Giải Toán 7 bài 10: Tiên đề Euclid. Tính chất của hai đường
thẳng song song sách Kết nối tri thức với cuộc sống
Giải Toán 7 Kết nối tri thức với cuộc sống tập 1 bài 10 -
Hoạt động
Hoạt động 1
Cho trước đường thẳng a và một điểm M không nằm trên đường thẳng a (H.3.31).
Dùng bút chì vẽ đường thẳng b đi qua M và song song với đường thẳng a.
Dùng bút màu vẽ đường thẳng c đi qua M và song song với đường thẳng a.
Em có nhận xét gì về vị trí của hai đường thẳng b và c?
Gợi ý đáp án:
Dùng bút chì vẽ đường thẳng b đi qua M và song song với đường thẳng a, ta được:
Dùng bút màu vẽ đường thẳng c đi qua M và song song với đường thẳng a, ta được:
Nhận xét: Hai đường thẳng b và c trùng nhau.
Hoạt động 2
Vẽ hai đường thẳng song song a,b. Kẻ đường thẳng c cắt đường thẳng a tại A và cắt đường
thẳng b tại B. Trên Hình 3.34:
a) Em hãy đo một cặp góc so le trong rồi rút ra nhận xét.
b) Em hãy đo một cặp góc đồng vị rồi rút ra nhận xét.
Gợi ý đáp án:
a) Ta có: là hai góc ở vị trí so le trong. Đo góc ta được:
b) Ta có: là hai góc ở vị trí đồng vị. Đo góc ta được:
Giải Toán 7 Kết nối tri thức với cuộc sống tập 1 bài 10 -
Luyện tập
Luyện tập 1
Phát biểu nào sau đây diễn đạt đúng nội dung của Tiên đề Euclid?
(1) Cho điểm M nằm ngoài đường thẳng a. Đường thẳng đi qua M và song song với a là duy
nhất.
(2) Có duy nhất một đường thẳng song song với một đường thẳng cho trước.
(3) Qua một điểm M nằm ngoài đường thẳng a có ít nhất một đường thẳng song song với a.
Gợi ý đáp án:
Đáp án chính xác nhất:
(1) Cho điểm M nằm ngoài đường thẳng a. Đường thẳng đi qua M và song song với a là duy
nhất.
Luyện tập 2
1) Cho hình 3.36. biết MN // BC, . Hãy tính số đo các góc BMN và
ACB.
2) Cho hình 3.37, biết rằng xx’ // yy’ và zz’ xx’. Tính số đo góc ABy và cho biết zz’ có vuông
góc với yy’ không.
Gợi ý đáp án:
1) Ta có: MN // BC
=> (Hai góc nằm ở vị trí đồng vị)
Ta lại có: Góc AMN và góc NMB là hai góc kề bù.
=>
=>
Vậy
Ta có: Góc ANM và góc MNC là hai góc kề bù.
=>
=>
Mà NM // BC
=> (Hai góc ở vị trí đồng vị)
Vậy
2) Ta có: zz’ xx’ =>
Mà xx’ // yy’
=> (hai góc ở vị trí đồng vị)
=> zz’ yy’
Giải Toán 7 Kết nối tri thức với cuộc sống trang 53, 54 tập 1
Bài 3.17
Cho hình 3.39, biết rằng mn // pq. Tính số đo góc mHK, vHn.
Gợi ý đáp án:
Theo bài ra ta có: mn // pq
=> (hai góc ở vị trí so le trong)
Vậy
Ta lại có mn // pq
=> (hai góc ở vị trí đồng vị)
Vậy
Bài 3.18
Cho hình 3.40:
a) Giải thích tại sao Am // By.
b) Tính số đo góc CDm.
Gợi ý đáp án:
a) Quan sát hình vẽ:
Ta có:
Mà hai góc nằm ở vị trí so le trong.
=> Am // By (dấu hiệu hai đường thẳng song song)
b) Ta có: Am // By (Chứng minh câu a)
=> (hai góc ở vị trí đồng vị)
Vậy
Bài 3.19
Cho hình 3.41:
a) Giải thích tại sao xx’ // yy’.
b) Tính số đo góc MNB.
Gợi ý đáp án:
a) Quan sát hình vẽ:
Ta có:
Mà hai góc nằm ở vị trí đồng vị.
