








Preview text:
 “Truy ng c dâ u ca c biê u th c liên h p đê 
 gia i ph ơng tri nh vô ty ”    :        2
ax  bx  c.A x  0 trong  x
 D  A(x)<0, x  D).   nh A(x)>0 x  D               
Vi  du 1 : G 3 2
2x  3x 17x  26  2 x  1  x  1  
x  1 x 1  2 3 2
 2x  3x 18x  27  0      x   x 1 3 
   x  3 2
2x  9x  9  0   x  1  2      x   x  3 1 2 
 2x  9x  9  0   x  1  2     Do  x 1 x 1 2
 2x  9x  9 
 x  32x  3  0, x   1  x 1  2 x 1  2  
Nhâ n xe t :  -   3 2
2x  3x 17x  30  22  x 1  0     x  3 2 2
2x  9x 10   0      x 1  2    2 2
2x  9x  10  x  1  2
- Khi ta t 2  x 1  
x 1 x 1  2    x   x  3 1 2 
 2x  9x  9  0     x  1  2    A(x)= x 1 2
 2x  9x  9  x  1  .  x 1  2     1) 2
x  2x  7  2x  3  2) 3 2
x  x  2x  3  2x  3  3) 3
x  x  3  2  x  0   
Vi du 2 2
2x  5x 1 
x  2  4  x  (TH&TT)  Phân ti ch .  -        x2;4         -  f(x)>0 , x  2;4    -   x 3 1 1  4  x     0 x  2;4   1  4  x 1  4  x   x  3 1  1  x  2     0 x  2;4  1  x  2 1  x  2     x  3 x  2
 x  2  x  2     1    x  2  1 x  2  0, x  2;4  x  2  1
 L i gia i   2  x  4 
   x x  x   2 1 4 2 2
1  2x  6x  0 x  3
x  3 x  2  
 2xx  3  0 1  4  x x  2  1      x   1 x 2 3    2x   0     1  4  x x  2  1    x  3 1 x  2 do   2x  0 x  2;4 1  4  x x  2  1    
-Nhâ n xe t ô       x   1 1 3   2x 1  0    
 x  2 1 1 4  x    1 1   2x 1  x  2  1 1  4  x        : 
1) 4x 1  2  x  2 3x 1  2) 2
x  4x  2 3x  1  2x 1  3)  2
x   x   3 1
1  2 5  x  2x 1  5   
Vi du 3. 3 2 x  6 
x 1  x 1   x 1 ng  3 2
4 x  6  4 x  1  4x  4
 4 x 1 x 1   3 1 
x  6  3 x  62  4 2
 4x  5x  6  0 x  2 x  2 x  14 3     4 x 1  x  6
 x  24x  3  0 x  1  1
x  64 16  4 x  62 3 3   3  x  x  x     x  2 4 1 6  14   4x  3  0  x 1 1  
x  64  16  4  x  62 3 3    x  2 3 4 x 1
x  6  x  14 do 
 4x  3  0 x   1 x 1  1
x  64 16  4 x  62 3 3   -Nhâ n xe t
 1 x 1  
x 1 x 1   1   3
2  x  6   
x   x  2 3 3 6 6  4     1)  3 10x  2 
4x  1  3x  1 2)  2 3
x  3x  8  2x  3  x  1 3)  2 3
x  4x  1  3x  1  2 3x  5 2 3
x  14x  1 
2x  1  2 9x  4  2 4  x 3 2 15x  6  2x  1 
x  1  2 11x  4 6 x   1 x  1   2
x  2 x 1  3  x 2
x  2TH & TT  T 4 / 419 x  6 3
x  2  1  3x  7 2
x  9x 1  x 11  3x  2x  3 x 1 
x  3  2  x   1  2
x  3x  5  2x
Vi du 4. x   x   2 2 x   x  3 2 5 3 1 2 3  3x  5   x   2 1 x  3  2
x  3  2   3 2
x  1  3x  5   x 1  0      x   2 3 x 1 x 3x 4 2 1 x  3   x   1  0 2 x  3  2 x   1  x   1
3x  5  3x  52 2 3 2 2 3   2        x   x  2 1 x x 4 1  1  0     2
 x  3  2 x   1  x   1
3x  5  3x  52 2 3 2 2 3     x  1 x  2 2 1 x  x  4 Do  1  0 x   2 x  3  2 x   1  x   1
3x  5  3x  52 2 3 2 2 3    
-Nhâ n xe t :   x     x   2 2 1 x  3    - x  2 1      ơ  1) 3 2 2 3
2x  x  x 1  x 2x  x 1  2x  2  2) x   x     x 2 2 3 4 2 3 1
x  2 x  3   3)   3 2 x  x  x   x   2 5 13 6 2
x  3x  3  2 3x  1    
Vi du 5   x   x   x   2 1 2 6
x  7  x  7x  12    Phân ti ch                - , x   2  .    x  2        2 x   1
x  2   x   1  x  2    1 m 
m  n  1  3 mx  n 
x  2  0  - :   
2m  n  2 4 n   3   2
3x  21x  36  3 x   1
x  2  3 x  6 x  7  0  3x   1 x  2  
3 x  6 x  7  
x  x   x  x   x   x    2 1 4 3 2 6 7 7
3  x  3x 10  0
 L i gia i   x  2  
x  x   x  x   x   x    2 1 4 3 2 6 7 7
3  x  3x 10  0 x  2 1  x  2  x    x  6  2 x  7
 x  2x  5  0
x  4  3 x  2 x  7  3 2       x   x  1 x 6 x 7 2  
 x  5  0
 x  4  3 x  2 x  7  3     x  2 x  2 1
x  6 x  7 Do 
 x  5  0 x   2 
x  4  3 x  2 x  7  3   x=2    1) 2
3x  14x  13   x   1
4x  5  2 x  5 x  3 2) 2
5x  3x   1
2  x  17x  28  3 x 13 2x 1 3)  2
2 8x  7x   1   x   1
2x  3  23x   1 4x  2
Vi  du 6:  
x  2 x 1 4x  5 2x  3  6  x  23  x  1
 x 1  t t  0   3 2
t  6t  t  17   2 4t   2 1 2t  1   2 4t   1  2
2t  1  t  
1  t  2 2
3t  4t  8  0   t  t 4t   2 2 2 1  t  2 2
3t  4t  8  0 2
2t  1  t  1    t  t  t  2 3 4 2 
 3t  4t  8  0 2
 2t 1  t 1   t  2 3 4t  t 2 Do
 3t  4t  8  0, t   0 2
2t  1  t  1     
 Nhâ n xe t.            : 
1) x  3   x   1
x  1   x   1 x  2  0  
2) 8x 13 4x  7  12x  35  2 x  2 2x  3  
3) 4x 12  3x  8 x  6  4x 13 x  2
** Bi nh luâ n :                                    -  . 
BA I TÂ P RE N LUYÊ N    2 4 x  2 
22  3x  x  8TH & TT  T11 / 396    2 x  2  4  x 
2x  5  2x  5x TH & TT  T 4 / 388   2 3
x  14x  1 
2x  1  2 9x  4  2 4  x  .  3 2
15x  6  2x 1 
x  1  2 11x  4   
x   x   2x   x     x 2 6 1 1 2 1 3
x  2TH &TT T 4 / 419   x   3 6
x  2  1  3x  7    2
x  9x 1  x 11  3x  2x  3 (  TH&TT) 
  x   x   x   2 1 3 2
1 x  3x  5  2x
Trích từ tài liệu Truy ngược dấu của tác giả Hương Nguyễn (C1K36)