Tài liệu Chương 1: Sai số ngẫu nhiên và sai số hệ thống | Lý thuyết môn Xác suất thống kê | Đại học Bách khoa Hà Nội

Tài liệu Chương 1: Sai số ngẫu nhiên và sai số hệ thống | Lý thuyết môn Xác suất thống kê | Đại học Bách khoa Hà Nội. Tài liệu gồm 125 trang, giúp bạn tham khảo, ôn tập và đạt kết quả cao. Mời bạn đọc đón xem!

CHƯƠNG 1 : SAI S NGU NHIÊN VÀ SAI S H THNG
I.
MT S KHÁI NIM
1.
Ch s có nghĩa
2. Làm tròn s cho s đo gián tiếp
II. SAI S NGU NHIÊN VÀ CÁCH BIU DIN
III. SAI S H THNG VÀ CÁCH BIU DIN
1. Định nghĩa
2.
Phân loi sai s h thng
3. Các bin pháp loi b sai s h thng
4.
Lan truyn sai s h thng và sai s ngu nhiên
I. MT S KHÁI NIM
1. Ch s có nghĩa (CSCN)
TOP
a) Ð phn ánh mc độ tin cy ca m s đo thc nghim, ta ch được phép ghi s đo này bng các ch s
nghĩa (CSCN). Cn phân bit ch s (figure) và s (number).
- Ta thường dùng mười ch s sau : 0, 1, 2,... để biu th các giá tr khác nhau ca mt s. Vy : s là mt tp
hp các ch s viết theo các trình t và mt thut toán xác định.
Trong thc nghim Hóa hc, ta thường gp 3 loi s sau đây : s t nhiên thông thường, s logarit, s mũ.
b) Ði vi mi s đo đối vi s t nhiên thông thường, ta phân bit hai loi ch s nghĩa sau đây :
- Ch s có nghĩa không tin cy : là ch s đứng sau cùng v bên phi ca s đo. Ch có duy nht mt CSCN
không tin cy trong mi s đo.
- Ch s có nghĩa tin cy : là tt c các ch s đứng trước CSCN không tin cy và tn cùng v bên trái bng
mt ch s khác ch s 0.
Mt s đo có th có mt hay nhiu CSCN tin cy. Càng nhiu ch s có nghĩa thì phép đo càng chính xác.
Thí d : Ðc trên buret, ta ghi được s đo 12,65 ml. S này có tt c 4 CSCN, phân loi như sau :
5 là CSCN không tin cy.
1, 2, 6 là các ch s có nghĩa tin cy.
S dĩ gi các ch s 1, 2, 6 là CSCN tin cy là vì trên buret có chia độ chính xác đến 0,1 ml thì ai cũng đọc
thy rõ ch s này. Ch s 5 thuc loi CSCN không tin cy vì nhiu người đọc phi ước lượng bng mt và do đó có
s chênh lch, có khi đọc thành 12,64 ml hoc 12,66 ml.
Ð không tin cy tương đối mi có giá tr biu th độ chính xác ca phép đo. Nó càng nh thì phép đo càng
chính xác.
* Khi ghi mt s đo thc nghim, chúng ta cn lưu ý đến vai trò ca ch s 0.
Thí d : 12,04 ml : có 4 CSCN .
10,05 ml : có 4 CSCN .
0,28 ml : có 2 CSCN .
5,40 ml : có 3 CSCN .
c) Ði vi mi s đo thuc loi s logarit thì các CSCN ch tính t ch s khác 0 đầu tiên sau du phy
(thuc phn định tr ca s logarit).
Thí d : Các s đo logarit sau :
log x = 4,3576 : có 4 CSCN (không tính ch s 4).
log x = 2,0359 : có 3 CSCN (không tính ch s 2 và 0).
log x = 5,6730 : có 4 CSCN (không tính ch s 5).
d) Ði vi mi s đo thuc loi s mũ thì các CSCN cũng ch tính t ch s khác 0 sau du phy (thuc phn
mũ ca s mũ).
Thí d :
Nhn xét quan trng :
e) Xác định các CSCN trên các thang đo hin s .
Các máy đo hin đại người ta dùng thang đo hin s có 8 hoc trên 8 hàng ch s.
Ta quy ước đọc ti hàng ch s nào ng vi CSCN không tin cy.
