1 Thy Lam Trường Toán Lý
1. Nguyên hàm:
+)
F'(x) f(x)=
hay
dF(x) f(x)dx x X=
F(x )
là nguyên hàm ca
f(x)
trong min X
F(x)
là nguyên hàm
f(x)
trên X, thì mi nguyên hàm khác ca
f(x)
trên miền đều có dng
F(x) c,c+
là hng s tùy ý.
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
2. Tích phân bất định:
Kí hiu
I f (x)dx F(x) c= = +
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
Các tích phân cơ bản:
󰉼󰉴󰉴󰈖 
Giải tích 1
A
TÓM TT LÍ THUYẾT
I
Định nghĩa – Tính chất
2 Thy Lam Trường Toán Lý
0dx c=
2
dx
tgx c
cos x
=+
α1
α
x
x dx c (α 1)
α1
+
= +
+
2
dx
cot gx c
sin x
= +
dx
ln x c (x 0)
x
= +
2
dx
arcsinx c
1x
=+
x
x
a
a dx c
lna
=+
2
dx
arctgx c
1x
=+
+
dx
xc
2x
=+
chxdx shx c=+
xx
e dx e c=+
shxdx chx c=+
cosxdx sin x c=+
2
dx
thx c
ch x
=+
sin xdx cos x c= +
Các tích phân b sung:
22
22
22
22
dx 1 x
1. arctg c
aa
ax
dx
2. ln x x a c
xa
dx 1 x a
3. ln c
2a x a
xa
=+
+
= + +
=+
+
2
2 2 2 2
22
2
2 2 2 2 2 2
x a x
4. a x dx a x arcsin c
2 2 a
dx x
5. arcsin c
a
ax
xa
6. x a dx x a ln x x a c
22
= + +
=+
= + + +
3. Các tính chất cơ bản
a)
( )
f (x)dx ' f (x)=
hay
( )
d f(x)dx f(x)dx=
b)
F'(x)dx F(x) c=+
hay
dF(x) F(x) c=+
c)
c f (x)dx c f (x)dx=

, c là hng s
3 Thy Lam Trường Toán Lý
d)
f (x) g(x) dx f (x)dx g(x)dx =

e) Nếu
f (x)dx F(x) c=+
thì
f (u)du F(u) c=+
, vi
u u(x)=
bt kì
1. Phương pháp biến đổi s
Cho tích phân
( ) ( ) ( )
f x dx f φ t φ' t dt

=


: Gi là công thức đổi biến s
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
2. Phương pháp tích phân từng phn
Nếu có các hàm s kh vi
( ) ( ) ( )
u u x , v v x : f x dx udv= = =
thì ta có công thc:
( )
f x dx udv uv vdu= =
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
II
Hai phương pháp tìm nguyên hàm
4 Thy Lam Trường Toán Lý
Bài 1: Tìm nguyên hàm của các hàm số
a)
( )
tan 2x dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
b)
( )
arctan 2x dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
c)
( )
2
ln 2 x dx+
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
BÀI TẬP NHẬN BIẾT
5 Thy Lam Trường Toán Lý
d)
x
1 e dx+
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
Bài 2: Tìm nguyên hàm của các hàm số
a)
( )
3x
x 1 e dx+
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
b)
3
x arctanxdx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
6 Thy Lam Trường Toán Lý
c)
3
sin x
dx
cosx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
d)
2
dx
x x 1
+
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________

Preview text:


Giải tích 1 Chương 6: Nguyên hàm – Tích phân bất định
Nguyê n hà m – Hài phương phà p cơ bà n tì m nguyê n hà m A
TÓM TẮT LÍ THUYẾT I
Định nghĩa – Tính chất 1. Nguyên hàm:
+) F'(x) = f (x) hay dF(x) = f (x)dx xX
F(x) là nguyên hàm của f(x) trong miền X
F(x) là nguyên hàm f(x) trên X, thì mọi nguyên hàm khác của f(x) trên miền đều có dạng
F(x) + c,c là hằng số tùy ý.
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
2. Tích phân bất định:
Kí hiệu I = f (x)dx = F(x) + c
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
Các tích phân cơ bản:
1 Thầy Lam Trường Toán Lý dx 0dx = c  = tgx + c2 cos x α+1 dx α x x dx =
+ c (α  −1)  = −cot gx + cα + 1 2 sin x dx dx
= ln x + c (x 0)  = arcsinx + cx 2 1x x dx x a a dx = + c  = arctgx + cln a 2 1+ x dx = x +c
chxdx = shx + c2 x x x
e dx = e + c
shxdx = chx + cdx
cos xdx = sin x + c  = thx + c2 ch x
sin xdx = − cos x + c
Các tích phân bổ sung: dx 1 x 2 1. = arctg + c2 2 x 2 2 a x 2 2 − = − + + a + x a a 4. a x dx a x arcsin c2 2 a dx 2 2 = +  + dx x 2. ln x x a c  = + 2 2x a 5. arcsin c 2 2a a x dx 1 x a 3. = ln + c2 x a 2 2 x a 2a x + a 2 2 2 2 2 2 6. x a dx = x a
ln x + x + a + c2 2
3. Các tính chất cơ bản a) ( f (x)dx
)'= f(x) hay d( f(x)dx  )= f(x)dx
b) F'(x)dx = F(x) + c
hay dF(x) = F(x) + c  c) c f (x)dx = c f (x)dx   , c là hằng số
2 Thầy Lam Trường Toán Lý
d)  f (x) g(x)dx = f (x)dx g(x)dx     
e) Nếu f (x)dx = F(x) + c
thì f (u)du = F(u) + c
, với u = u(x) bất kì
II Hai phương pháp tìm nguyên hàm
1. Phương pháp biến đổi số Cho tích phân f
 (x)dx = f φ
  (t) φ'
(t)dt : Gọi là công thức đổi biến số
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
2. Phương pháp tích phân từng phần
Nếu có các hàm số khả vi u = u(x) , v = v(x) : f (x)dx = udv thì ta có công thức: f
 (x)dx = udv = uvvdu  
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
3 Thầy Lam Trường Toán Lý
BÀI TẬP NHẬN BIẾT
Bài 1: Tìm nguyên hàm của các hàm số
a)  tan(2x)dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
b)  arctan(2x)dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ c)  ( 2
ln 2 + x )dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
4 Thầy Lam Trường Toán Lý d) x1+ e dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
Bài 2: Tìm nguyên hàm của các hàm số a)  ( + ) 3x x 1 e dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ b) 3x arctanxdx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
5 Thầy Lam Trường Toán Lý 3 sin x c)  dx cosx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ dx d)  2 x x + 1
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
6 Thầy Lam Trường Toán Lý