ
0,25+0,25
1)
x
2 2
0
2
Tp nghim
S
2 2
;0
2
0,25
2
2
2
2 5 2
2 5 2
2 5 2
x x x
x x x
x x x
0,25
2
2
1
4 5 0
5
5 0
5 5
x
x x
x
x
x
0,25+0,25
2
2)
5 5
x x
. Tp nghim:
; 5 5;S

0,25
2 2
25
sin 1 cos
169
x x
5 3
sin
13 2
x do x
0,25
sin 5
tan
cos 12
x
x
x
0,25
2
119
cos2 2cos 1
169
x x
0,25
3
12 3 5
sin sin cos sin cos
3 3 3 26
x x x
0,25
4
cosx sinx
VT
sinx 1 cosx
2 2
cosx cos x sin x
sinx 1 cosx
0,5
cosx 1 1
VP
sinx
sinx 1 cosx
0,5
2 2 4 2 2 4
sin cos sin sin cos cos
2 2 2 2 2 2
x x x x x x
VT
0,25
2
2 2 2 2
cos sin cos sin cos
2 2 2 2
x x x x
x
0,25
2
sin
cos 1
4
x
x
0,25
5
2
1
cos sin 4
4
x x VP
0,25
M là trung điểm của AB
1; 1
M
0,5
Gọi
đường trung trc của AB
1; 1
:
0; 6 :
qua M
AB VTPT
0,25
1)
Phương trình
:0. 1 6 1 0 1 0
x y y
0,25
Gọi I là tâm đường tròn
2 3 ;1
I t t
2 2 2 2
2 2
3 1 1 3 1 5
AI BI t t t t
0,25
2 4; 1
t I
0,25
Bán kính
34
R IA
0,25
6
2)
Phương trình đường tròn:
2 2
4 1 34
x y
0,25
(C) có tâm
1; 1 , 2
I R
1 1
/ / : 0, 1
d x y c c
0,25
1
tiếp xúc vi (C)
1
2
, 2
2
c
d I R
0,25
1)
2 2 2 : 2 2 2 0
2 2 2 : 2 2 2 0
c Pttt x y
c Pttt x y
0,25
0,25
1 2
d
có dạng
0
x y c
,
2
,
2
c
IH d I
2
2 2
4
2
c
IH IM IH
0,25
2
2 . 2 . 4 2
2
2
IMN
c
c
S IH MH
0,25
4 2
2
8 16 0
2
c
c c
c
0,25
7
2)
2
2
: 2 0
: 2 0
x y
x y
Δ
2
2
H
N
M
I
0,25
| 1/3

Preview text:

SỞ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ KIỂM TRA HỌC KÌ II NĂM HỌC 2018 -2019 TP HỒ CHÍ MINH MÔN TOÁN - Khối 10
TRG THPT NGUYỄN CHÍ THANH
Thời gian làm bài 90 phút ĐỀ CHÍNH THỨC
(Không tính thời gian phát đề )
Bài 1: (1 điểm) Tìm m để bất phương trình m   2
1 x  2 3m  
1 x  2m 1  0 có tập nghiệm là R
Bài 2: (2 điểm) Giải các bất phương trình sau: 1) x2 2
 4x 1  x 1 2
2) x  2x  5  2x 12 3
Bài 3: (1 điểm) Cho cos x   , x
.Tính sin x, tan x, cos 2x, sin x    13 2  3  sin x 1
Bài 4: (1 điểm) Chứng minh rằng: cot x   1 cos x sin x x x 1
Bài 5: (1 điểm) Chứng minh rằng: 6 6 sin  cos  cos x  2 sin x  4 2 2 4 x  2  3t
Bài 6:(2 điểm) Cho đường thẳng d: 
, (t  R) và hai điểm A1; 2 , B 1; 4 . y  1 t 
1) Tìm tọa độ trung điểm M của AB và viết phương trình đường trung trực của đoạn thẳng AB
2) Viết phương trình đường tròn có tâm thuộc đường thẳng d và đi qua 2 điểm A, B.
Bài 7:(2 điểm) Trong mặt phẳng Oxy cho đường thẳng d: x y 1  0 và đường tròn (C) có phương trình: 2 2
x  y  2x  2 y  2  0 .
1) Viết phương trình tiếp tuyến  của (C) biết  song song với d. 1 1
2) Viết phương trình đường thẳng  vuông góc với d và cắt (C) tại hai điểm phân biệt M, N sao cho 2
tam giác IMN có diện tích bằng 2, với I là tâm của đường tròn (C)
––––––––––––––––––––Hết–––––––––––––––––––
Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . .
ĐÁP ÁN ĐỀ KIỂM TRA HỌC KÌ II – NĂM HỌC 2018 – 2019 MÔN TOÁN LỚP 10 Bài Ý NỘI DUNG ĐIỂM 2
(m 1)x  2(3m  1)x  2m 1  0, x   R (*) 1 0,25
TH1: m  1, bpt  8x 1  0  x
không thỏa (*) nên loại m  1 8 TH2: m  1 a  0 m 1  0 (*)     0,25 / 2   0 7m  9m  0   1 m  1  9   9    m  0   m  0 7  0,25+0,25  7 x  1  0 2 
2x  4x  1  x  1  2
2x  4x  1  0 0,25
2x2  4x 1  (x  2  1) x  1   2  2 2  2 1)  x   x  2 2 0,25+0,25 2  x   0 2
Hs giải đúng 2 bpt đầu được 0,25đ, đúng bpt thứ 3 được 0,25đ 2  2   x  0 2   2  2 0,25 S   ; 0  2   Tập nghiệm 2
x  2x  5  2x 2
x  2x  5  2x   0,25 2
x  2x  5  2  x  2) x  1 2
x  4x  5  0     x  5 0,25+0,25 2  x  5  0   5  x  5 
x  5  x  5 . Tập nghiệm: S  ; 5 5;   0,25 25 5   3 2 2 
sin x  1 cos x   sin x do  x   0,25 169 13  2  sin x 5 tan x   0,25 cos x 12 3 119 0,25 2
cos 2x  2 cos x 1  169  12 3  5 sin x   sin x cos  sin cos x    0,25  3  3 3 26 cos x sin x 2 2 cos x  cos x  sin x VT    sin x 1 cos x sin x1 cosx 0,5 4 cos x 1 1    0,5 sin x1 cosx VP sin x x x   x x x x 2 2 4 2 2 4  VT  sin  cos sin  sin cos  cos     0,25  2 2   2 2 2 2  2  x x x x   2 2 2 2   cos x  sin  cos  sin cos     0,25 5 2 2 2 2      2  sin x    cos x 1   0,25 4   1  cos x  2
sin x  4  VP 0,25 4
M là trung điểm của AB  M 1;   1 0,5 qua M 1;   1 1) 
Gọi  là đường trung trực của AB   :  0,25 AB  0; 6    :VTPT
Phương trình  :0. x   1  6  y  
1  0  y 1  0 0,25 6
Gọi I là tâm đường tròn  I 2  3t;1 t  0,25
AI BI   t  2  t  2   t  2  t  2 2 2 3 1 1 3 1 5 2)
t  2  I 4;   1 0,25
Bán kính R IA  34 0,25 2 2
Phương trình đường tròn:  x  4   y   1  34 0,25
(C) có tâm I 1;   1 , R  2 0,25
 / /d   : x y c  0, c  1 1 1 c  2
 tiếp xúc với (C)  d I,   R   2 0,25 1  1 1) 2
c  2 2  2  Pttt : x y  2 2  2  0   0,25
c  2 2  2  Pttt : x y  2 2  2  0 0,25  c   d  
x y c  0 IH d I,   2  1 2 có dạng , 2 0,25 2 7 c 2 2 IH IM IH  4  2 2 c c S
 2  IH .MH  2  . 4   2 0,25 IMN 2 2 2) c  2 4 2
c  8c  16  0   0,25 c  2 
 : x y  2  0 2 
 : x y  2  0  2 0,25 I 2 Δ2 M H N