2. Làm tròn s cho s đo giáp tiếp
TOP
S đo gián tiếp là s đo tính được t các s đo trc tiếp thông qua biu thc Toán hc nào đó. Sai s ca s đo
trc tiếp lan truyn sang s đo gián tiếp nên ta phi ghi s đo gián tiếp cũng bng nhng ch s có nghĩa.
Khi tính toán thường có nhiu s l, cn phi làm tròn s. Mun vy, ta phi tìm ra s cht trong mi biu thc
tính toán s đo gián tiếp.
a) Phép cng và tr :
S cht được coi là s hng có độ không tin cy tuyt đối ln nht. Khi đó, s thành (tc là s đo gián tiếp)
phi có độ không tin cy tuyt đối ca s cht này.
Thí d : Hãy tính phân t lượng ca BaO.
Tra bng nguyên t lượng, ta tính được :
b) Phép nhân và chia :
S cht được coi là tha sđộ không tin cy tương đối ln nht. S cht có bao nhiêu ch s có nghĩa thì
s thành cũng có by nhiêu CSCN.
Thí d : Hút 10 ml,00 dung dch Hcl đem chun độ bng dung dch NaOH, 0,09215
M. Th tích NaOH tiêu
tn là 2,45 ml. Tính CHCl.
làm tròn thành 0,0226 M (vì s cht là 2,45).
c) Trong các phép tính hn hp (cng, tr, nhân, chia), cn làm tròn trong tng khu vc biu thc ri mi
làm tròn ln cui cùng.
II. SAI S NGU NHIÊN VÀ CÁCH BIU DIN
TOP
9. Ý nghiã ca đại lượng độ lch chun :
Ð lch chun (mu hoc tng quát) là thước đo ca sai s ngu nhiên. Nó biu th độ phân tán ca kết qu đo
cũng có nghĩa là độ lp li ca phép đo. Nó thay đổi ngu nhiên tùy thuc phương pháp đo lường, điu kin đo lường,
độ ln ca đại lượng đo và vào cá nhân người đo lường. Chính vì thế độ lch chun là mt thông s thng kê
quan trng được s dng rng rãi trong nhiu ngành khoa hc.
Sai s ngu nhiên phát sinh do hàng lot nguyên nhân không kim soát được và luôn luôn có mt trong bt c
phép đo lường nào. Ta không th loi b được sai s ngu nhiên nhưng có th gim thiu ti mc tùy ý mun bng
cách tăng lên s ln đo n mt cách tương ng.
III. SAI S H THNG VÀ CÁCH BIU DIN
1. Ðnh nghĩa
TOP
2. Phân loi sai s h thng
TOP
Vic phát hin và đánh giá sai s h thng là công vic khó khăn : phi am hiu tường tn phép đo. Ð cho công
vic này được thun li, ta cn phân loi sai s h thng.
a) Sai s dng c :
Là sai s gây ra do s không hoàn ho ca nhà chế to dng c đo lường hoc dng c đo xung cp trong
quá trình s dng.
Thí d : Các vch chia ca buret không đều nhau, qu cân b mài mòn...
b) Sai s hóa cht :
Là sai s gây ra do có mt các tp cht trong hóa cht đem s dng để phân tích Hóa hc.
c) Sai s cá th :
Là sai s thuc v nguyên lý ca phương pháp phân tích.
Thí d : Phương pháp phân tích th tích có hai sai s phương pháp quan trng :
– Sai s ch th.
– Sai s t l : gây ra do xác định không đúng nng độ dung dch chun.
Vì vy nếu cht phân tích có nng độ càng cao thì phi tiêu tn nhiu th tích dung dch chun, do đó s mc
sai s h thng càng ln. Sai s này t l vi hàm lượng ca cht phân tích nên gi là sai s t l.
Trong phương pháp phân tích trng lượng, có hai loi sai s trái chiu nhau :
– Sai s thiếu : gây ra do kết ta tan mt phn trong dung dch làm thp kết qu phân tích.
– Sai s tha : gây ra do s cng kết ca kết qu làm cho tăng kết qu phân tích.
3. Các biên pháp loi b sai s h thng
TOP
Nguyên lý ly s đo theo hiu s.