=> xx’ // yy’ (dấu hiệu hai đường thẳng song song)
b) Ta có: xx’ // yy’ (Chứng minh câu a)
=> (hai góc ở vị trí so le trong)
Vậy
Bài 3.20
Cho hình 3.42, biết rằng Ax // Dy, . Tính số đo các góc ADC và ABC.
Gợi ý đáp án:
Theo bài ra ta có: Ax // By
Ta lại có:
=> (Hai góc ở vị trí đồng vị)
Ta có: Ax // By
=> (Hai góc ở vị trí so le trong)
Vậy
Bài 3.21
Cho hình 3.43. Giải thích tại sao:
a) Ax’ // By
b) By HK
Gợi ý đáp án:
Quan sát hình vẽ
a) Ta có:
Mà hai góc nằm ở vị trí so le trong
=> Ax’ // By (Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có: Ax’ // By (chứng minh câu a)
Ta lại có:
(Hai góc đồng vị bằng nhau)
=> By HK
Bài 3.22
Cho tam giác ABC. Vẽ đường thẳng a đi qua A và song song với BC. Vẽ đường thẳng b đi qua
B và song song với AC. Có thể vẽ được bao nhiêu đường thẳng a, bao nhiêu đường thẳng b?
Vì sao?
Gợi ý đáp án:
Theo Tiên đề Euclid:
+) Qua điểm A nằm ngoài đường thẳng BC, chỉ có một đường thẳng song song với đường
thẳng BC. Đường thẳng đó là a
+) Qua điểm B nằm ngoài đường thẳng AC, chỉ có một đường thẳng song song với đường
thẳng BC. Đường thẳng đó là b
Như vậy, có thể vẽ được 1 đường thẳng a, 1 đường thẳng b.
Bài 3.23
Cho hình 3.44:
Giải thích tại sao:
a) MN // EF;
b) HK // EF;
c) HK // MN.
Gợi ý đáp án:
Quan sát hình vẽ ta có:
a) Ta có:
Mặt khác hai góc ở vị trí so le trong
=> MN // EF (Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có:
Mặt khác hai góc ở vị trí đồng vị
=> HK // EF (Dấu hiệu nhận biết hai đường thẳng song song)
c) Ta có: MN // EF (chứng minh câu a)
HK // EF (chứng minh câu b)
=> HK // MN (tính chất bắc cầu)

Preview text:

Giải Toán 7 bài 10: Tiên đề Euclid. Tính chất của hai đường
thẳng song song sách Kết nối tri thức với cuộc sống
Giải Toán 7 Kết nối tri thức với cuộc sống tập 1 bài 10 - Hoạt động Hoạt động 1
Cho trước đường thẳng a và một điểm M không nằm trên đường thẳng a (H.3.31).
Dùng bút chì vẽ đường thẳng b đi qua M và song song với đường thẳng a.
Dùng bút màu vẽ đường thẳng c đi qua M và song song với đường thẳng a.
Em có nhận xét gì về vị trí của hai đường thẳng b và c? Gợi ý đáp án:
Dùng bút chì vẽ đường thẳng b đi qua M và song song với đường thẳng a, ta được:
Dùng bút màu vẽ đường thẳng c đi qua M và song song với đường thẳng a, ta được:
Nhận xét: Hai đường thẳng b và c trùng nhau. Hoạt động 2
Vẽ hai đường thẳng song song a,b. Kẻ đường thẳng c cắt đường thẳng a tại A và cắt đường
thẳng b tại B. Trên Hình 3.34:
a) Em hãy đo một cặp góc so le trong rồi rút ra nhận xét.
b) Em hãy đo một cặp góc đồng vị rồi rút ra nhận xét. Gợi ý đáp án: a) Ta có: và
là hai góc ở vị trí so le trong. Đo góc ta được: b) Ta có: và
là hai góc ở vị trí đồng vị. Đo góc ta được:
Giải Toán 7 Kết nối tri thức với cuộc sống tập 1 bài 10 - Luyện tập Luyện tập 1
Phát biểu nào sau đây diễn đạt đúng nội dung của Tiên đề Euclid?
(1) Cho điểm M nằm ngoài đường thẳng a. Đường thẳng đi qua M và song song với a là duy nhất.
(2) Có duy nhất một đường thẳng song song với một đường thẳng cho trước.
(3) Qua một điểm M nằm ngoài đường thẳng a có ít nhất một đường thẳng song song với a. Gợi ý đáp án: Đáp án chính xác nhất:
(1) Cho điểm M nằm ngoài đường thẳng a. Đường thẳng đi qua M và song song với a là duy nhất. Luyện tập 2
1) Cho hình 3.36. biết MN // BC,
. Hãy tính số đo các góc BMN và ACB.
