





Preview text:
Giải tích 1 Chương 6: Nguyên hàm – Tích phân bất định
Nguyê n hà m – Hài phương phà p cơ bà n tì m nguyê n hà m A
TÓM TẮT LÍ THUYẾT I
Định nghĩa – Tính chất 1. Nguyên hàm:
+) F'(x) = f (x) hay dF(x) = f (x)dx xX
→ F(x) là nguyên hàm của f(x) trong miền X
→F(x) là nguyên hàm f(x) trên X, thì mọi nguyên hàm khác của f(x) trên miền đều có dạng
F(x) + c,c là hằng số tùy ý.
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
2. Tích phân bất định:
Kí hiệu I = f (x)dx = F(x) + c
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
Các tích phân cơ bản:
1 Thầy Lam Trường Toán Lý dx 0dx = c = tgx + c 2 cos x α+1 dx α x x dx =
+ c (α −1) = −cot gx + c α + 1 2 sin x dx dx
= ln x + c (x 0) = arcsinx + c x 2 1− x x dx x a a dx = + c = arctgx + c ln a 2 1+ x dx = x +c
chxdx = shx + c 2 x x x
e dx = e + c
shxdx = chx + c dx
cos xdx = sin x + c = thx + c 2 ch x
sin xdx = − cos x + c
Các tích phân bổ sung: dx 1 x 2 1. = arctg + c 2 2 x 2 2 a x 2 2 − = − + + a + x a a 4. a x dx a x arcsin c 2 2 a dx 2 2 = + + dx x 2. ln x x a c = + 2 2 x a 5. arcsin c 2 2 − a a x dx 1 x − a 3. = ln + c 2 x a 2 2 x − a 2a x + a 2 2 2 2 2 2 6. x a dx = x a
ln x + x + a + c 2 2
3. Các tính chất cơ bản a) ( f (x)dx
)'= f(x) hay d( f(x)dx )= f(x)dx
b) F'(x)dx = F(x) + c
hay dF(x) = F(x) + c c) c f (x)dx = c f (x)dx , c là hằng số
2 Thầy Lam Trường Toán Lý
d) f (x) g(x) dx = f (x)dx g(x)dx
e) Nếu f (x)dx = F(x) + c
thì f (u)du = F(u) + c
, với u = u(x) bất kì
II Hai phương pháp tìm nguyên hàm
1. Phương pháp biến đổi số Cho tích phân f
(x)dx = f φ
(t) φ'
(t)dt : Gọi là công thức đổi biến số
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
2. Phương pháp tích phân từng phần
Nếu có các hàm số khả vi u = u(x) , v = v(x) : f (x)dx = udv thì ta có công thức: f
(x)dx = udv = uv− vdu
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
3 Thầy Lam Trường Toán Lý
BÀI TẬP NHẬN BIẾT
Bài 1: Tìm nguyên hàm của các hàm số
a) tan(2x)dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
b) arctan(2x)dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ c) ( 2
ln 2 + x )dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
4 Thầy Lam Trường Toán Lý d) x 1+ e dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
Bài 2: Tìm nguyên hàm của các hàm số a) ( + ) 3x x 1 e dx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ b) 3 x arctanxdx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
5 Thầy Lam Trường Toán Lý 3 sin x c) dx cosx
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________ dx d) 2 x x + 1
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
_______________________________________________________________________________________
6 Thầy Lam Trường Toán Lý