Theo nguyên lý này, đểđược mt s đo đúng thì phép đo phi gm hai giai đon :
– Giai đon 1 : Tiến hành đo trên mu nghiên cu.
– Giai đon 2 : Tiến hành đo trên mu so sánh.
Kết qu đo ly theo hiu s ca các s đo thu được mi giai đon.
Mu so sánh được la chn thích hp căn c theo ngun gc phát sinh sai s h thng.
Phương pháp thêm được s dng rng rãi khi phân tích các hàm lượng vét nhm loi b sai s h thng gây ra
bi thành phn th 3 mà nhiu khi không biết rõ.
Ðiu kin để áp dng thành công phương pháp thêm là quan h gia x và y phi tuyến tính và ngoài ra cn phi
làm thí nghim trng để loi b sai s hóa cht lên y
1
.
4. Lan truyn sai s h thng và sai s ngu nhiên
TOP
Sai s ca s đo trc tiếp được lan truyn sang sai s ca các s đo gián tiếp. Bn cht khác nhau ca sai s h
thng và sai s ngu nhiên dn đến các thut toán lan truyn sai s cũng khác nhau.
CHƯƠNG 2 : HÀM PHÂN B - K VNG - PHƯƠNG SAI CA ĐẠI LƯỢNG NGU NHIÊN
I.
KHÁI QUÁT V HÀM PHÂN B
1. Đại lượng ngu nhiên
2. Hàm phân b ca đại lượng ngu nhiên gián đon
3. Hàm phân b ca đại lượng ngu nhiên liên tc
II. K VNG - PHƯƠNG SAI CA ĐẠI LƯỢNG NGU NHIÊN
1. K vng
2. Phương sai
3. Thí d áp dng tính cht ca k vng và phương sai
4. Tính k vng và phương sai ca giá tr trung bình
5. Kết lun
III. CÁC TIÊU CHUN V ƯỚC LƯỢNG CHÍNH XÁC
1. Tính vng
2. Tính không chch
3.
Tính hiu qu
I. KHÁI QUÁT V HÀM PHÂN B
1. Ði lượng ngu nhiên TOP
2. Hàm phân b ca đại lượng ngu nhiên gián đon TOP
3. Hàm phân b ca ÐLNN liên tc
TOP
II. K VNG VÀ PHƯƠNG SAI CA ÐI LƯỢNG NGU NHIÊN
TOP
Mi ÐLNN (liên tc hay gián đon) đều có hai thông s đặc trưng rút ra t các hàm phân b tương ng ca chúng,
đó là k vng và phương sai.
Các thông s này có nhng tính cht và kèm theo đó có thut toán riêng, người ta li dng để tính nhanh các thông
s này.
1. K vng M(x) : (Mathematical expectation)
TOP
K vng toán hc hay k vng, ký hiu M(x).
M(x) là thông s đặc trưng trung tâm phân b ca đại lượng ngu nhiên và được định nghĩa như sau :
K vng trùng vi khái nim trung bình s hc ca đại lượng đo.
Tính cht ca k vng :
a) M(C) = C (C là hng s)
b) M(C + x) = C + M(x)
c) M(C.x) = C.M(x)
d) M(x + y) = M(x) + M(y) (x,y là hai đại lượng ngu nhiên độc lp nhau)
e) M(x.y) = M(x).M(y) (x,y là hai đại lượng ngu nhiên độc lp nhau)
NG DNG THC T :
2. Phương sai D(x)
TOP
(Dispersion (Anh), Variance (Pháp), nghĩa là phân tán, sai lch, phương sai : sai s toàn phương trung bình)
D(x) là thông s đặc trưng cho độ phân tán ca ÐLNN được định nghĩa :
NG DNG THC T :
Ð tính nhanh phương sai, ta làm như sau :
Thay biến ngu nhiên x bng biến ngu nhiên ( :
3. Thí d áp dng tính cht ca k vng và phương sai
TOP
4. Tính k vng và phương sai ca giá tr trung bình
TOP
5. Kết lun
TOP
III. CÁC TIÊU CHUN V ƯỚC LƯỢNG CHÍNH XÁC
TOP
Gi s có thông s mu a* thuc v mt tp hp mu dung lượng n được dùng để ước lượng chính xác cho thông s
a thuc tp hp tng quát cha đựng tp hp mu nói trên.