2) Cho hình 3.37, biết rằng xx’ // yy’ và zz’ ⊥ xx’. Tính số đo góc ABy và cho biết zz’ có vuông góc với yy’ không. Gợi ý đáp án: 1) Ta có: MN // BC
=> (Hai góc nằm ở vị trí đồng vị)
Ta lại có: Góc AMN và góc NMB là hai góc kề bù. => => Vậy
Ta có: Góc ANM và góc MNC là hai góc kề bù. => => Mà NM // BC =>
(Hai góc ở vị trí đồng vị) Vậy
2) Ta có: zz’ ⊥ xx’ => Mà xx’ // yy’ =>
(hai góc ở vị trí đồng vị) => zz’ ⊥ yy’
Giải Toán 7 Kết nối tri thức với cuộc sống trang 53, 54 tập 1 Bài 3.17
Cho hình 3.39, biết rằng mn // pq. Tính số đo góc mHK, vHn. Gợi ý đáp án: Theo bài ra ta có: mn // pq =>
(hai góc ở vị trí so le trong) Vậy Ta lại có mn // pq =>
(hai góc ở vị trí đồng vị) Vậy Bài 3.18 Cho hình 3.40:
a) Giải thích tại sao Am // By. b) Tính số đo góc CDm. Gợi ý đáp án: a) Quan sát hình vẽ: Ta có:
Mà hai góc nằm ở vị trí so le trong.
=> Am // By (dấu hiệu hai đường thẳng song song)
b) Ta có: Am // By (Chứng minh câu a) =>
(hai góc ở vị trí đồng vị) Vậy Bài 3.19 Cho hình 3.41:
a) Giải thích tại sao xx’ // yy’. b) Tính số đo góc MNB. Gợi ý đáp án: a) Quan sát hình vẽ: Ta có:
Mà hai góc nằm ở vị trí đồng vị.
=> xx’ // yy’ (dấu hiệu hai đường thẳng song song)
b) Ta có: xx’ // yy’ (Chứng minh câu a) =>
(hai góc ở vị trí so le trong) Vậy Bài 3.20
Cho hình 3.42, biết rằng Ax // Dy,
. Tính số đo các góc ADC và ABC. Gợi ý đáp án: Theo bài ra ta có: Ax // By Ta lại có: =>
(Hai góc ở vị trí đồng vị) Ta có: Ax // By =>
(Hai góc ở vị trí so le trong) Vậy Bài 3.21
Cho hình 3.43. Giải thích tại sao: a) Ax’ // By b) By ⊥ HK Gợi ý đáp án: Quan sát hình vẽ a) Ta có:
Mà hai góc nằm ở vị trí so le trong
=> Ax’ // By (Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có: Ax’ // By (chứng minh câu a) Ta lại có:
(Hai góc đồng vị bằng nhau) => By ⊥ HK Bài 3.22
Cho tam giác ABC. Vẽ đường thẳng a đi qua A và song song với BC. Vẽ đường thẳng b đi qua
B và song song với AC. Có thể vẽ được bao nhiêu đường thẳng a, bao nhiêu đường thẳng b? Vì sao? Gợi ý đáp án: Theo Tiên đề Euclid:
+) Qua điểm A nằm ngoài đường thẳng BC, chỉ có một đường thẳng song song với đường
thẳng BC. Đường thẳng đó là a
+) Qua điểm B nằm ngoài đường thẳng AC, chỉ có một đường thẳng song song với đường
thẳng BC. Đường thẳng đó là b
Như vậy, có thể vẽ được 1 đường thẳng a, 1 đường thẳng b. Bài 3.23 Cho hình 3.44: Giải thích tại sao: a) MN // EF; b) HK // EF; c) HK // MN. Gợi ý đáp án: Quan sát hình vẽ ta có: a) Ta có:
Mặt khác hai góc ở vị trí so le trong
=> MN // EF (Dấu hiệu nhận biết hai đường thẳng song song) b) Ta có:
Mặt khác hai góc ở vị trí đồng vị
=> HK // EF (Dấu hiệu nhận biết hai đường thẳng song song)
c) Ta có: MN // EF (chứng minh câu a) HK // EF (chứng minh câu b)
=> HK // MN (tính chất bắc cầu)