Fisher đã đề xut tiêu chun sau đây cho ước lượng chính xác :
1. Tính vng
TOP
2. Tính không chch
TOP
3. Tính hiu qu
TOP
CHƯƠNG 3 : HÀM PHÂN B CHUN
I.
HÀM GAUSS
1. Định nghĩa và biu din đồ th
2. H qu quan trng
II. HÀM GAUSS CHUN HÓA
III. NHNG NG DNG CA HÀM PHÂN B CHUN
1. Tính xác sut tin cy hai phía và mt phía ng vi mt khong tin cy
2. Tính biên gii tin cy và khong tin cy vi xác sut P cho trước
3. Tính s ln thí nghim song song cn thiết để đạt mt h s biến động CV% cho trước
4. Loi b s đo mc độ lch thô
IV.
ƯỚC LƯỢNG TRONG THC NGHIM
V.
ƯỚC LƯỢNG TRONG THC NGHIM
VI. KIM TRA THC NGHIM THEO PHÂN B CHUN
Trong chương này kho sát hàm phân b xác sut riêng cho sai s ngu nhiên. Tương t rt nhiu đại lượng ngu
nhiên khác gp trong t nhiên, sai s ngu nhiên tuân theo hàm phân b xác sut Gauss. Do tính cách ph biến rng
khp ca hàm Gauss nên người ta còn gi là hàm phân b chun hay định lut phân b chun (Normal Distribution
Function).
I. HÀM GAUSS
1. Ðnh nghĩa và biu din đồ th
TOP
| 1/125

Preview text:

CHƯƠNG 1 : SAI SỐ NGẪU NHIÊN VÀ SAI SỐ HỆ THỐNG I. MỘT SỐ KHÁI NIỆM 1. Chữ số có nghĩa 2.
Làm tròn số cho số đo gián tiếp II.
SAI SỐ NGẪU NHIÊN VÀ CÁCH BIỂU DIỄN III.
SAI SỐ HỆ THỐNG VÀ CÁCH BIỂU DIỄN 1. Định nghĩa 2.
Phân loại sai số hệ thống 3.
Các biện pháp loại bỏ sai số hệ thống 4.
Lan truyền sai số hệ thống và sai số ngẫu nhiên
I. MỘT SỐ KHÁI NIỆM
1. Chữ số có nghĩa (CSCN) TOP
a) Ðể phản ánh mức độ tin cậy của mộ số đo thực nghiệm, ta chỉ được phép ghi số đo này bằng các chữ số có
nghĩa (CSCN). Cần phân biệt chữ số (figure) và số (number).
- Ta thường dùng mười chữ số sau : 0, 1, 2,... để biểu thị các giá trị khác nhau của một số. Vậy : số là một tập
hợp các chữ số viết theo các trình tự và một thuật toán xác định.
Trong thực nghiệm Hóa học, ta thường gặp 3 loại số sau đây : số tự nhiên thông thường, số logarit, số mũ.
b) Ðối với mỗi số đo đối với số tự nhiên thông thường, ta phân biệt hai loại chữ số có nghĩa sau đây :
- Chữ số có nghĩa không tin cậy : là chữ số đứng sau cùng về bên phải của số đo. Chỉ có duy nhất một CSCN
không tin cậy trong mỗi số đo.
- Chữ số có nghĩa tin cậy : là tất cả các chữ số đứng trước CSCN không tin cậy và tận cùng về bên trái bằng
một chữ số khác chữ số 0.
Một số đo có thể có một hay nhiều CSCN tin cậy. Càng nhiều chữ số có nghĩa thì phép đo càng chính xác.
Thí dụ : Ðọc trên buret, ta ghi được số đo 12,65 ml. Số này có tất cả 4 CSCN, phân loại như sau : 5 là CSCN không tin cậy.
1, 2, 6 là các chữ số có nghĩa tin cậy.
Sở dĩ gọi các chữ số 1, 2, 6 là CSCN tin cậy là vì trên buret có chia độ chính xác đến 0,1 ml thì ai cũng đọc
thấy rõ chữ số này. Chữ số 5 thuộc loại CSCN không tin cậy vì nhiều người đọc phải ước lượng bằng mắt và do đó có
sự chênh lệch, có khi đọc thành 12,64 ml hoặc 12,66 ml.
Ðộ không tin cậy tương đối mới có giá trị biểu thị độ chính xác của phép đo. Nó càng nhỏ thì phép đo càng chính xác.
* Khi ghi một số đo thực nghiệm, chúng ta cần lưu ý đến vai trò của chữ số 0.
Thí dụ : 12,04 ml : có 4 CSCN . 10,05 ml : có 4 CSCN . 0,28 ml : có 2 CSCN . 5,40 ml : có 3 CSCN .
c) Ðối với mỗi số đo thuộc loại số logarit thì các CSCN chỉ tính từ chữ số khác 0 đầu tiên sau dấu phẩy
(thuộc phần định trị của số logarit).
Thí dụ : Các số đo logarit sau :
log x = 4,3576 : có 4 CSCN (không tính chữ số 4).
log x = 2,0359 : có 3 CSCN (không tính chữ số 2 và 0).
log x = 5,6730 : có 4 CSCN (không tính chữ số 5).
d) Ðối với mỗi số đo thuộc loại số mũ thì các CSCN cũng chỉ tính từ chữ số khác 0 sau dấu phẩy (thuộc phần mũ của số mũ). Thí dụ :
Nhận xét quan trọng :
e) Xác định các CSCN trên các thang đo hiện số .
Các máy đo hiện đại người ta dùng thang đo hiện số có 8 hoặc trên 8 hàng chữ số.
Ta quy ước đọc tới hàng chữ số nào ứng với CSCN không tin cậy.
2. Làm tròn số cho số đo giáp tiếp TOP
Số đo gián tiếp là số đo tính được từ các số đo trực tiếp thông qua biểu thức Toán học nào đó. Sai số của số đo
trực tiếp lan truyền sang số đo gián tiếp nên ta phải ghi số đo gián tiếp cũng bằng những chữ số có nghĩa.
Khi tính toán thường có nhiều số lẻ, cần phải làm tròn số. Muốn vậy, ta phải tìm ra số chốt trong mỗi biểu thức
tính toán số đo gián tiếp.
a) Phép cộng và trừ :
Số chốt được coi là số hạng có độ không tin cậy tuyệt đối lớn nhất. Khi đó, số thành (tức là số đo gián tiếp)
phải có độ không tin cậy tuyệt đối của số chốt này.
Thí dụ : Hãy tính phân tử lượng của BaO.
Tra bảng nguyên tử lượng, ta tính được :
b) Phép nhân và chia :
Số chốt được coi là thừa số có độ không tin cậy tương đối lớn nhất. Số chốt có bao nhiêu chữ số có nghĩa thì
số thành cũng có bấy nhiêu CSCN.
Thí dụ : Hút 10 ml,00 dung dịch Hcl đem chuẩn độ bằng dung dịch NaOH, 0,09215 M. Thể tích NaOH tiêu
tốn là 2,45 ml. Tính CHCl.
làm tròn thành 0,0226 M (vì số chốt là 2,45).
c) Trong các phép tính hỗn hợp (cộng, trừ, nhân, chia), cần làm tròn trong từng khu vực biểu thức rồi mới
làm tròn lần cuối cùng.
II. SAI SỐ NGẪU NHIÊN VÀ CÁCH BIỂU DIỄN TOP
9. Ý nghiã của đại lượng độ lệch chuẩn :
Ðộ lệch chuẩn (mẫu hoặc tổng quát) là thước đo của sai số ngẫu nhiên. Nó biểu thị độ phân tán của kết quả đo
cũng có nghĩa là độ lặp lại của phép đo. Nó thay đổi ngẫu nhiên tùy thuộc phương pháp đo lường, điều kiện đo lường,
độ lớn của đại lượng đo và vào cá nhân người đo lường. Chính vì thế mà độ lệch chuẩn là một thông số thống kê
quan trọng được sử dụng rộng rãi trong nhiều ngành khoa học.
Sai số ngẫu nhiên phát sinh do hàng loạt nguyên nhân không kiểm soát được và luôn luôn có mặt trong bất cứ
phép đo lường nào. Ta không thể loại bỏ được sai số ngẫu nhiên nhưng có thể giảm thiểu tới mức tùy ý muốn bằng
cách tăng lên số lần đo n một cách tương ứng.
III. SAI SỐ HỆ THỐNG VÀ CÁCH BIỂU DIỄN 1. Ðịnh nghĩa TOP
2. Phân loại sai số hệ thống TOP
Việc phát hiện và đánh giá sai số hệ thống là công việc khó khăn : phải am hiểu tường tận phép đo. Ðể cho công
việc này được thuận lợi, ta cần phân loại sai số hệ thống.
a) Sai số dụng cụ :
Là sai số gây ra do sự không hoàn hảo của nhà chế tạo dụng cụ đo lường hoặc dụng cụ đo xuống cấp trong quá trình sử dụng.
Thí dụ : Các vạch chia của buret không đều nhau, quả cân bị mài mòn...
b) Sai số hóa chất :
Là sai số gây ra do có mặt các tạp chất trong hóa chất đem sử dụng để phân tích Hóa học.
c) Sai số cá thể :
Là sai số thuộc về nguyên lý của phương pháp phân tích.
Thí dụ : Phương pháp phân tích thể tích có hai sai số phương pháp quan trọng : – Sai số chỉ thị.
– Sai số tỉ lệ : gây ra do xác định không đúng nồng độ dung dịch chuẩn.
Vì vậy nếu chất phân tích có nồng độ càng cao thì phải tiêu tốn nhiều thể tích dung dịch chuẩn, do đó sẽ mắc
sai số hệ thống càng lớn. Sai số này tỉ lệ với hàm lượng của chất phân tích nên gọi là sai số tỉ lệ.
Trong phương pháp phân tích trọng lượng, có hai loại sai số trái chiều nhau :
– Sai số thiếu : gây ra do kết tủa tan một phần trong dung dịch làm thấp kết quả phân tích.
– Sai số thừa : gây ra do sự cộng kết của kết quả làm cho tăng kết quả phân tích.
3. Các biên pháp loại bỏ sai số hệ thống TOP
Nguyên lý lấy số đo theo hiệu số.
Theo nguyên lý này, để có được một số đo đúng thì phép đo phải gồm hai giai đoạn :
– Giai đoạn 1 : Tiến hành đo trên mẫu nghiên cứu.
– Giai đoạn 2 : Tiến hành đo trên mẫu so sánh.
Kết quả đo lấy theo hiệu số của các số đo thu được ở mỗi giai đoạn.
Mẫu so sánh được lựa chọn thích hợp căn cứ theo nguồn gốc phát sinh sai số hệ thống.
Phương pháp thêm được sử dụng rộng rãi khi phân tích các hàm lượng vét nhằm loại bỏ sai số hệ thống gây ra
bởi thành phần thứ 3 mà nhiều khi không biết rõ.
Ðiều kiện để áp dụng thành công phương pháp thêm là quan hệ giữa x và y phải tuyến tính và ngoài ra cần phải
làm thí nghiệm trắng để loại bỏ sai số hóa chất lên y1.
4. Lan truyền sai số hệ thống và sai số ngẫu nhiên TOP
Sai số của số đo trực tiếp được lan truyền sang sai số của các số đo gián tiếp. Bản chất khác nhau của sai số hệ
thống và sai số ngẫu nhiên dẫn đến các thuật toán lan truyền sai số cũng khác nhau.
CHƯƠNG 2 : HÀM PHÂN BỐ - KỲ VỌNG - PHƯƠNG SAI CỦA ĐẠI LƯỢNG NGẪU NHIÊN I.
KHÁI QUÁT VỀ HÀM PHÂN BỐ 1. Đại lượng ngẫu nhiên 2.
Hàm phân bố của đại lượng ngẫu nhiên gián đoạn 3.
Hàm phân bố của đại lượng ngẫu nhiên liên tục II.
KỲ VỌNG - PHƯƠNG SAI CỦA ĐẠI LƯỢNG NGẪU NHIÊN 1. Kỳ vọng 2. Phương sai 3.
Thí dụ áp dụng tính chất của kỳ vọng và phương sai 4.
Tính kỳ vọng và phương sai của giá trị trung bình 5. Kết luận III.
CÁC TIÊU CHUẨN VỀ ƯỚC LƯỢNG CHÍNH XÁC 1. Tính vững 2. Tính không chệch 3. Tính hiệu quả
I. KHÁI QUÁT VỀ HÀM PHÂN BỐ
1. Ðại lượng ngẫu nhiên TOP
2. Hàm phân bố của đại lượng ngẫu nhiên gián đoạn TOP
3. Hàm phân bố của ÐLNN liên tục TOP
II. KỲ VỌNG VÀ PHƯƠNG SAI CỦA ÐẠI LƯỢNG NGẪU NHIÊN TOP
Mỗi ÐLNN (liên tục hay gián đoạn) đều có hai thông số đặc trưng rút ra từ các hàm phân bố tương ứng của chúng,
đó là kỳ vọng và phương sai.
Các thông số này có những tính chất và kèm theo đó có thuật toán riêng, người ta lợi dụng để tính nhanh các thông số này.
1. Kỳ vọng M(x) : (Mathematical expectation) TOP
Kỳ vọng toán học hay kỳ vọng, ký hiệu M(x).
M(x) là thông số đặc trưng trung tâm phân bố của đại lượng ngẫu nhiên và được định nghĩa như sau :
Kỳ vọng trùng với khái niệm trung bình số học của đại lượng đo.
Tính chất của kỳ vọng :
a) M(C) = C (C là hằng số) b) M(C + x) = C + M(x) c) M(C.x) = C.M(x)
d) M(x + y) = M(x) + M(y) (x,y là hai đại lượng ngẫu nhiên độc lập nhau)
e) M(x.y) = M(x).M(y) (x,y là hai đại lượng ngẫu nhiên độc lập nhau) ỨNG DỤNG THỰC TẾ : 2. Phương sai D(x) TOP
(Dispersion (Anh), Variance (Pháp), nghĩa là phân tán, sai lệch, phương sai : sai số toàn phương trung bình)
D(x) là thông số đặc trưng cho độ phân tán của ÐLNN được định nghĩa : ỨNG DỤNG THỰC TẾ :
Ðể tính nhanh phương sai, ta làm như sau :
Thay biến ngẫu nhiên x bằng biến ngẫu nhiên ( :
3. Thí dụ áp dụng tính chất của kỳ vọng và phương sai TOP
4. Tính kỳ vọng và phương sai của giá trị trung bình TOP 5. Kết luận TOP
III. CÁC TIÊU CHUẨN VỀ ƯỚC LƯỢNG CHÍNH XÁC TOP
Giả sử có thông số mẫu a* thuộc về một tập hợp mẫu dung lượng n được dùng để ước lượng chính xác cho thông số
a thuộc tập hợp tổng quát chứa đựng tập hợp mẫu nói trên.
Fisher đã đề xuất tiêu chuẩn sau đây cho ước lượng chính xác : 1. Tính vững TOP
2. Tính không chệch TOP 3. Tính hiệu quả TOP
CHƯƠNG 3 : HÀM PHÂN BỐ CHUẨN I. HÀM GAUSS 1.
Định nghĩa và biểu diễn đồ thị 2. Hệ quả quan trọng II. HÀM GAUSS CHUẨN HÓA III.
NHỮNG ỨNG DỤNG CỦA HÀM PHÂN BỐ CHUẨN 1.
Tính xác suất tin cậy hai phía và một phía ứng với một khoảng tin cậy 2.
Tính biên giới tin cậy và khoảng tin cậy với xác suất P cho trước 3.
Tính số lần thí nghiệm song song cần thiết để đạt một hệ số biến động CV% cho trước 4.
Loại bỏ số đo mắc độ lệch thô IV.
ƯỚC LƯỢNG TRONG THỰC NGHIỆM V.
ƯỚC LƯỢNG TRONG THỰC NGHIỆM VI.
KIỂM TRA THỰC NGHIỆM THEO PHÂN BỐ CHUẨN
Trong chương này khảo sát hàm phân bố xác suất riêng cho sai số ngẫu nhiên. Tương tự rất nhiều đại lượng ngẫu
nhiên khác gặp trong tự nhiên, sai số ngẫu nhiên tuân theo hàm phân bố xác suất Gauss. Do tính cách phổ biến rộng
khắp của hàm Gauss nên người ta còn gọi là hàm phân bố chuẩn hay định luật phân bố chuẩn (Normal Distribution Function). I. HÀM GAUSS
1. Ðịnh nghĩa và biểu diễn đồ thị TOP